WO2009093661A1 - Process for forming metallic-film pattern - Google Patents

Process for forming metallic-film pattern Download PDF

Info

Publication number
WO2009093661A1
WO2009093661A1 PCT/JP2009/050983 JP2009050983W WO2009093661A1 WO 2009093661 A1 WO2009093661 A1 WO 2009093661A1 JP 2009050983 W JP2009050983 W JP 2009050983W WO 2009093661 A1 WO2009093661 A1 WO 2009093661A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
metal film
pattern
resin composition
manufactured
Prior art date
Application number
PCT/JP2009/050983
Other languages
French (fr)
Japanese (ja)
Inventor
Masatsugu Komai
Iwao Hotta
Satoshi Moriyama
Original Assignee
Kyowa Hakko Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Chemical Co., Ltd. filed Critical Kyowa Hakko Chemical Co., Ltd.
Publication of WO2009093661A1 publication Critical patent/WO2009093661A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means

Definitions

  • the present invention relates to a method of forming a metal film pattern for manufacturing a metal processed product, a fine part, and the like.
  • LIGA Lithography Galvanoforming Abforming
  • a resist pattern similar to the desired part is formed in the lithography process, then a metal film pattern (mold) is formed by electroforming, and the metal film pattern is used to make a metal, resin, or ceramic.
  • the LIGA process has a problem in forming a desired thick film resist pattern in the lithography process.
  • the stable operation of X-ray apparatus, productivity, and the complexity of mask production are raised.
  • the present thick film resist has problems in resolution and peelability.
  • the thermal imprint method is a method in which a thermoplastic resin is heated above its glass transition point, a mold on which a fine pattern is formed is pressed onto the thermoplastic resin, and after cooling, the pattern is formed by peeling from the mold. It is.
  • thermoplastic resin it is difficult to remove the remaining film on the bottom of the recess that causes the plating to grow by electroforming, and the resin after electroforming is removed. It is also difficult to obtain a good metal film pattern.
  • a photocurable resin composition is applied to a substrate, a mold on which a fine pattern is formed is pressed on the photocurable resin, and the resin composition is cured by light irradiation. It is a method of forming a cured resin pattern by peeling from (see, for example, Patent Documents 2 and 3).
  • a quartz mold is generally used as a transparent material that transmits ultraviolet rays in the mold of the optical imprint method (see, for example, Patent Documents 4 and 5).
  • a pattern having a large aspect ratio particularly when forming a deep groove, it is difficult to process quartz and the processing cost is high.
  • An object of the present invention is to provide a simple metal film pattern forming method.
  • the present invention relates to the following (1) to (16).
  • a curable resin composition is applied on a substrate on which a seed film is formed, and the predetermined pattern of the mold is transferred to the curable resin composition by relative movement between the substrate and a mold having a predetermined pattern.
  • the curable resin composition is cured in a state where the predetermined pattern of the mold is transferred to the curable resin composition, the mold is removed from the cured resin, and the residual cured resin in the region where the metal film is formed is removed.
  • a method of forming a metal film pattern comprising forming a metal film in the region and removing the cured resin remaining on the substrate.
  • the plastic mold material is at least one of polyimide, polycarbonate, polypropylene, and polydimethylsiloxane.
  • a metal film (mold) pattern and a method for forming the pattern can be easily provided.
  • the method of the present invention in particular, by using a visible light curable resin composition containing a plastic mold and a polymerizable compound having a specific weight average molecular weight or less, the metal film (mold) can be more easily formed.
  • a pattern can be formed.
  • FIG. 1 is an explanatory diagram for explaining an embodiment of a metal film pattern forming method according to the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram illustrating an embodiment of a mold creation process for creating a plastic mold.
  • BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view illustrating one embodiment of a plastic mold production process used in a metal film pattern forming method according to the present invention.
  • FIG. 1 is an explanatory view illustrating an embodiment of a metal film pattern forming method according to the present invention.
  • a seed film 2 is formed on the substrate 1.
  • the substrate 1 is a material made of silicon (Si).
  • the seed film 2 is formed by forming a chromium (Cr) film of about 50 nm and then forming a nickel (Ni) film of about 100 nm on the chromium film.
  • Cr chromium
  • Ni nickel
  • the curable resin composition 4 is applied onto the seed film 2 of the substrate 3, and the plastic mold 5 disposed above the substrate 3 is moved downward as viewed in the figure.
  • a predetermined pattern is formed on the plastic mold 5, and in the present embodiment, the pattern includes a convex portion 6 and a concave portion 7 as an example.
  • the plastic mold 5 which moved to the downward direction bites into the curable resin composition 4 as shown in a process (c).
  • the curable resin composition 4 is irradiated with light and cured.
  • step (d) the plastic mold 5 is moved upward and removed from the cured resin 4 '.
  • a pattern opposite to the concavo-convex pattern of the plastic mold 5 is transferred to the cured resin 4 ′. That is, the convex portion 6 of the plastic mold 5 is transferred to the concave portion 8 of the cured resin 4 ′, and the concave portion 7 of the plastic mold 5 is transferred to the convex portion 9 of the cured resin 4 ′.
  • the convex portion 9 transferred to the cured resin 4 ′ is a region where electroforming is not performed (hereinafter, simply referred to as a non-electroforming region), and conversely, the concave portion 8 is a region where electroforming is performed ( Hereinafter, it may be simply referred to as an electroforming region).
  • a residue 4 ′′ of the cured resin 4 ′ is present at the bottom of the recess 8 which is an electroforming region, and the residual cured resin 4 ′′ is removed in the step (e).
  • the residual cured resin 4 ′′ is removed by performing an oxygen (O 2 ) plasma ashing (hereinafter sometimes simply referred to as an ashing process) with an RIE (Reactive Ion Etching) apparatus.
  • O 2 oxygen
  • RIE Reactive Ion Etching
  • step (f) the electroforming region 10 is subjected to an electroforming process to form a metal film 11.
  • the cured resin 4 ' is removed in the step (g).
  • the removal process of the cured resin 4 ′ is performed by a chemical process or an oxygen (O 2 ) plasma ashing process of an RIE apparatus, and a concave portion 12 is formed at the place where the removal process is performed.
  • steps (a) to (g) a formed product in which a metal film pattern is formed on the substrate is completed.
  • the plastic mold is moved downward to bite into the curable resin composition, but the moving direction is not particularly limited, and the substrate is moved upward to turn the curable resin composition into the mold. You may bite in.
  • Examples of the mold having the predetermined pattern described above include a quartz glass mold (quartz mold) and a plastic mold in consideration of optical imprinting. Among these, a plastic mold is particularly preferable.
  • a hard quartz glass surface has to be processed in order to create a pattern, and there is a limit in processing a complicated pattern or a deep groove pattern.
  • the mold can be processed inexpensively and easily, and a pattern with a complicated shape, a deep groove pattern, or a pattern with an extremely narrow pitch can be easily created.
  • FIG. 2 shows an embodiment of a mold making process when a plastic mold is made.
  • the seed film 22 is formed on the upper surface of the substrate 21 to produce the substrate 20 on which the seed film is formed (hereinafter, the substrate 20 on which the seed film is formed is simply referred to as the substrate 20).
  • the seed film 22 is formed by forming a chromium film having a thickness of about 50 nm on the upper surface of the substrate 21 and then forming a nickel film having a thickness of about 100 nm on the chromium film.
  • a resist 23 is arranged on the substrate 20 thus created.
  • a mask 24 is disposed above the resist 23.
  • the mask 24 has a passage portion 25 (for example, a material such as glass) through which light passes and a non-passage portion 26 (for example, a chromium film) through which light does not pass. A formed glass material or the like).
  • a lithography technique when the resist 23 is exposed through the mask 24 by a lithography technique, an exposed resist 23 ′ and an unexposed resist 23 ′′ are formed.
  • a pattern of the unexposed resist 23 ′′ is formed by the concave portion 27 from which the exposed resist 23 ′ is removed and the unexposed resist 23 ′′, as shown in step (c).
  • step (d) When the exposed resist 23 'is completely removed, an electroforming process is performed in step (d).
  • the metal film 28 can be formed in the recess 27 by electroforming.
  • the resist 23 ′′ that is left unexposed is removed.
  • the resist 23 ′′ can be removed by performing a chemical treatment or an RIE treatment (Reactive Ion Etching).
  • RIE treatment Reactive Ion Etching
  • a metal film pattern can be formed on the substrate 20.
  • the resist film thickness and the thickness of the metal film formed by electroforming are adjusted according to the depth of the plastic mold. As the metal material to be electroformed, it is desirable to select a material that can withstand the aspect strength of the pattern and that can realize stress reduction.
  • plastic mold In the present invention, a plastic mold can be preferably used.
  • the material of the plastic mold is not limited as long as the material can hold the pattern.
  • plastic materials include polyethylene, polypropylene, polyvinyl chloride, polymethacrylate, polyamide, polyimide [for example, Upilex S (manufactured by Ube Industries), Aurum film (manufactured by Mitsui Chemicals)], polystyrene, polyfluoride Ethylene, polycarbonate, polyphenylene oxide, polyurethane, polyester [for example, Lumirror (manufactured by Toray Industries, Inc.)], polyethylene terephthalate, polyphenylene isophthalamide, polylactic acid [for example, plamate (manufactured by Dainippon Ink, Inc.), Terramac (unitika )], Polyacrylonitrile, epoxy resin, silicone resin [eg, Sylpot or Sylgard 184 (manufactured by Toray Dow Corning)], polydi
  • plastic materials polypropylene, polymethacrylate, polycarbonate, polyester, polyethylene terephthalate, polystyrene, polyimide, silicon-based resin, and fluorine-based resin are preferable from the viewpoint of peelability from the resin, and more preferably polyimide.
  • polycarbonate, polypropylene and polydimethylsiloxane are preferable from the viewpoint of peelability from the resin, and more preferably polyimide.
  • the mold used in the present invention is preferably colorless and transparent, but may be colored. However, the total light transmittance is preferably at least 10% or more, more preferably 30% or more. Moreover, you may contain fillers, such as UV absorber.
  • the mold is preferably colorless and transparent, but even if it is colored, it can cure the visible light curable resin composition and form a pattern if it transmits at least 10% of visible light.
  • plastic molds for example, in addition to quartz glass, molds of inexpensive glass materials such as soft glass, hard glass, Pyrex (registered trademark) glass, ordinary glass, and frosted glass are also used. A plastic mold is most preferred.
  • the shape of the plastic mold may be any shape as long as pattern formation is possible, and examples thereof include a plate shape, a film shape, an endless belt shape, and a cylindrical shape, preferably An endless belt shape and a cylindrical shape are mentioned.
  • a material obtained by bonding the above plastic material or plastic film with an adhesive or photocuring to give strength may be used as the mold.
  • a plastic plate or a plastic film in which a metal mold is pressed by pressure bonding to form a pattern may be used as a mold as it is.
  • Examples of the method for producing a plastic mold in the present invention include a thermal (nano) imprint method, a hot embossing method, and a direct press method.
  • a method of drawing directly on plastic with an electron beam or ion beam (proton beam, X-ray, etc.), a plastic mold by applying or dripping a curable resin on a metal mold, thermosetting or photocuring A room temperature nanoimprint method using HSQ (hydrogen silsesquioxane polymer), a soft lithography method using PDMS (polydimethylsiloxane), and the like.
  • HSQ hydrogen silsesquioxane polymer
  • PDMS polydimethylsiloxane
  • the thermal (nano) imprint method is preferable. Specifically, it is a method in which an original mold (a material such as metal, silicon, quartz or plastic) is pressed against the surface of a plastic plate or film, and is heated and pressed, and a heating plate under a thermal (nano) imprint apparatus By placing the original mold and the plastic plate or film on the plate and changing the temperature of the upper heating plate and the lower heating plate, a plastic mold having a good shape and good light transmittance can be formed. At that time, the heating temperature of the lower heating plate is preferably set to a temperature of ⁇ 50 ° C.
  • the temperature difference between the upper and lower heating plates is preferably 30 ° C. or higher, and more preferably 50 ° C. or higher.
  • the pressing pressure is preferably 0.2 to 50 MPa, more preferably 1 to 10 MPa.
  • the cooling temperature is preferably cooled to room temperature in two or more stages.
  • FIG. 3 shows an embodiment of a process for producing a plastic mold.
  • a mold material 30 is prepared, and a mold release agent is applied to the mold material 30.
  • the mold 31 is disposed above the mold material 30.
  • the mold 31 can be a mold created according to the embodiment shown in FIG. A convex portion 32 and a concave portion 33 are formed on the mold 31, and a predetermined pattern is formed by these concave and convex portions 32 and 33.
  • the mold 31 is moved downward as seen in the figure, and the convex portions 32 of the mold 31 are digged into the molding material 30 as shown in step (c).
  • the mold 31 is heated in a state where it is bitten into the mold material 30, and the pattern of the mold 31 is transferred to the mold material 30.
  • the mold 31 is removed from the mold 30 to produce a plastic mold 30 ′.
  • the convex portion 32 of the mold 31 is transferred to form a concave portion 34, and further, the concave portion of the mold 31 is transferred to form a convex portion 35.
  • the pattern is uneven.
  • the plastic mold 30 'thus produced can be used in the metal film pattern forming method of the embodiment shown in FIG.
  • the mold is moved downward to bite into the mold material, but the moving direction is not particularly limited, and the mold material is moved upward to bite the mold material into the mold. It may be allowed.
  • the mold (particularly plastic mold) used in the present invention may be coated or vapor-deposited on the release surface with a mold release agent or a release agent in order to improve release properties and release properties.
  • a mold release agent include fluorine-based surface treatment agents [OPTOOL DSX, Durasurf HD-1100, HD-2100 (manufactured by Daikin Industries, Ltd.), NovecEGC-1720 (manufactured by Sumitomo 3M), etc.], gold Mold release agent [barrier serum gamma R (manufactured by Vanatech Co., Ltd.)] and the like.
  • release agent examples include fluorine release agents [Flease (manufactured by Neos Co., Ltd.)], silicone resin, silicone oil, silicone wax, Teflon (registered trademark) dispersant, polyvinyl alcohol, water-soluble emulsion release agent, and the like.
  • fluorine release agents include fluorine release agents [Flease (manufactured by Neos Co., Ltd.)], silicone resin, silicone oil, silicone wax, Teflon (registered trademark) dispersant, polyvinyl alcohol, water-soluble emulsion release agent, and the like.
  • examples include molds.
  • Deposition methods include organic thin film treatment [Nanos (manufactured by T & K Co.)], fluorine coating [manufactured by Asahi Precision Co., Ltd.], chemical growth vapor phase [fluorine-containing diamond-like carbon (F-DLC) composition] Film method] and the like, and organic thin film treatment is preferred.
  • the curable resin composition in the present invention preferably contains a polymerizable compound and a polymerization initiator and can be cured by light or heat.
  • the polymerizable compound is preferably a polymerizable monomer and / or a polymerizable polymer.
  • the polymerizable monomer and the polymerizable polymer have one or more carbon-carbon unsaturated bonds in the molecule.
  • a polymeric compound may be used individually by 1 type, and may be used in combination of multiple types.
  • the content of the polymerizable compound is preferably 5 to 99.99 parts by weight and more preferably 10 to 99.9 parts by weight per 100 parts by weight of the curable resin compound.
  • the weight average molecular weight of the polymerizable polymer is preferably 500 to 5,000, and more preferably 800 to 2,000.
  • the ashing process is facilitated and the working time is shortened.
  • Examples of the polymerizable monomer having one carbon-carbon unsaturated bond in the molecule include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, methoxyethyl (meth) acrylate, methoxydiethylene ( (Meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) ) Acrylate, 2-hydroxy-1-methylethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, isobornyl (meth) acrylate, acrylonitrile, (meth) acrylamide, -Substituted (meth) acrylamide [for example, diace
  • Examples of the polymerizable monomer having two or more carbon-carbon unsaturated bonds in the molecule include ethylene glycol di (meth) acrylate [NK ester 1G (manufactured by Shin-Nakamura Chemical Co., Ltd.)], propylene glycol di (meta) ) Acrylate, diethylene glycol di (meth) acrylate [NK ester 2G (manufactured by Shin-Nakamura Chemical Co., Ltd.)], triethylene glycol di (meth) acrylate [NK ester 3G (manufactured by Shin-Nakamura Chemical Co., Ltd.)], tetraethylene glycol Di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate [NK ester BG (manufactured by Shin-Nakamura Chemical Co., Ltd.)], neopentyl glycol di (meth) acrylate [NK ester NPG, A-NPG (new) Nakamura Chemical Co
  • triethylene glycol di (meth) acrylate triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,3-butylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, 2-hydroxy 1,3-dimethacryloxypropane, diethylene glycol dimethacrylate, ethoxylated cyclohexanedimethanol diacrylate, tripropylene glycol diacrylate [NK ester, APG-200 (manufactured by Shin-Nakamura Chemical Co., Ltd.)] and trimethylolpropane trimethacrylate Is preferred.
  • Examples of the polymerizable polymer include methoxypolyethylene glycol (meth) acrylate, polymethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and epoxy (meth).
  • examples include acrylates, epoxy-modified (meth) acrylates, polyether (meth) acrylates, urethane acrylates, ester (meth) acrylates, bisphenol-modified epoxy (meth) acrylates, and unsaturated polyester resins. Among these, urethane acrylates are preferred.
  • urethane acrylate examples include, for example, urethane obtained by reacting a hydroxyl group-containing polymer with a polyfunctional isocyanate and then reacting with a (meth) acrylate having active hydrogen, and (meth) acrylate having active hydrogen with a polyfunctional isocyanate. Further examples include urethane obtained by reacting a chain extender.
  • polyester polyols examples include polyester polyols, polyether polyols, polycarbonate polyols and the like. Among these, polyester polyols are preferable.
  • polyester polyol examples include polyester polyols obtained by reacting one or more dicarboxylic acids with one or more compounds having two or more hydroxyl groups.
  • dicarboxylic acid examples include adipic acid, glutaric acid, 2,4-diethylglutaric acid, succinic acid, dodecanedioic acid and the like, and among these, adipic acid or glutaric acid is preferable.
  • Examples of the compound having two or more hydroxyl groups include ethylene glycol, propylene glycol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2,4-diethyl-1 , 5-pentanediol, 1,6-hexanediol, pyrocatechol, resorcinol, pyrogallol, bis (hydroxyphenyl) -2-propane, bis (hydroxyphenyl) methane, polyethylene glycol (2-120 polymer), polyprolene glycol (2-120 polymer), polyneopentyl glycol (2-120 polymer), glycerin, pentaerythritol and the like.
  • polypropylene glycol and bis (hydroxyphenyl) -2-propane are preferable.
  • the polyether polyol is obtained by reacting one or more cyclic ethers (for example, tetrahydrofuran, oxetane, ethylene oxide, propylene oxide, etc.) with one or more compounds having two or more hydroxyl groups.
  • the polyether polyol obtained from tetrahydrofuran and polypropylene glycol is preferable among these.
  • a compound having two or more hydroxyl groups has the same meaning as described above.
  • the polycarbonate polyol is a polycarbonate obtained by reacting one or more of carbonate esters (dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, etc.) with one or more compounds having two or more hydroxyl groups.
  • carbonate esters dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, etc.
  • Polyols are mentioned, and among these, polycarbonate polyols obtained from diethyl carbonate and polypropylene glycol are preferred.
  • a compound having two or more hydroxyl groups has the same meaning as described above.
  • polyfunctional isocyanate examples include ethylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate, cyclopentylene diisocyanate, cyclohexylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, 4,4′-. Examples thereof include diphenylmethane diisocyanate and dicyclohexylmethane diisocyanate. Among these, 2,4-tolylene diisocyanate and xylylene diisocyanate are preferable.
  • Examples of the (meth) acrylate having active hydrogen include (meth) acrylic acid ester having a hydroxyl group. Specific examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2 -Hydroxybutyl (meth) acrylate, 2-hydroxypropyl-3-benzoate (meth) acrylate, 2-hydroxypropyl-3- (4-phenylbenzoate) (meth) acrylate, glycidyl (meth) acrylate, etc. Among these, 2-hydroxyethyl (meth) acrylate or 2-hydroxybutyl (meth) acrylate is preferable.
  • chain extenders examples include polyethylene glycol (2 to 120 polymer), polyprolene glycol (2 to 120 polymer), polyneopentyl glycol (2 to 120 polymer), polycaptolactone (2 to 100 polymer) or Examples thereof include polybutyrolactone (2 to 100 polymer). Among these, 3 to 40 polymer polypropylene glycol or polycaptolactone is preferable.
  • the photocurable resin composition includes an epoxy resin, an oxetane resin, a urethane resin, a polyester resin, a silicone resin (for example, PDMS), a melamine resin, a fluorine resin, a polycarbonate resin, a poly ( (Meth) methyl acrylate resin (for example, PMMA), phenol resin, vinyl chloride resin, vinyl acetate resin, polyethylene resin, polypropylene resin, polyether resin, polyvinyl ether resin, polyimide resin, polyamide resin, polyamine resin, polyvinyl alcohol resin, Cyanoacrylate resins, ABS (acrylonitrile-butadiene-styrene) resins, PET (polyethylene terephthalate) resins, biodegradable plastics (polylactic acid, etc.), other thermoplastic resin
  • the curable resin composition in the present invention preferably contains a thermal polymerization initiator or a photopolymerization initiator as a polymerization initiator. If necessary, a photosensitizer, a photopolymerization accelerator, A solvent and other additives may be contained.
  • the content of the polymerization initiator is preferably in the range of 0.01 to 20% by mass in the curable resin composition.
  • the content of the thermal polymerization initiator is preferably in the range of 0.01 to 20% by mass, preferably in the range of 0.1 to 10% by mass with respect to the total polymerizable compound (solid content). More preferably.
  • thermal polymerization initiator examples include radical polymerization initiators and ionic polymerization initiators, and radical polymerization initiators are preferred.
  • radical polymerization initiator examples include peroxides, azo compounds, persulfates, redox initiators, etc. Among these, peroxides and azo compounds are preferable.
  • azo compound examples include 2,2′-azobis (2-methylpropionitrile) (AIBN), 2,2′-azobis (2-methylbutyronitrile) (AMBN), dimethyl 2,2′-azobis. (2-methylpropionate) [V-601: manufactured by Wako Pure Chemical Industries, Ltd.].
  • peroxides examples include hydrogen peroxide, peroxide salts, alkyl peroxides, acyl peroxides, and peroxide esters.
  • peroxides include hydrogen peroxide, peroxide salts, alkyl peroxides, acyl peroxides, and peroxide esters.
  • di-tert-butyl oxide perbutyl D: NOF Corporation
  • Tert-butyl oxyneodecanate Perbutyl ND: manufactured by NOF Corporation
  • tert-butyl oxypivalate Perbutyl PV: manufactured by NOF Corporation
  • Examples of the ionic polymerization initiator include a cationic polymerization initiator and an anionic polymerization initiator.
  • Examples of cationic polymerization initiators include proton acids (sulfuric acid, perchloric acid, trichloroacetic acid, etc.), Friedel-Craft type catalysts (aluminum chloride, ferric chloride, boron trifluoride, titanium tetrachloride, etc.), stable cations And catalysts (triphenylhexachloroantimonate, triethyloxonium tetrafluoroborate, etc.).
  • trichloroacetic acid, aluminum chloride, and boron trifluoride are preferable.
  • anionic polymerization initiator examples include alkali metals (sodium, lithium, etc.), Grignard reagents, alkyl lithium, electron donating organic compounds (amines, alkali compounds, etc.) and the like. Among these, lithium and amine are preferable.
  • polymerization of an epoxy resin can also be used.
  • the curing agent examples include amine-based curing agents, acid anhydride curing agents, phenol-based curing agents, imidazole-based curing accelerators, and among these, amine-based and acid anhydride-based curing agents are preferable.
  • Examples of the photopolymerization initiator used in the present invention include a photopolymerization initiator having photosensitivity at 200 to 1,000 nm, and among them, a photopolymerization initiator having photosensitivity at 365 to 600 nm is preferable. A visible light polymerization initiator having photosensitivity at 400 to 600 nm is more preferable.
  • visible light polymerization initiators examples include acylphosphine oxide compounds, ⁇ -aminoalkylphenone compounds, ⁇ -hydroxyalkylphenone compounds, titanocene photopolymerization initiators, hydrogen abstraction type radical photopolymerization initiators, and oxime ester types.
  • examples include photopolymerization initiators, cationic photopolymerization initiators, and acid generators.
  • acylphosphine oxide compounds are particularly preferable.
  • the acyl phosphine oxide compound include monoacyl phosphine oxide and bisacyl phosphine oxide.
  • Examples of the monoacylphosphine oxide include 2,4,6-trimethylbenzoyldiphenylphosphine oxide [Lucirin TPO (manufactured by BASF Corporation)], 2,6-dichlorobenzoyldiphenylphosphine oxide, 3-chloro-2,4, 6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, 5- (4-pentyloxybenzoyl) -5H-dibenzophosphole 5-oxide, 5- (4-hexylbenzoyl) -5H -Dibenzophosphole 5-oxide, 5- (2,4,6-trimethylbenzoyl) -5H-dibenzophosphole 5-oxide, 5- (4-toluoyl) -5H-dibenzophosphole 5-oxide, 5- ( p-anisoy -5H-dibenzophosphole 5-oxide, 5- (2,6-dimethoxybenz
  • bisacylphosphine oxide examples include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide [BAPO: Irgacure 819 (manufactured by Ciba Specialty Chemicals)], bis (2,4,6-trimethyl).
  • Benzoyl) -4-methylphenylphosphine oxide bis (2,4,6-trimethylbenzoyl) -2,4-dimethylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -2,6-diisopropylphenylphosphine Oxide, bis (2,4,6-trimethylbenzoyl) -4-isopropyl-2,6-dimethylphenylphosphine oxide, bis (2,6-dimethylbenzoyl) phenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) ) -2,5-Di Chill phenyl phosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentyl phosphine oxide and the like.
  • Examples of the ⁇ -aminoalkylphenone compound include 2-methyl-1- [4 (methylthio) phenyl] -2-morpholinopropan-1-one [Irgacure 907 (manufactured by Ciba Specialty Chemicals)], 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone [Irgacure 369 or 1300 (manufactured by Ciba Specialty Chemicals)], 2-dimethylamino-2- (4-methylbenzyl ) -1- (4-morpholinophenyl) -1-butanone [Irgacure 379 (manufactured by Ciba Specialty Chemicals)], 3,6-bis (2-methyl-2-morpholinopropionyl) -9-octylcarbazole [Adekaoptomer N-1414 manufactured by ADEKA Co., Ltd.] It can be used in combination with a tontone derivative (
  • ⁇ -hydroxyalkylphenone compound for example, 2-hydroxy-1- [4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl] -2-methylpropan-1-one [Irgacure 127 ( Ciba Specialty Chemicals)], 1-hydroxycyclohexyl phenyl ketone [Irgacure 184 (Ciba Specialty Chemicals)], 2-hydroxy-2-methyl-1-phenylpropan-1-one [Darocur 1173 (manufactured by Ciba Specialty Chemicals)], 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one [Irgacure 2959 (Ciba ⁇ Specialty Chemicals), oligo [2-hydroxy-2 Methyl-1- [4- (1-methylvinyl) phenyl] propane [Isakyua KIP 0.99, Isakyua KIP EM, Irg
  • titanocene type photopolymerization initiator for example, bis (5-2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium [ Irgacure 784 (manufactured by Ciba Specialty Chemicals Co., Ltd.)].
  • hydrogen abstraction type radical photopolymerization initiator examples include benzophenone derivatives, thioxanthone derivatives, quinone-amine photopolymerization initiators, and the like.
  • benzophenone derivative examples include 4- (4-methylphenylthio) phenyl ketone [Kayacure BMS (manufactured by Nippon Kayaku Co., Ltd.)] and the like.
  • Examples of the thioxanthone derivative include 2,4-diethylthioxanthone [Kayacure DETX-S (manufactured by Nippon Kayaku Co., Ltd.)], 2-chlorothioxanthone [Kayacure CTX (manufactured by Nippon Kayaku Co., Ltd.)], isopropylthioxanthone [ Isacure ITX (Lamberti Co., Ltd.)] and the like.
  • Examples of the quinone-amine photopolymerization initiator include a combination of a quinone compound or a benzyl ketal photopolymerization initiator and an amine compound or an aminobenzoate compound, and these have a polymerization initiation function.
  • Examples of the quinone compound include camphorquinone, ethyl anthraquinone [Kayacure 2-EAQ (manufactured by Nippon Kayaku Co., Ltd.)], benzyl [BENZIL (manufactured by Kurokin Kasei Co., Ltd.), S-113 (Shinko Giken Co., Ltd.). )] Etc.
  • benzyl ketal type photopolymerization initiator examples include benzyl dimethyl ketal [DMPA: Irgacure 651 (manufactured by Ciba Specialty Chemicals Co., Ltd.), Isacur KB1 (manufactured by Lamberti Co., Ltd.)], and benzoin [Seiko All Z (Seiko Co., Ltd.). Chemical Co., Ltd.)], benzoin ethyl ether [Sequol BEE (Seiko Chemical Co., Ltd.)] and the like.
  • DMPA benzyl dimethyl ketal
  • Irgacure 651 manufactured by Ciba Specialty Chemicals Co., Ltd.
  • Isacur KB1 manufactured by Lamberti Co., Ltd.
  • benzoin Seiko All Z (Seiko Co., Ltd.). Chemical Co., Ltd.)]
  • benzoin ethyl ether Sequol BEE (Seiko Chemical Co.,
  • amine compound examples include 4,4′-bis (dimethylamino) benzophenone (Michler ketone), 4,4′-bis (diethylamino) benzophenone [S-112, manufactured by Shinko Giken Co., Ltd., High Cure ABP (Kawaguchi Pharmaceutical ( And 10-butyl-2-chloroacridone (NBCA (manufactured by Kurokin Kasei Co., Ltd.)).
  • Darocur EBD manufactured by Ciba Specialty Chemicals
  • Kayacure EPA manufactured by Nippon Kayaku
  • 2-ethylhexyl 4-dimethylamino Benzoate
  • isoamyl 4-dimethylaminobenzoate
  • Kayacure DMBI manufactured by Ciba Specialty Chemicals
  • Examples of the oxime ester type photopolymerization initiator include 1- [4- (phenylthio) phenyl] -1,2-octanedione 2- (O-benzoyloxime) [Irgacure OXE01 (manufactured by Ciba Specialty Chemicals Co., Ltd.) )], 1- [9- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- [9- (2-methylbenzoyl) -9H-carbazol-3-yl] -ethanone 1- (O -Acetyloxime) [CGI242 (Ciba Specialty Chemicals Co., Ltd.)] and the like.
  • Examples of the cationic photopolymerization initiator include aromatic sulfonium salts [Syracure UVI-697, UVI-6922 (manufactured by Dow Chemical Co., Ltd.), SP-150, SP-152, SP-170, SP-172 (( ADEKA) and DTS-102, DTS-103, DTS-105, NDS-103, NDS-105, NDS-155, MNPS-109 (manufactured by Midori Chemical Co., Ltd.)], iodonium salts [for example, UV9380 ( GE Toshiba Silicone Co., Ltd.), Irgacure 250 (Ciba Specialty Chemicals Co., Ltd.), BBI-102, BBI-103 (Midori Chemical Co., Ltd.)] and the like.
  • aromatic sulfonium salts for example, UV9380 ( GE Toshiba Silicone Co., Ltd.), Irgacure 250 (Ciba Specialty Chemicals Co., Ltd.),
  • the cationic photopolymerization initiator is preferably mixed with an epoxy resin, an oxetane resin, a vinyl ether compound, a novolac resin, a phenol resin, a (meth) acrylic acid resin, or the like when used.
  • Examples of the acid generator include 2- [2- (furan-2-yl) vinyl] -4,6-bis (trichloromethyl) -1,3,5-triazine [TFE-triazine (Sanwa Chemical Co., Ltd.). ))], 2- [2- (5-methylfuran-2-yl) vinyl] -4,6-bis (trichloromethyl) -1,3,5-triazine [TME-triazine (Sanwa Chemical Co., Ltd.) ))], 2- [2- (3,4-dimethoxyphenyl) ethenyl) vinyl] -4,6-bis (trichloromethyl) -1,3,5-triazine [TAZ-113 (Midori Chemical Co., Ltd.) Dimethoxytriazine (manufactured by Sanwa Chemical Co., Ltd.)], (5-octanesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl
  • an acid generator mixes an epoxy resin, an oxetane resin, a vinyl ether compound, a novolac resin, a phenol resin, a (meth) acrylic acid resin, etc. in use.
  • a photopolymerization initiator having photosensitivity in the (near) infrared region can be used alone or in combination with other polymerization initiators.
  • a combination of an organic boron compound and a near-infrared absorbing photosensitive dye can be used as a photopolymerization initiator.
  • tetrabutylammonium butyltriphenylborate [P3B (manufactured by Showa Denko KK)], tetrabutylammonium butyltri (4-tert-butylphenyl) borate [BP3B (manufactured by Showa Denko KK)]
  • BP3B tetrabutylammonium butyltri (4-tert-butylphenyl) borate
  • IR-T and IR-13F near-infrared absorbing dyes
  • photosensitizer examples include anthracene, phenothiazene, perylene, coumarin derivatives, thiazole derivatives, thioxanthone derivatives, CT complexes (complexes of pyridinium salts and aromatic compounds), and the like.
  • photopolymerization accelerator examples include aromatic amine compounds, aminobenzoate compounds, thioxanthone derivatives, and the like.
  • aromatic amine compounds aminobenzoate compounds
  • thioxanthone derivatives examples include isoamyl p-dimethylaminobenzoate [KAYACURE DMBI (made by Nippon Kayaku Co., Ltd.)]
  • ethyl p-dimethylaminobenzoate [KAYACURE EPA (made by Nippon Kayaku Co., Ltd.)]
  • the curable resin composition in the present invention preferably contains the polymerizable compound and a visible light polymerization initiator.
  • a visible light polymerization initiator for example, it can be cured to a deep portion by light in the visible light wavelength range (400 to 800 nm), and can be photocured even when it contains a substance that lowers transparency such as a filler.
  • visible light permeate transmits the inside of a curable resin composition
  • hardenability is uniform and can give rectangularity faithful to a mold.
  • a preferred form of the pattern forming method of the present invention is to use a plastic mold. Thereby, it can be photocured to the deep part of the visible light curable resin composition, and pattern formation of a thick film or a high columnar object (pattern with a high aspect ratio) becomes possible.
  • the pattern is a columnar object
  • the width of the obtained pattern is preferably 10 nm to 100 mm
  • the depth is preferably 10 nm to 5 mm.
  • the curable resin composition in the present invention may contain a solvent.
  • the content of the solvent in the curable resin composition is preferably 0.1 to 90% by mass, and more preferably 1 to 30% by mass.
  • the solvent include volatile solvents.
  • volatile solvent examples include ketone solvents (for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), aromatic solvents (for example, toluene, xylene, cumene, anisole, etc.), ester solvents (for example, ethyl acetate).
  • ketone solvents for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • aromatic solvents for example, toluene, xylene, cumene, anisole, etc.
  • ester solvents for example, ethyl acetate
  • the curable resin composition in the present invention can contain a known additive as appropriate depending on the application.
  • the content of the additive in the curable resin composition is preferably in the range of 0.01 to 5% by mass.
  • a polymerization inhibitor can be added for the purpose of improving the stability of the resin or suppressing / adjusting the polymerization.
  • hydroquinone, 2,6-di-tert-butyl-p- Examples thereof include polymerization inhibitors such as cresol, p-methoxyphenol, and sterically hindered phenol.
  • the curable resin composition in the present invention can contain a copper compound, a phosphorus compound, a quaternary ammonium compound, a hydroxylamine derivative and the like in order to increase the shelf life in a dark room.
  • paraffin or similar wax-like substances that move to the surface at the start of polymerization can be included to reduce the damage caused by oxygen during curing.
  • the curable resin composition in the present invention can also contain a light stabilizer.
  • the light stabilizer include UV absorbers, UV absorption polymers, and photodegradation prevention polymers. Specific examples include benzotriazole, benzophenone, hydroxyphenyl-s-triazine, oxalanilide compounds, and the like. can give.
  • the curable resin composition according to the present invention includes a fluorescent brightening agent, a filler, a pigment, a dye, a wetting agent, a dispersant, an antioxidant, a lubricant, a corrosion inhibitor, an antialgae, and an antifouling agent, depending on the purpose.
  • An antistatic agent, a flow control agent, and the like can be appropriately contained.
  • the curable resin composition in the present invention may contain a mold release agent or a release agent in order to improve the peelability and releasability, and the surface of the curable resin composition applied on the substrate is the above-mentioned.
  • a mold release agent or the release agent may be applied or dispersed.
  • the mold release agent include fluorine-based surface treatment agents [for example, OPTOOL DSX, Durasurf HD-1100, HD-2100 (manufactured by Daikin Industries, Ltd.), Novec EGC-1720 (manufactured by Sumitomo 3M Limited)], Mold release agent [Barrier Serum Gamma R (manufactured by Vanatech Co., Ltd.)] and the like.
  • release agent examples include fluorine-based acrylic compounds [V-3F, V-4F, V-8F (manufactured by Osaka Organic Chemical Co., Ltd.)], fluorine-based mold release agents [Flease (manufactured by Neos Corporation)].
  • Etc. silicone resin, silicone oil, silicone wax, Teflon (registered trademark) dispersant, polyvinyl alcohol, water-soluble emulsion release agent and the like.
  • a silane coupling agent for example, a silane coupling agent, a hydroxyl group-containing (meth) acrylate, a chelating agent, a metal trapping agent, an epoxy compound,
  • a treatment agent such as a sulfur-containing compound may be contained in the curable resin composition, and the treatment agent may be applied or dispersed on the surface of the seed film.
  • silane coupling agent examples include ⁇ -glycidoxypropyltrimethoxysilane [KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.)], ⁇ -glycidoxypropylmethyldiethoxysilane [KBM-402 (Shin-Etsu Chemical).
  • a ring-opening polymerizable monomer such as an epoxy compound, an oxetane compound, or a tetrahydropyran derivative is polymerized with the ring-opening polymerizable monomer.
  • the curable resin composition may contain a cationic photopolymerization initiator or a curing agent (for example, amines, carboxylic acids, acid anhydrides, thiol compounds, etc.) that can be initiated.
  • an acyl group such as an acetyl group may be introduced into the hydroxyl group of the contained compound.
  • a colorless transparent filler in order to relieve shrinkage when the curable resin composition is cured, a colorless transparent filler, a colored filler, a glossy filler, and the like may be included.
  • the colorless and transparent filler include silica gel, functional silica gel (functional group-modified silica gel), glass (glass beads, glass pieces, etc.), titanium oxide, plastic particles (for example, polystyrene particles, polyacryl particles, polycarbonate particles, PET particles, etc.), dental filling resins, water, aqueous solutions, sugars, organic solvents, inorganic solids, ionic liquids and the like.
  • coloring fillers include pigments, dyes, opaque plastic particles, papers, ceramics, latex, emulsion, carbon black (charcoal), pebbles, sand, soil, concrete, asphalt, minerals, fertilizers, petals, seeds, Examples include pollen, soap, protein, magnetic powder, iron sand, fat, hair, skin, and smoke.
  • glossy fillers include metal grains and metal pieces (eg, gold, silver, copper, iron, lead, tin, aluminum, chromium, nickel, zinc, mercury, arsenic, sodium, potassium, etc.), alloys (For example, tin, bronze, brass, anodized, amalgam, etc.), metal oxides (for example, rust, patina, etc.), silicon wafer pieces, mirror pieces and the like.
  • Others include, for example, dispersion aids, fillers (eg talc, gypsum, silica, rutile, carbon black, zinc oxide, iron oxide), bulking agents, matting agents, antifoaming agents, fluorescent agents, phosphorescent agents, Luminous agent, conductive agent, metal particles (for example, gold particles, silver particles, copper particles), color materials, antibacterial agents (for example, titanium oxide, antibacterial organic compounds, etc.), photocatalysts, reaction catalysts, solid acids, ion exchange Examples thereof include resins, paints, water-based paints, powder paints, other auxiliaries commonly used in surface coating technology, nanoparticles of the other auxiliaries, and the like. *
  • the curable resin composition according to the present invention may contain a filler that functions as a photocatalyst (for example, titanium oxide, silver, etc.).
  • a filler that functions as a photocatalyst (for example, titanium oxide, silver, etc.).
  • a curable resin composition excellent in antibacterial properties, sterilization properties, antifouling properties, deodorizing properties, deodorizing properties, purifying properties and the like can be obtained.
  • Examples of the light used for curing the curable resin composition in the present invention include ultraviolet light, visible light, near infrared light, and the like.
  • Examples of light sources that can emit such light include incandescent lamps, fluorescent lamps, sunlight, low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halogen lamps, lasers, and light-emitting diodes (LEDs). ) Etc.
  • lasers and LEDs include light and small semiconductor lasers and LEDs that can irradiate light in a certain region within a range of 360 to 600 nm.
  • a semiconductor violet laser, a semiconductor blue violet laser, a semiconductor blue laser, and a blue LED are preferable.
  • Infrared and near infrared lasers can also be used. The use of visible light or infrared light has advantages in that it is safer than a method using ultraviolet light harmful to the human body, and a shielding device for preventing human exposure is unnecessary.
  • a commercially available light source can be appropriately used.
  • a semiconductor laser violet (400-415 nm): NDHV220APAE1, blue violet (440-450 nm): NDHVB510APAE1, blue (468-478 nm): NDHA500APAE1 (day Manufactured by Asia Chemical Industry Co., Ltd.)]
  • blue LED [(460-490 nm): NSPB300A, NSPB310A, NSPB320BS, NSPB500S, NSPB510S, NSPB513, NSPB518S, NSPB520S, NSPBF50S (manufactured by Nichia Corporation)]
  • blue green LED [(470-530 nm): NSPE800S (manufactured by Nichia Corporation)] and the like.
  • a reflecting plate or a shielding plate around the light source so that the irradiation light from the light source is condensed and applied to the pattern transfer portion and is not irradiated onto the uncured resin before transfer. Further, it is preferable to provide a shielding plate or a shielding device so that irradiation light and room light do not strike the resin before transfer.
  • the substrate to which the curable resin composition is applied in the present invention it is preferable to use a material that can be electroformed or to provide a seed film on the substrate so that the electroforming can be performed.
  • the material that can be electroformed or the metal of the seed film include nickel, tin, zinc, gold, silver, and copper. Among these, nickel and copper are preferable.
  • the method for providing the seed film on the substrate include sputtering.
  • examples of the substrate material include glass, silicon, oxide film-coated glass (ITO: indium titanium oxide-coated glass, etc.), metals (aluminum, gold, silver, copper, iron, true nickel). , Tin, zinc, brass plate, tin plate, etc.), plastic (polycarbonate, acrylic, PET (polyethylene terephthalate), ABS (acrylonitrile and copolymer of butadiene and styrene) resin plate, etc.), film (polyimide, vinyl chloride, polystyrene, saran) Resin film etc.), porcelain (ceramics, ceramics, tiles, etc.) can be used.
  • ITO indium titanium oxide-coated glass, etc.
  • metals aluminum, gold, silver, copper, iron, true nickel
  • Tin zinc, brass plate, tin plate, etc.
  • plastic polycarbonate, acrylic, PET (polyethylene terephthalate), ABS (acrylonitrile and copolymer of butadiene and
  • Examples of the metal of the metal film to be formed include copper, nickel, chromium, zinc, tin, gold, silver, and platinum group metals. Among these, copper, nickel, and gold are preferable, and copper and nickel are more preferable. .
  • Examples of the method for forming the metal film include electroforming (electroplating), displacement plating, electroless plating, and the like.
  • the electroforming process is a method of forming a metal film by reducing metal ions contained in a plating bath with electricity.
  • Displacement plating is a method of forming a metal film by inserting a metal having a higher ionization tendency than the metal ions contained in the plating bath into the plating bath and reducing the metal ions contained in the plating bath due to the difference in ionization tendency.
  • Electroless plating is a method of forming a metal film by reducing metal ions in a plating bath with a reducing agent. Among these, electroforming treatment is preferable because a film thickness of 10 ⁇ m or more can be formed.
  • Examples of plating baths used for forming a nickel metal film by electroforming include nickel plating baths (Watt baths) mainly composed of nickel sulfate, nickel chloride and boron, nickel sulfamate, nickel chloride and boron. And a sulfamate salt bath containing as a main component. In any of the above plating baths, it is preferably performed at a pH of 2.5 to 5.0.
  • the Watt bath is preferably performed at 40 to 65 ° C
  • the sulfamate bath is preferably performed at 25 to 65 ° C
  • the low stress plating is preferably performed at 50 to 65 ° C.
  • Watts bath is preferably carried out at a current density of 2 ⁇ 4A / dm 2
  • sulfamate bath is preferably carried out at a current density of 2 ⁇ 90A / dm 2.
  • Examples of the plating bath used when forming a copper metal film by electroforming include, for example, a copper sulfate plating bath mainly composed of copper sulfate and sulfuric acid, cuprous cyanide and sodium cyanide as the main components.
  • Examples thereof include a copper cyanide plating bath, a copper pyrophosphate plating bath mainly composed of copper pyrophosphate and potassium pyrophosphate.
  • the copper sulfate plating bath is preferably performed at 15 to 35 ° C., and the copper cyanide plating bath and the copper pyrophosphate copper plating bath are preferably performed at 40 to 65 ° C.
  • the copper cyanide plating bath is preferably carried out at a pH of 11 to 13, and the copper pyrophosphate plating bath is preferably carried out at a pH of 8.0 to 9.0.
  • the copper sulfate plating bath is preferably performed at a current density of 1 to 6 A / dm 2
  • the copper cyanide plating bath is preferably performed at a current density of 1 to 4 A / dm 2
  • the copper cyanide plating bath is 1 to 3 A. It is preferable to carry out at a current density of / dm 2 .
  • the metal film As a pretreatment when forming the metal film, it may be degreased and cleaned by solvent cleaning such as trichlorethylene or alkali immersion such as caustic soda or sodium carbonate composition, and an insulating film in the region where the metal film is formed, for example, an oxide film In order to remove, etc., it may be washed with sulfuric acid, hydrochloric acid, hydrofluoric acid or the like.
  • the residual cured resin and the cured resin after forming the metal film can be removed by physical or chemical methods. Specifically, ashing (oxygen plasma ashing), solvent (for example, , N-methylpyrrolidone, ⁇ -butyrolactone, propylene glycol methyl ether, propylene glycol methyl ether acetate, cyclohexanone, etc.), an alkali developing method, etc., among which ashing is preferred.
  • ashing oxygen plasma ashing
  • solvent for example, N-methylpyrrolidone, ⁇ -butyrolactone, propylene glycol methyl ether, propylene glycol methyl ether acetate, cyclohexanone, etc.
  • alkali developing method etc.
  • the pattern formed product obtained by the pattern forming method of the present invention can be used by changing its form into a processed product such as a film, a fiber (fiber), or a three-dimensional structure by a physical or chemical method.
  • the pattern formed product obtained by the pattern forming method of the present invention or the processed product including the pattern formed product is, for example, a semiconductor chip material, a printed electronic circuit material, a micro component material, a molecular device material, a micro machine material, a printing plate, a printing Mask manufacturing material, mold manufacturing material, optical recording material, organ duplication material, Gibbs material, design design material, design design material, small device model creation material, simulation model creation material, FPD ( Flat panel display materials, LCD (liquid crystal display) materials, optical circuit materials, optical communication materials, optical waveguides, optical fibers, solar cell materials, optical switches, optical circuit materials, stereolithography materials, optical detector materials, optical morphologies Material, cell culture material (cell culture sheet), plant culture material, LED (light emission) Iodine), organic EL materials, inkjet printer materials, printing plates, biochips, DNA chips, microchannels, diagnostic kits, fingerprint authentication devices, fingerprint replication devices, specimen preparation materials, organ specimen preparation materials, automobile parts, It can be used for ship parts, aircraft parts, space materials
  • a desired pattern can be formed on the substrate using the pattern formed product obtained by the pattern forming method of the present invention.
  • the pattern formed product in which the desired pattern is formed on the substrate or the processed product including the pattern formed product include a semiconductor chip material, an antireflection film, an optical waveguide, a polarizing plate, a microchannel, a cell culture sheet, and a biochip. Can be used for
  • PFO-E was produced by the method described in JP-A-2005-225793.
  • BAPO Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide: Irgacure 819 [manufactured by Ciba Specialty Chemicals]
  • MAPO 2,4,6-trimethylbenzoyldiphenylphosphine oxide: Lucirin TPO [manufactured by BASF Corp.]
  • PFO-E 5- (4-pentyloxybenzoyl) -5H-dibenzophosphole 5-oxide
  • DETX 2,4-diethylthioxanthone: Kayacure DETX-S [manufactured by Nippon Kayaku Co., Ltd.]
  • TITANO Bis (5-2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrol-1-yl)
  • urethane acrylate NK oligo UA-4200 ⁇ used in resin compositions 1-5, weight average molecular weight 1,300 [manufactured by Shin-Nakamura Chemical Co., Ltd.] ⁇ : NK oligo UA-122P ⁇ used in resin composition 6 , Weight average molecular weight 1,100 [manufactured by Negami Kogyo Co., Ltd.] ⁇ : Art Resin UN-904 ⁇ used in resin composition 7, weight average molecular weight 4,900 [manufactured by Negami Kogyo Co., Ltd.] ⁇ ⁇ NVP: N-vinylpyrrolidone [manufactured by Nippon Shokubai Co., Ltd.] TMPTA: trimethylolpropane triacrylate: NK ester A-TMPT [manufactured by Shin-Nakamura Chemical Co., Ltd.] A-DCP: Tricyclo
  • Plastic mold A plastic mold was molded by the following method, and the molded product was used.
  • PP mold Polypropylene plate [2.5 ⁇ 2.5 cm, thickness 1 mm, with UV absorber, made by Nippon Test Panel Co., Ltd.], nickel mold (2.5 ⁇ 2.5 cm, pattern area 0.5 ⁇ 1.0 cm, pattern: L & S: width 80 nm to 20 ⁇ m, aspect ratio 0.1 to 2, spacing ratio 1: 1 to 1:10) is pressed to form a thermal (nano) imprint apparatus [TP-32937-0401: Maruni Co., Ltd.] was used to transfer the pattern (temperature: upper plate 130 ° C .: lower plate 30 ° C., press pressure 5 Mpa, holding time 5 minutes) to produce a plastic mold.
  • PI mold polyimide film [Aurum film, 2.5 ⁇ 2.5 cm, thickness 300 ⁇ m, manufactured by Mitsui Chemicals, Inc.] using the same nickel mold as described above, using a thermal (nano) imprinting device, Pattern transfer (temperature: upper plate 220 ° C .: lower plate 180 ° C., press pressure 10 MPa, holding time 5 minutes) was performed to produce a plastic mold.
  • PDMS mold polydimethylsiloxane (Silpot 184 (manufactured by Toray Dow Corning Co., Ltd.)): The main agent and the catalyst are mixed at a weight ratio of 10: 1, and the resulting resin is placed on the nickel mold pattern in a range of 0.1 to 1 g was dropped and heated in an oven at 100 ° C. for 1 hour to peel off the PDMS to produce a PDMS mold.
  • a nickel seed film (0.1 ⁇ m) was formed by sputtering on a substrate / silicon wafer (2 inch) substrate on which a seed film was formed.
  • Photoimprint A cured resin pattern was formed by the following procedure. 2 to 3 ml of the resin composition 1 to 8 is dropped on the substrate on which the seed film is formed, and the resin composition is covered with a plastic mold (PP mold, PI mold, or PDMS mold), and an optical imprint apparatus [Marni The pattern was obtained by curing with light irradiation at room temperature. As shown in Table 2, the pattern of each Example was obtained using the resin composition and the plastic mold. The film thickness of the convex portions of the pattern was 20 to 40 ⁇ m.
  • the pattern formation conditions were as follows. 1. Press pressure: Press at 0.5 MPa for 30 seconds 2. Depressurization: Next, depressurize using a vacuum pump and hold for 15 seconds. Light irradiation: 15 seconds [ultra-high pressure mercury lamp, the light quantity 100 mJ / cm 2 at 365 nm] 4). Pressure release: Up to normal pressure 5. The mold was removed from the cured resin to obtain the pattern.
  • Ashing treatment RIE-10N manufactured by Samco International Laboratory was used as the RIE apparatus.
  • the RF (Radio Frequency) output is 125 W
  • the pressure in the etching chamber is 40 Pa
  • the oxygen gas flow rate is 45 ml / min (at atmospheric pressure and 0 ° C.)
  • the ashing process is performed for 10 minutes. Residual cured resin was removed.
  • Table 2 shows the results of film thickness reduction with respect to RF output.
  • the thickness of the film reduction represents a decrease in the film thickness of the convex portion of the pattern due to the ashing process.
  • the thickness of the film reduction was measured using a stylus profilometer [DEKTAK3 VEECOSLOAN TECHNOLOGY Co., Ltd.].
  • Example 11 Formation of nickel metal film pattern
  • the cured resin pattern formed product having a thickness of about 20 ⁇ m obtained in Example 1 was subjected to 10 A / dm using a sulfamate bath (aqueous solution of nickel sulfamate, nickel chloride and boric acid, 40 ° C., pH 4.2).
  • a sulfamate bath aqueous solution of nickel sulfamate, nickel chloride and boric acid, 40 ° C., pH 4.2.
  • the RF output is 135 W
  • the pressure in the etching chamber is 40 Pa
  • the oxygen gas flow rate is 45 ml / min (at atmospheric pressure and 0 ° C.)
  • the ashing process is performed for 50 minutes. The remaining cured resin was completely removed to obtain a metal film pattern.
  • a curable resin composition containing a polymerizable monomer or / and a polymerizable polymer having a weight average molecular weight of 5,000 or less is effective in removing the cured resin by ashing treatment. It was. Further, from the results of Example 11, it was found that a metal film pattern can be created using a plastic mold and a visible light curable resin in a method combining the imprint technique and the electroforming technique.
  • a pattern of a metal film (mold) and a method for forming the same for manufacturing a metal processed product, a fine part, and the like are simply provided.
  • a visible light curable resin composition containing a plastic mold and a polymerizable compound having a specific weight average molecular weight or less it is possible to more easily form a metal film (mold) pattern.

Abstract

A metallic-film (metallic-die) pattern for producing a product of metal processing or a fine part. Also provided is a process for easily forming the pattern. The process for forming the metallic-film pattern is characterized by comprising applying a curable resin composition (4) to a substrate (3) on which a seed film (2) has been deposited, using a mold (5) having a given pattern to transfer the given pattern of the mold (5) to the curable resin composition (4) based on the movement of the mold (5) relative to the substrate (3), curing the curable resin composition (4) having the given pattern of the mold (5) transferred to the curable resin composition (4), detaching the mold (5) from the cured resin (4'), removing the cured resin (4") remaining as a residue in a region (8), forming a metallic film (11) in a region (10), and removing the cured resin (4') remaining on the substrate. Use of a plastic mold and a visible-light-curable resin containing a polymerizable compound having a weight-average molecular weight not higher than a specific value enables the process to more easily yield a metallic-film pattern.

Description

金属膜のパターン形成方法Metal film pattern forming method
 本発明は、金属加工品、微細部品等を製造するための金属膜のパターン形成方法に関する。 The present invention relates to a method of forming a metal film pattern for manufacturing a metal processed product, a fine part, and the like.
 微細な部品の製造技術としてLIGA(Lithographi Galvanoformung Abformung)プロセスがある。LIGAプロセスとは、リソグラフィ工程で所望する部品と同様のレジストパターンを形成後、電鋳処理で金属膜のパターン(金型)を形成し、さらに金属膜のパターンを用いて金属、樹脂あるいはセラミックス製微細部品の大量製造を図る技術である。(特許文献1参照) There is a LIGA (Lithography Galvanoforming Abforming) process as a technology for manufacturing fine parts. In the LIGA process, a resist pattern similar to the desired part is formed in the lithography process, then a metal film pattern (mold) is formed by electroforming, and the metal film pattern is used to make a metal, resin, or ceramic. This is a technology for mass production of fine parts. (See Patent Document 1)
 しかし、LIGAプロセスでは、リソグラフィ工程において所望する厚膜レジストパターンを形成するにあたり課題がある。X線リソグラフィで行う場合にはX線装置の安定稼働、生産性、マスク作製の複雑さがあげられる。またUVリソグラフィで行う場合には、現状の厚膜レジストでは解像度・剥離性に課題がある。 However, the LIGA process has a problem in forming a desired thick film resist pattern in the lithography process. When performing by X-ray lithography, the stable operation of X-ray apparatus, productivity, and the complexity of mask production are raised. In addition, when performing by UV lithography, the present thick film resist has problems in resolution and peelability.
 近年、熱インプリント法を用いてパターン形成する方法が検討されている。熱インプリント法は、熱可塑性樹脂をそのガラス転移点以上に加熱し、熱可塑性樹脂上に、微細なパターンを形成したモールドを押し付け、冷却後、モールドから剥離することで、パターンを形成する方法である。 In recent years, a method of forming a pattern using a thermal imprint method has been studied. The thermal imprint method is a method in which a thermoplastic resin is heated above its glass transition point, a mold on which a fine pattern is formed is pressed onto the thermoplastic resin, and after cooling, the pattern is formed by peeling from the mold. It is.
 しかし、熱可塑性樹脂を用いた熱インプリント法では、電鋳処理でめっきを成長させる凹部底の残膜をアッシング処理等の手法で取り除くことは難しく、また、電鋳処理後の樹脂を除去することも難しいため、良好な金属膜のパターンは得られない。 However, in the thermal imprint method using a thermoplastic resin, it is difficult to remove the remaining film on the bottom of the recess that causes the plating to grow by electroforming, and the resin after electroforming is removed. It is also difficult to obtain a good metal film pattern.
 一方、光インプリント法は、光硬化性樹脂組成物を基板に塗布し、光硬化性樹脂上に、微細なパターンを形成したモールドを押し付け、光照射して該樹脂組成物を硬化させ、モールドから剥離することで、硬化樹脂パターンを形成する方法である(例えば、特許文献2および3参照)。 On the other hand, in the photoimprint method, a photocurable resin composition is applied to a substrate, a mold on which a fine pattern is formed is pressed on the photocurable resin, and the resin composition is cured by light irradiation. It is a method of forming a cured resin pattern by peeling from (see, for example, Patent Documents 2 and 3).
 また、光インプリント法のモールドには、一般に紫外線を通す透明な材料として石英モールドが使用されている(例えば、特許文献4および5参照)。しかし、アスペクト比が大きいパターンの場合、特に深い溝を形成するにあたっては石英の加工が難しく、加工コストも高いという課題を有していた。 In addition, a quartz mold is generally used as a transparent material that transmits ultraviolet rays in the mold of the optical imprint method (see, for example, Patent Documents 4 and 5). However, in the case of a pattern having a large aspect ratio, particularly when forming a deep groove, it is difficult to process quartz and the processing cost is high.
特開2006―73936号公報JP 2006-73936 A 特表2004-504718号公報JP-T-2004-504718 特開2002-539604号公報JP 2002-539604 A 特開2007-177194号公報JP 2007-177194 A 特開2007-234153号公報JP 2007-234153 A
 本発明の目的は、簡便な金属膜のパターン形成方法を提供することにある。 An object of the present invention is to provide a simple metal film pattern forming method.
 本発明は以下の(1)~(16)に関する。
(1)シード膜が成膜された基板上に硬化性樹脂組成物を塗布し、前記基板と所定パターンを有するモールドとの相対移動により前記モールドの所定パターンを前記硬化性樹脂組成物に転写し、前記モールドの所定パターンを前記硬化性樹脂組成物に転写した状態で前記硬化性樹脂組成物を硬化させ、硬化樹脂よりモールドを取り外し、金属膜を形成する領域の残渣の硬化樹脂を除去し、前記領域に金属膜を形成し、基板上に残っている硬化樹脂を除去することを特徴とする金属膜のパターン形成方法。
(2)硬化性樹脂組成物が光によって硬化する樹脂組成物である前項(1)に記載の金属膜のパターン形成方法。
(3)電鋳処理により金属膜を形成する前項(1)または(2)に記載の金属膜のパターン形成方法。
(4)硬化性樹脂組成物が重合性化合物と重合開始剤を含有する前項(1)~(3)のいずれか1項に記載の金属膜のパターン形成方法。
(5)重合性化合物が重合性モノマーである前項(4)に記載の金属膜のパターン形成方法。
(6)重合性化合物が、重量平均分子量が5,000以下の重合性ポリマー、または重合性モノマーおよび重量平均分子量が5,000以下の重合性ポリマーである前項(4)に記載の金属膜のパターン形成方法。
(7)重量平均分子量が5,000以下の重合性ポリマーが、ウレタンアクリレートを含有する前項(6)に記載の金属膜のパターン形成方法。
(8)硬化性樹脂組成物におけるウレタンアクリレートの含有量が5~99.99重量部である前項(7)に記載の金属膜のパターン形成方法。
(9)重合開始剤が可視光重合開始剤である前項(4)~(8)のいずれか1項に記載の金属膜のパターン形成方法。
(10)可視光重合開始剤がアシルホスフィンオキシド化合物である前項(9)に記載の金属膜のパターン形成方法。
(11)所定パターンを有するモールドがプラスチックモールドである前項(1)~(10)のいずれか1項に記載の金属膜のパターン形成方法。
(12)プラスチックモールドの材料がポリイミド、ポリカーボネート、ポリプロピレンおよびポリジメチルシロキサンの中の少なくともいずれか1つである前項(11)に記載の金属膜のパターン形成方法。
(13)残渣の硬化樹脂をアッシング処理により除去する前項(1)~(12)のいずれか1項に記載の金属膜のパターン形成方法。
(14)シード膜が金属膜にて構成されている前項(1)~(13)のいずれか1項に記載の金属膜のパターン形成方法。
(15)前項(1)~(14)のいずれか1項に記載の方法によってパターン形成されることを特徴とするパターン形成物。
(16)前項(15)に記載のパターン形成物を備えることを特徴とする加工品。
The present invention relates to the following (1) to (16).
(1) A curable resin composition is applied on a substrate on which a seed film is formed, and the predetermined pattern of the mold is transferred to the curable resin composition by relative movement between the substrate and a mold having a predetermined pattern. The curable resin composition is cured in a state where the predetermined pattern of the mold is transferred to the curable resin composition, the mold is removed from the cured resin, and the residual cured resin in the region where the metal film is formed is removed. A method of forming a metal film pattern, comprising forming a metal film in the region and removing the cured resin remaining on the substrate.
(2) The metal film pattern forming method as described in (1) above, wherein the curable resin composition is a resin composition that is cured by light.
(3) The method for forming a metal film pattern according to (1) or (2), wherein the metal film is formed by electroforming.
(4) The method for forming a metal film pattern according to any one of (1) to (3), wherein the curable resin composition contains a polymerizable compound and a polymerization initiator.
(5) The method for forming a metal film pattern according to (4), wherein the polymerizable compound is a polymerizable monomer.
(6) The metal film according to (4), wherein the polymerizable compound is a polymerizable polymer having a weight average molecular weight of 5,000 or less, or a polymerizable monomer and a polymerizable polymer having a weight average molecular weight of 5,000 or less. Pattern forming method.
(7) The metal film pattern forming method as described in (6) above, wherein the polymerizable polymer having a weight average molecular weight of 5,000 or less contains urethane acrylate.
(8) The metal film pattern forming method as described in (7) above, wherein the content of urethane acrylate in the curable resin composition is 5 to 99.99 parts by weight.
(9) The method for forming a metal film pattern according to any one of (4) to (8), wherein the polymerization initiator is a visible light polymerization initiator.
(10) The method for forming a metal film pattern according to (9), wherein the visible light polymerization initiator is an acylphosphine oxide compound.
(11) The metal film pattern forming method according to any one of (1) to (10), wherein the mold having the predetermined pattern is a plastic mold.
(12) The metal film pattern forming method according to (11), wherein the plastic mold material is at least one of polyimide, polycarbonate, polypropylene, and polydimethylsiloxane.
(13) The method for forming a metal film pattern according to any one of (1) to (12), wherein the residual cured resin is removed by ashing.
(14) The metal film pattern forming method according to any one of (1) to (13), wherein the seed film is formed of a metal film.
(15) A pattern formed product, which is patterned by the method described in any one of (1) to (14) above.
(16) A processed product comprising the pattern-formed product according to (15).
 本発明の方法によれば、簡便に、金属膜(金型)のパターンおよびその形成方法を提供することができる。本発明の方法によれば、特に、プラスチックモールドと特定の重量平均分子量以下である重合性化合物を配合した可視光硬化性樹脂組成物を使用することで、より簡便に金属膜(金型)のパターンを形成することができる。 According to the method of the present invention, a metal film (mold) pattern and a method for forming the pattern can be easily provided. According to the method of the present invention, in particular, by using a visible light curable resin composition containing a plastic mold and a polymerizable compound having a specific weight average molecular weight or less, the metal film (mold) can be more easily formed. A pattern can be formed.
本発明に係る金属膜のパターン形成方法の一実施形態を説明した説明図であ  る。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram for explaining an embodiment of a metal film pattern forming method according to the present invention. プラスチックモールドを作成するための金型の作成工程の一実施形態を説明  した説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram illustrating an embodiment of a mold creation process for creating a plastic mold. 本発明に係る金属膜のパターン形成方法に用いるプラスチックモールドの作  成工程の一実施形態を説明した説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view illustrating one embodiment of a plastic mold production process used in a metal film pattern forming method according to the present invention.
符号の説明Explanation of symbols
1 基板
2 シード膜
3 シード膜が成膜された基板
4 硬化性樹脂
5 プラスチックモールド
6 凸部
7 凹部
8 凹部
9 凸部
10 電鋳領域
11 金属膜
21 基板
22 シード膜
23 レジスト
24 マスク
25 通過部
26 非通過部
27 凹部
28 金属膜
29 除去部
30 モールド材料
31 金型
32 凸部
33 凹部
34 凹部
35 凸部
DESCRIPTION OF SYMBOLS 1 Substrate 2 Seed film 3 Substrate with seed film 4 Curing resin 5 Plastic mold 6 Convex part 7 Concave part 8 Concave part 9 Convex part 10 Electroformed region 11 Metal film 21 Substrate 22 Seed film 23 Resist 24 Mask 25 Passing part 26 Non-passing part 27 Concave part 28 Metal film 29 Removal part 30 Mold material 31 Mold 32 Convex part 33 Concave part 34 Concave part 35 Convex part
 本発明に係る金属膜のパターン形成方法の一例を実施形態を図面を参照しながら詳細に説明する。
 図1は本発明に係る金属膜のパターン形成方法の一実施形態を説明した説明図である。工程(a)では、基板1上にシード膜2を形成する。基板1は、一例として、シリコン(Si)からなる材料である。シード膜2は、一例として、約50nmのクロム(Cr)膜を成膜し、その後、このクロム膜上に約100nmのニッケル(Ni)膜を成膜する。これら2層からなるシード膜2の形成が完了し、基板1上にシード膜2が成膜された基板3が作成される(以下、シード膜が成膜された基板3を、単に基板3という)。
An example of a metal film pattern forming method according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory view illustrating an embodiment of a metal film pattern forming method according to the present invention. In step (a), a seed film 2 is formed on the substrate 1. As an example, the substrate 1 is a material made of silicon (Si). As an example, the seed film 2 is formed by forming a chromium (Cr) film of about 50 nm and then forming a nickel (Ni) film of about 100 nm on the chromium film. The formation of the seed film 2 composed of these two layers is completed, and a substrate 3 having the seed film 2 formed on the substrate 1 is created (hereinafter, the substrate 3 having the seed film formed thereon is simply referred to as a substrate 3). ).
 次に、工程(b)では、基板3のシード膜2上に硬化性樹脂組成物4を塗布し、基板3の上方に配置したプラスチックモールド5を図で見て下方向に移動させていく。プラスチックモールド5には所定パターンが形成されており、本実施形態では、一例として凸部6と凹部7とからなるパターンとなっている。そして、下方向に移動したプラスチックモールド5は、工程(c)に示すように、硬化性樹脂組成物4に食い込んでいく。プラスチックモールド5が硬化性樹脂組成物4に食い込んだ状態で硬化性樹脂組成物4に光を照射して硬化させる。 Next, in the step (b), the curable resin composition 4 is applied onto the seed film 2 of the substrate 3, and the plastic mold 5 disposed above the substrate 3 is moved downward as viewed in the figure. A predetermined pattern is formed on the plastic mold 5, and in the present embodiment, the pattern includes a convex portion 6 and a concave portion 7 as an example. And the plastic mold 5 which moved to the downward direction bites into the curable resin composition 4 as shown in a process (c). In a state where the plastic mold 5 has digged into the curable resin composition 4, the curable resin composition 4 is irradiated with light and cured.
 硬化後は、工程(d)に示すように、プラスチックモールド5を上方向に移動させて硬化樹脂4´から取り外す。硬化樹脂4´には、プラスチックモールド5の凹凸パターンと逆のパターンが転写される。すなわち、プラスチックモールド5の凸部6が硬化樹脂4´の凹部8に転写され、プラスチックモールド5の凹部7が硬化樹脂4´の凸部9に転写される。硬化樹脂4´に転写された凸部9は電鋳処理をおこなわない領域(以下、単に、非電鋳領域と表記する場合もある)であり、逆に凹部8は電鋳処理をおこなう領域(以下、単に、電鋳領域と表記する場合もある。)である。 After curing, as shown in step (d), the plastic mold 5 is moved upward and removed from the cured resin 4 '. A pattern opposite to the concavo-convex pattern of the plastic mold 5 is transferred to the cured resin 4 ′. That is, the convex portion 6 of the plastic mold 5 is transferred to the concave portion 8 of the cured resin 4 ′, and the concave portion 7 of the plastic mold 5 is transferred to the convex portion 9 of the cured resin 4 ′. The convex portion 9 transferred to the cured resin 4 ′ is a region where electroforming is not performed (hereinafter, simply referred to as a non-electroforming region), and conversely, the concave portion 8 is a region where electroforming is performed ( Hereinafter, it may be simply referred to as an electroforming region).
 しかしながら、電鋳領域である凹部8の底には、硬化樹脂4´の残渣4´´が存在しており、この残渣の硬化樹脂4´´を工程(e)で取り除く。残渣の硬化樹脂4´´の除去は、RIE(Reactive Ion Etching)装置にて酸素(O)プラズマアッシング(以下、単に、アッシング処理と表記する場合もある。)処理を施すことにより行われる。凹部8の残渣の硬化樹脂4´´を全て除去すると、基板3のシード膜2が露出し、この露出箇所が電鋳領域10となる。 However, a residue 4 ″ of the cured resin 4 ′ is present at the bottom of the recess 8 which is an electroforming region, and the residual cured resin 4 ″ is removed in the step (e). The residual cured resin 4 ″ is removed by performing an oxygen (O 2 ) plasma ashing (hereinafter sometimes simply referred to as an ashing process) with an RIE (Reactive Ion Etching) apparatus. When all the residual cured resin 4 ″ in the recess 8 is removed, the seed film 2 of the substrate 3 is exposed, and this exposed portion becomes the electroformed region 10.
 そして、工程(f)で、電鋳領域10に電鋳処理を施し、金属膜11の形成を行う。金属膜11の形成後は、工程(g)にて、硬化樹脂4´を除去する。硬化樹脂4´の除去処理は、薬液処理またはRIE装置の酸素(O)プラズマアッシング処理にて行われ、除去処理を行った箇所は凹部12が形成されている。このように、工程(a)~工程(g)までを行うことにより、基板上に金属膜のパターンが形成された形成物ができあがる。本実施形態では、プラスチックモールドを下方向に移動させて硬化性樹脂組成物に食い込ませているが、移動方向は特に限定されず、基板を上方向に移動させて硬化性樹脂組成物をモールドに食い込ませてもよい。 In step (f), the electroforming region 10 is subjected to an electroforming process to form a metal film 11. After the formation of the metal film 11, the cured resin 4 'is removed in the step (g). The removal process of the cured resin 4 ′ is performed by a chemical process or an oxygen (O 2 ) plasma ashing process of an RIE apparatus, and a concave portion 12 is formed at the place where the removal process is performed. As described above, by performing steps (a) to (g), a formed product in which a metal film pattern is formed on the substrate is completed. In this embodiment, the plastic mold is moved downward to bite into the curable resin composition, but the moving direction is not particularly limited, and the substrate is moved upward to turn the curable resin composition into the mold. You may bite in.
 上述した所定パターンを有するモールドとしては、特に光インプリントを考慮し、石英ガラス製のモールド(石英モールド)やプラスチックモールドがあげられ、これらの中でも特にプラスチックモールドが好ましい。石英モールドでは、パターンを作成するのに硬い石英ガラス表面を加工しなければならず、複雑なパターンや深い溝のパターンを加工するには限界がある。 Examples of the mold having the predetermined pattern described above include a quartz glass mold (quartz mold) and a plastic mold in consideration of optical imprinting. Among these, a plastic mold is particularly preferable. In the quartz mold, a hard quartz glass surface has to be processed in order to create a pattern, and there is a limit in processing a complicated pattern or a deep groove pattern.
 そこで、プラスチックモールドを用いることで、モールドを安価かつ簡便に加工でき、複雑形状のパターンや深い溝パターン或いは極めて狭いピッチのパターン等を容易に作成することができる。 Therefore, by using a plastic mold, the mold can be processed inexpensively and easily, and a pattern with a complicated shape, a deep groove pattern, or a pattern with an extremely narrow pitch can be easily created.
 図2には、プラスチックモールドを作成するときの金型の作成工程の一実施形態が示されている。工程(a)では、基板21の上面にシード膜22を形成させて、シード膜が成膜された基板20を作成する(以下、シード膜が成膜された基板20を、単に基板20という)。シード膜22の形成は、基板21の上面に約50nmの膜厚を有するクロム膜を成膜した後に、このクロム膜上に約100nmの膜厚を有するニッケル膜を成膜する。 FIG. 2 shows an embodiment of a mold making process when a plastic mold is made. In the step (a), the seed film 22 is formed on the upper surface of the substrate 21 to produce the substrate 20 on which the seed film is formed (hereinafter, the substrate 20 on which the seed film is formed is simply referred to as the substrate 20). . The seed film 22 is formed by forming a chromium film having a thickness of about 50 nm on the upper surface of the substrate 21 and then forming a nickel film having a thickness of about 100 nm on the chromium film.
 このようにして作成された基板20上に、工程(b)に示すように、レジスト23を配置する。レジスト23の上方にはマスク24が配置されており、このマスク24には、光が通過する通過部25(例えば、ガラス等の材料)と光が通過しない非通過部26(例えば、クロム膜が成膜されたガラス材料等)とが形成されている。そして、リソグラフィ技術によりレジスト23に対し、マスク24を介して露光すると、露光されたレジスト23´と未露光のレジスト23´´とが形成される。これらのレジストを現像すると、工程(c)に示すように、露光されたレジスト23´が除去された凹部27と、未露光のレジスト23´´により未露光のレジスト23´´のパターンが形成される。 As shown in step (b), a resist 23 is arranged on the substrate 20 thus created. A mask 24 is disposed above the resist 23. The mask 24 has a passage portion 25 (for example, a material such as glass) through which light passes and a non-passage portion 26 (for example, a chromium film) through which light does not pass. A formed glass material or the like). Then, when the resist 23 is exposed through the mask 24 by a lithography technique, an exposed resist 23 ′ and an unexposed resist 23 ″ are formed. When these resists are developed, a pattern of the unexposed resist 23 ″ is formed by the concave portion 27 from which the exposed resist 23 ′ is removed and the unexposed resist 23 ″, as shown in step (c). The
 露光されたレジスト23´が完全に除去されると、工程(d)において、電鋳処理が施される。電鋳処理によって、凹部27に金属膜28を形成させることができる。金属膜28の形成後、工程(e)に示すように、露光されないで残っていたレジスト23´´を除去する。レジスト23´´は薬液処理或いはRIE処理(Reactive Ion Etching)を施すことによって除去することができ、除去処理後は除去部29となる。これらの工程を経て、基板20上に金属膜のパターンを形成させることができる。プラスチックモールドの金型の深さに応じてレジスト膜厚、電鋳処理にて形成される金属膜の厚さを調整する。電鋳される金属材料はパターンのアスペクト強度に耐えられるもの、応力低減を実現できる特性の材料を選択するのが望ましい。 When the exposed resist 23 'is completely removed, an electroforming process is performed in step (d). The metal film 28 can be formed in the recess 27 by electroforming. After the formation of the metal film 28, as shown in the step (e), the resist 23 ″ that is left unexposed is removed. The resist 23 ″ can be removed by performing a chemical treatment or an RIE treatment (Reactive Ion Etching). Through these steps, a metal film pattern can be formed on the substrate 20. The resist film thickness and the thickness of the metal film formed by electroforming are adjusted according to the depth of the plastic mold. As the metal material to be electroformed, it is desirable to select a material that can withstand the aspect strength of the pattern and that can realize stress reduction.
(モールド)
 本発明においては、プラスチックモールドが好ましく使用できる。前記プラスチックモールドの材料は、パターンが保持できるプラスチック材料であれば限定されるものではない。プラスチック材料として、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリメタクリレート、ポリアミド、ポリイミド[例えば、ユーピレックスS(宇部興産(株)製)、オーラムフィルム(三井化学(株)製)]、ポリスチレン、ポリフッ化エチレン、ポリカーボネート、ポリフェニレンオキシド、ポリウレタン、ポリエステル[例えば、ルミラー(東レ(株)製)]、ポリエチレンテレフタレート、ポリフェニレンイソフタルアミド、ポリ乳酸[例えば、プラメート(大日本インキ(株)製)、テラマック(ユニチカ(株)製)]、ポリアクリロニトリル、エポキシ樹脂、シリコン系樹脂[例えば、シルポットまたはシルガード184(東レダウコーニング(株)製)]、ポリジメチルシロキサン、メラミン樹脂、ポリエステル樹脂、サラン樹脂、フッ素系樹脂[例えば、サイトップ(旭硝子(株)製)]、その他のプラスチック材料等があげられる。
(mold)
In the present invention, a plastic mold can be preferably used. The material of the plastic mold is not limited as long as the material can hold the pattern. Examples of plastic materials include polyethylene, polypropylene, polyvinyl chloride, polymethacrylate, polyamide, polyimide [for example, Upilex S (manufactured by Ube Industries), Aurum film (manufactured by Mitsui Chemicals)], polystyrene, polyfluoride Ethylene, polycarbonate, polyphenylene oxide, polyurethane, polyester [for example, Lumirror (manufactured by Toray Industries, Inc.)], polyethylene terephthalate, polyphenylene isophthalamide, polylactic acid [for example, plamate (manufactured by Dainippon Ink, Inc.), Terramac (unitika )], Polyacrylonitrile, epoxy resin, silicone resin [eg, Sylpot or Sylgard 184 (manufactured by Toray Dow Corning)], polydimethylsiloxane, melamine resin, polyester Ether resin, saran resin, fluorine-based resins [for example, Cytop (Asahi Glass Co.), and other plastic materials such like.
 前記プラスチック材料の中でも、樹脂との剥離性の観点から、好ましくは、ポリプロピレン、ポリメタクリレート、ポリカーボネート、ポリエステル、ポリエチレンテレフタレート、ポリスチレン、ポリイミド、シリコン系樹脂およびフッ素系樹脂があげられ、より好ましくは、ポリイミド、ポリカーボネート、ポリプロピレンおよびポリジメチルシロキサンがあげられる。 Among the plastic materials, polypropylene, polymethacrylate, polycarbonate, polyester, polyethylene terephthalate, polystyrene, polyimide, silicon-based resin, and fluorine-based resin are preferable from the viewpoint of peelability from the resin, and more preferably polyimide. Polycarbonate, polypropylene and polydimethylsiloxane.
 本発明で使用されるモールドは無色、透明であることが好ましいが、着色していても良い。ただし、全光線透過率が少なくとも10%以上であることが好ましく、30%以上であることがより好ましい。また、UV吸収剤のような充填剤を含有してもよい。また、モールドは無色、透明であることが好ましいが、着色していても少なくとも10%の可視光を透過すれば、可視光硬化性樹脂組成物を硬化し、パターンを形成できる。 The mold used in the present invention is preferably colorless and transparent, but may be colored. However, the total light transmittance is preferably at least 10% or more, more preferably 30% or more. Moreover, you may contain fillers, such as UV absorber. The mold is preferably colorless and transparent, but even if it is colored, it can cure the visible light curable resin composition and form a pattern if it transmits at least 10% of visible light.
 また、プラスチックモールドの他に、可視光を透過する、例えば、石英ガラスの他に、軟質ガラス、硬質ガラス、パイレックス(登録商標)ガラス、並ガラス、曇ガラス等の安価なガラス材料のモールドも使用できるが、プラスチックモールドが最も好ましい。 In addition to plastic molds, for example, in addition to quartz glass, molds of inexpensive glass materials such as soft glass, hard glass, Pyrex (registered trademark) glass, ordinary glass, and frosted glass are also used. A plastic mold is most preferred.
 例えば、プラスチックモールドを使用する場合、プラスチックモールドの形状はパターン形成が可能であれば、どのような形状でもよく、例えば、板状、フィルム状、無端ベルト形状、円筒形状等があげられ、好ましくは無端ベルト形状および円筒形状があげられる。 For example, when a plastic mold is used, the shape of the plastic mold may be any shape as long as pattern formation is possible, and examples thereof include a plate shape, a film shape, an endless belt shape, and a cylindrical shape, preferably An endless belt shape and a cylindrical shape are mentioned.
 フィルム状のプラスチックモールドを使用する場合、前記のプラスチック材料やプラスチックフィルムに接着剤や光硬化により接着して強度を持たせたものをモールドとして使用してもよい。また、金属モールドを圧着により押し付けてパターンを形成したプラスチック板やプラスチックフィルムをそのままモールドとして使用してもよい。 In the case of using a film-like plastic mold, a material obtained by bonding the above plastic material or plastic film with an adhesive or photocuring to give strength may be used as the mold. Further, a plastic plate or a plastic film in which a metal mold is pressed by pressure bonding to form a pattern may be used as a mold as it is.
 本発明におけるプラスチックモールドの製造方法としては、例えば、熱(ナノ)インプリント法、ホットエンボス加工法、直接プレス法等があげられる。その他に、プラスチックに電子線またはイオンビーム(プロトンビーム、X線等)により直接的に描画する方法、硬化性樹脂を金属金型の上に塗布または滴下し、熱硬化または光硬化させてプラスチックモールドを作製する方法、HSQ(水素シルセスキオキサンポリマー)を用いた室温ナノインプリント法、PDMS(ポリジメチルシロキサン)を用いたソフトリソグラフィー法等があげられる。 Examples of the method for producing a plastic mold in the present invention include a thermal (nano) imprint method, a hot embossing method, and a direct press method. In addition, a method of drawing directly on plastic with an electron beam or ion beam (proton beam, X-ray, etc.), a plastic mold by applying or dripping a curable resin on a metal mold, thermosetting or photocuring , A room temperature nanoimprint method using HSQ (hydrogen silsesquioxane polymer), a soft lithography method using PDMS (polydimethylsiloxane), and the like.
 前記プラスチックモールドの製造方法の中でも、熱(ナノ)インプリント法が好ましい。具体的には、プラスチック板またはフィルムの表面に原版のモールド(金属、シリコン、石英またはプラスチック等の材料)を押し付けて、加熱プレスする方法であり、熱(ナノ)インプリント装置の下の加熱板に原版のモールドとプラスチック板またはフィルムを置き、上の加熱板と下の加熱板の温度を変えて行うことで、形状かつ光透過度の良好なプラスチックモールドを形成できる。その際、下の加熱板の加熱温度は、そのプラスチックのガラス転移点(Tg)より±50℃の温度とすることが好ましく、さらには、±30℃の温度とすることがより好ましい。また、上と下の加熱板の温度差は30℃以上とすることが好ましく、さらに、50℃以上とすることがより好ましい。プレス圧は、0.2~50MPaとすることが好ましく、1~10MPaとすることがより好ましい。冷却温度は、2段階以上で室温まで冷却することが好ましい。 Among the methods for producing the plastic mold, the thermal (nano) imprint method is preferable. Specifically, it is a method in which an original mold (a material such as metal, silicon, quartz or plastic) is pressed against the surface of a plastic plate or film, and is heated and pressed, and a heating plate under a thermal (nano) imprint apparatus By placing the original mold and the plastic plate or film on the plate and changing the temperature of the upper heating plate and the lower heating plate, a plastic mold having a good shape and good light transmittance can be formed. At that time, the heating temperature of the lower heating plate is preferably set to a temperature of ± 50 ° C. from the glass transition point (Tg) of the plastic, and more preferably set to a temperature of ± 30 ° C. The temperature difference between the upper and lower heating plates is preferably 30 ° C. or higher, and more preferably 50 ° C. or higher. The pressing pressure is preferably 0.2 to 50 MPa, more preferably 1 to 10 MPa. The cooling temperature is preferably cooled to room temperature in two or more stages.
 図3には、プラスチックモールドを作成工程の一実施形態が示されている。工程(a)では、モールド材料30を用意し、このモールド材料30に離型剤を塗布する。その後、工程(b)に示すように、モールド材料30の上方に金型31を配置する。金型31は一例として、図2で示す実施形態により作成された金型を使用することができる。金型31には凸部32と凹部33とが形成されており、これらの凹凸部32、33で所定パターンが形成されている。この金型31を図で見て下方向に移動させて、工程(c)に示すように、金型31の凸部32をモールド材料30に食い込ませる。 FIG. 3 shows an embodiment of a process for producing a plastic mold. In the step (a), a mold material 30 is prepared, and a mold release agent is applied to the mold material 30. Thereafter, as shown in step (b), the mold 31 is disposed above the mold material 30. As an example, the mold 31 can be a mold created according to the embodiment shown in FIG. A convex portion 32 and a concave portion 33 are formed on the mold 31, and a predetermined pattern is formed by these concave and convex portions 32 and 33. The mold 31 is moved downward as seen in the figure, and the convex portions 32 of the mold 31 are digged into the molding material 30 as shown in step (c).
 そして、金型31をモールド材料30に食い込ませた状態で加熱し、金型31のパターンをモールド材料30に転写する。転写後は、工程(d)に示すように、金型31をモールド30から取り除くことでプラスチックモールド30´が作成される。このプラスチックモールド30´では、金型31の凸部32が転写されて凹部34が形成され、更に、金型31の凹部が転写されて、凸部35が形成され、従って、金型31の逆の凹凸パターンとなっている。 Then, the mold 31 is heated in a state where it is bitten into the mold material 30, and the pattern of the mold 31 is transferred to the mold material 30. After the transfer, as shown in step (d), the mold 31 is removed from the mold 30 to produce a plastic mold 30 ′. In this plastic mold 30 ′, the convex portion 32 of the mold 31 is transferred to form a concave portion 34, and further, the concave portion of the mold 31 is transferred to form a convex portion 35. The pattern is uneven.
 このようにして作成されたプラスチックモールド30´は、図1に示す実施形態の金属膜のパターン形成方法に使用することができる。尚、本実施形態では、金型を下方向に移動させて、モールド材料に食い込ませたが、移動方向は特に限定されず、モールド材料を上方向に移動させて、金型にモールド材料を食い込ませてもよい。 The plastic mold 30 'thus produced can be used in the metal film pattern forming method of the embodiment shown in FIG. In this embodiment, the mold is moved downward to bite into the mold material, but the moving direction is not particularly limited, and the mold material is moved upward to bite the mold material into the mold. It may be allowed.
 本発明で使用されるモールド(特にプラスチックモールド)は、剥離性や離型性を向上させるために、モールド剥離剤または離型剤を剥離表面に塗布または蒸着してもよい。モールド剥離剤としては、例えば、フッ素系表面処理剤[オプツールDSX、デュラサーフ HD‐1100、HD‐2100(ダイキン工業(株)製)、NovecEGC-1720(住友スリーエム(株)製)等]、金型剥離剤[バリアセラム ガンマーR(バナテック(株)製)等]等があげられる。離型剤としては、例えば、フッ素系離型剤[フリリース(ネオス(株)製)等]、シリコン樹脂、シリコン油、シリコンワックス、テフロン(登録商標)分散剤、ポリビニルアルコール、水溶性エマルジョン離型剤等があげられる。蒸着方法としては、有機薄膜処理法[ナノス(ティアンドケー(株)製)]、フッ素コーティング[旭プレシジョン(株)製]、化学成長気相法[フッ素含有ダイアモンドライクカーボン(F-DLC)成膜法]等があげられ、有機薄膜処理が好ましい。 The mold (particularly plastic mold) used in the present invention may be coated or vapor-deposited on the release surface with a mold release agent or a release agent in order to improve release properties and release properties. Examples of the mold release agent include fluorine-based surface treatment agents [OPTOOL DSX, Durasurf HD-1100, HD-2100 (manufactured by Daikin Industries, Ltd.), NovecEGC-1720 (manufactured by Sumitomo 3M), etc.], gold Mold release agent [barrier serum gamma R (manufactured by Vanatech Co., Ltd.)] and the like. Examples of the release agent include fluorine release agents [Flease (manufactured by Neos Co., Ltd.)], silicone resin, silicone oil, silicone wax, Teflon (registered trademark) dispersant, polyvinyl alcohol, water-soluble emulsion release agent, and the like. Examples include molds. Deposition methods include organic thin film treatment [Nanos (manufactured by T & K Co.)], fluorine coating [manufactured by Asahi Precision Co., Ltd.], chemical growth vapor phase [fluorine-containing diamond-like carbon (F-DLC) composition] Film method] and the like, and organic thin film treatment is preferred.
(硬化性樹脂組成物)
 本発明における硬化性樹脂組成物は、重合性化合物と重合開始剤を含み、光または熱で硬化できるものが好ましい。
(Curable resin composition)
The curable resin composition in the present invention preferably contains a polymerizable compound and a polymerization initiator and can be cured by light or heat.
(1)重合性化合物
 重合性化合物としては、重合性モノマーおよび/または重合性ポリマーが好ましい。重合性モノマーおよび重合性ポリマーは、炭素-炭素不飽和結合を分子内に1個以上有する。重合性化合物は1種類を単独で用いてもよく、複数種類を組み合わせて用いてもよい。重合性化合物の含有量は、硬化性樹脂化合物100重量部中、5~99.99重量部であるのが好ましく、10~99.9重量部であるのがより好ましい。
(1) Polymerizable compound The polymerizable compound is preferably a polymerizable monomer and / or a polymerizable polymer. The polymerizable monomer and the polymerizable polymer have one or more carbon-carbon unsaturated bonds in the molecule. A polymeric compound may be used individually by 1 type, and may be used in combination of multiple types. The content of the polymerizable compound is preferably 5 to 99.99 parts by weight and more preferably 10 to 99.9 parts by weight per 100 parts by weight of the curable resin compound.
 本発明における硬化性樹脂組成物に重合性ポリマーが含まれるときの該重合性ポリマーの重量平均分子量は、500~5,000であるのが好ましく、800~2,000であるのがより好ましい。重合性ポリマーの重量平均分子量が500~5,000のポリマーを使用すると、アッシング処理が容易となり、作業時間が短縮される。 When the polymerizable polymer is contained in the curable resin composition in the present invention, the weight average molecular weight of the polymerizable polymer is preferably 500 to 5,000, and more preferably 800 to 2,000. When a polymer having a weight average molecular weight of 500 to 5,000 is used, the ashing process is facilitated and the working time is shortened.
 分子内に1個の炭素-炭素不飽和結合を有する重合性モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシジエチレン(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-1-メチルエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アクリロニトリル、(メタ)アクリルアミド、N-置換(メタ)アクリルアミド〔例えば、ダイアセトンアクリルアミド[DAAM(協和発酵ケミカル(株)製)]、N-イソプロピルアクリルアミド[NIPAM(興人(株)製)]、アクリロイルモルホリン[ACMO(興人(株)製)]、N,N-ジメチルアクリルアミド[DMAA(興人(株)製)]、N,N-ジエチルアクリルアミド[DEAA(興人(株)製)]、N,N-ジメチルアミノプロピルアクリルアミド[DMAPAA(興人(株)製)]〕、N-ビニルピロリドン[例えば、日本触媒(株)製]、N-ビニルカプロラクタム、N-ビニルカルバゾール、4―ビニル-1-シクロヘキセン、2-ビニル-1,3-ジオキソラン、4-ビニル-1,3-ジオキソランー2-オン、ビニレンカーボネート、ヒドロキシエチル化β-ナフトール(メタ)アクリレート、ビニルアセテート等のビニルエステル、イソブチルビニルエーテル等のビニルエーテル、スチレン、アルキルスチレン、ハロスチレン、N-ビニルピロリドン、塩化ビニル、塩化ビニリデン等があげられる。ここで、(メタ)アクリル酸はアクリルまたはメタクリル酸を表し、(メタ)アクリレートは、アクリレートまたはメタクリレートを表す。他の誘導体についても同様に表現する。 Examples of the polymerizable monomer having one carbon-carbon unsaturated bond in the molecule include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, methoxyethyl (meth) acrylate, methoxydiethylene ( (Meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) ) Acrylate, 2-hydroxy-1-methylethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, isobornyl (meth) acrylate, acrylonitrile, (meth) acrylamide, -Substituted (meth) acrylamide [for example, diacetone acrylamide [DAAM (manufactured by Kyowa Hakko Chemical Co., Ltd.)], N-isopropylacrylamide [NIPAM (manufactured by Kojin Co., Ltd.)], acryloylmorpholine [ACMO (Kojin Co., Ltd.) )), N, N-dimethylacrylamide [DMAA (manufactured by Kojin)], N, N-diethylacrylamide [DEAA (manufactured by Kojin)], N, N-dimethylaminopropylacrylamide [ DMAPAA (manufactured by Kojin Co., Ltd.)]], N-vinylpyrrolidone [for example, Nippon Shokubai Co., Ltd.], N-vinylcaprolactam, N-vinylcarbazole, 4-vinyl-1-cyclohexene, 2-vinyl-1 , 3-dioxolane, 4-vinyl-1,3-dioxolan-2-one, vinylene carbonate, hydroxyethylated β-naphthol Meth) acrylate, vinyl esters such as vinyl acetate, vinyl ethers such as isobutyl vinyl ether, styrene, alkylstyrenes, halostyrenes, N- vinylpyrrolidone, vinyl chloride, vinylidene chloride and the like. Here, (meth) acrylic acid represents acrylic or methacrylic acid, and (meth) acrylate represents acrylate or methacrylate. The same applies to other derivatives.
 分子内に2個以上の炭素-炭素不飽和結合を有する重合性モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート[NKエステル 1G(新中村化学(株)製)]、プロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート[NKエステル 2G(新中村化学(株)製)]、トリエチレングリコールジ(メタ)アクリレート[NKエステル 3G(新中村化学(株)製)]、テトラエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート[NKエステル BG(新中村化学(株)製)]、ネオペンチルグリコールジ(メタ)アクリレート[NKエステル NPG、A-NPG(新中村化学(株)製)]、ジプロピレングリコ-ルジ(メタ)アクリレート、トリプロピレングリコ-ルジ(メタ)アクリレート[NKエステル APG-200(新中村化学(株)製)、TPGDA(ダイセルユーシービー(株)製)]、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート[NKエステル HD、A-HD(新中村化学(株)製)]、テトラメチレングリコールジ(メタ)アクリレート、ヘキサメチレングリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、2,2′-ビス[4-{(メタ)アクリロキシエトキシ}フェニル]プロパン[NKエステル BPE-100(新中村化学(株)製)]、4,4′-ビス(2-(メタ)アクリロイルオキシエトキシ)ジフェニルプロパン、ビスフェノールA型EO(エチレンオキサイド)変性ジ(メタ)アクリレート[NKエステル BPE-200、A-BPE-4(新中村化学(株)製)]、9,9-ビス(3-フェニル-4-(メタ)アクリロイルポリオキシエトキシ)フルオレン、トリシクロデカンジメタノールジ(メタ)アクリレート[NKエステル A-DCP(新中村化学(株)製)]、シクロヘキサンジメタノールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、テトラアクリレート、ペンタエリスリトールジビニルエーテル、ビニル(メタ)アクリレート、ジビニルベンゼン、ジビニルサクシネート、ジアリルフタレート、トリアリルホスフェート、トリアリルイソシアヌレート、トリス(2-アクリロイルエチル)イソシアヌレート、ジビニルエーテル、トリエチレングリコールジビニルエーテル、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、エトキシ化シクロヘキサンジメタノールジアクリレート[NKエステル A-CHD-4E(新中村化学(株)製)]、トリメチロールプロパントリ(メタ)アクリレート[NKエステル TMPT(新中村化学(株)製)、A-TMPT(新中村化学(株)製)、TMPTA(ダイセルユーシービー(株)製)]等があげられる。 Examples of the polymerizable monomer having two or more carbon-carbon unsaturated bonds in the molecule include ethylene glycol di (meth) acrylate [NK ester 1G (manufactured by Shin-Nakamura Chemical Co., Ltd.)], propylene glycol di (meta) ) Acrylate, diethylene glycol di (meth) acrylate [NK ester 2G (manufactured by Shin-Nakamura Chemical Co., Ltd.)], triethylene glycol di (meth) acrylate [NK ester 3G (manufactured by Shin-Nakamura Chemical Co., Ltd.)], tetraethylene glycol Di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate [NK ester BG (manufactured by Shin-Nakamura Chemical Co., Ltd.)], neopentyl glycol di (meth) acrylate [NK ester NPG, A-NPG (new) Nakamura Chemical Co., Ltd.)], dipropylene glycol di (meth) acrylate, Tripropylene glycol di (meth) acrylate [NK ester APG-200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), TPGDA (manufactured by Daicel UC Corporation)], 1,4-butanediol di (meth) acrylate, 1 , 6-hexanediol di (meth) acrylate [NK ester HD, A-HD (manufactured by Shin-Nakamura Chemical Co., Ltd.)], tetramethylene glycol di (meth) acrylate, hexamethylene glycol di (meth) acrylate, bisphenol A di (Meth) acrylate, 2,2′-bis [4-{(meth) acryloxyethoxy} phenyl] propane [NK ester BPE-100 (manufactured by Shin-Nakamura Chemical Co., Ltd.)], 4,4′-bis (2 -(Meth) acryloyloxyethoxy) diphenylpropane, bisphenol A type EO (ethylene oxide) Di (meth) acrylate [NK ester BPE-200, A-BPE-4 (manufactured by Shin-Nakamura Chemical Co., Ltd.)], 9,9-bis (3-phenyl-4- (meth) acryloylpolyoxyethoxy) fluorene , Tricyclodecane dimethanol di (meth) acrylate [NK ester A-DCP (manufactured by Shin-Nakamura Chemical Co., Ltd.)], cyclohexane dimethanol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri ( (Meth) acrylate, tetraacrylate, pentaerythritol divinyl ether, vinyl (meth) acrylate, divinylbenzene, divinyl succinate, diallyl phthalate, triallyl phosphate, triallyl isocyanurate, tris (2-acryloylethyl) isocyanurate Divinyl ether, triethylene glycol divinyl ether, 2-hydroxy-1,3-dimethacryloxypropane, ethoxylated cyclohexanedimethanol diacrylate [NK ester A-CHD-4E (manufactured by Shin-Nakamura Chemical Co., Ltd.)], trimethylol Propane tri (meth) acrylate [NK ester TMPT (manufactured by Shin-Nakamura Chemical Co., Ltd.), A-TMPT (manufactured by Shin-Nakamura Chemical Co., Ltd.), TMPTA (manufactured by Daicel UCB Co., Ltd.)] and the like.
 これらの中でも特に、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、ジエチレングリコールジメタクリレート、エトキシ化シクロヘキサンジメタノールジアクリレート、トリプロピレングリコールジアクリレート[NKエステル、APG-200(新中村化学(株)製)]およびトリメチロールプロパントリメタクリレートが好ましい。 Among these, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,3-butylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, 2-hydroxy 1,3-dimethacryloxypropane, diethylene glycol dimethacrylate, ethoxylated cyclohexanedimethanol diacrylate, tripropylene glycol diacrylate [NK ester, APG-200 (manufactured by Shin-Nakamura Chemical Co., Ltd.)] and trimethylolpropane trimethacrylate Is preferred.
 重合性ポリマーとしては、例えば、メトキシポリエチレングリコール(メタ)アクリレート、ポリメチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エポキシ(メタ)アクリレート、エポキシ変性(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ウレタンアクリレート、エステル(メタ)アクリレート、ビスフェノール変性エポキシ(メタ)アクリレート、不飽和ポリエステル樹脂等があげられ、これら中でもウレタンアクリレートが好ましい。 Examples of the polymerizable polymer include methoxypolyethylene glycol (meth) acrylate, polymethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and epoxy (meth). Examples include acrylates, epoxy-modified (meth) acrylates, polyether (meth) acrylates, urethane acrylates, ester (meth) acrylates, bisphenol-modified epoxy (meth) acrylates, and unsaturated polyester resins. Among these, urethane acrylates are preferred.
 ウレタンアクリレートとしては、例えば、水酸基含有ポリマーと多官能イソシアネートとを反応させた後に活性水素を有する(メタ)アクリレートとを反応させて得られるウレタン、活性水素を有する(メタ)アクリレートに多官能イソシアネートと更に鎖延長剤を反応させて得られるウレタン等があげられる。 Examples of the urethane acrylate include, for example, urethane obtained by reacting a hydroxyl group-containing polymer with a polyfunctional isocyanate and then reacting with a (meth) acrylate having active hydrogen, and (meth) acrylate having active hydrogen with a polyfunctional isocyanate. Further examples include urethane obtained by reacting a chain extender.
 水酸基含有ポリマーとしては、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール等があげられ、これらの中でもポリエステルポリオールが好ましい。 Examples of the hydroxyl group-containing polymer include polyester polyols, polyether polyols, polycarbonate polyols and the like. Among these, polyester polyols are preferable.
 ポリエステルポリオールとしては、例えば、ジカルボン酸の1種または2種以上と水酸基を2つ以上有する化合物の1種または2種以上を反応させて得られるポリエステルポリオール等があげられる。ジカルボン酸としては、例えば、アジピン酸、グルタル酸、2,4-ジエチルグルタル酸、コハク酸、ドデカン二酸等があげられ、これらの中でも、アジピン酸またはグルタル酸が好ましい。水酸基を2つ以上有する化合物としては、例えば、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ピロカテコール、レゾルシノール、ピロガロール、ビス(ヒドロキシフェニル)-2-プロパン、ビス(ヒドロキシフェニル)メタン、ポリエチレングリコール(2~120重合体)、ポリプロレングリコール(2~120重合体)、ポリネオペンチルグリコール(2~120重合体)、グリセリン、ペンタエリスリトール等があげられ、これらの中でも、ポリプロピレングリコールおよびビス(ヒドロキシフェニル)-2-プロパンが好ましい。 Examples of the polyester polyol include polyester polyols obtained by reacting one or more dicarboxylic acids with one or more compounds having two or more hydroxyl groups. Examples of the dicarboxylic acid include adipic acid, glutaric acid, 2,4-diethylglutaric acid, succinic acid, dodecanedioic acid and the like, and among these, adipic acid or glutaric acid is preferable. Examples of the compound having two or more hydroxyl groups include ethylene glycol, propylene glycol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2,4-diethyl-1 , 5-pentanediol, 1,6-hexanediol, pyrocatechol, resorcinol, pyrogallol, bis (hydroxyphenyl) -2-propane, bis (hydroxyphenyl) methane, polyethylene glycol (2-120 polymer), polyprolene glycol (2-120 polymer), polyneopentyl glycol (2-120 polymer), glycerin, pentaerythritol and the like. Among these, polypropylene glycol and bis (hydroxyphenyl) -2-propane are preferable.
 ポリエーテルポリオールとしては、環状エーテル(例えば、テトラヒドロフラン、オキセタン、エチレンオキサイド、プロピレンオキサイド等)の1種または2種以上と、水酸基を2つ以上有する化合物の1種または2種以上を反応させて得られるポリエーテルポリオールがあげられ、これらの中でも、テトラヒドロフランとポリプロピレングリコールから得られるポリエーテルポリオールが好ましい。水酸基を2つ以上有する化合物は前記と同義である。 The polyether polyol is obtained by reacting one or more cyclic ethers (for example, tetrahydrofuran, oxetane, ethylene oxide, propylene oxide, etc.) with one or more compounds having two or more hydroxyl groups. The polyether polyol obtained from tetrahydrofuran and polypropylene glycol is preferable among these. A compound having two or more hydroxyl groups has the same meaning as described above.
 ポリカーボネートポリオールとしては、炭酸エステル(炭酸ジメチル、炭酸ジエチル、炭酸ジプロピル、炭酸ジブチルなど)の1種または2種以上と水酸基を2つ以上有する化合物の1種または2種以上を反応させて得られるポリカーボネートポリオールがあげられ、これらの中でも、炭酸ジエチルとポリプロピレングリコールから得られるポリカーボネートポリオールが好ましい。水酸基を2つ以上有する化合物は前記と同義である。 The polycarbonate polyol is a polycarbonate obtained by reacting one or more of carbonate esters (dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, etc.) with one or more compounds having two or more hydroxyl groups. Polyols are mentioned, and among these, polycarbonate polyols obtained from diethyl carbonate and polypropylene glycol are preferred. A compound having two or more hydroxyl groups has the same meaning as described above.
 多官能イソシアネートとしては、例えば、エチレンジイソシアネート、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート、シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、4,4‘-ジフェニルメタンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等があげられ、これらの中でも、2,4-トリレンジイソシアネートおよびキシリレンジイソシアネートが好ましい。 Examples of the polyfunctional isocyanate include ethylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate, cyclopentylene diisocyanate, cyclohexylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, 4,4′-. Examples thereof include diphenylmethane diisocyanate and dicyclohexylmethane diisocyanate. Among these, 2,4-tolylene diisocyanate and xylylene diisocyanate are preferable.
 活性水素を有する(メタ)アクリレートとしては、例えば、水酸基を有する(メタ)アクリル酸エステルがあげられ、具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル-3-ベンゾエート(メタ)アクリレート、2-ヒドロキシプロピル-3-(4-フェニルベンゾエート)(メタ)アクリレート、グリシジル(メタ)アクリレート等があげられ、これらの中でも、2-ヒドロキシエチル(メタ)アクリレートまたは2-ヒドロキシブチル(メタ)アクリレートが好ましい。 Examples of the (meth) acrylate having active hydrogen include (meth) acrylic acid ester having a hydroxyl group. Specific examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2 -Hydroxybutyl (meth) acrylate, 2-hydroxypropyl-3-benzoate (meth) acrylate, 2-hydroxypropyl-3- (4-phenylbenzoate) (meth) acrylate, glycidyl (meth) acrylate, etc. Among these, 2-hydroxyethyl (meth) acrylate or 2-hydroxybutyl (meth) acrylate is preferable.
 鎖延長剤としては、ポリエチレングリコール(2~120重合体)、ポリプロレングリコール(2~120重合体)、ポリネオペンチルグリコール(2~120重合体)、ポリカプトラクトン(2~100重合体)またはポリブチロラクトン(2~100重合体)があげられ、これらの中でも、3~40重合体のポリプロピレングリコールまたはポリカプトラクトンが好ましい。 Examples of chain extenders include polyethylene glycol (2 to 120 polymer), polyprolene glycol (2 to 120 polymer), polyneopentyl glycol (2 to 120 polymer), polycaptolactone (2 to 100 polymer) or Examples thereof include polybutyrolactone (2 to 100 polymer). Among these, 3 to 40 polymer polypropylene glycol or polycaptolactone is preferable.
 本発明における樹脂組成物の硬化には、光硬化または熱硬化の他に、湿気硬化、室温硬化等を併用することができる。そのため、光硬化性樹脂組成物は、前記の重合性化合物以外に、エポキシ樹脂、オキセタン樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂(例えば、PDMS)、メラミン樹脂、フッ素系樹脂、ポリカーボネート樹脂、ポリ(メタ)アクリル酸メチル樹脂(例えば、PMMA)、フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエーテル樹脂、ポリビニルエーテル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミン樹脂、ポリビニルアルコール樹脂、シアノアクリレート樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、PET(ポリエチレンテレフタレート)樹脂、生分解性プラスチック(ポリ乳酸等)、他の熱可塑性樹脂、既存のUV硬化型または可視光硬化型接着剤[例えば、350、352、366、349、3201、3211、3301、3311、3321、3341、3102~3106(ヘンケルロックタイト(株)製)、3170B、3121、3003、3042、3046(スリーボンド(株)製)、クリアルーチェMA21、OPTOKLEB OPM55(アデール(株)製)、アロニックス(東亞合成(株)製)]および既存の感光性樹脂[例えば、PAK-01(東洋合成工業(株)製)、NIP-K(ZenPhotonics(株)製)およびSU―8(マイクロケム(株)製)等]を含有してもよい。また、含有する樹脂に応じて、熱重合開始剤、重合促進剤、湿気重合剤等を含有してもよい。 For curing the resin composition in the present invention, moisture curing, room temperature curing or the like can be used in combination with photocuring or heat curing. Therefore, in addition to the polymerizable compound, the photocurable resin composition includes an epoxy resin, an oxetane resin, a urethane resin, a polyester resin, a silicone resin (for example, PDMS), a melamine resin, a fluorine resin, a polycarbonate resin, a poly ( (Meth) methyl acrylate resin (for example, PMMA), phenol resin, vinyl chloride resin, vinyl acetate resin, polyethylene resin, polypropylene resin, polyether resin, polyvinyl ether resin, polyimide resin, polyamide resin, polyamine resin, polyvinyl alcohol resin, Cyanoacrylate resins, ABS (acrylonitrile-butadiene-styrene) resins, PET (polyethylene terephthalate) resins, biodegradable plastics (polylactic acid, etc.), other thermoplastic resins, existing UV curable or visible light hardened Mold adhesive [for example, 350, 352, 366, 349, 3201, 3211, 3301, 3311, 3321, 3341, 3102 to 3106 (manufactured by Henkel Loctite Co., Ltd.), 3170B, 3121, 3003, 3042, 3046 (Three Bond ( Co., Ltd.), Clear Luce MA21, OPTOKLEB OPM55 (manufactured by Adale Co., Ltd.), Aronix (manufactured by Toagosei Co., Ltd.)] and existing photosensitive resin [for example, PAK-01 (manufactured by Toyo Gosei Co., Ltd.)] NIP-K (manufactured by Zen Photonics Co., Ltd.) and SU-8 (manufactured by Microchem Co., Ltd.)]. Moreover, according to resin to contain, you may contain a thermal-polymerization initiator, a polymerization accelerator, a moisture polymerization agent, etc.
(2)重合開始剤
 本発明における硬化性樹脂組成物は、重合開始剤として、熱重合開始剤または光重合開始剤を含有することが好ましく、必要により、光増感剤、光重合促進剤、溶剤およびその他の添加剤を含有してもよい。
(2) Polymerization initiator The curable resin composition in the present invention preferably contains a thermal polymerization initiator or a photopolymerization initiator as a polymerization initiator. If necessary, a photosensitizer, a photopolymerization accelerator, A solvent and other additives may be contained.
 重合開始剤は1種類を単独で用いてもよく、複数種類を組み合わせて用いてもよい。重合開始剤の含有量は、硬化性樹脂組成物中に0.01~20質量%の範囲内とすることが好ましい。また、熱重合開始剤の含有量は、全重合性化合物(固形分)に対して、0.01~20質量%の範囲内とすることが好ましく、0.1~10質量%の範囲内とすることがより好ましい。 One type of polymerization initiator may be used alone, or a plurality of types may be used in combination. The content of the polymerization initiator is preferably in the range of 0.01 to 20% by mass in the curable resin composition. The content of the thermal polymerization initiator is preferably in the range of 0.01 to 20% by mass, preferably in the range of 0.1 to 10% by mass with respect to the total polymerizable compound (solid content). More preferably.
 熱重合開始剤としては、例えば、ラジカル重合開始剤、イオン重合開始剤等があげられ、ラジカル重合開始剤が好ましい。ラジカル重合開始剤としては、例えば、過酸化物、アゾ化合物、過硫酸塩、レドックス開始剤等があげられ、これらの中でも、過酸化物およびアゾ化合物が好ましい。 Examples of the thermal polymerization initiator include radical polymerization initiators and ionic polymerization initiators, and radical polymerization initiators are preferred. Examples of the radical polymerization initiator include peroxides, azo compounds, persulfates, redox initiators, etc. Among these, peroxides and azo compounds are preferable.
 アゾ化合物としては、例えば、2,2’-アゾビス(2-メチルプロピオニトリル)(AIBN)、2,2’-アゾビス(2-メチルブチロニトリル)(AMBN)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)[V-601:和光純薬(株)製]があげられる。 Examples of the azo compound include 2,2′-azobis (2-methylpropionitrile) (AIBN), 2,2′-azobis (2-methylbutyronitrile) (AMBN), dimethyl 2,2′-azobis. (2-methylpropionate) [V-601: manufactured by Wako Pure Chemical Industries, Ltd.].
 過酸化物としては、例えば、過酸化水素、過酸化物塩、過酸化アルキル、過酸化アシル、過酸化エステルがあげられ、具体的には、ジtert-ブチル オキサイド(パーブチルD:日油(株)製)、tert-ブチル オキシネオデカネート(パーブチルND:日油(株)製)、tert-ブチル オキシピバレート(パーブチルPV:日油(株)製)等があげられる。 Examples of peroxides include hydrogen peroxide, peroxide salts, alkyl peroxides, acyl peroxides, and peroxide esters. Specifically, di-tert-butyl oxide (perbutyl D: NOF Corporation) ), Tert-butyl oxyneodecanate (Perbutyl ND: manufactured by NOF Corporation), tert-butyl oxypivalate (Perbutyl PV: manufactured by NOF Corporation), and the like.
 イオン重合開始剤としては、例えば、カチオン重合開始剤およびアニオン重合開始剤があげられる。カチオン重合開始剤としては、例えば、プロトン酸(硫酸、過塩素酸、トリクロル酢酸等)、フリーデルクラフト型触媒(塩化アルミニウム、塩化第二鉄、三フッ化ホウ素、四塩化チタン等)、安定カチオン触媒(トリフェニルヘキサクロルアンチモネート、トリエチルオキソニウムテトラフルオルボレート等)等があげられる。これらの中でも、トリクロル酢酸、塩化アルミニウム、三フッ化ホウ素が好ましい。 Examples of the ionic polymerization initiator include a cationic polymerization initiator and an anionic polymerization initiator. Examples of cationic polymerization initiators include proton acids (sulfuric acid, perchloric acid, trichloroacetic acid, etc.), Friedel-Craft type catalysts (aluminum chloride, ferric chloride, boron trifluoride, titanium tetrachloride, etc.), stable cations And catalysts (triphenylhexachloroantimonate, triethyloxonium tetrafluoroborate, etc.). Among these, trichloroacetic acid, aluminum chloride, and boron trifluoride are preferable.
 アニオン重合開始剤としては、例えば、アルカリ金属(ナトリウム、リチウム等)、グリニャール試薬、アルキルリチウム、電子供与性有機化合物(アミン、アルカリ化合物等)等があげられる。これらの中でも、リチウムおよびアミンが好ましい。また、エポキシ樹脂の重合に使用される硬化剤も使用できる。当該硬化剤としては、例えば、アミン系硬化剤、酸無水物硬化剤、フェノール系硬化剤、イミダゾール系硬化促進剤等があげられ、これらの中でも、アミン系および酸無水物系硬化剤が好ましい。 Examples of the anionic polymerization initiator include alkali metals (sodium, lithium, etc.), Grignard reagents, alkyl lithium, electron donating organic compounds (amines, alkali compounds, etc.) and the like. Among these, lithium and amine are preferable. Moreover, the hardening | curing agent used for superposition | polymerization of an epoxy resin can also be used. Examples of the curing agent include amine-based curing agents, acid anhydride curing agents, phenol-based curing agents, imidazole-based curing accelerators, and among these, amine-based and acid anhydride-based curing agents are preferable.
 本発明で用いられる光重合開始剤としては、例えば、200~1,000nmに感光性を有する光重合開始剤等があげられ、なかでも365~600nmに感光性を有する光重合開始剤が好ましく、400~600nmに感光性を有する可視光重合開始剤がより好ましい。 Examples of the photopolymerization initiator used in the present invention include a photopolymerization initiator having photosensitivity at 200 to 1,000 nm, and among them, a photopolymerization initiator having photosensitivity at 365 to 600 nm is preferable. A visible light polymerization initiator having photosensitivity at 400 to 600 nm is more preferable.
 可視光重合開始剤としては、例えば、アシルホスフィンオキシド化合物、α-アミノアルキルフェノン化合物、α-ヒドロキシアルキルフェノン化合物、チタノセン型光重合開始剤、水素引抜型のラジカル型光重合開始剤、オキシムエステル型光重合開始剤、カチオン型光重合開始剤、酸発生剤等があげられる。 Examples of visible light polymerization initiators include acylphosphine oxide compounds, α-aminoalkylphenone compounds, α-hydroxyalkylphenone compounds, titanocene photopolymerization initiators, hydrogen abstraction type radical photopolymerization initiators, and oxime ester types. Examples include photopolymerization initiators, cationic photopolymerization initiators, and acid generators.
 上述の可視光重合開始剤の中でも、特にアシルホスフィンオキシド化合物が好ましい。アシルホスフィンオキシド化合物としては、例えば、モノアシルホスフィンオキシド、ビスアシルホスフィンオキシド等があげられる。 Among the above visible light polymerization initiators, acylphosphine oxide compounds are particularly preferable. Examples of the acyl phosphine oxide compound include monoacyl phosphine oxide and bisacyl phosphine oxide.
 モノアシルホスフィンオキシドとしては、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド[Lucirin TPO(BASF(株)製)]、2,6-ジクロロベンゾイルジフェニルホスフィンオキシド、3-クロロ-2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルフェニルエトキシホスフィンオキシド、5-(4-ペンチロキシベンゾイル)-5H-ジベンゾホスホール 5-オキシド、5-(4-ヘキシルベンゾイル)-5H-ジベンゾホスホール 5-オキシド、5-(2,4,6-トリメチルベンゾイル)-5H-ジベンゾホスホール 5-オキシド、5-(4-トルオイル)-5H-ジベンゾホスホール 5-オキシド、5-(p-アニソイル)-5H-ジベンゾホスホール 5-オキシド、5-(2,6-ジメトキシベンゾイル)-5H-ジベンゾホスホール 5-オキシド、5-(1-ナフトイル)-5H-ジベンゾホスホール 5-オキシド、5-(2-トルオイル)-5H-ジベンゾホスホール 5-オキシド、5-(2-テノイル)-5H-ジベンゾホスホール 5-オキシド、5-[5-(2’-チエニル)-2-テノイル]-5H-ジベンゾホスホール 5-オキシド等があげられる。 Examples of the monoacylphosphine oxide include 2,4,6-trimethylbenzoyldiphenylphosphine oxide [Lucirin TPO (manufactured by BASF Corporation)], 2,6-dichlorobenzoyldiphenylphosphine oxide, 3-chloro-2,4, 6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, 5- (4-pentyloxybenzoyl) -5H-dibenzophosphole 5-oxide, 5- (4-hexylbenzoyl) -5H -Dibenzophosphole 5-oxide, 5- (2,4,6-trimethylbenzoyl) -5H-dibenzophosphole 5-oxide, 5- (4-toluoyl) -5H-dibenzophosphole 5-oxide, 5- ( p-anisoy -5H-dibenzophosphole 5-oxide, 5- (2,6-dimethoxybenzoyl) -5H-dibenzophosphole 5-oxide, 5- (1-naphthoyl) -5H-dibenzophosphole 5-oxide, 5- ( 2-toluoyl) -5H-dibenzophosphole 5-oxide, 5- (2-thenoyl) -5H-dibenzophosphole 5-oxide, 5- [5- (2'-thienyl) -2-thenoyl] -5H- Examples include dibenzophosphole 5-oxide.
 ビスアシルホスフィンオキシドとしては、例えば、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド[BAPO:イルガキュア819(チバ・スペシャルティ・ケミカルズ(株)製)]、ビス(2,4,6-トリメチルベンゾイル)-4-メチルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,4-ジメチルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,6-ジイソプロピルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-4-イソプロピル-2,6-ジメチルフェニルホスフィンオキシド、ビス(2,6-ジメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド等があげられる。 Examples of the bisacylphosphine oxide include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide [BAPO: Irgacure 819 (manufactured by Ciba Specialty Chemicals)], bis (2,4,6-trimethyl). Benzoyl) -4-methylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -2,4-dimethylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -2,6-diisopropylphenylphosphine Oxide, bis (2,4,6-trimethylbenzoyl) -4-isopropyl-2,6-dimethylphenylphosphine oxide, bis (2,6-dimethylbenzoyl) phenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) ) -2,5-Di Chill phenyl phosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentyl phosphine oxide and the like.
 α-アミノアルキルフェノン化合物としては、例えば、2―メチル-1-[4(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン[イルガキュア907(チバ・スペシャルティ・ケミカルズ(株)製)]、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン[イルガキュア369または1300(チバ・スペシャルティ・ケミカルズ(株)製)]、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリノフェニル)-1-ブタノン[イルガキュア379(チバ・スペシャルティ・ケミカルズ(株)製)]、3,6―ビス(2-メチル-2-モルホリノプロピオニル)-9-オクチルカルバゾール[アデカオプトマーN-1414(株)ADEKA製]等があげられ、これらはチオキサントン誘導体(後述)と併用できる。 Examples of the α-aminoalkylphenone compound include 2-methyl-1- [4 (methylthio) phenyl] -2-morpholinopropan-1-one [Irgacure 907 (manufactured by Ciba Specialty Chemicals)], 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone [Irgacure 369 or 1300 (manufactured by Ciba Specialty Chemicals)], 2-dimethylamino-2- (4-methylbenzyl ) -1- (4-morpholinophenyl) -1-butanone [Irgacure 379 (manufactured by Ciba Specialty Chemicals)], 3,6-bis (2-methyl-2-morpholinopropionyl) -9-octylcarbazole [Adekaoptomer N-1414 manufactured by ADEKA Co., Ltd.] It can be used in combination with a tontone derivative (described later).
 α-ヒドロキシアルキルフェノン化合物としては、例えば、2―ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル]-2-メチルプロパン-1-オン[イルガキュア127(チバ・スペシャルティ・ケミカルズ(株)製)]、1―ヒドロキシシクロヘキシルフェニル ケトン[イルガキュア184(チバ・スペシャルティ・ケミカルズ(株)製)]、2―ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン[ダロキュア1173(チバ・スペシャルティ・ケミカルズ(株)製)]、1-[4-(2―ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン[イルガキュア2959(チバ・スペシャルティ・ケミカルズ(株)製)]、オリゴ[2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパン[イサキュアKIP 150、イサキュアKIP EM、イサキュアKIP 100F(ランベルティ(株)製)]等があげられる。α-ヒドロキシアルキルフェノン化合物は、光増感剤または他の光重合開始剤と併用して使用する。 As the α-hydroxyalkylphenone compound, for example, 2-hydroxy-1- [4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl] -2-methylpropan-1-one [Irgacure 127 ( Ciba Specialty Chemicals)], 1-hydroxycyclohexyl phenyl ketone [Irgacure 184 (Ciba Specialty Chemicals)], 2-hydroxy-2-methyl-1-phenylpropan-1-one [Darocur 1173 (manufactured by Ciba Specialty Chemicals)], 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one [Irgacure 2959 (Ciba・ Specialty Chemicals), oligo [2-hydroxy-2 Methyl-1- [4- (1-methylvinyl) phenyl] propane [Isakyua KIP 0.99, Isakyua KIP EM, Isakyua KIP 100F (manufactured by Lamberti Co.), and the like. The α-hydroxyalkylphenone compound is used in combination with a photosensitizer or other photopolymerization initiator.
 チタノセン型光重合開始剤としては、例えば、ビス(5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム[イルガキュア784(チバ・スペシャルティ・ケミカルズ(株)製)]等があげられる。 As the titanocene type photopolymerization initiator, for example, bis (5-2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium [ Irgacure 784 (manufactured by Ciba Specialty Chemicals Co., Ltd.)].
 水素引抜型のラジカル型光重合開始剤としては、例えば、ベンゾフェノン誘導体、チオキサントン誘導体、キノン-アミン系光重合開始剤等があげられる。 Examples of the hydrogen abstraction type radical photopolymerization initiator include benzophenone derivatives, thioxanthone derivatives, quinone-amine photopolymerization initiators, and the like.
 ベンゾフェノン誘導体としては、例えば、4-(4-メチルフェニルチオ)フェニル ケトン[カヤキュアBMS(日本化薬(株)製)]等があげられる。 Examples of the benzophenone derivative include 4- (4-methylphenylthio) phenyl ketone [Kayacure BMS (manufactured by Nippon Kayaku Co., Ltd.)] and the like.
 チオキサントン誘導体としては、例えば、2,4-ジエチルチオキサントン[カヤキュアDETX-S(日本化薬(株)製)]、2-クロロチオキサントン[カヤキュアCTX(日本化薬(株)製)]、イソプロピルチオキサントン[イサキュアITX(ランベルティ(株)製)]等があげられる。 Examples of the thioxanthone derivative include 2,4-diethylthioxanthone [Kayacure DETX-S (manufactured by Nippon Kayaku Co., Ltd.)], 2-chlorothioxanthone [Kayacure CTX (manufactured by Nippon Kayaku Co., Ltd.)], isopropylthioxanthone [ Isacure ITX (Lamberti Co., Ltd.)] and the like.
 キノン-アミン系光重合開始剤としては、例えば、キノン化合物またはベンジルケタール型光重合開始剤とアミン化合物またはアミノベンゾエート化合物の併用等があげられ、これらは重合開始機能を有する。キノン化合物としては、例えば、カンファーキノン、エチルアントラキノン[カヤキュア2-EAQ(日本化薬(株)製)]、ベンジル[BENZIL(黒金化成(株)製)、S-113(シンコー技研(株))]等があげられる。 Examples of the quinone-amine photopolymerization initiator include a combination of a quinone compound or a benzyl ketal photopolymerization initiator and an amine compound or an aminobenzoate compound, and these have a polymerization initiation function. Examples of the quinone compound include camphorquinone, ethyl anthraquinone [Kayacure 2-EAQ (manufactured by Nippon Kayaku Co., Ltd.)], benzyl [BENZIL (manufactured by Kurokin Kasei Co., Ltd.), S-113 (Shinko Giken Co., Ltd.). )] Etc.
 ベンジルケタール型光重合開始剤としては、例えば、ベンジルジメチルケタール[DMPA:イルガキュア651(チバ・スペシャルティ・ケミカルズ(株)製)、イサキュア KB1(ランベルティ(株)製)]、ベンゾイン[セイクオールZ(精工化学(株)製)]、ベンゾインエチルエーテル[セイクオールBEE(精工化学(株)製)]等があげられる。 Examples of the benzyl ketal type photopolymerization initiator include benzyl dimethyl ketal [DMPA: Irgacure 651 (manufactured by Ciba Specialty Chemicals Co., Ltd.), Isacur KB1 (manufactured by Lamberti Co., Ltd.)], and benzoin [Seiko All Z (Seiko Co., Ltd.). Chemical Co., Ltd.)], benzoin ethyl ether [Sequol BEE (Seiko Chemical Co., Ltd.)] and the like.
 アミン化合物としては、例えば、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(ミヒラーケトン)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン[S-112、シンコー技研(株)製、ハイキュアABP(川口薬品(株)製)]、10-ブチル-2-クロロアクリドン(NBCA(黒金化成(株)製))等があげられる。 Examples of the amine compound include 4,4′-bis (dimethylamino) benzophenone (Michler ketone), 4,4′-bis (diethylamino) benzophenone [S-112, manufactured by Shinko Giken Co., Ltd., High Cure ABP (Kawaguchi Pharmaceutical ( And 10-butyl-2-chloroacridone (NBCA (manufactured by Kurokin Kasei Co., Ltd.)).
 アミノベンゾエート化合物としては、例えば、エチル 4-ジメチルアミノベンゾエート[ダロキュアEBD(チバ・スペシャルティ・ケミカルズ(株)製)、カヤキュアEPA(日本化薬(株)製)]、2-エチルヘキシル=4-ジメチルアミノベンゾエート[ダロキュアEHA(チバ・スペシャルティ・ケミカルズ(株)製)]、イソアミル=4-ジメチルアミノベンゾエート[カヤキュアDMBI(チバ・スペシャルティ・ケミカルズ(株)製)]等があげられる。 Examples of aminobenzoate compounds include ethyl 4-dimethylaminobenzoate [Darocur EBD (manufactured by Ciba Specialty Chemicals), Kayacure EPA (manufactured by Nippon Kayaku)], 2-ethylhexyl = 4-dimethylamino Benzoate [Darocur EHA (manufactured by Ciba Specialty Chemicals)], isoamyl = 4-dimethylaminobenzoate [Kayacure DMBI (manufactured by Ciba Specialty Chemicals)], and the like.
 オキシムエステル型光重合開始剤としては、例えば、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン 2-(O-ベンゾイルオキシム)[イルガキュアOXE01(チバ・スペシャルティ・ケミカルズ(株)製)]、1-[9-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-[9-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン 1-(O-アセチルオキシム)[CGI242(チバ・スペシャルティ・ケミカルズ(株)製)]等があげられる。 Examples of the oxime ester type photopolymerization initiator include 1- [4- (phenylthio) phenyl] -1,2-octanedione 2- (O-benzoyloxime) [Irgacure OXE01 (manufactured by Ciba Specialty Chemicals Co., Ltd.) )], 1- [9- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- [9- (2-methylbenzoyl) -9H-carbazol-3-yl] -ethanone 1- (O -Acetyloxime) [CGI242 (Ciba Specialty Chemicals Co., Ltd.)] and the like.
 カチオン型光重合開始剤としては、例えば、芳香族スルホニウム塩[シラキュアUVI-697、UVI-6992(ダウケミカル(株)製)、SP-150、SP-152、SP-170、SP-172((株)ADEKA製)並びにDTS-102、DTS-103、DTS-105、NDS-103、NDS-105、NDS-155、MNPS-109(みどり化学(株)製)]、ヨードニウム塩[例えば、UV9380(GE東芝シリコーン(株)製)、イルガキュア250(チバ・スペシャルティ・ケミカルズ(株)製)並びにBBI-102、BBI-103(みどり化学(株)製)]等があげられる。また、カチオン光重合開始剤は、使用の際にエポキシ樹脂、オキセタン樹脂、ビニルエーテル化合物、ノボラック樹脂、フェノール樹脂、(メタ)アクリル酸樹脂等を混合させることが好ましい。 Examples of the cationic photopolymerization initiator include aromatic sulfonium salts [Syracure UVI-697, UVI-6922 (manufactured by Dow Chemical Co., Ltd.), SP-150, SP-152, SP-170, SP-172 (( ADEKA) and DTS-102, DTS-103, DTS-105, NDS-103, NDS-105, NDS-155, MNPS-109 (manufactured by Midori Chemical Co., Ltd.)], iodonium salts [for example, UV9380 ( GE Toshiba Silicone Co., Ltd.), Irgacure 250 (Ciba Specialty Chemicals Co., Ltd.), BBI-102, BBI-103 (Midori Chemical Co., Ltd.)] and the like. The cationic photopolymerization initiator is preferably mixed with an epoxy resin, an oxetane resin, a vinyl ether compound, a novolac resin, a phenol resin, a (meth) acrylic acid resin, or the like when used.
 酸発生剤としては、例えば、2-[2-(フラン-2-イル)ビニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン[TFE-トリアジン(三和ケミカル(株)製)]、2-[2-(5-メチルフラン-2-イル)ビニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン[TME-トリアジン(三和ケミカル(株)製)]、2-[2-(3,4-ジメトキシフェニル)エテニル)ビニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン[TAZ-113(みどり化学(株)製)、ジメトキシトリアジン(三和ケミカル(株)製)]、(5-オクタンスルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル[CGI1325(チバ・スペシャルティ・ケミカルズ(株)製)]、[2-(プロパンルスルフォニルオキシイミノ)-2,3-ジヒドロチオフェン-3-イリデン)-(O-トリル)アセトニトリル[CGI103(チバ・スペシャルティ・ケミカルズ(株)製)]、[2-(オクタンスルフォニルオキシイミノ)-2,3-ジヒドロチオフェン-3-イリデン)-(O-トリル)アセトニトリル[CGI108(チバ・スペシャルティ・ケミカルズ(株)製)]、[2-(4-トルエンスルフォニルオキシイミノ)-2,3-ジヒドロチオフェン-3-イリデン)-(O-トリル)アセトニトリル[CGI121(チバ・スペシャルティ・ケミカルズ(株)製)]等があげられる。光増感剤と組み合せて使用できる。また、酸発生剤は、使用の際に、エポキシ樹脂、オキセタン樹脂、ビニルエーテル化合物、ノボラック樹脂、フェノール樹脂、(メタ)アクリル酸樹脂等を混合させることが好ましい。 Examples of the acid generator include 2- [2- (furan-2-yl) vinyl] -4,6-bis (trichloromethyl) -1,3,5-triazine [TFE-triazine (Sanwa Chemical Co., Ltd.). ))], 2- [2- (5-methylfuran-2-yl) vinyl] -4,6-bis (trichloromethyl) -1,3,5-triazine [TME-triazine (Sanwa Chemical Co., Ltd.) ))], 2- [2- (3,4-dimethoxyphenyl) ethenyl) vinyl] -4,6-bis (trichloromethyl) -1,3,5-triazine [TAZ-113 (Midori Chemical Co., Ltd.) Dimethoxytriazine (manufactured by Sanwa Chemical Co., Ltd.)], (5-octanesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile [CGI1325 (Ciba Specialte) Chemicals Co., Ltd.)], [2- (Propanolsulfonyloxyimino) -2,3-dihydrothiophene-3-ylidene)-(O-tolyl) acetonitrile [CGI103 (Ciba Specialty Chemicals Co., Ltd.) )], [2- (octanesulfonyloxyimino) -2,3-dihydrothiophene-3-ylidene)-(O-tolyl) acetonitrile [CGI108 (manufactured by Ciba Specialty Chemicals)], [2- (4-toluenesulfonyloxyimino) -2,3-dihydrothiophene-3-ylidene)-(O-tolyl) acetonitrile [CGI121 (manufactured by Ciba Specialty Chemicals)] and the like. Can be used in combination with a photosensitizer. Moreover, it is preferable that an acid generator mixes an epoxy resin, an oxetane resin, a vinyl ether compound, a novolac resin, a phenol resin, a (meth) acrylic acid resin, etc. in use.
 (近)赤外線領域(600~1,000nm)に感光性を有する光重合開始剤も単独で、または他の重合開始剤と組合せて使用することできる。例えば、有機ホウ素化合物と近赤外線吸収感光色素とを組合せて光重合開始剤として使用できる。具体例としては、例えば、テトラブチルアンモニウム ブチルトリフェニルボレート[P3B(昭和電工(株)製)]、テトラブチルアンモニウム ブチルトリ(4-tert-ブチルフェニル)ボレート[BP3B(昭和電工(株)製)]およびテトラブチルアンモニウム=ブチルトリ(4-ナフチル)ボレート[N3B(昭和電工(株)製)]と近赤外線吸収色素[IR-TおよびIR-13F(昭和電工(株)製)]との組合せ等があげられる。 A photopolymerization initiator having photosensitivity in the (near) infrared region (600 to 1,000 nm) can be used alone or in combination with other polymerization initiators. For example, a combination of an organic boron compound and a near-infrared absorbing photosensitive dye can be used as a photopolymerization initiator. Specific examples include, for example, tetrabutylammonium butyltriphenylborate [P3B (manufactured by Showa Denko KK)], tetrabutylammonium butyltri (4-tert-butylphenyl) borate [BP3B (manufactured by Showa Denko KK)] And combinations of tetrabutylammonium = butyltri (4-naphthyl) borate [N3B (manufactured by Showa Denko KK)] and near-infrared absorbing dyes [IR-T and IR-13F (manufactured by Showa Denko KK)] can give.
 光増感剤としては、例えば、アントラセン、フェノチアゼン、ペリレン、クマリン誘導体、チアゾール誘導体、チオキサントン誘導体、CT錯体(ピリジニウム塩と芳香族化合物の錯体)等があげられる。 Examples of the photosensitizer include anthracene, phenothiazene, perylene, coumarin derivatives, thiazole derivatives, thioxanthone derivatives, CT complexes (complexes of pyridinium salts and aromatic compounds), and the like.
 光重合促進剤としては、例えば、芳香族アミン化合物、アミノベンゾエート化合物、チオキサントン誘導体等があげられる。具体的には、例えば、p-ジメチルアミノ安息香酸イソアミル[KAYACURE DMBI(日本化薬(株)製)]、p-ジメチルアミノ安息香酸エチル[KAYACURE EPA(日本化薬(株)製)]等があげられる。 Examples of the photopolymerization accelerator include aromatic amine compounds, aminobenzoate compounds, thioxanthone derivatives, and the like. Specifically, for example, isoamyl p-dimethylaminobenzoate [KAYACURE DMBI (made by Nippon Kayaku Co., Ltd.)], ethyl p-dimethylaminobenzoate [KAYACURE EPA (made by Nippon Kayaku Co., Ltd.)], etc. can give.
 本発明における硬化性樹脂組成物は、前記の重合性化合物と可視光重合開始剤を含有することが好ましい。このことで、特に、可視光波長域(400~800nm)の光により深部まで硬化することができ、充填剤等のような透明性を下げる物質を含有する場合にも光硬化することができる利点がある。また、硬化性樹脂組成物の内部まで可視光が透過するため、硬化性が均一で、モールドに忠実な矩形性を与えることができる。 The curable resin composition in the present invention preferably contains the polymerizable compound and a visible light polymerization initiator. In this way, in particular, it can be cured to a deep portion by light in the visible light wavelength range (400 to 800 nm), and can be photocured even when it contains a substance that lowers transparency such as a filler. There is. Moreover, since visible light permeate | transmits the inside of a curable resin composition, sclerosis | hardenability is uniform and can give rectangularity faithful to a mold.
 本発明のパターン形成方法の好ましい形態としては、プラスチックモールドを使用することがあげられる。それによって、可視光硬化性樹脂組成物の深部まで光硬化させることができ、厚膜や高柱状物(高アスペクト比のパターン)のパターン形成が可能となる。パターンが柱状物の場合、得られるパターンの幅は10nm~100mmであり、深さは10nm~5mmであることが好ましい。 A preferred form of the pattern forming method of the present invention is to use a plastic mold. Thereby, it can be photocured to the deep part of the visible light curable resin composition, and pattern formation of a thick film or a high columnar object (pattern with a high aspect ratio) becomes possible. When the pattern is a columnar object, the width of the obtained pattern is preferably 10 nm to 100 mm, and the depth is preferably 10 nm to 5 mm.
 (3)溶剤
 本発明における硬化性樹脂組成物は溶剤を含有してもよい。該硬化性樹脂組成物が溶剤を含有するときの該硬化性樹脂組成物における溶剤の含有量は、0.1~90質量%であるのが好ましく、1~30質量%であるのがより好ましい。溶剤としては、例えば、揮発性の溶剤等があげられる。
(3) Solvent The curable resin composition in the present invention may contain a solvent. When the curable resin composition contains a solvent, the content of the solvent in the curable resin composition is preferably 0.1 to 90% by mass, and more preferably 1 to 30% by mass. . Examples of the solvent include volatile solvents.
 揮発性の溶剤としては、例えば、ケトン系溶剤(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等)、芳香族系溶剤(例えば、トルエン、キシレン、クメン、アニソール等)、エステル系溶剤(例えば、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸イソアミル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等)、アルカン系溶剤(例えば、ヘキサン、ヘプタン、ペンタン、イソオクタン等)、エーテル系溶剤(例えば、テトラヒドロフラン、ジブチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ラクトン系溶剤(例えば、γ-ブチロラクトン等)、カーボネート系溶剤(例えば、エチレンカーボネート、プロピレンカーボネート等)、アルコール系溶剤(例えば、ブタノール、2-メチル-1-プロパノール、4-メチル-2-ペンタノール、4-ヒドロキシ-4-メチル-2-ペンタノン、ヘキサノール、ヘプタノール、オクタノール、3,5,5-トリメチルヘキサノール等)、アミン系溶剤(例えば、トリエチルアミン、ピリジン、トリエタノールアミン、N-メチルピロリドン、N-メチルカプロラクタム等)等があげられる。シード膜が成膜された基板上に硬化性樹脂組成物を塗布後、硬化性樹脂組成物に含有される溶剤を加熱処理により除去してもよい。 Examples of the volatile solvent include ketone solvents (for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), aromatic solvents (for example, toluene, xylene, cumene, anisole, etc.), ester solvents (for example, ethyl acetate). Butyl acetate, isobutyl acetate, isoamyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, etc.), alkane solvents (eg hexane, heptane, pentane, isooctane etc.), ether solvents (eg tetrahydrofuran, dioctyl Butyl ether, propylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), lactone solvents (for example, γ-butyrolactone, etc.), -Bonate solvents (eg, ethylene carbonate, propylene carbonate, etc.), alcohol solvents (eg, butanol, 2-methyl-1-propanol, 4-methyl-2-pentanol, 4-hydroxy-4-methyl-2-pentanone) Hexanol, heptanol, octanol, 3,5,5-trimethylhexanol, etc.), amine solvents (for example, triethylamine, pyridine, triethanolamine, N-methylpyrrolidone, N-methylcaprolactam, etc.). After applying the curable resin composition on the substrate on which the seed film is formed, the solvent contained in the curable resin composition may be removed by heat treatment.
(4)その他の添加剤
 本発明における硬化性樹脂組成物は、公知の添加剤を用途に応じて適宜選択して含有することができる。硬化性樹脂組成物における添加剤の含有量は、0.01~5質量%の範囲内とすることが好ましい。添加剤としては、例えば、樹脂の安定性向上または重合の抑制・調整の目的で重合禁止剤を添加することができ、具体的には、ヒドロキノン、2,6-ジ-tert-ブチル-p-クレゾール、p-メトキシフェノール、立体障害フェノール等の重合禁止剤があげられる。
(4) Other Additives The curable resin composition in the present invention can contain a known additive as appropriate depending on the application. The content of the additive in the curable resin composition is preferably in the range of 0.01 to 5% by mass. As the additive, for example, a polymerization inhibitor can be added for the purpose of improving the stability of the resin or suppressing / adjusting the polymerization. Specifically, hydroquinone, 2,6-di-tert-butyl-p- Examples thereof include polymerization inhibitors such as cresol, p-methoxyphenol, and sterically hindered phenol.
 また、本発明における硬化性樹脂組成物は、暗室下での保存寿命を長くするために、銅化合物、リン化合物、第四アンモニウム化合物、ヒドロキシルアミン誘導体等を含有することができる。他に、硬化中の酸素による障害を低減するために、重合の開始に際して表面へ移動するパラフィンまたは同様なワックス類似物質等を含有することができる。 In addition, the curable resin composition in the present invention can contain a copper compound, a phosphorus compound, a quaternary ammonium compound, a hydroxylamine derivative and the like in order to increase the shelf life in a dark room. In addition, paraffin or similar wax-like substances that move to the surface at the start of polymerization can be included to reduce the damage caused by oxygen during curing.
 本発明における硬化性樹脂組成物は光安定剤を含有することもできる。光安定剤としては、例えば、UV吸収剤、UV吸収ポリマー、光劣化防止ポリマー等があげられ、具体例としては、例えば、ベンゾトリアゾール、ベンゾフェノン、ヒドロキシフェニル-s-トリアジン、オキサルアニリド化合物等があげられる。 The curable resin composition in the present invention can also contain a light stabilizer. Examples of the light stabilizer include UV absorbers, UV absorption polymers, and photodegradation prevention polymers. Specific examples include benzotriazole, benzophenone, hydroxyphenyl-s-triazine, oxalanilide compounds, and the like. can give.
 光安定剤としては、市販されているものを適宜使用することができ、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール[TINUVIN P(チバ・スペシャルティ・ケミカル(株)製)]、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)-2H-ベンゾトリアゾール[TINUVIN328(チバ・スペシャルティ・ケミカル(株)製)]、イソオクチル=3-(3-2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニルプロピオネート[TINUVIN384(チバ・スペシャルティ・ケミカル(株)製)]、2-[4-(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン[TINUVIN400(チバ・スペシャルティ・ケミカル(株)製)]、2-[ヒドロキシ-3,5-ジ(1,1-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール[TINUVIN900(チバ・スペシャルティ・ケミカル(株)製)]、2-[2-ヒドロキシ-3-ジメチルベンジル-5-(1,1,3,3-テトラメチルブチル)フェニル]-2H-ベンゾトリアゾール[TINUVIN928(チバ・スペシャルティ・ケミカル(株)製)]、立体障害アミン光安定剤を含有するアクリル酸エステル共重合ポリマー[ニューコートUVA、バナレジン(新中村化学(株)製)]等があげられる。 As the light stabilizer, commercially available products can be used as appropriate, for example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole [TINUVIN P (manufactured by Ciba Specialty Chemicals)] 2- (2-hydroxy-3,5-di-tert-amylphenyl) -2H-benzotriazole [TINUVIN 328 (manufactured by Ciba Specialty Chemicals)], isooctyl = 3- (3-2H-benzotriazole -2-yl) -5-tert-butyl-4-hydroxyphenylpropionate [TINUVIN 384 (manufactured by Ciba Specialty Chemicals)], 2- [4- (2-hydroxy-3-dodecyloxypropyl) oxy } -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1, , 5-triazine [TINUVIN400 (manufactured by Ciba Specialty Chemicals)], 2- [hydroxy-3,5-di (1,1-dimethylbenzyl) phenyl] -2H-benzotriazole [TINUVIN900 (Ciba Specialty) Chemical Co., Ltd.)], 2- [2-hydroxy-3-dimethylbenzyl-5- (1,1,3,3-tetramethylbutyl) phenyl] -2H-benzotriazole [TINUVIN 928 (Ciba Specialty) Chemical Co., Ltd.)], acrylic ester copolymer containing a sterically hindered amine light stabilizer [New Coat UVA, Vana Resin (Shin Nakamura Chemical Co., Ltd.)] and the like.
 本発明における硬化性樹脂組成物は、目的に応じて、蛍光増白剤、充填剤、顔料、染料、湿潤剤、分散剤、酸化防止剤、滑剤、腐食防止剤、防藻剤、防汚剤、帯電防止剤、流れ調整剤等を適宜含有することができる。 The curable resin composition according to the present invention includes a fluorescent brightening agent, a filler, a pigment, a dye, a wetting agent, a dispersant, an antioxidant, a lubricant, a corrosion inhibitor, an antialgae, and an antifouling agent, depending on the purpose. , An antistatic agent, a flow control agent, and the like can be appropriately contained.
 本発明における硬化性樹脂組成物は、剥離性や離型性を向上させるために、モールド剥離剤または離型剤を含有してもよく、基板上に塗布した硬化性樹脂組成物の表面に前記モールド剥離剤または前記離型剤を塗布または分散させてもよい。モールド剥離剤としては、例えば、フッ素系表面処理剤[例えば、オプツールDSX、デュラサーフ HD-1100、HD-2100(ダイキン工業(株)製)、NovecEGC-1720(住友スリーエム(株)製)]、金型剥離剤[バリアセラム ガンマーR(バナテック(株)製)]等があげられる。離型剤としては、例えば、フッ素系アクリル化合物[V-3F、V-4F、V-8F(大阪有機化学(株)製)]、フッ素系離型剤[フリリース(ネオス(株)製)等]、シリコン樹脂、シリコン油、シリコンワックス、テフロン(登録商標)分散剤、ポリビニルアルコール、水溶性エマルジョン離型剤等があげられる。 The curable resin composition in the present invention may contain a mold release agent or a release agent in order to improve the peelability and releasability, and the surface of the curable resin composition applied on the substrate is the above-mentioned. A mold release agent or the release agent may be applied or dispersed. Examples of the mold release agent include fluorine-based surface treatment agents [for example, OPTOOL DSX, Durasurf HD-1100, HD-2100 (manufactured by Daikin Industries, Ltd.), Novec EGC-1720 (manufactured by Sumitomo 3M Limited)], Mold release agent [Barrier Serum Gamma R (manufactured by Vanatech Co., Ltd.)] and the like. Examples of the release agent include fluorine-based acrylic compounds [V-3F, V-4F, V-8F (manufactured by Osaka Organic Chemical Co., Ltd.)], fluorine-based mold release agents [Flease (manufactured by Neos Corporation)]. Etc.], silicone resin, silicone oil, silicone wax, Teflon (registered trademark) dispersant, polyvinyl alcohol, water-soluble emulsion release agent and the like.
 一方、本発明における硬化性樹脂組成物とシード膜との接着性や付着性を向上させるために、例えば、シランカップリング剤、水酸基含有(メタ)アクリレート、キレート剤、金属トラップ剤、エポキシ化合物、硫黄含有化合物等の処理剤を硬化性樹脂組成物に含有させてもよく、前記処理剤をシード膜表面に塗布または分散してもよい。 On the other hand, in order to improve the adhesion and adhesion between the curable resin composition and the seed film in the present invention, for example, a silane coupling agent, a hydroxyl group-containing (meth) acrylate, a chelating agent, a metal trapping agent, an epoxy compound, A treatment agent such as a sulfur-containing compound may be contained in the curable resin composition, and the treatment agent may be applied or dispersed on the surface of the seed film.
 シランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン[KBM-403(信越化学工業(株)製)]、γ-グリシドキシプロピルメチルジエトキシシラン[KBM-402(信越化学工業(株)製)]、γ-グリシドキシプロピルトリエトキシシラン[KBE-402(信越化学工業(株)製)]、ビニルトリメトキシシラン[KBM-1003(信越化学工業(株)製)]、ビニルトリエトキシシラン[KBE-1003(信越化学工業(株)製)]、p-スチリルトリメトキシシラン[KBM-1403(信越化学工業(株)製)]、γ-メタクリロキシプロピルトリメトキシシラン[KBM-503(信越化学工業(株)製)]、γ-メタクリロキシプロピルメチルジメトキシシラン[KBM-502(信越化学工業(株)製)]、γ-メタクリロキシプロピルトリエトキシシラン[KBE-503(信越化学工業(株)製)]、γ-メタクリロキシプロピルメチルジエトキシシラン[KBE-503(信越化学工業(株)製)]、γ-アクリロキシプロピルトリメトキシシラン[KBM-5103(信越化学工業(株)製)]、γ-アミノプロピルトリメトキシシラン[KBM-903(信越化学工業(株)製)]、γ-アミノプロピルトリエトキシシラン[KBE-903(信越化学工業(株)製)]、γ-メルカプトプロピルトリメトキシシラン[KBM-803(信越化学工業(株)製)]、γ-メルカプトプロピルメチルジメトキシシラン[KBM-802(信越化学工業(株)製)]等があげられる。 Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane [KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.)], γ-glycidoxypropylmethyldiethoxysilane [KBM-402 (Shin-Etsu Chemical). Industrial Co., Ltd.)], γ-glycidoxypropyltriethoxysilane [KBE-402 (Shin-Etsu Chemical Co., Ltd.)], vinyltrimethoxysilane [KBM-1003 (Shin-Etsu Chemical Co., Ltd.)] Vinyltriethoxysilane [KBE-1003 (manufactured by Shin-Etsu Chemical Co., Ltd.)], p-styryltrimethoxysilane [KBM-1403 (manufactured by Shin-Etsu Chemical Co., Ltd.)], γ-methacryloxypropyltrimethoxysilane [ KBM-503 (manufactured by Shin-Etsu Chemical Co., Ltd.)], γ-methacryloxypropylmethyldimethoxysilane [KBM-502 (Shin-Etsu Chemical Co., Ltd.)], γ-methacryloxypropyltriethoxysilane [KBE-503 (Shin-Etsu Chemical Co., Ltd.)], γ-methacryloxypropylmethyldiethoxysilane [KBE-503 (Shin-Etsu Chemical) Industrial Co., Ltd.)], γ-acryloxypropyltrimethoxysilane [KBM-5103 (Shin-Etsu Chemical Co., Ltd.)], γ-aminopropyltrimethoxysilane [KBM-903 (Shin-Etsu Chemical Co., Ltd.) )], Γ-aminopropyltriethoxysilane [KBE-903 (manufactured by Shin-Etsu Chemical Co., Ltd.)], γ-mercaptopropyltrimethoxysilane [KBM-803 (manufactured by Shin-Etsu Chemical Co., Ltd.)], γ-mercapto And propylmethyldimethoxysilane [KBM-802 (manufactured by Shin-Etsu Chemical Co., Ltd.)].
 また、本発明における硬化性樹脂組成物を硬化させる際の収縮を緩和するため、エポキシ化合物、オキセタン化合物、テトラヒドロピラン誘導体等の開環重合可能なモノマーと、前記開環重合可能なモノマーの重合を開始できるカチオン型光重合開始剤または硬化剤(例えば、アミン類、カルボン酸、酸無水物、チオール系化合物等)とを硬化性樹脂組成物に含有させてもよい。また、硬化収縮の抑制の目的で、含有する化合物の水酸基にアセチル基等のアシル基を導入させてもよい。 In addition, in order to alleviate shrinkage when the curable resin composition in the present invention is cured, a ring-opening polymerizable monomer such as an epoxy compound, an oxetane compound, or a tetrahydropyran derivative is polymerized with the ring-opening polymerizable monomer. The curable resin composition may contain a cationic photopolymerization initiator or a curing agent (for example, amines, carboxylic acids, acid anhydrides, thiol compounds, etc.) that can be initiated. Further, for the purpose of suppressing curing shrinkage, an acyl group such as an acetyl group may be introduced into the hydroxyl group of the contained compound.
 さらに、硬化性樹脂組成物を硬化させる際の収縮を緩和するため、無色透明な充填剤、着色充填剤、光沢のある充填剤等を含有させてもよい。無色透明な充填剤としては、例えば、シリカゲル、機能性シリカゲル(官能基修飾シリカゲル)、ガラス(ガラスビーズ、ガラス片等)、酸化チタン、プラスチック粒(例えば、ポリスチレン粒、ポリアクリル粒、ポリカーボネート粒、PET粒等)、歯科用充填レジン、水、水溶液、糖類、有機溶剤、無機固体、イオン性液体等があげられる。 Furthermore, in order to relieve shrinkage when the curable resin composition is cured, a colorless transparent filler, a colored filler, a glossy filler, and the like may be included. Examples of the colorless and transparent filler include silica gel, functional silica gel (functional group-modified silica gel), glass (glass beads, glass pieces, etc.), titanium oxide, plastic particles (for example, polystyrene particles, polyacryl particles, polycarbonate particles, PET particles, etc.), dental filling resins, water, aqueous solutions, sugars, organic solvents, inorganic solids, ionic liquids and the like.
 着色充填剤としては、例えば、顔料、染料、不透明なプラスチック粒、紙類、陶器、ラテックス、エマルジョン、カーボンブラック(炭)、小石、砂、土、コンクリート、アスファルト、鉱物、肥料、花弁、種子、花粉、石鹸、タンパク質、磁気粉体、砂鉄、脂肪、毛髪、皮膚、煙等があげられる。光沢のある充填剤としては、例えば、金属粒および金属片(例えば、金、銀、銅、鉄、鉛、錫、アルミニウム、クロム、ニッケル、亜鉛、水銀、砒素、ナトリウム、カリウム等)、合金類(例えば、ブリキ、青銅、真鍮、アルマイト、アマルガム等)、酸化金属(例えば、錆、緑青等)、シリコンウエハー片、鏡片等があげられる。 Examples of coloring fillers include pigments, dyes, opaque plastic particles, papers, ceramics, latex, emulsion, carbon black (charcoal), pebbles, sand, soil, concrete, asphalt, minerals, fertilizers, petals, seeds, Examples include pollen, soap, protein, magnetic powder, iron sand, fat, hair, skin, and smoke. Examples of glossy fillers include metal grains and metal pieces (eg, gold, silver, copper, iron, lead, tin, aluminum, chromium, nickel, zinc, mercury, arsenic, sodium, potassium, etc.), alloys (For example, tin, bronze, brass, anodized, amalgam, etc.), metal oxides (for example, rust, patina, etc.), silicon wafer pieces, mirror pieces and the like.
 その他には、例えば、分散助剤、充填剤(例えばタルク、石膏、シリカ、ルチル、カーボンブラック、酸化亜鉛、酸化鉄)、増量剤、艶消し剤、消泡剤、蛍光剤、リン光剤、夜光剤、導電剤、金属粒(例えば、金粒、銀粒、銅粒等)、色素材、抗菌剤(例えば、酸化チタン、抗菌性有機化合物等)、光触媒、反応触媒、固体酸、イオン交換樹脂、塗料、水系塗料、粉体塗料または表面塗装技術で慣用されている他の助剤、該他の助剤のナノ粒子等があげられる。  Others include, for example, dispersion aids, fillers (eg talc, gypsum, silica, rutile, carbon black, zinc oxide, iron oxide), bulking agents, matting agents, antifoaming agents, fluorescent agents, phosphorescent agents, Luminous agent, conductive agent, metal particles (for example, gold particles, silver particles, copper particles), color materials, antibacterial agents (for example, titanium oxide, antibacterial organic compounds, etc.), photocatalysts, reaction catalysts, solid acids, ion exchange Examples thereof include resins, paints, water-based paints, powder paints, other auxiliaries commonly used in surface coating technology, nanoparticles of the other auxiliaries, and the like. *
 本発明における硬化性樹脂組成物に、光触媒として機能する充填剤(例えば、酸化チタン、銀等)を含有してもよい。当該充填剤を含有することにより、抗菌性、除菌性、防汚性、消臭性、脱臭性、浄化性等に優れた硬化性樹脂組成物が得られる。 The curable resin composition according to the present invention may contain a filler that functions as a photocatalyst (for example, titanium oxide, silver, etc.). By containing the filler, a curable resin composition excellent in antibacterial properties, sterilization properties, antifouling properties, deodorizing properties, deodorizing properties, purifying properties and the like can be obtained.
(光源)
 本発明における硬化性樹脂組成物の硬化に使用する光としては、例えば、紫外光、可視光、近赤外線光等があげられる。このような光を照射できる光源としては、例えば、白熱灯、蛍光灯、太陽光、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、金属ハロゲンランプ、レーザー、発光ダイオード(LED)等があげられる。
(light source)
Examples of the light used for curing the curable resin composition in the present invention include ultraviolet light, visible light, near infrared light, and the like. Examples of light sources that can emit such light include incandescent lamps, fluorescent lamps, sunlight, low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halogen lamps, lasers, and light-emitting diodes (LEDs). ) Etc.
 レーザーおよびLEDの具体例としては、例えば、360~600nmの範囲内のある領域の光を照射することのできる、軽量かつ小型の半導体レーザー、LED等があげられ、中でも、人体に対する毒性や遮光装置が不要である等の理由から、半導体バイオレットレーザー、半導体ブルーバイオレットレーザー、半導体ブルーレーザー、青色LEDが好ましい。また、赤外線および近赤外線レーザーも使用することができる。可視光線または赤外線の使用は人体に有害な紫外光を用いる方法と比較して、安全性が高く、人が曝光を防止するための遮蔽装置も不要になる利点がある。 Specific examples of lasers and LEDs include light and small semiconductor lasers and LEDs that can irradiate light in a certain region within a range of 360 to 600 nm. For example, a semiconductor violet laser, a semiconductor blue violet laser, a semiconductor blue laser, and a blue LED are preferable. Infrared and near infrared lasers can also be used. The use of visible light or infrared light has advantages in that it is safer than a method using ultraviolet light harmful to the human body, and a shielding device for preventing human exposure is unnecessary.
 光源には市販されているものを適宜使用することができ、例えば、半導体レーザー[バイオレット(400-415nm):NDHV220APAE1、ブルーバイオレット(440-450nm):NDHB510APAE1、ブルー(468-478nm):NDHA500APAE1(日亜化学工業(株)製)]、青色LED[(460-490nm):NSPB300A、NSPB310A、NSPB320BS、NSPB500S、NSPB510S、NSPB513、NSPB518S、NSPB520S、NSPBF50S(日亜化学工業(株)製)]、青緑色LED[(470-530nm):NSPE800S(日亜化学工業(株)製)]等があげられる。 A commercially available light source can be appropriately used. For example, a semiconductor laser [violet (400-415 nm): NDHV220APAE1, blue violet (440-450 nm): NDHVB510APAE1, blue (468-478 nm): NDHA500APAE1 (day Manufactured by Asia Chemical Industry Co., Ltd.)], blue LED [(460-490 nm): NSPB300A, NSPB310A, NSPB320BS, NSPB500S, NSPB510S, NSPB513, NSPB518S, NSPB520S, NSPBF50S (manufactured by Nichia Corporation)], blue green LED [(470-530 nm): NSPE800S (manufactured by Nichia Corporation)] and the like.
 光源から照射光をパターン転写部に集光して当て、転写前の未硬化の樹脂に照射されないように、光源の周囲に反射板または遮蔽板を設けることが好ましい。また、転写前の樹脂に照射光および室内光が当らないように、遮蔽板または遮蔽装置を設けることが好ましい。 It is preferable to provide a reflecting plate or a shielding plate around the light source so that the irradiation light from the light source is condensed and applied to the pattern transfer portion and is not irradiated onto the uncured resin before transfer. Further, it is preferable to provide a shielding plate or a shielding device so that irradiation light and room light do not strike the resin before transfer.
(基板)
 本発明における硬化性樹脂組成物を塗布する基板は、電鋳処理ができる材料を使用するか、または、電鋳処理ができるように基板上にシード膜を設けることが好ましい。電鋳処理ができる材料またはシード膜の金属としては、例えば、ニッケル、スズ、亜鉛、金、銀、銅等があげられる。これらの中でも、ニッケルおよび銅が好ましい。基板上にシード膜を設ける方法としては、例えば、スパッタリング等があげられる。
(substrate)
For the substrate to which the curable resin composition is applied in the present invention, it is preferable to use a material that can be electroformed or to provide a seed film on the substrate so that the electroforming can be performed. Examples of the material that can be electroformed or the metal of the seed film include nickel, tin, zinc, gold, silver, and copper. Among these, nickel and copper are preferable. Examples of the method for providing the seed film on the substrate include sputtering.
 シード膜を設ける場合には、基板の材料としては、例えば、ガラス、シリコン、酸化膜塗布ガラス(ITO:インジウムチタニウムオキサイド塗布ガラス等)、金属類(アルミニウム、金、銀、銅、鉄、真ニッケル、スズ、亜鉛、鍮板、ブリキ板等)、プラスチック(ポリカーボネート、アクリル、PET(ポリエチレンテレフタレート)、ABS(アクリロニトリル並びにブタジエンおよびスチレンのコポリマー)樹脂板等)、フィルム(ポリイミド、塩化ビニル、ポリスチレン、サラン樹脂フィルム等)、磁器(陶器、セラミック、瓦等)等が使用できる。 When the seed film is provided, examples of the substrate material include glass, silicon, oxide film-coated glass (ITO: indium titanium oxide-coated glass, etc.), metals (aluminum, gold, silver, copper, iron, true nickel). , Tin, zinc, brass plate, tin plate, etc.), plastic (polycarbonate, acrylic, PET (polyethylene terephthalate), ABS (acrylonitrile and copolymer of butadiene and styrene) resin plate, etc.), film (polyimide, vinyl chloride, polystyrene, saran) Resin film etc.), porcelain (ceramics, ceramics, tiles, etc.) can be used.
(金属膜の形成)
 形成される金属膜の金属としては、銅、ニッケル、クロム、亜鉛、スズ、金、銀、白金族金属等があげられ、これらの中でも、銅、ニッケルおよび金が好ましく、銅およびニッケルがより好ましい。
(Formation of metal film)
Examples of the metal of the metal film to be formed include copper, nickel, chromium, zinc, tin, gold, silver, and platinum group metals. Among these, copper, nickel, and gold are preferable, and copper and nickel are more preferable. .
 金属膜を形成する方法として、例えば、電鋳処理(電気めっき)、置換めっき、無電解めっき等があげられる。電鋳処理は、めっき浴中に含まれる金属イオンを電気で還元して金属膜を形成する方法である。置換めっきは、めっき浴中に含まれる金属イオンよりイオン化傾向の大きい金属をめっき浴に挿入し、イオン化傾向の差によりめっき浴中に含まれる金属イオンを還元して金属膜を形成する方法である。無電解めっきは、めっき浴中の金属イオンを還元剤によって還元して金属膜を形成する方法である。これらの中でも、10μm以上の膜厚が形成できる等の理由より、電鋳処理が好ましい。 Examples of the method for forming the metal film include electroforming (electroplating), displacement plating, electroless plating, and the like. The electroforming process is a method of forming a metal film by reducing metal ions contained in a plating bath with electricity. Displacement plating is a method of forming a metal film by inserting a metal having a higher ionization tendency than the metal ions contained in the plating bath into the plating bath and reducing the metal ions contained in the plating bath due to the difference in ionization tendency. . Electroless plating is a method of forming a metal film by reducing metal ions in a plating bath with a reducing agent. Among these, electroforming treatment is preferable because a film thickness of 10 μm or more can be formed.
 電鋳処理でニッケルの金属膜を形成する場合に使用するめっき浴としては、例えば、硫酸ニッケル、塩化ニッケルおよびホウ素を主成分とするニッケルめっき浴(ワット浴)、スルファミン酸ニッケル、塩化ニッケルおよびホウ素を主成分とするスルファミン酸塩浴等があげられる。前記のいずれのめっき浴においても、pH2.5~5.0でおこなうことが好ましい。ワット浴は40~65℃でおこなうことが好ましく、スルファミン酸塩浴は25~65℃でおこなうことが好ましく、低応力のめっきは50~65℃でおこなうことが好ましい。ワット浴は2~4A/dmの電流密度でおこなうことが好ましく、スルファミン酸塩浴の場合では2~90A/dmの電流密度でおこなうことが好ましい。 Examples of plating baths used for forming a nickel metal film by electroforming include nickel plating baths (Watt baths) mainly composed of nickel sulfate, nickel chloride and boron, nickel sulfamate, nickel chloride and boron. And a sulfamate salt bath containing as a main component. In any of the above plating baths, it is preferably performed at a pH of 2.5 to 5.0. The Watt bath is preferably performed at 40 to 65 ° C, the sulfamate bath is preferably performed at 25 to 65 ° C, and the low stress plating is preferably performed at 50 to 65 ° C. Watts bath is preferably carried out at a current density of 2 ~ 4A / dm 2, in the case of sulfamate bath is preferably carried out at a current density of 2 ~ 90A / dm 2.
 電鋳処理で銅の金属膜を形成する場合に使用するめっき浴としては、例えば、硫酸銅および硫酸を主成分とする硫酸銅めっき浴、シアン化第一銅およびシアン化ソーダを主成分とするシアン化銅めっき浴、ピロリン酸銅およびピロリン酸カリウムを主成分とするピロリン酸銅めっき浴等があげられる。硫酸銅めっき浴は15~35℃でおこなうことが好ましく、シアン化銅めっき浴およびピロリン酸銅めっき浴は40~65℃でおこなうことが好ましい。シアン化銅めっき浴はpH11~13でおこなうことが好ましく、ピロリン酸銅めっき浴はpH8.0~9.0でおこなうことが好ましい。硫酸銅めっき浴は1~6A/dmの電流密度でおこなうことが好ましく、シアン化銅めっき浴は1~4A/dmの電流密度でおこなうことが好ましく、シアン化銅めっき浴は1~3A/dmの電流密度でおこなうことが好ましい。 Examples of the plating bath used when forming a copper metal film by electroforming include, for example, a copper sulfate plating bath mainly composed of copper sulfate and sulfuric acid, cuprous cyanide and sodium cyanide as the main components. Examples thereof include a copper cyanide plating bath, a copper pyrophosphate plating bath mainly composed of copper pyrophosphate and potassium pyrophosphate. The copper sulfate plating bath is preferably performed at 15 to 35 ° C., and the copper cyanide plating bath and the copper pyrophosphate copper plating bath are preferably performed at 40 to 65 ° C. The copper cyanide plating bath is preferably carried out at a pH of 11 to 13, and the copper pyrophosphate plating bath is preferably carried out at a pH of 8.0 to 9.0. The copper sulfate plating bath is preferably performed at a current density of 1 to 6 A / dm 2 , the copper cyanide plating bath is preferably performed at a current density of 1 to 4 A / dm 2 , and the copper cyanide plating bath is 1 to 3 A. It is preferable to carry out at a current density of / dm 2 .
 金属膜を形成する際の前処理としては、トリクロロエチレン等の溶剤洗浄や苛性ソーダや炭酸ソーダ組成等のアルカリ浸漬等により脱脂洗浄してもよく、金属膜を形成する領域にある絶縁膜、例えば酸化膜等を除去するために、硫酸、塩酸、フッ酸等で洗浄してもよい。 As a pretreatment when forming the metal film, it may be degreased and cleaned by solvent cleaning such as trichlorethylene or alkali immersion such as caustic soda or sodium carbonate composition, and an insulating film in the region where the metal film is formed, for example, an oxide film In order to remove, etc., it may be washed with sulfuric acid, hydrochloric acid, hydrofluoric acid or the like.
(硬化樹脂の除去)
 本発明のパターン形成方法における、残渣の硬化樹脂および金属膜形成後の硬化樹脂の除去は、物理的または化学的手法が使用でき、具体的には、アッシング処理(酸素プラズマアッシング)、溶剤(例えば、N-メチルピロリドン、γ-ブチロラクトン、プロピレングリコールメチルエーテル、プロピレングリコールメチルエーテルアセテート、シクロヘキサノン等)による溶解除去法、アルカリ現像法等が使用でき、これらの中でも、アッシング処理が好ましい。これらの処理を行った後、さらに、化学的手法、例えば、水洗、アルカリ水溶液[例えば、10~50%テトラメチルアンモニウム ハイドロキサイド(TMAH)水溶液、1~50%水酸化ナトリウム水溶液]、酸性水溶液、アルコール、水溶性化合物等での洗浄、または物理学的手法、例えば、ドライアイス洗浄、温風、冷風またはブラシによる洗浄等を施してもよい。
(Removal of cured resin)
In the pattern forming method of the present invention, the residual cured resin and the cured resin after forming the metal film can be removed by physical or chemical methods. Specifically, ashing (oxygen plasma ashing), solvent (for example, , N-methylpyrrolidone, γ-butyrolactone, propylene glycol methyl ether, propylene glycol methyl ether acetate, cyclohexanone, etc.), an alkali developing method, etc., among which ashing is preferred. After these treatments, chemical methods such as washing with water, alkaline aqueous solution [eg, 10-50% tetramethylammonium hydroxide (TMAH) aqueous solution, 1-50% sodium hydroxide aqueous solution], acidic aqueous solution are further provided. , Washing with alcohol, water-soluble compounds, etc., or physical methods such as dry ice washing, hot air, cold air or brush washing may be applied.
(パターン形成物および該パターン形成物を備える加工品)
 本発明のパターン形成方法により得られるパターン形成物は物理的または化学的手法により、フィルム、ファイバー(繊維)、3次元構造物等の加工品へ形態を変えて使用できる。
(Pattern formation and processed product including the pattern formation)
The pattern formed product obtained by the pattern forming method of the present invention can be used by changing its form into a processed product such as a film, a fiber (fiber), or a three-dimensional structure by a physical or chemical method.
 本発明のパターン形成方法により得られるパターン形成物または該パターン形成物を備える加工品は、例えば、半導体チップ材料、プリント電子回路材料、マイクロ部品材料、分子デバイス材料、マイクロマシーン材料、印刷版、印刷用マスクの製造用材料、モールド製造用材料、光記録材料、臓器複製用材料、ギブス材料、意匠設計用材料、デザイン設計用材料、小型機器のモデル作成用材料、シュミレーションモデル作成用材料、FPD(フラットパネルディスプレイ)材料、LCD(液晶ディスプレイ)材料、光回路材料、光通信用材料、光導波路、光ファイバー、太陽電池材料、光スイッチ、光回路材料、光造形材料、光感知器用材料、光学モルホロジー用材料、細胞培養材料(細胞培養シート)、植物培養培材料、LED(発光ダイオード)、有機EL材料、インクジェットプリンター材料、印刷版、バイオチップ、DNAチップ、マイクロ流路、診断薬キット、指紋認証装置、指紋複製装置、標本作製用材料、臓器標本作製用材料、自動車部品、船舶部品、航空機部品、宇宙材料等に使用することができる。 The pattern formed product obtained by the pattern forming method of the present invention or the processed product including the pattern formed product is, for example, a semiconductor chip material, a printed electronic circuit material, a micro component material, a molecular device material, a micro machine material, a printing plate, a printing Mask manufacturing material, mold manufacturing material, optical recording material, organ duplication material, Gibbs material, design design material, design design material, small device model creation material, simulation model creation material, FPD ( Flat panel display materials, LCD (liquid crystal display) materials, optical circuit materials, optical communication materials, optical waveguides, optical fibers, solar cell materials, optical switches, optical circuit materials, stereolithography materials, optical detector materials, optical morphologies Material, cell culture material (cell culture sheet), plant culture material, LED (light emission) Iodine), organic EL materials, inkjet printer materials, printing plates, biochips, DNA chips, microchannels, diagnostic kits, fingerprint authentication devices, fingerprint replication devices, specimen preparation materials, organ specimen preparation materials, automobile parts, It can be used for ship parts, aircraft parts, space materials, etc.
 また、本発明のパターン形成方法により得られるパターン形成物を使用して、基板に所望のパターンを形成することができる。当該所望のパターンを基板に形成したパターン形成物または該パターン形成物を備える加工品は、例えば、半導体チップ材料、反射防止膜、光導波路、偏光板、マイクロ流路、細胞培養シート、バイオチップ等に使用することができる。 Also, a desired pattern can be formed on the substrate using the pattern formed product obtained by the pattern forming method of the present invention. Examples of the pattern formed product in which the desired pattern is formed on the substrate or the processed product including the pattern formed product include a semiconductor chip material, an antireflection film, an optical waveguide, a polarizing plate, a microchannel, a cell culture sheet, and a biochip. Can be used for
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例等に制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
〈実施例1~10〉
(1)硬化性樹脂組成物の調製
 表1に示す組成で、各成分をイエロールーム内で混合した。それらの混合物をメンブレンフィルター(0.45μm、25N、ジーエルサイエンス社)でろ過して、樹脂組成物1~8を得た。
<Examples 1 to 10>
(1) Preparation of curable resin composition With the composition shown in Table 1, each component was mixed in a yellow room. The mixture was filtered through a membrane filter (0.45 μm, 25N, GL Sciences) to obtain resin compositions 1 to 8.
(可視光重合開始剤)
 可視光重合開始剤は、以下に示すものを使用した。PFO-Eは特開2005-225793号公報に記載の方法により製造した。
・BAPO:ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド:イルガキュア819[チバ・スペシャルティ・ケミカル(株)製]
・MAPO:2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド:Lucirin TPO[BASF(株)製]
・PFO-E:5-(4-ペンチロキシベンゾイル)-5H-ジベンゾホスホール 5-オキシド
・DETX:2,4-ジエチルチオキサントン:カヤキュア DETX-S[日本化薬(株)製]
・TITANO:ビス(5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム:イルガキュア784[チバ・スペシャルティ・ケミカル(株)製]
(Visible light polymerization initiator)
The visible light polymerization initiators shown below were used. PFO-E was produced by the method described in JP-A-2005-225793.
BAPO: Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide: Irgacure 819 [manufactured by Ciba Specialty Chemicals]
MAPO: 2,4,6-trimethylbenzoyldiphenylphosphine oxide: Lucirin TPO [manufactured by BASF Corp.]
PFO-E: 5- (4-pentyloxybenzoyl) -5H-dibenzophosphole 5-oxide DETX: 2,4-diethylthioxanthone: Kayacure DETX-S [manufactured by Nippon Kayaku Co., Ltd.]
TITANO: Bis (5-2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium: Irgacure 784 [Ciba Specialty Chemical Manufactured by]
(重合性化合物)
 重合性化合物として、以下に示す化合物を使用した。
・UA:ウレタンアクリレート:NKオリゴ UA-4200{樹脂組成物1~5で使用、重量平均分子量1,300[新中村化学(株)製]}:NKオリゴ UA-122P{樹脂組成物6で使用、重量平均分子量1,100[根上工業(株)製]}:アートレジン UN-904{樹脂組成物7で使用、重量平均分子量4,900[根上工業(株)製]}
・NVP:N-ビニルピロリドン[日本触媒(株)製]
・TMPTA:トリメチロールプロパントリアクリレート:NKエステルA-TMPT[新中村化学(株)製]
・A-DCP:トリシクロデカンジメタノールジアクリレート:NKエステル A-DCP{分子量304[新中村化学(株)製]}
(Polymerizable compound)
The following compounds were used as the polymerizable compound.
UA: urethane acrylate: NK oligo UA-4200 {used in resin compositions 1-5, weight average molecular weight 1,300 [manufactured by Shin-Nakamura Chemical Co., Ltd.]}: NK oligo UA-122P {used in resin composition 6 , Weight average molecular weight 1,100 [manufactured by Negami Kogyo Co., Ltd.]}: Art Resin UN-904 {used in resin composition 7, weight average molecular weight 4,900 [manufactured by Negami Kogyo Co., Ltd.]}
・ NVP: N-vinylpyrrolidone [manufactured by Nippon Shokubai Co., Ltd.]
TMPTA: trimethylolpropane triacrylate: NK ester A-TMPT [manufactured by Shin-Nakamura Chemical Co., Ltd.]
A-DCP: Tricyclodecane dimethanol diacrylate: NK ester A-DCP {Molecular weight 304 [manufactured by Shin-Nakamura Chemical Co., Ltd.]}
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)プラスチックモールド
 プラスチックモールドは以下に示す方法で成形し、その成形物を使用した。
・PPモールド:ポリプロピレン板[2.5×2.5cm、厚さ 1mm、紫外線吸収剤入、日本テストパネル(株)製]に、ニッケルモールド(2.5×2.5cm、パターン面積0.5×1.0cm、パターン:L&S:幅80nm~20μm、アスペクト比0.1~2、間隔比1:1~1:10)を押し付けて、熱(ナノ)インプリント装置[TP-32937-0401:マルニ(株)製]を使用して、パターン転写(温度:上板130℃:下板30℃、プレス圧5Mpa、保持時間5分)して、プラスチックモールドを作製した。
・PIモールド:ポリイミドフィルム[オーラムフィルム、2.5×2.5cm、厚さ 300μm、三井化学(株)製]を前記の同じニッケルモールドを用いて、熱(ナノ)インプリント装置を用いて、パターン転写(温度:上板220℃:下板180℃、プレス圧10MPa、保持時間5分)して、プラスチックモールドを作製した。
・PDMSモールド:ポリジメチルシロキサン(シルポット184(東レダウコーニング(株)製):主剤と触媒を重量比10:1に混合し、得られた樹脂をそのニッケルモールドのパターン上に、0.1~1gを滴下し、オーブン中100℃で1時間加熱を行い、PDMSを剥離して、PDMSモールドを作製した。
(2) Plastic mold A plastic mold was molded by the following method, and the molded product was used.
PP mold: Polypropylene plate [2.5 × 2.5 cm, thickness 1 mm, with UV absorber, made by Nippon Test Panel Co., Ltd.], nickel mold (2.5 × 2.5 cm, pattern area 0.5 × 1.0 cm, pattern: L & S: width 80 nm to 20 μm, aspect ratio 0.1 to 2, spacing ratio 1: 1 to 1:10) is pressed to form a thermal (nano) imprint apparatus [TP-32937-0401: Maruni Co., Ltd.] was used to transfer the pattern (temperature: upper plate 130 ° C .: lower plate 30 ° C., press pressure 5 Mpa, holding time 5 minutes) to produce a plastic mold.
PI mold: polyimide film [Aurum film, 2.5 × 2.5 cm, thickness 300 μm, manufactured by Mitsui Chemicals, Inc.] using the same nickel mold as described above, using a thermal (nano) imprinting device, Pattern transfer (temperature: upper plate 220 ° C .: lower plate 180 ° C., press pressure 10 MPa, holding time 5 minutes) was performed to produce a plastic mold.
PDMS mold: polydimethylsiloxane (Silpot 184 (manufactured by Toray Dow Corning Co., Ltd.)): The main agent and the catalyst are mixed at a weight ratio of 10: 1, and the resulting resin is placed on the nickel mold pattern in a range of 0.1 to 1 g was dropped and heated in an oven at 100 ° C. for 1 hour to peel off the PDMS to produce a PDMS mold.
(3)シード膜が成膜された基板
・シリコンウエハ(2インチ)基板上にスパッタリングをして、ニッケルシード膜(0.1μm)を成膜した。
(3) A nickel seed film (0.1 μm) was formed by sputtering on a substrate / silicon wafer (2 inch) substrate on which a seed film was formed.
(4)光インプリント
 以下の手順で硬化樹脂のパターンを形成した。シード膜が成膜された基板上に樹脂組成物1~8を2~3ml滴下し、該樹脂組成物にプラスチックモールド(PPモールド、PIモールド、またはPDMSモールド)を被せ、光インプリント装置[マルニ(株)製]を用い、室温下で光照射して硬化させて、パターンを得た。表2に示すように、樹脂組成物、プラスチックモールドを用いて、各実施例のパターンを得た。パターンの凸部の膜厚は20~40μmであった。
(4) Photoimprint A cured resin pattern was formed by the following procedure. 2 to 3 ml of the resin composition 1 to 8 is dropped on the substrate on which the seed film is formed, and the resin composition is covered with a plastic mold (PP mold, PI mold, or PDMS mold), and an optical imprint apparatus [Marni The pattern was obtained by curing with light irradiation at room temperature. As shown in Table 2, the pattern of each Example was obtained using the resin composition and the plastic mold. The film thickness of the convex portions of the pattern was 20 to 40 μm.
 パターン形成条件は以下とした。
1.プレス圧:0.5MPaにて30秒間、プレス
2.減圧:次いで、真空ポンプを用いて減圧し、15秒保持
3.光照射:15秒[超高圧水銀ランプ、365nmにおける光量100mJ/cm
4.圧力解除:常圧まで
5.モールドを硬化樹脂から剥がし、該パターンを得た。
The pattern formation conditions were as follows.
1. Press pressure: Press at 0.5 MPa for 30 seconds 2. Depressurization: Next, depressurize using a vacuum pump and hold for 15 seconds. Light irradiation: 15 seconds [ultra-high pressure mercury lamp, the light quantity 100 mJ / cm 2 at 365 nm]
4). Pressure release: Up to normal pressure 5. The mold was removed from the cured resin to obtain the pattern.
(5)アッシング処理
 RIE装置としてサムコインターナショナル研究所製RIE-10N型を用いた。RF(Radio Frequency)出力を125W、エッチングチャンバー内の圧力を40Pa、酸素ガス流量を45ml/分(大気圧、0℃の状態として)として、アッシング処理を10分間行うことにより、パターンの凹部にある残渣の硬化樹脂を除去した。RF出力に対する、膜減りの厚さの結果を表2に示す。膜減りの厚さは、アッシング処理によるパターンの凸部の膜厚の減少を表す。膜減りの厚さは触針段差計[DEKTAK3 VEECOSLOAN TECHNOLOGY(株)製]を用いて測定した。
(5) Ashing treatment RIE-10N manufactured by Samco International Laboratory was used as the RIE apparatus. The RF (Radio Frequency) output is 125 W, the pressure in the etching chamber is 40 Pa, the oxygen gas flow rate is 45 ml / min (at atmospheric pressure and 0 ° C.), and the ashing process is performed for 10 minutes. Residual cured resin was removed. Table 2 shows the results of film thickness reduction with respect to RF output. The thickness of the film reduction represents a decrease in the film thickness of the convex portion of the pattern due to the ashing process. The thickness of the film reduction was measured using a stylus profilometer [DEKTAK3 VEECOSLOAN TECHNOLOGY Co., Ltd.].
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〈実施例11〉
(6)ニッケル金属膜のパターンの形成 
 実施例1で得られた厚さ約20μmの硬化樹脂パターン形成物を、スルファミン酸塩浴(スルファミン酸ニッケル、塩化ニッケルおよびホウ酸の水溶液、40℃、pH4.2)を用いて、10A/dmの電流密度で2.5時間電鋳処理を行うことにより、パターンの凹部に15μm厚のニッケルめっきを成長させた。次いで、前記のRIE装置を用い、RF出力を135W、エッチングチャンバー内の圧力を40Pa、酸素ガス流量を45ml/分(大気圧、0℃の状態として)としてアッシング処理を50分間行うことにより、基板上に残っている硬化樹脂を完全に除去し、金属膜のパターンを得た。
<Example 11>
(6) Formation of nickel metal film pattern
The cured resin pattern formed product having a thickness of about 20 μm obtained in Example 1 was subjected to 10 A / dm using a sulfamate bath (aqueous solution of nickel sulfamate, nickel chloride and boric acid, 40 ° C., pH 4.2). By carrying out an electroforming process at a current density of 2 for 2.5 hours, a nickel plating having a thickness of 15 μm was grown in the concave portion of the pattern. Next, using the RIE apparatus described above, the RF output is 135 W, the pressure in the etching chamber is 40 Pa, the oxygen gas flow rate is 45 ml / min (at atmospheric pressure and 0 ° C.), and the ashing process is performed for 50 minutes. The remaining cured resin was completely removed to obtain a metal film pattern.
 表1から分かるように、アッシング処理による硬化樹脂の除去には、重合性モノマーまたは/および重量平均分子量5,000以下の重合性ポリマーを配合した硬化性樹脂組成物が効果的であることが分かった。また、実施例11の結果から、インプリント技術と電鋳技術を組合せた手法において、プラスチックモールドと可視光硬化型樹脂を用いて、金属膜のパターンを作成できることが分かった。 As can be seen from Table 1, a curable resin composition containing a polymerizable monomer or / and a polymerizable polymer having a weight average molecular weight of 5,000 or less is effective in removing the cured resin by ashing treatment. It was. Further, from the results of Example 11, it was found that a metal film pattern can be created using a plastic mold and a visible light curable resin in a method combining the imprint technique and the electroforming technique.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2008年1月25日出願の日本特許出願(特願2008-014934)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on January 25, 2008 (Japanese Patent Application No. 2008-014934), the contents of which are incorporated herein by reference.
 本発明により、簡便に、金属加工品、微細部品等を製造するための金属膜(金型)のパターンのおよびその形成方法が提供される。特に、プラスチックモールドと特定の重量平均分子量以下である重合性化合物を配合した可視光硬化性樹脂組成物を使用することで、より簡便に金属膜(金型)のパターンを形成することが可能になる。 According to the present invention, a pattern of a metal film (mold) and a method for forming the same for manufacturing a metal processed product, a fine part, and the like are simply provided. In particular, by using a visible light curable resin composition containing a plastic mold and a polymerizable compound having a specific weight average molecular weight or less, it is possible to more easily form a metal film (mold) pattern. Become.

Claims (16)

  1.  シード膜が成膜された基板上に硬化性樹脂組成物を塗布し、前記基板と所定パターンを有するモールドとの相対移動により前記モールドの所定パターンを前記硬化性樹脂組成物に転写し、前記モールドの所定パターンを前記硬化性樹脂組成物に転写した状態で前記硬化性樹脂組成物を硬化させ、硬化樹脂よりモールドを取り外し、金属膜を形成する領域の残渣の硬化樹脂を除去し、前記領域に金属膜を形成し、基板上に残っている硬化樹脂を除去することを特徴とする金属膜のパターン形成方法。 A curable resin composition is applied onto a substrate on which a seed film is formed, and a predetermined pattern of the mold is transferred to the curable resin composition by relative movement between the substrate and a mold having a predetermined pattern, and the mold The curable resin composition is cured in a state where the predetermined pattern is transferred to the curable resin composition, the mold is removed from the cured resin, and the residual cured resin in the region where the metal film is to be formed is removed. A method for forming a metal film pattern, comprising forming a metal film and removing the cured resin remaining on the substrate.
  2.  硬化性樹脂組成物が光によって硬化する樹脂組成物である請求項1に記載の金属膜のパターン形成方法。 The metal film pattern forming method according to claim 1, wherein the curable resin composition is a resin composition that is cured by light.
  3.  電鋳処理により金属膜を形成する請求項1または2に記載の金属膜のパターン形成方法。 The metal film pattern forming method according to claim 1, wherein the metal film is formed by electroforming.
  4.  硬化性樹脂組成物が重合性化合物と重合開始剤を含有する請求項1~3のいずれか1項に記載の金属膜のパターン形成方法。 The metal film pattern forming method according to any one of claims 1 to 3, wherein the curable resin composition contains a polymerizable compound and a polymerization initiator.
  5.  重合性化合物が重合性モノマーである請求項4に記載の金属膜のパターン形成方法。 The metal film pattern forming method according to claim 4, wherein the polymerizable compound is a polymerizable monomer.
  6.  重合性化合物が、重量平均分子量が5,000以下の重合性ポリマー、または重合性モノマーおよび重量平均分子量が5,000以下の重合性ポリマーである請求項4に記載の金属膜のパターン形成方法。 The metal film pattern forming method according to claim 4, wherein the polymerizable compound is a polymerizable polymer having a weight average molecular weight of 5,000 or less, or a polymerizable monomer and a polymerizable polymer having a weight average molecular weight of 5,000 or less.
  7.  重量平均分子量が5,000以下の重合性ポリマーが、ウレタンアクリレートを含有する請求項6に記載の金属膜のパターン形成方法。 The metal film pattern forming method according to claim 6, wherein the polymerizable polymer having a weight average molecular weight of 5,000 or less contains urethane acrylate.
  8.  硬化性樹脂組成物におけるウレタンアクリレートの含有量が5~99.99重量部である請求項7に記載の金属膜のパターン形成方法。 The method for forming a metal film pattern according to claim 7, wherein the content of urethane acrylate in the curable resin composition is 5 to 99.99 parts by weight.
  9.  重合開始剤が可視光重合開始剤である請求項4~8のいずれか1項に記載の金属膜のパターン形成方法。 The metal film pattern forming method according to any one of claims 4 to 8, wherein the polymerization initiator is a visible light polymerization initiator.
  10.  可視光重合開始剤がアシルホスフィンオキシド化合物である請求項9に記載の金属膜のパターン形成方法。 The method for forming a metal film pattern according to claim 9, wherein the visible light polymerization initiator is an acylphosphine oxide compound.
  11.  所定パターンを有するモールドがプラスチックモールドである請求項1~10のいずれか1項に記載の金属膜のパターン形成方法。 11. The method for forming a metal film pattern according to claim 1, wherein the mold having the predetermined pattern is a plastic mold.
  12.  プラスチックモールドの材料がポリイミド、ポリカーボネート、ポリプロピレンおよびポリジメチルシロキサンの中の少なくともいずれか1つである請求項11に記載の金属膜のパターン形成方法。 The method for forming a metal film pattern according to claim 11, wherein the material of the plastic mold is at least one of polyimide, polycarbonate, polypropylene, and polydimethylsiloxane.
  13.  残渣の硬化樹脂をアッシング処理により除去する請求項1~12のいずれか1項に記載の金属膜のパターン形成方法。 13. The method for forming a metal film pattern according to claim 1, wherein the residual cured resin is removed by an ashing process.
  14.  シード膜が金属膜にて構成されている請求項1~13のいずれか1項に記載の金属膜のパターン形成方法。 The metal film pattern forming method according to any one of claims 1 to 13, wherein the seed film is formed of a metal film.
  15.  請求項1~14のいずれか1項に記載の方法によってパターン形成されることを特徴とするパターン形成物。 A pattern formed product, wherein a pattern is formed by the method according to any one of claims 1 to 14.
  16.  請求項15に記載のパターン形成物を備えることを特徴とする加工品。 A processed product comprising the pattern formed product according to claim 15.
PCT/JP2009/050983 2008-01-25 2009-01-22 Process for forming metallic-film pattern WO2009093661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008014934A JP2011067950A (en) 2008-01-25 2008-01-25 Method of forming metallic film pattern
JP2008-014934 2008-01-25

Publications (1)

Publication Number Publication Date
WO2009093661A1 true WO2009093661A1 (en) 2009-07-30

Family

ID=40901166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050983 WO2009093661A1 (en) 2008-01-25 2009-01-22 Process for forming metallic-film pattern

Country Status (2)

Country Link
JP (1) JP2011067950A (en)
WO (1) WO2009093661A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098102A1 (en) * 2009-02-27 2010-09-02 三井化学株式会社 Transfer body and method for producing the same
JP2011129881A (en) * 2009-11-19 2011-06-30 Tokyo Electron Ltd Template treatment method, program, computer storage medium, template treatment apparatus
JP2011159924A (en) * 2010-02-03 2011-08-18 Fujifilm Corp Method of manufacturing fine pattern
JP2011159881A (en) * 2010-02-02 2011-08-18 Fujifilm Corp Curable composition for imprint, pattern forming method, and pattern
US8563216B2 (en) 2010-07-23 2013-10-22 Shin-Etsu Chemical Co., Ltd. Substrate to be processed having laminated thereon resist film for electron beam and organic conductive film, method for manufacturing the same, and resist patterning process
JP2018080309A (en) * 2016-11-18 2018-05-24 株式会社ダイセル Replica mold-forming resin composition, replica mold, and patterning method using the replica mold

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101777772B1 (en) * 2011-04-21 2017-09-13 주식회사 디엠에스 Method to manufacture metal master mold and master mold made by the same
WO2012160769A1 (en) * 2011-05-24 2012-11-29 コニカミノルタアドバンストレイヤー株式会社 Method for manufacturing resin molded article
JP2013229532A (en) * 2012-04-27 2013-11-07 Hitachi Ltd Microstructure transfer device and microstructure transfer method
JP6090707B2 (en) * 2012-12-28 2017-03-08 川崎化成工業株式会社 Radical polymerization sensitizer
JP6443849B2 (en) * 2013-05-09 2018-12-26 東洋合成工業株式会社 Resin, resin manufacturing method and parts
JP2016044222A (en) * 2014-08-21 2016-04-04 日立化成株式会社 Adhesive composition and connection structure
JP6211546B2 (en) * 2015-01-07 2017-10-11 富士フイルム株式会社 Metal substrate manufacturing method
SG11201708789VA (en) * 2015-04-29 2017-11-29 3M Innovative Properties Co Swellable film forming compositions and methods of nanoimprint lithography employing same
FR3060422B1 (en) 2016-12-16 2019-05-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR FUNCTIONALIZING A SUBSTRATE
JP2019026851A (en) * 2018-09-19 2019-02-21 日立化成株式会社 Adhesive composition and connection structure
JP7194921B2 (en) * 2019-04-16 2022-12-23 パナソニックIpマネジメント株式会社 Semiconductor device manufacturing method
JP2020111760A (en) * 2020-04-07 2020-07-27 日立化成株式会社 Adhesive composition and connection structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045871A (en) * 2001-07-26 2003-02-14 Shinko Electric Ind Co Ltd Method for forming wiring pattern
JP2006005109A (en) * 2004-06-17 2006-01-05 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2006249530A (en) * 2005-03-11 2006-09-21 Fujitsu Ltd Method for forming pattern made of metallic film
JP2006294876A (en) * 2005-04-11 2006-10-26 Fujikura Ltd Printed circuit board and manufacturing method thereof
WO2007099907A1 (en) * 2006-03-03 2007-09-07 Pioneer Corporation Imprinting mold and method of imprinting
JP2007323059A (en) * 2006-04-25 2007-12-13 Lg Philips Lcd Co Ltd Resist composition, method for forming resist pattern using the same, method of fabricating array substrate using the same and array substrate fabricated using the same
JP2007536750A (en) * 2004-05-07 2007-12-13 オブデュキャット、アクチボラグ Constant temperature imprint lithography method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045871A (en) * 2001-07-26 2003-02-14 Shinko Electric Ind Co Ltd Method for forming wiring pattern
JP2007536750A (en) * 2004-05-07 2007-12-13 オブデュキャット、アクチボラグ Constant temperature imprint lithography method
JP2006005109A (en) * 2004-06-17 2006-01-05 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2006249530A (en) * 2005-03-11 2006-09-21 Fujitsu Ltd Method for forming pattern made of metallic film
JP2006294876A (en) * 2005-04-11 2006-10-26 Fujikura Ltd Printed circuit board and manufacturing method thereof
WO2007099907A1 (en) * 2006-03-03 2007-09-07 Pioneer Corporation Imprinting mold and method of imprinting
JP2007323059A (en) * 2006-04-25 2007-12-13 Lg Philips Lcd Co Ltd Resist composition, method for forming resist pattern using the same, method of fabricating array substrate using the same and array substrate fabricated using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098102A1 (en) * 2009-02-27 2010-09-02 三井化学株式会社 Transfer body and method for producing the same
JPWO2010098102A1 (en) * 2009-02-27 2012-08-30 三井化学株式会社 Transfer body and method for producing the same
JP5301648B2 (en) * 2009-02-27 2013-09-25 三井化学株式会社 Transfer body and method for producing the same
US9314963B2 (en) 2009-02-27 2016-04-19 Mitsui Chemicals, Inc. Imprint product and method for producing the same
JP2011129881A (en) * 2009-11-19 2011-06-30 Tokyo Electron Ltd Template treatment method, program, computer storage medium, template treatment apparatus
JP2011159881A (en) * 2010-02-02 2011-08-18 Fujifilm Corp Curable composition for imprint, pattern forming method, and pattern
JP2011159924A (en) * 2010-02-03 2011-08-18 Fujifilm Corp Method of manufacturing fine pattern
US8563216B2 (en) 2010-07-23 2013-10-22 Shin-Etsu Chemical Co., Ltd. Substrate to be processed having laminated thereon resist film for electron beam and organic conductive film, method for manufacturing the same, and resist patterning process
JP2018080309A (en) * 2016-11-18 2018-05-24 株式会社ダイセル Replica mold-forming resin composition, replica mold, and patterning method using the replica mold
WO2018092848A1 (en) * 2016-11-18 2018-05-24 株式会社ダイセル Resin composition for forming replica mold, replica mold and pattern forming method using said replica mold
CN109963912A (en) * 2016-11-18 2019-07-02 株式会社大赛璐 Copy mold formation resin combination, copy mold and the pattern forming method for having used the copy mold
EP3543294A4 (en) * 2016-11-18 2020-07-15 Daicel Corporation Resin composition for forming replica mold, replica mold and pattern forming method using said replica mold

Also Published As

Publication number Publication date
JP2011067950A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
WO2009093661A1 (en) Process for forming metallic-film pattern
JP2010137358A (en) Method and apparatus for forming pattern
JP5243887B2 (en) Curable composition for nanoimprint and pattern forming method
JP5306903B2 (en) Curable composition for imprint, cured product using the same, method for producing the same, and member for liquid crystal display device
JP5671302B2 (en) Curable composition for imprint, pattern forming method and pattern
EP2342243B1 (en) Composition for imprints, pattern and patterning method
JP2010157706A (en) Curable composition for optical imprint and method of manufacturing hardened material using same
US8703892B2 (en) Curable composition for imprints, patterning method and pattern
JP5712003B2 (en) Curable composition for imprint and method for producing polymerizable monomer for imprint
JP2010000612A (en) Nanoimprinting curable composition and pattern forming method
JP2013093552A (en) Underlay film composition for imprint and pattern formation method using the same
JP2010037541A (en) Curable composition for imprint, pattern forming method, and pattern
JP5753749B2 (en) Method for producing curable composition for imprint
JP2012099638A (en) Curable composition for imprint
JP2008084984A (en) Photocuring composition for optical nano imprint lithography and pattern forming method employing it
JP2009295797A (en) Method of manufacturing member having groove structure or hollow structure
JP2010016149A (en) Curable composition for nanoimprint, cured product and method of manufacturing the same, and member for liquid-crystal dispplay apparatus
JP2015070145A (en) Curable composition for optical imprint, pattern formation method, fine pattern, and method for manufacturing semiconductor device
JP2010106185A (en) Curable composition for photo-imprint, and method for pattern formation using the same
JP2012041521A (en) Photocurable composition and method for manufacturing photocured product using thereof
JP5065209B2 (en) Curable composition for nanoimprint, cured product and method for producing the same
JP5268384B2 (en) Curable composition for nanoimprint and pattern forming method
WO2012137672A1 (en) Pattern-forming method and pattern
JP2010106062A (en) Composition for nanoimprint, and pattern and method for forming the same
JP2010087165A (en) Hardening composition for nanoimprinting, hardened material using this and its manufacturing method, and member for liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP