WO2009093286A1 - 傾斜装用型コンタクトレンズ - Google Patents

傾斜装用型コンタクトレンズ Download PDF

Info

Publication number
WO2009093286A1
WO2009093286A1 PCT/JP2008/000084 JP2008000084W WO2009093286A1 WO 2009093286 A1 WO2009093286 A1 WO 2009093286A1 JP 2008000084 W JP2008000084 W JP 2008000084W WO 2009093286 A1 WO2009093286 A1 WO 2009093286A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
wearing
contact lens
meridian
optical
Prior art date
Application number
PCT/JP2008/000084
Other languages
English (en)
French (fr)
Inventor
Yuji Goto
Yukihisa Sakai
Hiroyuki Yamaguchi
Original Assignee
Menicon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Menicon Co., Ltd. filed Critical Menicon Co., Ltd.
Priority to EP08702825.4A priority Critical patent/EP2239617B1/en
Priority to US12/863,458 priority patent/US8192020B2/en
Priority to PCT/JP2008/000084 priority patent/WO2009093286A1/ja
Priority to JP2009548518A priority patent/JP4442927B2/ja
Publication of WO2009093286A1 publication Critical patent/WO2009093286A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/044Annular configuration, e.g. pupil tuned
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/021Lenses; Lens systems ; Methods of designing lenses with pattern for identification or with cosmetic or therapeutic effects
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/042Simultaneous type
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/043Translating type
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/048Means for stabilising the orientation of lenses in the eye
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/04Lenses comprising decentered structures

Definitions

  • the present invention relates to a contact lens, and more particularly to a multifocal contact lens having a plurality of power regions.
  • a distance area as a first power area and a near area as a second power area having a higher addition power than the distance area are prescribed.
  • Patent Document 1 Japanese Patent Laid-Open No. Sho 61-2727157 discloses a multifocal contact lens in which a distance region and a near region are formed concentrically with respect to a lens geometric center. Is disclosed. However, it is known that the pupil center is slightly deviated to the nasal side from the cornea center. Therefore, assuming that the lens geometric center coincides with the pupil center, the shape as described in Patent Document 1 in which the distance region and the near region are formed concentrically from the lens geometric center, both regions are used during actual wearing. The positional relationship between the pupil and the pupil was not maintained at the desired position, and an effective correction effect could not be obtained for both distance vision and near vision.
  • the applicant of the present application has proposed a multifocal contact lens in which the near-use area is biased from the lens geometric center to the nose side in Patent Document 2 (Japanese Patent Laid-Open No. 6-289329).
  • Patent Document 2 Japanese Patent Laid-Open No. 6-289329.
  • the near-field region may be biased not only in the left-right direction but also in the up-down direction of the wearer. It was necessary to provide a lens separately for each, and left and right standards were additionally required. Therefore, when it is based on prospective production, it is necessary to prepare a large amount of inventory, which may increase manufacturing costs and management costs. In addition, it is necessary for a wearer having the same left and right standards to handle the left and right lenses separately.
  • the present invention has been made in the background as described above, and the problem to be solved is to reduce the necessary costs such as the manufacturing cost and the management cost, and to improve the handleability of the wearer. It is an object of the present invention to provide a contact lens having a novel structure that can be improved.
  • the first aspect of the present invention includes a first power region and a second power region having a larger lens power on the plus side than the first power region in the optical unit provided in the center portion of the lens.
  • the contact lens has a lens shape that is axisymmetric with respect to a symmetric meridian that is one radial line of the optical unit, and an area center of at least one of the first power region and the second power region is The lens is positioned eccentrically on the symmetric meridian with respect to the geometric center of the optical unit, while the orthogonal meridian orthogonal to the symmetric meridian is worn at a lens rotation position inclined at a predetermined angle with respect to the vertical line of the wearing eye A circumferential positioning means for providing a stable position in the lens circumferential direction is provided, and the orthogonal meridian is first inclined in the circumferential direction with respect to the vertical line of the wearing eye while being worn on the right eye.
  • a tilting angle and a second stable state tilted to the opposite side in the circumferential direction by a second tilting angle can be set by the circumferential positioning means, and the normal position with respect to the vertical direction of the lens
  • An inclinable wearable contact lens is provided with an identifiable index mark that can identify a reverse position.
  • the first power region or the second power region can be positioned eccentrically with respect to the pupil center with the wearer's nose interposed therebetween.
  • the second power region is positioned on the wearer's nose side in the first stable state worn on the right eye
  • the second power region is also displayed in the second stable state worn on the left eye. Is positioned on the nose side of the wearer.
  • the lens power that is larger on the plus side means that the diopter value is larger on the plus side.
  • the first power area is ⁇ 5D, + 1D, 0D, and ⁇ 3D Is larger on the plus side.
  • the inclined wear contact lens according to the present invention when configured as a bifocal lens for presbyopia correction, the first power region is set as the distance optical unit and the second power region is set as the near optical unit.
  • the near optical unit can be positioned below the nose of the wearer regardless of whether it is worn on either the left or right eye.
  • the inclined wearable contact lens according to the present invention can be stably positioned in a suitable stable state in accordance with whether the lens is worn on either the left or right eye.
  • a single lens can be commonly used for the left eye and the right eye, and it is not necessary to prepare lenses separately for left and right.
  • the amount of inventory can be reduced to half that of the prior art, and the cost required for manufacturing and management can be reduced.
  • the inclined wearing contact lens having a structure according to the present invention does not necessarily need to be provided in a left and right set, but can provide more excellent effects by being provided in a left and right set.
  • the right-eye correction effect is exhibited in the first stable state
  • the left-eye correction effect is exhibited in the second stable state.
  • the two stable states of the first stable state and the second stable state are expressed, so that the wearer wears the right eye In the first stable state, it is necessary to wear the lens in consideration of the circumferential position of the lens so that it can be stably positioned in the second stable state when worn on the left eye. Therefore, according to the tilted wear type contact lens of the present invention, since the index mark is attached, it is possible to easily grasp the circumferential position of the lens, and easily in a desired stable state. It can be worn.
  • a peripheral portion is provided on the outer peripheral side of the optical portion, and the peripheral portion has the symmetrical meridian direction in the symmetric meridian direction.
  • the double slab off in which the parts located on both sides of the optical part in the orthogonal meridian direction are made thin is attached.
  • the circumferential positioning means is configured such that the shape of is circumferentially symmetric with respect to the symmetric meridian and non-symmetrical with respect to the orthogonal meridian.
  • the stable state in which the orthogonal meridian is inclined with respect to the vertical line of the wearing eye is stably expressed by making the slab-off non-symmetrical with respect to the orthogonal meridian. It can be shown.
  • both sides of the optical unit in the orthogonal meridian direction are thin slab-off, it is possible to stably position in two stable states inverted up and down.
  • a third aspect of the present invention is the inclined meridian contact lens according to the second aspect, wherein the symmetrical meridian is provided between circumferential ends of a pair of thin portions made thin by the double slab off.
  • the circumferential lengths of the pair of thick parts positioned on both sides of the optical part in the direction are different from each other.
  • the weight balance in the symmetric meridian direction and the acting force exerted by contact with the eyelid are different on both sides of the optical unit.
  • the 1st and 2nd stable state by which the orthogonal meridian was made to incline with respect to an up-down direction line can be expressed advantageously.
  • a peripheral part is provided on the outer peripheral side of the optical part, and the symmetrical meridian is provided at the peripheral part.
  • the circumferential positioning means is constituted by a portion located on the other side being thicker than a portion located on one side sandwiching the optical part in the direction, To do.
  • the ballast effect is produced by changing the weight balance in the symmetric meridian direction.
  • the 1st and 2nd stable state by which the orthogonal meridian was made to incline with respect to an up-down direction line can be expressed advantageously.
  • a peripheral portion is provided on the outer peripheral side of the optical portion, and the peripheral portion
  • the index mark is provided with at least one of coloring and inscription.
  • the geometric center of the optical unit is a lens geometric center. According to this aspect, in any of the first and second stable states, it is possible to avoid the detachment of the optical unit from the pupil and to obtain stable optical characteristics.
  • the eccentric distance with respect to the geometric center of the optical part is 0.4 mm or more in the direction component of the symmetrical meridian.
  • the relative position of the first or second power region relative to the geometric center of the optical unit is clearly different between the first stable state and the second stable state. I can do it. That is, when the eccentric distance is smaller than 0.4 mm, the change in the relative position with respect to the geometric center of the optical part in the first or second power region is small between the first stable state and the second stable state. Thus, it becomes difficult to exhibit optical characteristics corresponding to each of the two stable states.
  • a peripheral portion is provided on the outer peripheral side of the optical portion on the rear surface of the lens superimposed on the cornea.
  • the outer diameter dimension of the optical unit is 75% or less of the outer diameter dimension of the lens.
  • both the first stable state and the second stable state can be stably expressed. That is, if the outer diameter of the optical part is larger than 75% of the outer diameter of the lens, the lens geometric center at the time of wearing tends to be stable at a fixed position on the corneal surface, and the first stable state and the second stable state. There is a possibility that it is difficult to stably express the two stable states.
  • the contact lens is a soft contact lens, and the outer diameter of the optical portion on the rear surface of the lens is 10 mm.
  • the following aspects are preferably employed.
  • an additional power that gives an additional lens power to the second power region in the optical unit.
  • the surface is set to the rear surface of the lens that is superimposed on the cornea when worn.
  • tears can be held between the corneal surface and the rear surface of the lens due to the difference in curvature between the first power region and the second power region. . Then, by using the retained tear as a tear lens, it is possible to reduce an abrupt change in optical characteristics between the first power region and the second power region. Further, by forming a lens rear surface shape having a plurality of curvatures different from those of the first power region and the second power region with a molding die, excellent manufacturing efficiency can be obtained.
  • the inclined wearable contact lens according to any one of the second to tenth aspects, a soft contact lens, wherein the doubles are placed on the rear surface of the lens that is superimposed on the cornea during wearing. It is characterized in that a thin-walled surface that gives a rub-off is set.
  • the double slab-off formed on the rear surface of the lens appears on the front surface of the lens when the lens is deformed along the corneal surface in the state of being worn on the eyeball.
  • the lens can be positioned in the first stable state and the second stable state by the interaction with the eyelid.
  • This aspect is preferably used in combination with the tenth aspect. That is, if an additional power surface and a thin surface are formed on the rear surface of the lens, it becomes possible to form such a complicated rear surface shape of the lens with a mold, and excellent manufacturing efficiency can be obtained.
  • the formal wear worn in the first stable state or the second stable state in the inclined wearing contact lens according to any one of the first to eleventh aspects, the formal wear worn in the first stable state or the second stable state. And the reverse wearing in which the first power region or the second power region positioned on the left or right side of the wearing eye in normal wearing is positioned on the left or right side of the wearing eye. It is characterized in that it can be selectively set by the direction positioning means.
  • the normal wearing with the first power region positioned on the ear side and the reverse wearing with the first power region positioned on the nose side are selected. Can be worn.
  • the first power region is set as the distance optical unit and the second power region is set as the near optical unit
  • the first power region is set as the distance optical unit
  • the second power region is set as the near optical unit
  • the near vision optical unit is positioned on the ear side away from the center of the pupil, so that it is possible to obtain good distance vision with reduced occurrence of flare and the like. That is, according to this aspect, by changing the wearing state, (1) the change in the power of the lens optical surface at the center of the pupil (preferably the power change is 0.25D or more), (2) the lens optical unit in the pupil And (3) a change in the projected area ratio between the near optical part and the far optical part in the pupil (preferably, the change in the projected area ratio is 10% or more). It has become. As a result, a bifocal effect can be obtained by wearing the front, and a substantially single focus effect can be obtained by wearing the back, so that any of these different optical characteristics can be exhibited effectively.
  • the inclined wearing contact lens having the structure according to this aspect does not necessarily need to be provided in the left and right sets, but can provide more excellent effects by being provided in the left and right sets. That is, it becomes possible for the wearer to selectively use the right and left lenses for the right and left lenses according to the usage environment, and for example, in the bifocal lens, if the left and right lenses are used for the right wearing, While the bifocal effect by both lenses can be obtained, if the left and right lenses are reversely mounted, a substantially single focus effect by both lenses can be obtained.
  • the corrective balance of distance vision and near vision changes according to the usage environment, such as wearing for the dominant eye, wearing for the non-dominant eye, or wearing for the dominant eye, or wearing the non-dominant eye. It can be made. Thereby, it can be used effectively for the modified monovision prescription.
  • the tilted wear contact lens in this aspect can reduce the time and labor for accustoming the bifocal lens to the wearer, for example. That is, for example, the first power region is set as the distance optical unit, the second power region is set as the near optical unit, and the distance power is set for the reverse wearing in which the near optical unit is positioned on the ear side in both eyes. If determined, prescription as a contact lens for correcting vision for distance is completed.
  • a number of inclined wearing contact lenses having the determined distance power and the structure according to the present embodiment in which the lens power of the near optical portion is slightly different are prepared and the near optical Determine the optimal near-use power by wearing it in full-fitting with the part positioned on the nose side and gradually acclimatizing the near-use power in a few days to several months in the living environment. It can be set.
  • Explanatory drawing which shows the example of a combination from which the wearing state of the contact lens differs.
  • Front explanatory drawing which shows the contact lens as 3rd embodiment of this invention.
  • Front explanatory drawing which shows the contact lens as 4th embodiment of this invention.
  • Front explanatory drawing which shows the wearing state in the wearing state of the Example and the wearing 1 of a comparative example.
  • Front explanatory drawing which shows the reverse wearing state of an Example, and the wearing state reversed with the wearing 1 of the comparative example.
  • FIG. 1 shows a contact lens 10 according to a tilted wear type contact lens as a first embodiment of the present invention.
  • the contact lens 10 has a substantially spherical shell shape as a whole having a rotating body-shaped outer shape around the lens geometric central axis 12 in the front view shown in FIG. 1, and is worn by being superimposed on the surface of the cornea in the eyeball. Is being used by.
  • “N” and “D” in FIG. 1 and FIGS. 3 to 10 to be described later are respectively displayed for convenience in order to easily grasp the positions of the near optical unit and the far optical unit.
  • the contact lens 10 in the present embodiment is a soft type contact lens, and the material thereof is not limited at all.
  • Conventionally known hydrous materials such as PHEMA (polyhydroxyethyl methacrylate) and PVP (polyvinylpyrrolidone) are used.
  • non-hydrous materials such as acrylic rubber and silicon may be used.
  • the contact lens 10 is a simultaneous vision type presbyopia correction lens, and the optical unit 14 as a correction optical system has a large circular shape spreading on the lens geometric central axis 12 in the illustrated front view of the lens. Is formed.
  • a peripheral portion 16 as a non-optical region is formed on the lens geometric center axis 12 so as to surround the optical portion 14 in the outer peripheral portion of the lens with an annular band shape having a predetermined width.
  • an edge portion 18 that smoothly connects the front and rear surfaces of the contact lens 10 is formed in an annular shape over the entire circumference at the outer peripheral edge of the lens.
  • the optical part 14 has its optical part geometric center axis 20 aligned with the lens geometric center axis 12. Furthermore, the outer diameter dimension of the optical part 14 on the rear surface of the lens is 75% or less of the lens outer diameter dimension, and specifically, it is preferably 10 mm ⁇ or less, which is smaller than the standard value of the human cornea diameter.
  • the outer diameter dimension of the optical unit 14 is larger than 75% of the outer diameter dimension of the lens, the lens is easily stabilized at a fixed position, and the first stable state and the second stable state to be described later are provided. This is because it becomes difficult to obtain a stable state.
  • the optical unit 14 is composed of optical regions having three different focal lengths.
  • a small circular region whose center of area is eccentrically positioned on a symmetric meridian line 22 that is one radial line of the optical unit 14 from the optical unit geometric center axis 20 has a constant focal length for near vision.
  • the near optical unit 24 is set with (that is, the lens power).
  • a region of the outermost peripheral portion of the optical unit 14 around the near optical unit 24 is a far optical unit 26 in which a constant focal length (lens power) is set for far vision.
  • an annular band-shaped region between the near optical unit 24 and the far optical unit 26 is a transition unit 28.
  • the near optical unit 24 is a lens surface provided with a predetermined additional power with respect to the lens power of the far optical unit 26 for near vision. Thereby, the lens power (diopter value) of the near optical unit 24 is increased to the plus side as compared with the lens power (diopter value) of the far optical unit 26.
  • the far optical unit 26 is a first power region, while the near optical unit 24 is a second power region.
  • a focal length (lens power) that gradually changes in the radial direction from the lens power of the near optical unit 24 to the lens power of the far optical unit 26 is set.
  • a predetermined focal length (lens power) between the near optical unit 24 and the far optical unit 26 may be set.
  • the near part area center 30 that is the center of the area of the near optical part 24 is decentered with respect to the optical part geometric center axis 20 on the symmetry meridian 22 of the optical part 14.
  • the eccentric distance of the near portion area center 30 with respect to the optical portion geometric central axis 20 is preferably 0.4 mm or more, more preferably 0.6 mm or more in the direction component of the symmetric meridian 22.
  • the eccentric distance of the near area area center 30 is smaller than 0.4 mm, the relative position of the near optical section 24 relative to the pupil differs between a first stable state and a second stable state, which will be described later. This is because it is difficult to cause the near optical part 24 to be located on the lower nose side.
  • the distance portion area center 32 which is the area center of the distance optical portion 26, is eccentrically positioned on the opposite side of the near portion area center 30 across the optical portion geometric center 20 on the symmetrical meridian 22.
  • the optical unit 14 has a line-symmetric shape with respect to the symmetrical meridian 22 and a non-symmetrical shape with respect to the orthogonal meridian 34 orthogonal to the symmetrical meridian 22 on the lens geometric central axis 12.
  • the additional power surface that gives the additional lens strength of the near-field optical unit 24 is formed on the rear surface of the lens that is to be superimposed on the cornea when worn, and the optical unit 14 in this embodiment has a substantially constant radius of curvature.
  • the contact lens 10 in this embodiment can hold tears between the cornea surface and the rear surface 38 of the lens when worn on the eyeball, and is used by a tear lens formed by such tears. A sudden change in the lens power between the optical unit 24 and the distance optical unit 26 is reduced.
  • both sides of the optical unit 14 in the direction of the orthogonal meridian 34 are thinned as compared to the portions located on both sides of the optical unit 14 in the direction of the symmetrical meridian 22.
  • a pair of slab-off regions 40, 42 are formed, and a double slab-off structure is formed by both slab-off regions 40, 42.
  • both slab-off regions 40 and 42 are symmetric with respect to the symmetric meridian 22, and are asymmetric with respect to the orthogonal meridian 34, and one of the circumferential end edges is the other in the front view. Compared to the symmetrical meridian 22, the inclined shape is made closer.
  • the thin-walled surface 43 that gives both the slab-off regions 40 and 42 is set to the lens rear surface 38.
  • the contact lens 10 is deformed so as to follow the corneal surface, so that a thin shape set on the lens rear surface 38 appears on the lens front surface 36.
  • a pair of thick portions 44 which are thicker than the slab-off regions 40, 42, are disposed on both sides of the optical portion 14 in the direction of the symmetric meridian 22 between both circumferential ends of the slab-off regions 40, 42. 46 is formed.
  • the circumferential lengths of the thick portions 44 and 46 are different from each other.
  • the central angle around the lens geometric central axis 12 between the circumferential end edges of one thick part 44: ⁇ and the lens geometric central axis 12 between the circumferential end edges of the other thick part 46. Center angle around: ⁇ is different.
  • the difference between the central angle ⁇ of the thick portion 44 and the central angle ⁇ of the thick portion 46 is 5 to 50 degrees, more preferably 10 to 40 degrees around the lens geometric central axis 12. preferable. If the difference between the central angles: ⁇ , ⁇ is less than 5 degrees, the weight balance of both thick parts 44, 46 and the action force of the eyelid exerted on both thick parts 44, 46 are both thick parts 44, 46 is substantially balanced, and becomes difficult to stabilize when an orthogonal meridian 34 described later is inclined.
  • the circumferential direction of the thick portions 44 and 46 becomes dominant and becomes stable at a certain circumferential position, which may make it difficult to obtain two stable states, a first stable state and a second stable state described later. Because. Note that the circumferential lengths of the thick portions 44 and 46 are appropriately set in consideration of the required lens inclination angle and the like.
  • the contact lens 10 has a symmetrical shape with respect to the symmetrical meridian 22 as a whole including the optical portion 14 and the peripheral portion 16, while the near optical portion 24 is decentered from the lens geometric central axis 12.
  • both slab-off regions 40 and 42 are inclined, the shape is non-axisymmetric with respect to the orthogonal meridian 34.
  • a target mark 48 is provided at an appropriate position in the circumferential direction in the peripheral portion 16 so as to be visible.
  • the index mark 48 is for visually recognizing the circumferential direction of the contact lens 10, and is preferably formed on the outer peripheral edge of the lens on the symmetric meridian 22 or the orthogonal meridian 34.
  • the index mark 48 has an elliptical shape whose long axis extends on the symmetric meridian 22 and is arranged on the outer peripheral edge of the lens opposite to the near optical unit 24 with the lens geometric center axis 12 in between. Is formed.
  • the index mark 48 can be formed by a conventionally known method, and coloring or marking is preferably employed. Further, the appearance of the index mark 48 is not limited in any way, and various figures, characters, and the like can be appropriately employed.
  • FIG. 3 shows a wearing state of the contact lens 10 in the left and right eyes according to the present embodiment.
  • FIGS. 4 and 5 to be described later schematically show a front view in which the contact lens 10 according to the present embodiment is worn on both the left and right eyes, respectively, and a lens worn in the right eye (in the drawing, The left side is a contact lens 10a, and the lens worn on the left eye (the right side in the figure) is a contact lens 10b.
  • both slab-off regions 40 and 42 are asymmetrical with respect to the orthogonal meridian 34 and the circumferential lengths of the thick portions 44 and 46 are different. And the weight balance are non-uniform on the left and right sides across the orthogonal meridian 34.
  • the orthogonal meridian 34 with respect to the vertical line 50 of the wearing eye can be stably positioned at a circumferential position inclined by a predetermined angle about the lens geometric central axis 12. Yes.
  • the orthogonal meridian 34 with respect to the vertical line 50 of the eye is centered on the lens geometric center axis 12.
  • the first tilt angle is set to a stable position at a circumferential position tilted by ⁇ 1 , and this position is the first stable state.
  • the contact lens 10b is turned upside down with respect to the right eye wearing direction and the index mark 48 is placed on the ear side and worn on the left eye, an orthogonal meridian 34 is formed with respect to the up-down direction line 50.
  • the lens is stably positioned at a circumferential position inclined by a second inclination angle: ⁇ 1 counterclockwise about the lens geometric center axis 12, and this position is the second stable state.
  • the circumferential direction positioning means is comprised including both slab-off area
  • the first inclination angle: ⁇ 1 and the second inclination angle: ⁇ 1 may be different from each other or may be equal.
  • the area center of the near optical unit 24 is decentered from the optical unit geometric center 20, and therefore the contact worn in the right eye in the first stable state.
  • the near optical unit 24 is positioned on the nose side overlapping the pupil 52.
  • the near optical part 24 can be placed on the center P of the pupil 52, corresponding to the fact that the center of the pupil is biased to the nose side during near vision.
  • a bifocal effect in which the distance vision and the near vision are balanced can be obtained.
  • the center of the pupil is biased to the nasal side and slightly downward during near vision.
  • the near optical unit 24 is moved to the nasal side by tilting the lens.
  • the thick-walled portion when worn in the first stable state for the right eye and the second stable state for the left eye, the thick-walled portion has a large circumferential dimension in both the left and right eyes and is easily affected by the eyelid pushing action. 44 is positioned on the ear side. As a result, the action force toward the ear side is exerted on the contact lenses 10a, 10b by the pushing action of the eyelids, and the sclera is wider on the ear side across the cornea.
  • the contact lenses 10a and 10b worn on the left and right eyes are each slightly biased toward the ear side. As a result, the near optical unit 24 can be stably positioned at a more suitable position with respect to the pupil 52.
  • the contact lens 10 may be worn on the eyeball at a circumferential position where the near optical unit 24 is positioned on the nose side in advance.
  • the index mark 48 is formed on the opposite side of the near optical unit 24 in the symmetric meridian 22 direction. Therefore, for example, if the vertical direction of the lens worn in the first eye in the first stable state is a positive position, the vertical direction of the lens in which the index mark 48 is positioned on the left side in the front view is the normal position.
  • the vertical direction of the lens in which the index mark 48 is positioned on the right side is a reverse position that is vertically reversed from the normal position. Therefore, if the eye mark is worn on the eyeball at the circumferential position where the index mark 48 is positioned on the ear side (in this embodiment, the normal position for the right eye and the inverted position for the left eye), the near-field optical system is used for both the left and right eyes.
  • the part 24 can be positioned on the nose side, and the first and second stable states can be stably expressed.
  • the slab-off having a specific shape that is symmetrical with respect to the symmetric meridian 22 and that is asymmetric with respect to the orthogonal meridian 34 as a whole including the optical portion 14 and the peripheral portion 16.
  • one lens can be used for both the left and right eyes, the correction effect for the right eye is exhibited in the first stable state, and the correction effect for the left eye is exhibited in the second stable state.
  • a pair of standard lenses can be prescribed. In this way, a wearer having the same standard on the left and right can handle the lens without being conscious of the distinction between the left and right, and the handleability is improved.
  • the contact lens 10 according to the present embodiment can be set in two wearing states by wearing the contact lens 10 upside down with respect to the same wearing eye. That is, assuming that the first and second stable states in which the near optical part 24 is positioned on the nose side shown in FIG. 3 are used for formal wear, as shown in FIG. For the same wearing eye, it is possible to set a reverse wearing state in which the wearing is performed by inverting the top and bottom and turning up and down.
  • the slab-off regions 40 and 42 are inclined, so that when the back lens is worn on the right eye, the radial line 34 is the first relative to the vertical line 50.
  • a predetermined inclination angle: ⁇ in the clockwise direction in which the radial line 34 is in the inclination direction opposite to the second inclination angle: ⁇ 1 with respect to the vertical direction line 50 It can be positioned stably at a circumferential position inclined by 2 .
  • the second inclination angle: ⁇ 1 and the predetermined inclination angle: ⁇ 2 may be different from each other or may be equal to each other. good.
  • the contact lens 10 according to the present embodiment is reversely worn on the left eye and the contact lens 10a reversely worn on the right eye because the near optical part 24 is decentered from the optical part geometric center axis 20.
  • the near optical unit 24 is positioned on the ear side.
  • the near optical unit 24 deviates from the center P of the pupil 52, and an effect similar to that of the substantially single focus lens by the far optical unit 26 and a slight correction effect for the near can be obtained.
  • the occurrence of flare can be greatly reduced, and it can be suitably used, for example, when driving at night.
  • the contact lens 10 according to the present embodiment is not necessarily provided as a pair of left and right, but is provided as a pair of left and right, and can be used by using a combination of normal wearing and reverse wearing in each of the left and right eyes.
  • An appropriate correction effect according to the situation can be obtained. That is, as shown in FIG. 3, a good bifocal effect can be obtained by wearing it in both the left and right eyes. On the other hand, if it is worn in both the left and right eyes, as shown in FIG. It is possible to obtain the same distance correction effect. Furthermore, as illustrated in FIG. 5, it is possible to wear the front eye for the right eye and the back eye for the left eye.
  • the near eye optical unit 24 is applied to the center P of the pupil 52 for the right eye, and distance vision and near vision are obtained, while the near eye optical unit 24 is the center of the pupil 52 for the left eye:
  • P By deviating from P, it is possible to obtain a distance correction effect substantially the same as that of a single focus lens. Thereby, it can use suitably for a modify monovision prescription.
  • FIG. 6 shows a contact lens 60 according to a tilted wear type contact lens as a second embodiment of the present invention.
  • members and parts having the same structure as in the first embodiment described above will be described in detail by attaching the same reference numerals as those in the first embodiment in the drawings. Omitted.
  • the contact lens 60 is a simultaneous contact type contact lens similar to that of the first embodiment described above, and the optical unit 14 includes a near optical unit 24, a far optical unit 26, and a transition unit 28.
  • the near portion area center 30 and the far portion area center 32 are eccentrically positioned on the radial line 22 from the optical portion geometric center axis 20.
  • the near optical part 24 is formed slightly larger than the first embodiment, and has a size that reaches the optical part geometric center axis 20.
  • slab-off regions 62 and 64 are formed on both sides of the optical unit 14 in the direction of the orthogonal meridian 34 and are thinned as compared to both sides of the optical unit 14 in the direction of the symmetrical meridian 22. Yes.
  • both slab-off regions 62 and 64 are symmetrical with respect to the radial line 22 and are also symmetrical with respect to the orthogonal meridian 34.
  • the diameter of the peripheral portion 16 is between the slab-off regions 62 and 64 on one side (in the present embodiment, the left side in FIG. 6) sandwiching the optical portion 14 in the direction of the symmetric meridian 22 in the peripheral portion 16.
  • a light-weight portion 66 in which the thickness dimension of the lens is reduced is formed from a substantially middle portion in the direction to the outer peripheral edge portion of the lens.
  • the lens thickness dimension is made larger than that of the light weight portion 66 at the portion on the opposite side (right side in FIG. 6) to the light weight portion 66 sandwiching the optical portion 14 in the direction of the symmetric meridian 22 in the peripheral portion 16.
  • a weight portion 68 is formed.
  • the difference in average thickness between the light weight portion 66 and the weight portion 68 is set within a range of 0.01 to 0.15 mm, more preferably 0.05 to 0.10 mm in the lens radial direction. Is preferred.
  • the difference in the average thickness dimension is smaller than 0.01 mm, the difference in weight between the light weight portion 66 and the weight portion 68 is small, and both the portions 66 and 68 are in a balanced state and the orthogonal meridian 34 is inclined.
  • the weight of the weight part 68 becomes too large compared to the lightweight part 66, and a single circumference This is because it is likely to be stable at the directional position, and it may be difficult to selectively set two circumferential stable states, the first stable state and the second stable state.
  • an index mark 70 is formed in a region where the lightweight portion 66 is formed.
  • the index mark 70 is filled with an area surrounded by a boundary line extending parallel to the orthogonal meridian 34 and the lens outer peripheral edge at a substantially intermediate portion between the outer peripheral edge of the optical unit 14 and the lens outer peripheral edge. Is formed.
  • the formation area of the index mark 70 is indicated by hatching.
  • the contact lens 60 in the present embodiment includes both slab-off regions 62 and 64 and a weight portion 68 to constitute a circumferential positioning means.
  • the stable position in the first stable state tilted clockwise by the first inclination angle: ⁇ 1 with respect to the vertical line 50 in the state worn on the right eye.
  • the first inclination angle: ⁇ 1 and the second inclination angle: ⁇ 1 may be different from each other or may be equal.
  • the contact lens 60 according to the present embodiment can also be worn with the reverse wearing in which the top and bottom are reversed with respect to the wearing with the first and second stable states.
  • the radial line 34 when the right eye is reversely worn, with respect to the vertical direction line 50, the radial line 34 has a first inclination angle: a half-clockwise direction opposite to ⁇ 1. A stable position is obtained at a circumferential position inclined by a predetermined inclination angle: ⁇ 2 .
  • the radial line 34 is in a clockwise direction that is opposite to the second inclination angle: ⁇ 1 with respect to the vertical direction line 50. It can be positioned stably at a circumferential position inclined by 2 .
  • the near optical unit 24 deviates from the center of the pupil 52: P, so that the effect similar to that of the substantially single focus lens by the far optical unit 26 is obtained. Can be obtained.
  • the first inclination angle: ⁇ 1 and the predetermined inclination angle: ⁇ 2 , and the second inclination angle: ⁇ 1 and the predetermined inclination angle: ⁇ 2 may be different from each other or may be equal to each other. good.
  • the right and left eyes can be used in combination with the right and left eyewear, for example, the right eye and the left eye. By reverse wearing, it can be suitably used for a modified monovision prescription.
  • the specific structure of the circumferential positioning means for providing a stable position in the lens circumferential direction is not particularly limited.
  • FIG. 9 shows a contact lens 80 according to a tilted wear type contact lens as a third embodiment of the present invention.
  • the contact lens 80 is obtained by replacing the near optical unit 24 and the far optical unit 26 of the contact lens 10 in the above-described first embodiment with the same outer shape in a front view.
  • the near optical part 84 is formed around the distance optical part 82 which is a small circle in front view, and a transition part 86 is formed between the distance optical part 82 and the near optical part 84. ing.
  • the area ratio between the first power region (distance optical unit 82 in the present embodiment) and the second power region (near optical unit 84 in the present embodiment) is limited in any way. Any one of the first and second frequency regions may be large or small. Alternatively, the areas of the first and second power regions may be equal to each other.
  • FIG. 10 shows a contact lens 90 according to a tilted wear type contact lens as a fourth embodiment of the present invention.
  • the optical part geometric center axis 20 is eccentrically positioned from the lens geometric center axis 12 on the symmetry meridian 22.
  • the optical unit 14 may be decentered from the lens geometric center axis 12 to such an extent that it does not cause a problem in wearing.
  • the present invention can be applied to bifocals having two focal points, multifocals having more than two focal points, and progressive multifocal lenses.
  • the boundary between the first power region and the second power region does not need to be clear.
  • the intermediate value between the maximum value and the minimum value of the lens power is The small frequency area is the first frequency area, and the large frequency area is the second frequency area. Therefore, the present invention is not necessarily applied only to the bifocal lens used for presbyopia correction.
  • the power difference between the first power region and the second power region is as small as about 0.25D, It is also possible to use a lens that is used indoors for use and used outdoors for reverse wear.
  • the eccentric position of the area center of the first frequency region or the second frequency region is not necessarily strictly limited to the radial line, and a slight deviation from the radial line can be allowed.
  • the present invention is not necessarily applicable only to soft contact lenses, and can of course be applied to hard contact lenses.
  • DIA outer diameter dimension
  • BC base curve
  • a rear optical part diameter 8 mm
  • a near optical part diameter 1 mm
  • a rectangle having a length of 1.5 mm and a width of 0.3 mm was formed in the peripheral portion by blue coloring as an index mark.
  • the decentration distance from the lens geometric center of the near optical part geometric center is determined from the lens geometric center of the near optical part geometric center for formal use as an optimum value for positioning the geometric center of the near optical part at the pupil center.
  • the eccentric distance is determined from the lens geometric center of the near optical part geometric center for formal use as an optimum value
  • an elliptical shape having a minor axis of 1.6 mm and a major axis of 2.0 mm was formed in the peripheral portion by blue coloring as an index mark.
  • the eccentric distance from the lens geometric center of the near optical part geometric center is the optimum value at which the geometric center of the near optical part is located at the pupil center, and the circumference where the index mark is located on the ear side in front view.
  • the direction position (hereinafter referred to as “wear 1”) and the wear 1 are turned upside down so that the index mark is decentered from the lens geometric center of the near-end optical part geometric center at the circumferential position where the index mark is positioned on the nose side. The distance.
  • FIGS. 11 (a) and 11 (b) show a front view in a state in which a contact lens as an example is fully worn, and a front view in a state in which a contact lens as a comparative example is worn in wear 1
  • FIG. FIGS. 4A and 4B show a front view in a state in which a contact lens as an example is reversely worn, and a front view in a state in which a contact lens as a comparative example is worn upside down with the wear 1.
  • the contact lenses as examples in FIGS. 11 and 12 are shown as contact lenses 10a and 10b respectively worn on the right eye and the left eye, and the contact lenses as comparative examples are shown on the right eye and the left eye.
  • the worn lenses are shown as contact lenses 100a and 100b, respectively.
  • portions corresponding to those of the first embodiment described above are denoted by the same reference numerals as those in the first embodiment.
  • Table 2 shows the distance from the pupil center: P of the lens geometric center axis 12 when the contact lenses 10a and 10b as the examples are forwardly worn and reversely worn, and the contact lenses 100a and 100b as comparative examples are worn 1
  • Table 3 shows the distance from the pupil center: P of the lens geometrical center axis 12 when wearing upside down and wearing 1.
  • the distance from the pupil center: P of the near-use area center 30 when the contact lenses 10a, 10b as the examples are mounted on the front and the back are shown in Table 4
  • the contact lenses 100a, 100b as the comparative examples are shown in Table 4.
  • Table 5 shows the distance from the pupil center: P of the near-use part area center 30 when wearing device 1 and wearing device 1 upside down.
  • the near part area center 30 is a geometric center of the near optical part 24.
  • the horizontal direction is ⁇ on the ear side and + on the nose side
  • the vertical direction is + on the upper side and ⁇ on the lower side.
  • the deviation amount of the near-field optical unit 24 with respect to the pupil center: P was worn in the comparative example 1 It can be obtained larger than the case.
  • the near optical unit 24 can be positioned at a position overlapping the pupil 52 and further below the nose as compared with the comparative example, and the bifocal effect by the near optical unit 24 and the far optical unit 26 can be achieved. It was confirmed that it can be exhibited more advantageously.
  • the lens geometric center 12 and the pupil center of the near-use part area center 30 are substantially different from the deviation amount from P:
  • the amount of deviation from the pupil center: P of the lens geometric center 12 and the near area area center 30 is changed more greatly in the case of normal wearing and the case of reverse wearing.
  • the near optical unit 24 can be positioned at a position farther from the pupil center: P than the comparative example, and the distance optical unit 26 is substantially It was confirmed that the same effect as the focus lens can be exhibited more advantageously.
  • Table 6 shows the results of measuring the tilt of the lens when the normal wearing and the reverse wearing of the example and the wearing 1 and the wearing 1 of the comparative example were reversed.
  • the tilt of the lens was 0 ° when the index mark 48 was horizontal, + for counterclockwise rotation for the right eye, and + for clockwise rotation for the left eye.
  • the left eye is biased in the + direction, that is, the near optical unit 24 is biased in the direction away from the lower nose of the pupil 52.
  • both the left and right sides are biased in the minus direction, that is, in the direction in which the near optical part 24 is located below the nose of the pupil 52.
  • the lens inclination is larger than that of the comparative example.
  • the addition power obtained at the time of lens wearing is measured in each of the case where the working example and the comparative example are worn with the normal wearing or wearing 1 on both eyes and the case where the wearing with both eyes is reversed or wearing 1 and reverse wearing.
  • Table 8 As can be seen from Table 8, when the embodiment is fully worn, a larger addition power, that is, a more effective near-field correction effect can be obtained than when the comparative example is worn with the wear 1.
  • the near-field correction effect is further suppressed as compared with the case where the comparative example is worn with the reverse wear 1 and the distance correction effect similar to that of a substantially single focus lens is obtained. Was confirmed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

 本発明の課題は、製造コストや管理コスト等の必要コストの低減を図ると共に、装用者の取扱性の向上を図ることの出来る、新規な構造のコンタクトレンズを提供することにある。  かかる課題を解決するために、本発明は、光学部14の幾何中心20に対して第二の度数領域24の面積中心30を対称経線22上で偏心位置せしめると共に、右眼に装用せしめた状態で該対称経線22と直交する直交経線34が該装用眼の上下方向線50に対して周方向で第一の傾斜角度だけ傾斜せしめられた第一の安定状態と、右眼への装用状態と上下反転させて左眼に装用せしめた状態で該直交経線34が該装用眼の上下方向線50に対して該第一の傾斜角度と周方向で反対側に第二の傾斜角度だけ傾斜せしめられた第二の安定状態とを周方向位置決め手段40,42、44,46によって選択的に設定可能にすると共に、レンズの向きを識別出来る視認可能な指標マーク48を設けた。

Description

傾斜装用型コンタクトレンズ
 本発明は、コンタクトレンズに係り、特に複数の度数領域を有する多焦点コンタクトレンズに関するものである。
 良く知られているように、例えば老視などの矯正には、第一の度数領域としての遠用領域と、遠用領域よりも高い加入度数を有する第二の度数領域としての近用領域の複数の度数領域を有するバイフォーカルレンズ等の多焦点コンタクトレンズが処方される。
 このような多焦点コンタクトレンズとして、例えば特許文献1(特開昭61-272717号公報)には、遠用領域と近用領域がレンズ幾何中心に対して同心円状に形成された多焦点コンタクトレンズが開示されている。ところが、瞳孔中心は角膜中心から僅かに鼻側に偏倚していることが知られている。それ故、レンズ幾何中心が瞳孔中心と一致することを想定してレンズ幾何中心から同心円状に遠用領域と近用領域を形成した特許文献1に記載の如き形状では、実際の装用時に両領域と瞳孔との位置関係が所期の位置に保たれなかったのであり、遠用視力と近用視力の何れに対しても、有効な矯正効果を得ることが出来なかった。
 そこで、本願出願人は、特許文献2(特開平6-289329号公報)において、近用領域をレンズ幾何中心から鼻側に偏倚させた多焦点コンタクトレンズを提案した。このようにすれば、近くを見る場合は視軸が鼻側に寄ることと巧く対応して、視軸とレンズ光軸を一致させることによって、近用視力と遠用視力の両方を効果的に矯正することが出来た。
 しかし、特許文献2に記載の如き多焦点コンタクトレンズにおいては、近用領域が装用者の左右方向のみならず上下方向にも偏倚している場合があることから、右眼用と左眼用の各別にレンズを提供する必要があって、左右の規格が追加的に必要であった。それ故、見込み生産によった場合には、多くの在庫を用意する必要があって、製造コストや管理コストの増加を招くおそれがあった。また、左右が同じ規格の装用者においても、左右のレンズを区別して取り扱う必要があった。
特開昭61-272717号公報 特開平6-289329号公報
 ここにおいて、本発明は上述の如き事情を背景として為されたものであって、その解決課題とするところは、製造コストや管理コスト等の必要コストの低減を図ると共に、装用者の取扱性の向上を図ることの出来る、新規な構造のコンタクトレンズを提供することにある。
 以下、前述の如き課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。
 すなわち、本発明の第一の態様は、レンズ中央部分に設けられた光学部に第一の度数領域と該第一の度数領域よりもプラス側に大きなレンズ度数を有する第二の度数領域を備えたコンタクトレンズにおいて、前記光学部の一つの径方向線である対称経線に関して線対称のレンズ形状とされていると共に、前記第一の度数領域および前記第二の度数領域の少なくとも一方の面積中心が該光学部の幾何中心に対して該対称経線上で偏心位置せしめられている一方、該対称経線に直交する直交経線が装用眼の上下方向線に対して所定角度傾斜したレンズ回転位置で装用状態におけるレンズ周方向の安定位置を与える周方向位置決め手段が設けられており、右眼に装用せしめた状態で該直交経線が該装用眼の上下方向線に対して周方向で第一の傾斜角度だけ傾斜せしめられた第一の安定状態と、右眼への装用状態と上下反転させて左眼に装用せしめた状態で該直交経線が該装用眼の上下方向線に対して該第一の傾斜角度と周方向で反対側に第二の傾斜角度だけ傾斜せしめられた第二の安定状態とが、該周方向位置決め手段によって設定可能とされていると共に、レンズ上下方向の向きに関して正位置と反転位置を識別出来る識別可能な指標マークが付されていることを特徴とする傾斜装用型コンタクトレンズにある。
 本態様に従う構造とされた傾斜装用型コンタクトレンズにおいては、装用者の鼻を挟んで略対称に第一の度数領域又は第二の度数領域を瞳孔中心に対して偏心位置せしめることが出来る。例えば、右眼に装用した第一の安定状態で第二の度数領域を装用者の鼻側に位置せしめた場合には、左眼に装用した第二の安定状態においても、第二の度数領域が装用者の鼻側に位置せしめられる。なお、本態様においてプラス側に大きなレンズ度数とは、ディオプタ値がプラス側に大きいことを言い、具体的には、例えば、第一の度数領域を-5Dとした場合、+1Dや0D、-3Dは何れもプラス側に大きいこととなる。
 従って、例えば本発明における傾斜装用型コンタクトレンズを老視矯正用のバイフォーカルレンズとして構成して、第一の度数領域を遠用光学部、第二の度数領域を近用光学部に設定した場合には、第一の傾斜角度および第二の傾斜角度を適当に調節することによって、左右眼何れに装用した場合でも近用光学部を装用者の鼻下側に位置せしめることが出来る。このように、本発明における傾斜装用型コンタクトレンズは、左右何れの眼に装用した場合でもそれに応じた好適な安定状態で安定位置せしめることが可能とされている。その結果、単一のレンズを左眼用と右眼用に共通して用いることが可能とされており、左右を区別してレンズを用意することが不要とされる。これにより、例えば見込み生産でレンズを提供する場合にも、在庫量を従来の半分にすることが出来て、製造や管理に要するコストを軽減することが出来る。
 さらに、本発明に従う構造とされた傾斜装用型コンタクトレンズは、必ずしも左右セットで提供される必要はないが、左右のセットにて提供されることによって、より優れた効果を発揮することが出来る。即ち、第一の安定状態で右眼に対する矯正効果が発揮されると共に、第二の安定状態で左眼に対する矯正効果が発揮される同一規格の傾斜装用型コンタクトレンズの一対をセットとして装用者に提供することによって、装用者は、これら一対のレンズの何れを装用した場合でも、右眼に装用した場合には右眼に好適な矯正効果が発揮されると共に、左眼に装用した場合には左眼に好適な矯正効果が発揮される。これにより、同一規格の一対のレンズによって左右両眼の矯正が可能となり、左右が同じ規格の装用者は、左右の別を意識することなくレンズを取り扱うことが出来て、取扱い性も向上せしめられる。
 なお、本発明に従う構造とされた傾斜装用型コンタクトレンズにおいては、第一の安定状態と第二の安定状態の2つの安定状態が発現せしめられることから、装用者は、右眼に装用した場合には第一の安定状態で、左眼に装用した場合には第二の安定状態で安定位置せしめられるように、レンズの周方向位置を意識して装用する必要がある。そこにおいて、本発明における傾斜装用型コンタクトレンズによれば、指標マークが付されていることから、レンズの周方向位置を容易に把握することが可能とされており、所望する安定状態で容易に装用することが可能とされている。
 本発明の第二の態様は、前記第一の態様に係る傾斜装用型コンタクトレンズにおいて、前記光学部の外周側に周辺部が設けられていると共に、該周辺部において、前記対称経線方向で該光学部を挟んだ両側に位置する部分に比して前記直交経線方向で該光学部を挟んだ両側に位置する部分が何れも薄肉とされたダブルスラブオフが付されており、該ダブルスラブオフの形状が前記対称経線に関して線対称とされると共に前記直交経線に関して非線対称とされることによって前記周方向位置決め手段が構成されていることを、特徴とする。
 本態様に従う構造とされた傾斜装用型コンタクトレンズにおいては、スラブオフを直交経線に関して非線対称形状とすることによって、装用眼の上下方向線に対して直交経線が傾斜した安定状態を安定して発現せしめることが出来る。それと共に、直交経線方向で光学部を挟んだ両側が薄肉とされたダブルスラブオフとされていることから、上下を反転させた2つの安定状態で安定位置せしめることが可能とされている。
 本発明の第三の態様は、前記第二の態様に係る傾斜装用型コンタクトレンズにおいて、前記ダブルスラブオフによって薄肉とされた一対の薄肉部の周方向両端部間に設けられて、前記対称経線方向で前記光学部を挟んだ両側に位置せしめられた一対の厚肉部の周方向長さが、相互に異ならされていることを、特徴とする。
 本態様に従う構造とされた傾斜装用型コンタクトレンズにおいては、光学部の両側で対称経線方向の重量バランスおよび眼瞼との接触によって及ぼされる作用力が異ならされる。これにより、直交経線が上下方向線に対して傾斜せしめられた第一および第二の安定状態を有利に発現せしめることが出来る。
 本発明の第四の態様は、前記第一乃至第三の態様に係る傾斜装用型コンタクトレンズにおいて、前記光学部の外周側に周辺部が設けられていると共に、該周辺部において、前記対称経線方向で該光学部を挟んだ一方の側に位置する部分に比して他方の側に位置する部分が厚肉とされていることによって前記周方向位置決め手段が構成されていることを、特徴とする。
 本態様に従う構造とされた傾斜装用型コンタクトレンズにおいては、対称経線方向で重量バランスが異ならされることによってバラスト効果が生ぜしめられる。これにより、直交経線が上下方向線に対して傾斜せしめられた第一および第二の安定状態を有利に発現せしめることが出来る。
 本発明の第五の態様は、前記第一乃至第四の何れか一つの態様に係る傾斜装用型コンタクトレンズにおいて、前記光学部の外周側に周辺部が設けられていると共に、該周辺部において着色と刻印の少なくとも一方による前記指標マークが付されていることを、特徴とする。本態様に従う構造とされた傾斜装用型コンタクトレンズにおいては、光学部から外れた周辺部に指標マークが付されていることから、指標マークが光学特性に影響を与えることが回避されており、第一および第二の安定状態の何れにおいても、良好な光学特性を得ることが出来る。
 本発明の第六の態様は、前記第一乃至第五の何れか一つの態様に係る傾斜装用型コンタクトレンズにおいて、前記光学部の幾何中心がレンズ幾何中心とされていることを、特徴とする。本態様によれば、第一および第二の何れの安定状態においても、光学部が瞳孔から外れるようなことが回避されて、安定した光学特性を得ることが出来る。
 本発明の第七の態様は、前記第一乃至第六の何れか一つの態様に係る傾斜装用型コンタクトレンズにおいて、前記第一の度数領域および前記第二の度数領域の少なくとも一方の面積中心における前記光学部の幾何中心に対する偏心距離が、前記対称経線の方向成分において0.4mm以上とされていることを、特徴とする。
 本態様に従う構造とされた傾斜装用型コンタクトレンズにおいては、第一又は第二の度数領域の光学部の幾何中心に対する相対位置を第一の安定状態と第二の安定状態で明確に異ならせることが出来る。即ち、かかる偏心距離が0.4mmよりも小さいと、第一の安定状態と第二の安定状態との間で第一又は第二の度数領域の光学部の幾何中心に対する相対位置の変化が小さくなって、二つの安定状態のそれぞれに応じた光学特性を発揮することが困難となる。
 本発明の第八の態様は、前記第一乃至第七の何れか一つの態様に係る傾斜装用型コンタクトレンズにおいて、角膜に重ね合わされるレンズ後面において、前記光学部の外周側に周辺部が設けられていると共に、該光学部の外径寸法がレンズ外径寸法の75%以下とされていることを、特徴とする。
 本態様に従う構造とされた傾斜装用型コンタクトレンズにおいては、第一の安定状態と第二の安定状態を何れも安定して発現することが出来る。即ち、光学部の外径寸法がレンズ外径寸法の75%よりも大きいと、装用時におけるレンズ幾何中心が角膜表面の定位置で安定し易くなって、第一の安定状態と第二の安定状態の2つの安定状態を安定して発現せしめることが困難となるおそれがある。
 具体的には、例えば、本発明の第九の態様として、前記第八の態様に係る傾斜装用型コンタクトレンズにおいて、ソフトコンタクトレンズであって、前記レンズ後面の前記光学部の外径寸法が10mm以下とされている態様が、好適に採用される。
 本発明の第十の態様は、前記第一乃至第九の何れか一つの態様に係る傾斜装用型コンタクトレンズにおいて、前記光学部における前記第二の度数領域に対して付加レンズ度数を与える付加度数面が、装用時に角膜に重ね合わされるレンズ後面に設定されていることを、特徴とする。
 本態様に従う構造とされた傾斜装用型コンタクトレンズにおいては、第一の度数領域と第二の度数領域との曲率の違いによって、角膜表面とレンズ後面との間に涙液を保持することが出来る。そして、保持された涙液を涙液レンズとして用いることによって、第一の度数領域と第二の度数領域の間での急激な光学特性の変化を軽減することが出来る。また、第一の度数領域と第二の度数領域と異なる複数の曲率を有するレンズ後面形状を成形型で形成することによって、優れた製造効率を得ることも出来る。
 本発明の第十一の態様は、前記第二乃至第十の何れか一つの態様に係る傾斜装用型コンタクトレンズにおいて、ソフトコンタクトレンズであって、装用時に角膜に重ね合わされるレンズ後面において前記ダブルスラブオフを与える薄肉面が設定されていることを、特徴とする。
 本態様に従う構造とされた傾斜装用型コンタクトレンズによれば、眼球への装用状態においてレンズが変形して角膜表面に沿うことによって、レンズ後面に形成されたダブルスラブオフがレンズ前面に現れる。これにより、眼瞼との相互作用によってレンズを第一の安定状態および第二の安定状態で位置決めすることが出来る。なお、本態様は、前記第十の態様と組み合わせて好適に用いられる。即ち、レンズ後面に付加度数面と薄肉面を形成すれば、かかる複雑なレンズ後面形状を成形型で形成することが可能となり、優れた製造効率を得ることが出来る。
 本発明の第十二の態様は、前記第一乃至第十一の何れか一つの態様に係る傾斜装用型コンタクトレンズにおいて、前記第一の安定状態又は前記第二の安定状態で装用された正装用と、正装用において装用眼の左右一方の側に位置せしめられた前記第一の度数領域又は前記第二の度数領域が装用眼の左右他方の側に位置せしめられる逆装用とが、前記周方向位置決め手段によって選択的に設定可能とされていることを、特徴とする。
 本態様に従う構造とされた傾斜装用型コンタクトレンズにおいては、例えば第一の度数領域を耳側に位置せしめた正装用と、第一の度数領域を鼻側に位置せしめた逆装用を選択して装用することが出来る。
 従って、例えば本態様における傾斜装用型コンタクトレンズを老視矯正用のバイフォーカルレンズとして構成して、第一の度数領域を遠用光学部、第二の度数領域を近用光学部に設定した場合には、同一の装用眼において、近用光学部が装用眼の鼻側に位置せしめられた正装用と、近用光学部が装用眼の耳側に位置せしめられた逆装用とを選択して装用することが出来る。これにより、正装用した場合には、近用光学部が装用者の鼻側に位置せしめられて瞳孔中心にかかり、遠用視力と近用視力の矯正が可能となる。一方、逆装用した場合には、近用光学部が瞳孔中心から外れた耳側に位置せしめられることによって、フレアの発生等も軽減された良好な遠用視力を得ることが出来る。即ち、本態様によれば、装用状態を変更することによって、(1)瞳孔中心におけるレンズ光学面の度数の変化(好ましくは、度数変化は0.25D以上)、(2)瞳孔におけるレンズ光学部の度数の配置の変化、(3)瞳孔における近用光学部と遠用光学部の投影面積比の変化(好ましくは、投影面積比の変化は10%以上)、の少なくとも1つが生ぜしめられるようになっている。これにより、正装用することによってバイフォーカル効果が得られると共に、逆装用することによって略単焦点効果を得ることが可能となり、それら異なる光学特性の何れをも有効に発揮せしめることが出来る。
 さらに、本態様に従う構造とされた傾斜装用型コンタクトレンズは、必ずしも左右セットで提供される必要はないが、左右のセットにて提供されることによって、より優れた効果を発揮することが出来る。即ち、装用者が使用環境に応じて左右それぞれのレンズの正装用と逆装用を選択的に組み合わせて使用することが可能となり、例えば、前記バイフォーカルレンズにおいて、左右両レンズを正装用すれば、両レンズによるバイフォーカル効果が得られる一方、左右両レンズを逆装用すれば、両レンズによる略単焦点効果を得ることが出来る。更には、優位眼に正装用、非優位眼に逆装用したり、優位眼に逆装用、非優位眼に正装用するなど、使用環境に応じて遠用視力と近用視力の矯正バランスを変化させることが出来る。これにより、モディファイトモノビジョン処方にも有効に用いることが出来る。
 そして、これら左右の正逆装用の組み合わせにより、本態様における傾斜装用型コンタクトレンズは、例えばバイフォーカルレンズを装用者に慣らす時間と手間を軽減することが出来る。即ち、例えば第一の度数領域を遠用光学部、第二の度数領域を近用光学部に設定して、両眼において近用光学部が耳側に位置せしめられる逆装用で遠用度数を決定すれば、遠用視力矯正用のコンタクトレンズとしての処方が完了する。そして、近用度数については、決定した遠用度数を有し、近用光学部のレンズ度数が少しずつ異ならされた本態様に従う構造とされた傾斜装用型コンタクトレンズを多数用意すると共に近用光学部が鼻側に位置せしめられる正装用で装用して、近用度数を徐々に変化させて生活環境の中で数日から数ヶ月単位で十分に慣らすことによって、最適な近用度数を決定又は設定することが出来る。
本発明の第一の実施形態としてのコンタクトレンズを示す正面説明図。 同コンタクトレンズの直交経線方向断面の一部をモデル的に示す説明図。 同コンタクトレンズの装用状態の組み合わせ例を示す説明図。 同コンタクトレンズの装用状態の異なる組み合わせ例を示す説明図。 同コンタクトレンズの装用状態の更に異なる組み合わせ例を示す説明図。 本発明の第二の実施形態としてのコンタクトレンズを示す正面説明図。 同コンタクトレンズの装用状態の組み合わせ例を示す説明図。 同コンタクトレンズの装用状態の異なる組み合わせ例を示す説明図。 本発明の第三の実施形態としてのコンタクトレンズを示す正面説明図。 本発明の第四の実施形態としてのコンタクトレンズを示す正面説明図。 実施例の正装用状態および比較例の装用1での装用状態を示す正面説明図。 実施例の逆装用状態および比較例の装用1と反転した装用状態を示す正面説明図。
符号の説明
10 コンタクトレンズ
12 レンズ幾何中心軸
14 光学部
16 周辺部
20 光学部幾何中心軸
22 対称経線
24 近用光学部
26 遠用光学部
30 近用部面積中心
32 遠用部面積中心
34 直交経線
40 スラブオフ領域
42 スラブオフ領域
44 厚肉部
46 厚肉部
48 指標マーク
 以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 先ず、図1に、本発明の第一の実施形態としての傾斜装用型コンタクトレンズに係るコンタクトレンズ10を示す。コンタクトレンズ10は、図1に示す正面視においてレンズ幾何中心軸12回りの回転体形状の外形を有する全体として略球殻形状とされており、眼球における角膜の表面に重ね合わせて装用されることによって使用されるようになっている。なお、図1および後述する図3乃至図10中の「N」および「D」は、それぞれ、近用光学部と遠用光学部の位置を容易に把握するために便宜上表示したものである。
 本実施形態におけるコンタクトレンズ10はソフトタイプのコンタクトレンズであり、その材料は何等限定されるものでなく、従来から公知のPHEMA(ポリヒドロキシエチルメタクリレート)やPVP(ポリビニルピロリドン)等の含水性材料の他、アクリルゴムやシリコン等の非含水性材料であっても良い。
 そして、コンタクトレンズ10は、同時視型の老視矯正用レンズであって、図示されたレンズ正面視において、矯正光学系としての光学部14が、レンズ幾何中心軸12上に広がる大きな円形状で形成されている。また、レンズ外周部分には、光学部14の周りを囲むようにして非光学領域としての周辺部16が、所定幅の円環帯形状をもってレンズ幾何中心軸12上に形成されている。更にまた、レンズ外周縁部には、コンタクトレンズ10の前後両面を滑らかに繋ぐエッジ部18が全周に亘って円環形状で形成されている。
 ここにおいて、光学部14は、その光学部幾何中心軸20がレンズ幾何中心軸12と一致せしめられている。更に、レンズ後面における光学部14の外径寸法は、レンズ外径寸法の75%以下とされており、具体的には、人間の角膜径の標準値以下の10mmφ以下とされることが好ましい。蓋し、光学部14の外径寸法がレンズ外径寸法の75%よりも大きいと、レンズが定位置で安定し易くなって、後述する第一の安定状態と第二の安定状態の2つの安定状態を得難くなるからである。
 さらに、光学部14は、3つの異なる焦点距離を備えた光学領域によって構成されている。先ず、その面積中心が光学部幾何中心軸20から光学部14の一つの径方向線である対称経線22上で偏心位置せしめられた小円形状の領域が、近方視認用に一定の焦点距離(即ち、レンズ度数)が設定された近用光学部24とされている。一方、近用光学部24の周りの光学部14における最外周部分の領域が、遠方視認用に一定の焦点距離(レンズ度数)が設定された遠用光学部26とされている。更に、近用光学部24と遠用光学部26の間の円環帯状の領域が移行部28とされている。
 近用光学部24は、近方視認のために遠用光学部26のレンズ度数に対して所定の付加度数が付与されたレンズ面とされている。これにより、近用光学部24のレンズ度数(ディオプタ値)は遠用光学部26のレンズ度数(ディオプタ値)に比してプラス側に大きくされており、本実施形態においては、遠用光学部26が第一の度数領域とされる一方、近用光学部24が第二の度数領域とされている。そして、移行部28において、近用光学部24のレンズ度数から遠用光学部26のレンズ度数まで径方向で次第に変化する焦点距離(レンズ度数)が設定されている。なお、移行部28としては、例えば、近用光学部24と遠用光学部26の間の所定の焦点距離(レンズ度数)が設定されていても良い。
 そこにおいて、近用光学部24の面積中心となる近用部面積中心30は、光学部14の対称経線22上で光学部幾何中心軸20に対して偏心位置せしめられている。なお、近用部面積中心30の光学部幾何中心軸20に対する偏心距離は、対称経線22の方向成分において0.4mm以上、より好ましくは0.6mm以上とされていることが好ましい。蓋し、近用部面積中心30の偏心距離が0.4mmよりも小さいと、後述する第一の安定状態と第二の安定状態との間で近用光学部24の瞳孔に対する相対位置に差異が生じ難くなると共に、近用光学部24を鼻下側に位置せしめ難くなるからである。一方、遠用光学部26の面積中心となる遠用部面積中心32は、対称経線22上で光学部幾何中心20を挟んで近用部面積中心30と反対側に偏心位置せしめられている。これにより、光学部14は対称経線22に関して線対称形状とされていると共に、対称経線22とレンズ幾何中心軸12上で直交する直交経線34に関して非線対称形状とされている。
 さらに、近用光学部24の付加レンズ強度を与える付加度数面は、装用時に角膜と重ね合わされることとなるレンズ後面に形成されており、本実施形態における光学部14は、略一定の曲率半径を有する凸状の略円弧形断面とされたレンズ前面36(図2参照)と協働して近用光学部24および遠用光学部26のレンズ度数を与える凸状の略円弧状断面がレンズ後面38(図2参照)に形成されている。これにより、本実施形態におけるコンタクトレンズ10は、眼球への装用時には角膜表面とレンズ後面38との間に涙液を保持することが出来て、かかる涙液によって形成される涙液レンズによって近用光学部24と遠用光学部26の間での急激なレンズ度数の変化が軽減されている。
 そして、周辺部16において、直交経線34方向で光学部14を挟んだ両側には、対称経線22方向で光学部14を挟んだ両側に位置する部分に比して薄肉とされた薄肉部としての一対のスラブオフ領域40、42が形成されおり、両スラブオフ領域40、42によってダブルスラブオフ構造が形成されている。特に本実施形態においては、両スラブオフ領域40,42は、対称経線22に関して対称形状とされる一方、直交経線34に関して非対称形状とされており、正面視において周方向端縁部の一方が他方に比してより対称経線22に接近せしめられた傾斜形状とされている。
 特に本実施形態においては、図2にスラブオフ領域40を例にモデル的に示すように、両スラブオフ領域40,42を与える薄肉面43はレンズ後面38に設定されている。そして、装用状態においてコンタクトレンズ10が角膜表面に沿うように変形せしめられることによって、レンズ後面38に設定された薄肉形状がレンズ前面36に現れるようにされている。
 また、スラブオフ領域40,42の周方向両端部間において対称経線22方向で光学部14を挟んだ両側には、スラブオフ領域40,42に比して厚肉とされた一対の厚肉部44,46が形成されている。これら厚肉部44,46の周方向長さ寸法は互いに異ならされている。換言すれば、一方の厚肉部44における周方向両端縁部間のレンズ幾何中心軸12回りの中心角:αと、他方の厚肉部46における周方向両端縁部間のレンズ幾何中心軸12回りの中心角:βが異ならされている。そこにおいて、厚肉部44の中心角:αと厚肉部46の中心角:βの差はレンズ幾何中心軸12回りで5~50度、より好ましくは10~40度とされていることが好ましい。蓋し、中心角:α、βの差が5度より小さいと、両厚肉部44、46の重量バランスおよび両厚肉部44,46に及ぼされる眼瞼の作用力が両厚肉部44、46間で略釣り合い状態となって、後述する直交経線34が傾斜した状態で安定しにくくなる一方、中心角:α、βの差が50度より大きいと、厚肉部44,46の周方向長さの大きい方によるバラスト効果が支配的となって一定の周方向位置で安定してしまい、後述する第一の安定状態と第二の安定状態の2つの安定状態を得難くなるおそれがあるからである。なお、厚肉部44,46の周方向長さ寸法は、要求されるレンズ傾斜角度等を考慮して、適宜に設定される。
 これにより、本実施形態におけるコンタクトレンズ10は、光学部14と周辺部16を含む全体として対称経線22に関して線対称形状とされる一方、近用光学部24がレンズ幾何中心軸12から偏心位置せしめられると共に、両スラブオフ領域40,42が傾斜形状とされていることによって、直交経線34に関して非線対称形状とされている。
 また、周辺部16における周方向の適当な位置には、視標マーク48が視認可能に設けられている。指標マーク48は、コンタクトレンズ10の周方向を視認するためのものであり、好ましくは、対称経線22乃至は直交経線34上のレンズ外周縁部に形成される。特に本実施形態においては、指標マーク48は、長軸が対称経線22上に延びる楕円形状とされており、レンズ幾何中心軸12を挟んで近用光学部24と反対側のレンズ外周縁部に形成されている。なお、指標マーク48は従来公知の手法で形成することが可能であり、着色や刻印が好適に採用される。また、指標マーク48の外観は何等限定されるものではなく、各種の図形や文字等が適宜に採用可能である。
 図3に、本実施形態におけるコンタクトレンズ10の左右眼への装用状態を示す。なお、図3および後述する図4、図5は本実施形態におけるコンタクトレンズ10を左右両眼にそれぞれ装用した正面視をモデル的に示すものであり、右眼に装用されたレンズ(図中、左側)をコンタクトレンズ10a,左眼に装用されたレンズ(図中、右側)をコンタクトレンズ10bとする。
 本実施形態におけるコンタクトレンズ10は、両スラブオフ領域40,42が直交経線34に関して非対称形状とされていること、および厚肉部44、46の周方向長さが異ならされていることから、眼瞼との相互作用および重量バランスが直交経線34を挟んだ左右両側で不均一とされる。その結果、眼球への装用時には、装用眼の上下方向線50に対して直交経線34がレンズ幾何中心軸12を中心として所定角度だけ傾斜せしめられた周方向位置で安定位置せしめられるようになっている。これにより、コンタクトレンズ10aを、指標マーク48を耳側に位置せしめて右眼に装用した場合には、眼の上下方向線50に対して直交経線34がレンズ幾何中心軸12を中心とした時計回りに第一の傾斜角度:γだけ傾斜した周方向位置で安定位置せしめられるようになっており、かかる位置が第一の安定状態とされる。一方、コンタクトレンズ10bを、右眼への装用方向と上下を反転せしめて、指標マーク48を耳側に位置せしめて左眼に装用した場合には、上下方向線50に対して直交経線34がレンズ幾何中心軸12を中心とした反時計回りに第二の傾斜角度:δだけ傾斜した周方向位置で安定位置せしめられるようになっており、かかる位置が第二の安定状態とされている。このように、本実施形態においては、両スラブオフ領域40,42および厚肉部44,46を含んで周方向位置決め手段が構成されている。そこにおいて、第一の傾斜角度:γと第二の傾斜角度:δは、互いに異ならされても良いし、等しくされても良い。
 そして、本実施形態におけるコンタクトレンズ10によれば、近用光学部24の面積中心が光学部幾何中心20から偏心位置せしめられていることから、右眼に第一の安定状態で装用されたコンタクトレンズ10a,左眼に第二の安定状態で装用されたコンタクトレンズ10bの何れにおいても、近用光学部24が瞳孔52と重なる鼻側に位置せしめられるようになっている。これにより、近方視時には瞳孔中心が鼻側に偏倚せしめられることと巧く対応して、近用光学部24を瞳孔52の中心:Pにかからせることが出来る。その結果、遠用視力と近用視力のバランスの取れたバイフォーカル効果を得ることが出来る。更に、瞳孔中心は、近方視時には鼻側で且つやや下方に偏倚することが知られており、特に本実施形態によれば、レンズが傾斜せしめられることによって、近用光学部24を鼻側で且つやや下方に偏倚せしめた状態で安定位置せしめることが可能とされており、瞳孔52に対してより好適に対応した位置で近用光学部24を安定位置せしめることが可能とされているのである。
 また、右眼に第一の安定状態および左眼に第二の安定状態で装用した場合においては、左右眼の何れにおいても、周方向寸法が大きく、眼瞼の押出作用が及ぼされ易い厚肉部44が耳側に位置せしめられている。これにより、眼瞼の押出作用によってコンタクトレンズ10a,10bに耳側へ向かう作用力が及ぼされると共に、強膜は角膜を挟んだ耳側の方が広いことから、かかる作用力によるコンタクトレンズ10の耳側への偏倚が許容され易く、左右眼に装用された両コンタクトレンズ10a,10bは、それぞれ、耳側へ僅かに偏倚せしめられる。その結果、近用光学部24を瞳孔52に対して更に好適な位置で近用光学部24を安定位置せしめることが出来る。
 なお、第一の安定状態および第二の安定状態を安定して発現せしめるためには、コンタクトレンズ10を予め近用光学部24を鼻側に位置せしめた周方向位置で眼球に装用することが好ましい。そのためには、装用者において近用光学部24の位置を把握する必要があるが、本実施形態によれば、対称経線22方向で近用光学部24と反対側に指標マーク48が形成されていることから、例えば右眼に第一の安定状態で装用されたレンズ上下方向の向きを正位置とすれば、正面視において指標マーク48が左側に位置せしめられたレンズ上下方向の向きが正位置であり、指標マーク48が右側に位置せしめられたレンズ上下方向の向きが、正位置と上下反転された反転位置であることが識別可能とされている。従って、指標マーク48を耳側に位置せしめた周方向位置(本実施形態においては、右眼に正位置、左眼に反転位置)で眼球に装用すれば、左右眼の何れにおいても近用光学部24を鼻側に位置せしめることが出来て、第一および第二の安定状態を安定して発現せしめることが出来る。
 このような構造とされたコンタクトレンズ10においては、光学部14と周辺部16を含む全体として対称経線22に関して対称形状とされていると共に、直交経線34に関して非対称形状とされた特定形状を有するスラブオフ領域40,42および厚肉部44,46を採用したことによって、所定の傾斜角度:γ、δだけ傾斜せしめられた第一の安定状態と第二の安定状態を設定することが可能とされている。これにより、左右何れの眼に装用した場合でも、近用光学部24を装用者の鼻側で且つ下側に位置せしめることが可能とされている。その結果、本実施形態におけるコンタクトレンズ10によれば、左眼用と右眼用を区別してレンズを用意することが不要とされており、製造や管理に要するコストを軽減することが出来る。
 特に、一つのレンズを左右両眼に用いることが出来ることから、第一の安定状態で右眼に対する矯正効果が発揮されると共に、第二の安定状態で左眼に対する矯正効果が発揮される同一規格のレンズの一対を処方することが出来る。このようにすれば、左右が同じ規格の装用者は左右の区別を意識することなくレンズを取り扱うことが出来て、取扱い性も向上せしめられる。
 なお、本実施形態におけるコンタクトレンズ10は、同一の装用眼に対して、上下を反転させて装用することによって、2つの装用状態を設定することが出来る。即ち、図3に示した、近用光学部24が鼻側に位置せしめられた第一および第二の安定状態を正装用とすると、図4に示すように、それぞれのコンタクトレンズ10a,10bを同一の装用眼に対して正装用と上下を反転させて装用した逆装用状態を設定することが出来る。
 そこにおいて、本実施形態におけるコンタクトレンズ10は、スラブオフ領域40,42が傾斜せしめられていることから、右眼に逆装用した場合には、上下方向線50に対して、径方向線34が第一の傾斜角度:γとは反対の傾斜方向となる反時計回りに所定の傾斜角度:γだけ傾斜した周方向位置で安定位置せしめられる。一方、左眼に逆装用した場合には、上下方向線50に対して、径方向線34が第二の傾斜角度:δとは反対の傾斜方向となる時計回りに所定の傾斜角度:δだけ傾斜した周方向位置で安定位置せしめられる。なお、第一の傾斜角度:γと所定の傾斜角度:γ、および第二の傾斜角度:δと所定の傾斜角度:δは、互いに異ならされても良いし、等しくされても良い。
 そして、本実施形態におけるコンタクトレンズ10は、近用光学部24が光学部幾何中心軸20から偏心位置せしめられていることから、右眼に逆装用されたコンタクトレンズ10a,左眼に逆装用されたコンタクトレンズ10bの何れにおいても、近用光学部24が耳側に位置せしめられるようになっている。これにより、近用光学部24が瞳孔52の中心:Pから外れ、遠用光学部26による略単焦点レンズと同様の効果と若干の近用の矯正効果を得ることが出来る。更に、フレアの発生も大幅に軽減することが可能となり、例えば夜間のドライブ時などに好適に採用することが出来る。
 また、本実施形態におけるコンタクトレンズ10は、必ずしも左右一対で提供される必要は無いが、左右一対で提供されて、左右両眼のそれぞれにおいて、正装用と逆装用を組み合わせて用いることによって、使用状況に応じた適切な矯正効果を得ることが出来る。即ち、図3に示したように、左右両眼に正装用すれば、良好なバイフォーカル効果が得られる一方、図4に示したように、左右両眼に逆装用すれば、略単焦点レンズと同様の遠用矯正効果を得ることが出来る。更に、図5に例示するように、右眼に対して正装用、左眼に対して逆装用することなども可能である。このようにすれば、右眼は近用光学部24が瞳孔52の中心:Pにかかり、遠用視力と近用視力が得られる一方、左眼は近用光学部24が瞳孔52の中心:Pから外れることによって単焦点レンズと略同様の遠用矯正効果を得ることが出来る。これにより、モディファイトモノビジョン処方に好適に用いることが出来る。
 次に、図6に、本発明の第二の実施形態としての傾斜装用型コンタクトレンズに係るコンタクトレンズ60を示す。なお、以下の説明において、前述の第一の実施形態と同様の構造とされた部材および部位については、図中に第一の実施形態と同一の符号を付することにより、その詳細な説明を省略する。
 コンタクトレンズ60は、前述の第一の実施形態と同様の同時視型のコンタクトレンズとされており、その光学部14には、近用光学部24、遠用光学部26、および移行部28が形成されていると共に、近用部面積中心30および遠用部面積中心32が径方向線22上で光学部幾何中心軸20から偏心位置せしめられている。特に本実施形態においては、近用光学部24が第一の実施形態に比してやや大きく形成されており、光学部幾何中心軸20に至る大きさを有している。
 そして、直交経線34方向で光学部14を挟んだ両側には、対称経線22方向で光学部14を挟んだ両側に比して薄肉とされた薄肉部としてのスラブオフ領域62,64が形成されている。特に本実施形態においては、両スラブオフ領域62、64は、径方向線22に関して対称形状とされていると共に、直交経線34に関しても線対称形状とされている。
 さらに、周辺部16において対称経線22方向で光学部14を挟んだ一方の側(本実施形態においては、図6中、左側)における両スラブオフ領域62,64の間には、周辺部16の径方向略中間部分からレンズ外周縁部にかけて、レンズの厚さ寸法が小さくされた軽量部66が形成されている。これにより、周辺部16において対称経線22方向で光学部14を挟んだ軽量部66と反対側(図6中、右側)の部位には、軽量部66よりもレンズの厚さ寸法が大きくされた重量部68が形成されている。ここにおいて、軽量部66と重量部68の平均厚さ寸法の差は、レンズ半径方向で0.01~0.15mm、より好ましくは、0.05~0.10mmの範囲内で設定されることが好ましい。蓋し、平均厚さ寸法の差が0.01mmよりも小さいと、軽量部66と重量部68の重量の差が小さく、両部66,68が釣り合い状態となって直交経線34を傾斜せしめた周方向位置で安定せしめることが困難となる一方、平均厚さ寸法の差が0.15mmよりも大きいと、重量部68の重量が軽量部66に比して大きくなり過ぎて、単一の周方向位置で安定し易く、第一の安定状態と第二の安定状態の2つの周方向安定状態を選択的に設定することが困難となるおそれがあるからである。
 また、周辺部16において、軽量部66が形成された領域には、指標マーク70が形成されている。指標マーク70は、対称経線22方向で、光学部14の外周縁部とレンズ外周縁部の略中間部分を直交経線34と平行に延びる境界線とレンズ外周縁部によって囲まれる領域が着色により塗り潰されて形成されている。なお、図中においては、指標マーク70と重なる軽量部66の形状を示すために、指標マーク70の形成領域を斜線で示す。
 本実施形態におけるコンタクトレンズ60は、両スラブオフ領域62,64および重量部68を含んで周方向位置決め手段が構成されている。これにより、例えば図7に示すように、右眼に装用した状態で、上下方向線50に対して時計回りに第一の傾斜角度:εだけ傾斜せしめられた第一の安定状態で安定位置せしめられる一方、左眼に装用した状態で、上下方向線50に対して反時計回りに第二の傾斜角度:θだけ傾斜せしめられた第二の安定状態で安定位置せしめられる。その結果、左右眼いずれに装用した場合でも、近用光学部24を鼻側且つ下方に位置せしめることが出来て、良好なバイフォーカル効果を得ることが出来る。なお、第一の傾斜角度:εと第二の傾斜角度:θは、互いに異ならされても良いし、等しくされても良い。
 そして、本実施形態におけるコンタクトレンズ60においても、第一および第二の安定状態で装用された正装用に対して、上下を反転させた逆装用で装用することも可能である。例えば、図8に示すように、右眼に逆装用した場合には、上下方向線50に対して、径方向線34が第一の傾斜角度:εとは反対の傾斜方向となる半時計回りに所定の傾斜角度:εだけ傾斜した周方向位置で安定位置せしめられる。一方、左眼に逆装用した場合には、上下方向線50に対して、径方向線34が第二の傾斜角度:θとは反対の傾斜方向となる時計回りに所定の傾斜角度:θだけ傾斜した周方向位置で安定位置せしめられる。これにより、左右眼に装用されたコンタクトレンズ60a,60bの何れにおいても、近用光学部24が瞳孔52の中心:Pから外れることによって、遠用光学部26による略単焦点レンズと同様の効果を得ることが出来る。なお、第一の傾斜角度:εと所定の傾斜角度:ε、および第二の傾斜角度:θと所定の傾斜角度:θは、互いに異ならされても良いし、等しくされても良い。更に、図示は省略するが、第一の実施形態と同様に、左右眼のそれぞれにおいて、正装用と逆装用を組み合わせて装用することも可能であって、例えば右眼に正装用、左眼に逆装用することによって、モディファイトモノビジョン処方に好適に用いることなども出来る。
 このように、本実施形態においても、左眼用と右眼用を区別してレンズを用意することが不要とされており、製造や管理に要するコストを軽減することが出来る。そして、本実施形態から明らかなように、レンズ周方向の安定位置を与える周方向位置決め手段の具体的構造は特に限定されるものではない。
 次に、図9に、本発明の第三の実施形態としての傾斜装用型コンタクトレンズに係るコンタクトレンズ80を示す。コンタクトレンズ80は、前述の第一の実施形態におけるコンタクトレンズ10の近用光学部24と遠用光学部26が、その正面視における外形を等しくして入れ替えたものであり、本実施形態においては、正面視において小円形状とされた遠用光学部82の周りに近用光学部84が形成されており、これら遠用光学部82と近用光学部84の間に移行部86が形成されている。本実施形態から明らかなように、第一の度数領域(本実施形態における遠用光学部82)と第二の度数領域(本実施形態における近用光学部84)の面積比は何等限定されるものではなく、第一および第二の度数領域の何れが大きくても良いし、小さくても良い。或いは、第一および第二の度数領域の面積が互いに等しくされても良い。
 さらに、図10に、本発明の第四の実施形態としての傾斜装用型コンタクトレンズに係るコンタクトレンズ90を示す。本実施形態においては、光学部幾何中心軸20が、対称経線22上でレンズ幾何中心軸12から偏心位置せしめられている。このように、光学部14は、装用上で問題とならない程度にレンズ幾何中心軸12から偏心位置せしめられても良い。
 以上、本発明の幾つかの実施形態について詳述してきたが、これらはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものではない。
 例えば、本発明は、2焦点を有するバイフォーカル、2焦点よりも多焦点を有するマルチフォーカルや累進多焦点レンズの何れに適用することも可能である。また、第一の度数領域と第二の度数領域の境界は明確である必要はなく、例えば累進多焦点レンズの場合には、レンズ度数の最大値と最小値の中間値に関して、該中間値より小さい度数領域が第一の度数領域、大きい度数領域が第二の度数領域とされる。従って、本発明は、必ずしも老視矯正に用いられる遠近両用のレンズにのみ適用されるものではなく、例えば第一の度数領域と第二の度数領域の度数差が0.25D程度と小さく、正装用で屋内用として用い、逆装用で屋外用として用いるレンズとすること等も可能である。
 また、第一の度数領域又は第二の度数領域の面積中心の偏心位置は、必ずしも厳密に径方向線上に限定されるものではなく、径方向線からの多少のずれは許容され得る。
 更にまた、本発明は、必ずしもソフトコンタクトレンズにのみ適用され得るものではなく、ハードコンタクトレンズに適用することも、勿論可能である。
 なお、本発明に従う構造とされた傾斜装用型コンタクトレンズの安定位置および矯正効果を確認するために行なった試験結果を、以下に示す。
 先ず、実施例としての前述の第一の実施形態と略同様の構造とされた傾斜装用型コンタクトレンズと、比較例としての従来構造に従うコンタクトレンズを被検者Aに用意した。これらは何れも、外径寸法(DIA)=14.2mm、ベースカーブ(B.C.)=8.60mm、後面光学部直径=8mm、近用光学部直径=1mm、レンズ度数移行部幅=0.5mm、中心厚さ=0.10mm、周辺部における厚肉部の平均厚さ=0.40mm、周辺部における薄肉部の平均厚さ=0.13mmの含水率72%のソフトコンタクトレンズを用いた。
Figure JPOXMLDOC01-appb-T000001
 そして、実施例および比較例として、上述の如きソフトコンタクトレンズに対して、被検者Aの左右両眼に遠視矯正力を与える表1に示す遠用度数を付与すると共に、何れのレンズにも一律の+1.5Dの付加度数を付与した。なお、表1における調節力とは、調節を休止している状態での網膜共役点である調節遠点と、調節を最大限働かせたときの網膜共役点である調節近点までの調節域をレンズの屈折力で表したものである。
 さらに、実施例としての傾斜装用型コンタクトレンズは、一方の厚肉部の中心角(前記第一の実施形態としてのコンタクトレンズ10における厚肉部44の中心角:α)=50°、他方の厚肉部の中心角(前記第一の実施形態としてのコンタクトレンズ10における厚肉部46の中心角:β)=10°、右眼用のレンズにおける近用光学部幾何中心とレンズ幾何中心の偏心距離=1.0mm、左眼用のレンズにおける近用光学部幾何中心とレンズ幾何中心の偏心距離=0.8mmとした。また、周辺部には、指標マークとして、長さ1.5mm、幅0.3mmの長方形を青色の着色によって形成した。なお、近用光学部幾何中心のレンズ幾何中心からの偏心距離は、近用光学部の幾何中心が瞳孔中心に位置せしめられる最適値として、正装用における近用光学部幾何中心のレンズ幾何中心からの偏心距離とした。
 一方、比較例としての従来構造に従うコンタクトレンズは、両方の厚肉部の中心角(前記第一の実施形態としてのコンタクトレンズ10における厚肉部44および厚肉部46の中心角:α、β)を何れも30°、右眼用のレンズにおける近用光学部幾何中心とレンズ幾何中心の偏心距離=0.4mm、左眼用のレンズにおける近用光学部幾何中心とレンズ幾何中心の偏心距離=0.5mmとした。また、周辺部には、指標マークとして、短径1.6mm、長径2.0mmの楕円形状を青色の着色によって形成した。なお、近用光学部幾何中心のレンズ幾何中心からの偏心距離は、近用光学部の幾何中心が瞳孔中心に位置せしめられる最適値として、指標マークが正面視において耳側に位置せしめられた周方向位置(以下、装用1とする)と、装用1を上下反転させて、指標マークが正面視において鼻側に位置せしめられた周方向位置における近用光学部幾何中心のレンズ幾何中心からの偏心距離とした。
 図11(a),(b)に、実施例としてのコンタクトレンズを正装用した状態の正面視と、比較例としてのコンタクトレンズを装用1で装用した状態の正面視を示すと共に、図12(a),(b)に、実施例としてのコンタクトレンズを逆装用した状態の正面視と、比較例としてのコンタクトレンズを装用1と上下を反転して装用した状態の正面視を示す。なお、図11および図12における実施例としてのコンタクトレンズは右眼および左眼に装用されたものをそれぞれコンタクトレンズ10a、10bとして図示すると共に、比較例としてのコンタクトレンズは右眼および左眼に装用されたものをそれぞれコンタクトレンズ100a、100bとして図示する。更に、図11および図12に示すコンタクトレンズ10a,10b、100a,100bにおいて前述の第一の実施形態と対応する部位には、第一の実施形態と同一の符号を付する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 これら実施例としてのコンタクトレンズ10a,10bを正装用および逆装用した場合におけるレンズ幾何中心軸12の瞳孔中心:Pからの距離を表2に示し、比較例としてのコンタクトレンズ100a,100bを装用1および装用1と上下反転装用した場合におけるレンズ幾何中心軸12の瞳孔中心:Pからの距離を表3に示す。また、実施例としてのコンタクトレンズ10a,10bを正装用および逆装用した場合における近用部面積中心30の瞳孔中心:Pからの距離を表4に示し、比較例としてのコンタクトレンズ100a,100bを装用1および装用1と上下反転装用した場合における近用部面積中心30の瞳孔中心:Pからの距離を表5に示す。なお、本実施例および比較例における近用光学部24は正面視において円形状とされていることから、近用部面積中心30は近用光学部24の幾何中心となる。また、表2乃至表5における水平方向は耳側を-,鼻側を+とすると共に、垂直方向は上方を+、下方を-とした。
 これら図11、図12および表2乃至表5から明らかなように、実施例を正装用した場合には、瞳孔中心:Pに対する近用光学部24の偏倚量を比較例を装用1で装用した場合に比してより大きく得ることが出来る。これにより、近用光学部24を瞳孔52と重なる位置で且つ比較例に比してより鼻下側に位置せしめることが出来て、近用光学部24と遠用光学部26によるバイフォーカル効果がより有利に発揮され得ることが確認された。
 さらに、比較例は装用1の場合と装用1を反転装用した場合において、レンズ幾何中心12および近用部面積中心30の瞳孔中心:Pからの偏倚量に殆ど差異が無いのに比して、実施例によれば、正装用の場合と逆装用の場合において、レンズ幾何中心12および近用部面積中心30の瞳孔中心:Pからの偏倚量がより大きく変化せしめられている。これにより、実施例を逆装用した場合には、比較例に比して近用光学部24を瞳孔中心:Pからより離れた位置に位置せしめることが出来て、遠用光学部26による略単焦点レンズと同様の効果がより有利に発揮され得ることが確認された。
Figure JPOXMLDOC01-appb-T000006
 さらに、実施例の正装用と逆装用、および比較例の装用1と装用1を反転装用した場合におけるレンズの傾きを測定した結果を、表6に示す。なお、レンズの傾きは、指標マーク48が水平になる状態を0°とし、右眼については反時計回りを+、左眼については時計回りを+とした。
 表6から明らかなように、比較例については装用1の場合に左眼が+方向、即ち、近用光学部24が瞳孔52の鼻下側から離隔する方向に偏倚せしめられるのに比して、実施例によれば、正装用の場合には、左右何れもマイナス方向、即ち、近用光学部24が瞳孔52の鼻下側に位置する方向に偏倚せしめられている。また、実施例を正装用した場合には、比較例に比してレンズ傾きも大きい。これにより、実施例によれば、正装用することによってより好適に近用光学部24を瞳孔52の鼻下側に位置せしめられることが確認された。
Figure JPOXMLDOC01-appb-T000007
 また、実施例および比較例を両眼に正装用乃至は装用1で装用した場合と、両眼に逆装用乃至は装用1と反転装用した場合のそれぞれにおける遠用の見え方と近用の見え方を被検者の自覚により評価した結果を、表7に示す。なお、見え方は、0~10の11段階で評価し、10を最良とした。
 表7から明らかなように、実施例を正装用した場合には、比較例を装用1で装用した場合に比して遠用矯正効果と近用矯正効果の何れもがより有効に発揮されて、遠用と近用のバランスの取れた矯正が行なわれる一方、実施例を逆装用した場合には、比較例を装用1と反転装用した場合に比して遠用矯正効果がより増加せしめられると共に近用矯正効果がより低減されて、単焦点レンズと略同様の遠用矯正効果が得られることが確認された。
Figure JPOXMLDOC01-appb-T000008
 さらに、実施例および比較例を両眼に正装用乃至は装用1で装用した場合と、両眼に逆装用乃至は装用1と反転装用した場合のそれぞれにおいて、レンズ装用時に得られる加入度数を測定した結果を、表8に示す。表8から明らかなように、実施例を正装用した場合には、比較例を装用1で装用した場合に比して、より大きな加入度数、即ち、より有効な近用矯正効果が得られる一方、実施例を逆装用した場合には、比較例を装用1と反転装用した場合に比して近用矯正効果がより抑えられて、略単焦点レンズと同様の遠用矯正効果が得られることが確認された。

Claims (12)

  1.  レンズ中央部分に設けられた光学部に第一の度数領域と該第一の度数領域よりもプラス側に大きなレンズ度数を有する第二の度数領域を備えたコンタクトレンズにおいて、
     前記光学部の一つの径方向線である対称経線に関して線対称のレンズ形状とされていると共に、前記第一の度数領域および前記第二の度数領域の少なくとも一方の面積中心が該光学部の幾何中心に対して該対称経線上で偏心位置せしめられている一方、該対称経線に直交する直交経線が装用眼の上下方向線に対して所定角度傾斜したレンズ回転位置で装用状態におけるレンズ周方向の安定位置を与える周方向位置決め手段が設けられており、右眼に装用せしめた状態で該直交経線が該装用眼の上下方向線に対して周方向で第一の傾斜角度だけ傾斜せしめられた第一の安定状態と、右眼への装用状態と上下反転させて左眼に装用せしめた状態で該直交経線が該装用眼の上下方向線に対して該第一の傾斜角度と周方向で反対側に第二の傾斜角度だけ傾斜せしめられた第二の安定状態とが、該周方向位置決め手段によって設定可能とされていると共に、レンズ上下方向の向きに関して正位置と反転位置を識別出来る識別可能な指標マークが付されていることを特徴とする傾斜装用型コンタクトレンズ。
  2.  前記光学部の外周側に周辺部が設けられていると共に、該周辺部において、前記対称経線方向で該光学部を挟んだ両側に位置する部分に比して前記直交経線方向で該光学部を挟んだ両側に位置する部分が何れも薄肉とされたダブルスラブオフが付されており、該ダブルスラブオフの形状が前記対称経線に関して線対称とされると共に前記直交経線に関して非線対称とされることによって前記周方向位置決め手段が構成されている請求項1に記載の傾斜装用型コンタクトレンズ。
  3.  前記ダブルスラブオフによって薄肉とされた一対の薄肉部の周方向両端部間に設けられて、前記対称経線方向で前記光学部を挟んだ両側に位置せしめられた一対の厚肉部の周方向長さが、相互に異ならされている請求項2に記載の傾斜装用型コンタクトレンズ。
  4.  前記光学部の外周側に周辺部が設けられていると共に、該周辺部において、前記対称経線方向で該光学部を挟んだ一方の側に位置する部分に比して他方の側に位置する部分が厚肉とされていることによって前記周方向位置決め手段が構成されている請求項1乃至3の何れか一項に記載の傾斜装用型コンタクトレンズ。
  5.  前記光学部の外周側に周辺部が設けられていると共に、該周辺部において着色と刻印の少なくとも一方による前記指標マークが付されている請求項1乃至4の何れか一項に記載の傾斜装用型コンタクトレンズ。
  6.  前記光学部の幾何中心がレンズ幾何中心とされている請求項1乃至5の何れか一項に記載の傾斜装用型コンタクトレンズ。
  7.  前記第一の度数領域および前記第二の度数領域の少なくとも一方の面積中心における前記光学部の幾何中心に対する偏心距離が、前記対称経線の方向成分において0.4mm以上とされている請求項1乃至6の何れか一項に記載の傾斜装用型コンタクトレンズ。
  8.  角膜に重ね合わされるレンズ後面において、前記光学部の外周側に周辺部が設けられていると共に、該光学部の外径寸法がレンズ外径寸法の75%以下とされている請求項1乃至7の何れか一項に記載の傾斜装用型コンタクトレンズ。
  9.  ソフトコンタクトレンズであって、前記レンズ後面の前記光学部の外径寸法が10mm以下とされている請求項8に記載の傾斜装用型コンタクトレンズ。
  10.  前記光学部における前記第二の度数領域に対して付加レンズ度数を与える付加度数面が、装用時に角膜に重ね合わされるレンズ後面に設定されている請求項1乃至9の何れか一項に記載の傾斜装用型コンタクトレンズ。
  11.  ソフトコンタクトレンズであって、装用時に角膜に重ね合わされるレンズ後面において前記ダブルスラブオフを与える薄肉面が設定されている請求項2乃至10の何れか一項に記載の傾斜装用型コンタクトレンズ。
  12.  前記第一の安定状態又は前記第二の安定状態で装用された正装用と、正装用において装用眼の左右一方の側に位置せしめられた前記第一の度数領域又は前記第二の度数領域が装用眼の左右他方の側に位置せしめられる逆装用とが、前記周方向位置決め手段によって選択的に設定可能とされている請求項1乃至11の何れか一項に記載の傾斜装用型コンタクトレンズ。
PCT/JP2008/000084 2008-01-24 2008-01-24 傾斜装用型コンタクトレンズ WO2009093286A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08702825.4A EP2239617B1 (en) 2008-01-24 2008-01-24 Tilt-wearing type contact lens
US12/863,458 US8192020B2 (en) 2008-01-24 2008-01-24 Tilted-wear type contact lens
PCT/JP2008/000084 WO2009093286A1 (ja) 2008-01-24 2008-01-24 傾斜装用型コンタクトレンズ
JP2009548518A JP4442927B2 (ja) 2008-01-24 2008-01-24 傾斜装用型コンタクトレンズ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000084 WO2009093286A1 (ja) 2008-01-24 2008-01-24 傾斜装用型コンタクトレンズ

Publications (1)

Publication Number Publication Date
WO2009093286A1 true WO2009093286A1 (ja) 2009-07-30

Family

ID=40900807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000084 WO2009093286A1 (ja) 2008-01-24 2008-01-24 傾斜装用型コンタクトレンズ

Country Status (4)

Country Link
US (1) US8192020B2 (ja)
EP (1) EP2239617B1 (ja)
JP (1) JP4442927B2 (ja)
WO (1) WO2009093286A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513792A (ja) * 2008-03-04 2011-04-28 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 回転的に安定化されたコンタクトレンズ及びその設計方法
EP2622403A1 (en) * 2010-09-27 2013-08-07 Johnson & Johnson Vision Care Inc. Translating presbyopic contact lens
JP5525115B1 (ja) * 2012-12-14 2014-06-18 株式会社メニコン コンタクトレンズ
JP2017045077A (ja) * 2011-08-26 2017-03-02 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 並進型老眼用コンタクトレンズ対

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150015046A (ko) * 2006-10-10 2015-02-09 노파르티스 아게 광학적으로 조절되는 주변 부분을 갖는 렌즈 및 상기 렌즈의 설계 및 제조 방법
CA2719421A1 (en) * 2008-04-18 2009-10-22 Novartis Ag Myopia control means
CN103257458B (zh) * 2008-08-11 2015-02-11 诺瓦提斯公司 用于防止或延缓近视发展的透镜设计和方法
US20100157240A1 (en) * 2008-12-19 2010-06-24 Schmid Gregor F Correction of peripheral defocus of an eye and control of refractive error development
TWI588560B (zh) 2012-04-05 2017-06-21 布萊恩荷登視覺協會 用於屈光不正之鏡片、裝置、方法及系統
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
SG11201502115RA (en) 2012-10-17 2015-05-28 Holden Brien Vision Inst Lenses, devices, methods and systems for refractive error
US10534197B2 (en) 2012-12-21 2020-01-14 Eyeprint Prosthetics Llc Prosthetic lenses and methods of making the same
US10852564B2 (en) * 2012-12-21 2020-12-01 Eyeprint Prosthetics Llc Prosthetic lenses and methods of making the same
US10928653B2 (en) 2012-12-21 2021-02-23 Eyeprint Prosthetics Llc Prosthetic lenses and methods of making the same
US10444542B2 (en) * 2014-03-04 2019-10-15 Menicon Co., Ltd. Decentered type contact lens and decentered type contact lens set
US9709822B2 (en) 2015-03-11 2017-07-18 Vance M. Thompson Orthokeratology lens with displaced shaping zone
US10786959B2 (en) * 2016-07-18 2020-09-29 Johnson & Johnson Vision Care, Inc Mold for contact lens with non-rotationally symmetric rim or edge
GB2615863B (en) * 2021-12-21 2024-05-22 Coopervision Int Ltd Contact lenses and methods relating thereto
WO2023147471A1 (en) * 2022-01-28 2023-08-03 Ohio State Innovation Foundation Contact lens comprising an optical zone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272717A (ja) 1985-05-03 1986-12-03 ザ、クーパー、カンパニーズ、インコ. 同心二重焦点コンタクトレンズで老眼を矯正する方法
JPH0279015A (ja) * 1988-09-14 1990-03-19 Seiko Epson Corp バイフォーカルコンタクトレンズ
JPH06289329A (ja) 1993-03-31 1994-10-18 Menicon Co Ltd 老視用コンタクトレンズ
JPH08262377A (ja) * 1995-03-15 1996-10-11 Ciba Geigy Ag 回転に関して安定させたコンタクトレンズ及びレンズ安定化の方法
JPH11174388A (ja) * 1997-12-12 1999-07-02 Hoya Health Care Kk トーリックコンタクトレンズ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1426491A (fr) * 1965-02-13 1966-01-28 Nouvelle lentille cornéenne
US4268133A (en) 1978-07-14 1981-05-19 Bausch & Lomb Incorporated Preferential orientation of contact lenses
DE3222099C2 (de) 1982-06-11 1984-06-20 Titmus Eurocon Kontaktlinsen Gmbh & Co Kg, 8750 Aschaffenburg Bifokale Kontaktlinse vom bivisuellen Typ
US5062701A (en) * 1988-06-07 1991-11-05 Wesley-Jessen Corporation Asymmetric contact lens
US5151723A (en) 1989-04-11 1992-09-29 Akira Tajiri Multifocal contact lens
GB9008582D0 (en) 1990-04-17 1990-06-13 Pilkington Diffractive Lenses Method and contact lenses for treating presbyobia
US5422687A (en) 1993-03-31 1995-06-06 Menicon Co., Ltd. Contact lens wherein central correction region has a center 0.2-2.4mm offset from lens geometric center and a diameter of 0.8-3.5mm
US6260966B1 (en) * 1998-03-11 2001-07-17 Menicon Co. Ltd. Multifocal ocular lens
JP4023902B2 (ja) 1998-04-10 2007-12-19 株式会社メニコン トーリック・マルチフォーカルレンズ
JP2002522803A (ja) * 1998-08-06 2002-07-23 ジョン ビー ダブリュー レット 多焦点非球面レンズ
US6896368B2 (en) 2003-05-07 2005-05-24 Thomas K. Baugh Multifocal soft contact lens with horizontally decentered lenslet and indicator marking
JP5026291B2 (ja) * 2008-01-16 2012-09-12 株式会社メニコン 装用方向選択型コンタクトレンズ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272717A (ja) 1985-05-03 1986-12-03 ザ、クーパー、カンパニーズ、インコ. 同心二重焦点コンタクトレンズで老眼を矯正する方法
JPH0279015A (ja) * 1988-09-14 1990-03-19 Seiko Epson Corp バイフォーカルコンタクトレンズ
JPH06289329A (ja) 1993-03-31 1994-10-18 Menicon Co Ltd 老視用コンタクトレンズ
JPH08262377A (ja) * 1995-03-15 1996-10-11 Ciba Geigy Ag 回転に関して安定させたコンタクトレンズ及びレンズ安定化の方法
JPH11174388A (ja) * 1997-12-12 1999-07-02 Hoya Health Care Kk トーリックコンタクトレンズ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2239617A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513792A (ja) * 2008-03-04 2011-04-28 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 回転的に安定化されたコンタクトレンズ及びその設計方法
EP2622403A1 (en) * 2010-09-27 2013-08-07 Johnson & Johnson Vision Care Inc. Translating presbyopic contact lens
JP2017045077A (ja) * 2011-08-26 2017-03-02 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 並進型老眼用コンタクトレンズ対
JP5525115B1 (ja) * 2012-12-14 2014-06-18 株式会社メニコン コンタクトレンズ
WO2014091529A1 (ja) * 2012-12-14 2014-06-19 株式会社メニコン コンタクトレンズ

Also Published As

Publication number Publication date
EP2239617A4 (en) 2012-10-17
EP2239617B1 (en) 2017-03-01
US20100296050A1 (en) 2010-11-25
EP2239617A1 (en) 2010-10-13
JP4442927B2 (ja) 2010-03-31
JPWO2009093286A1 (ja) 2011-05-26
US8192020B2 (en) 2012-06-05

Similar Documents

Publication Publication Date Title
JP4442927B2 (ja) 傾斜装用型コンタクトレンズ
JP5923614B2 (ja) 近視進行抑制能を有するコンタクトレンズおよび近視進行抑制能を有するコンタクトレンズセット
US7021760B2 (en) Soft contact lens capable of engagement with an eye either right way out or inside out
ES2836509T3 (es) Lentes de contacto esclerales y métodos para fabricarlos y usarlos
JP4580446B2 (ja) コンタクトレンズの製造方法
JP6490332B2 (ja) 乱視用多軸レンズ設計
WO2009139021A1 (ja) コンタクトレンズ
RU2567594C2 (ru) Контактная линза с улучшенными характеристиками посадки
JPH08262377A (ja) 回転に関して安定させたコンタクトレンズ及びレンズ安定化の方法
JPH04212925A (ja) 乱視矯正用コンタクトレンズ
JPH0744368U (ja) 複焦点コンタクトレンズ
KR102553989B1 (ko) 콘택트 렌즈 및 그 제조 방법
JP5946981B2 (ja) ディセンタタイプのコンタクトレンズおよびディセンタタイプのコンタクトレンズセット
JP5026291B2 (ja) 装用方向選択型コンタクトレンズ
TW201227049A (en) Translating presbyopic contact lens
TWI688798B (zh) 具有改善舒適度之旋轉穩定化隱形眼鏡及最佳化方法
JP5642895B2 (ja) コンタクトレンズおよびコンタクトレンズの製造方法
JP5525115B1 (ja) コンタクトレンズ
US20240111178A1 (en) Contact lens
KR101954069B1 (ko) 컬러 토릭 콘택트렌즈
CN116880085A (zh) 一种接触镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08702825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009548518

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12863458

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2008702825

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008702825

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE