WO2009093285A1 - Plasma display unit and method for controlling the same - Google Patents

Plasma display unit and method for controlling the same Download PDF

Info

Publication number
WO2009093285A1
WO2009093285A1 PCT/JP2008/000083 JP2008000083W WO2009093285A1 WO 2009093285 A1 WO2009093285 A1 WO 2009093285A1 JP 2008000083 W JP2008000083 W JP 2008000083W WO 2009093285 A1 WO2009093285 A1 WO 2009093285A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
electrode
transistor
power supply
plasma display
Prior art date
Application number
PCT/JP2008/000083
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyoshi Kondo
Takashi Sasaki
Tetsuya Sakamoto
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2008/000083 priority Critical patent/WO2009093285A1/en
Publication of WO2009093285A1 publication Critical patent/WO2009093285A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge

Definitions

  • the present invention relates to a plasma display device and a control method for the plasma display device.
  • a plasma display panel is formed by bonding two glass substrates together, and displays an image by generating discharge light in a space formed between the glass substrates.
  • the cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge.
  • a field for displaying one screen includes, for example, a plurality of subfields having a reset period, an address period, and a sustain period.
  • a three-electrode PDP displays an image by generating a sustain discharge between the scan electrode and the sustain electrode during the sustain period.
  • a cell that generates a sustain discharge (a cell to be lit) is selected, for example, by generating an address discharge between the scan electrode and the address electrode in the address period.
  • sustain electrodes and scan electrodes are disposed on a front glass substrate, and address electrodes are disposed on a rear glass substrate.
  • address electrodes are disposed on a rear glass substrate.
  • a PDP in which three electrodes, that is, a sustain electrode, a scan electrode, and an address electrode, are arranged on a front glass substrate has been proposed (for example, see Patent Document 1). JP 2006-259516 A
  • the address electrodes are arranged at positions close to the sustain electrodes and the scan electrodes.
  • the distances between the sustain electrodes, the scan electrodes, and the address electrodes are about 100 ⁇ m.
  • the distances between the sustain electrode, the scan electrode, and the address electrode are about 10 to 30 ⁇ m.
  • An object of the present invention is to reduce power consumption in a PDP device having a PDP in which three electrodes are provided on a front glass substrate.
  • the plasma display device has a plasma display panel (PDP) having a first substrate and a second substrate facing each other through a discharge space, and a drive unit for driving the PDP.
  • the first substrate has sustain electrodes, scan electrodes, and address electrodes.
  • One field for displaying one screen has a plurality of address periods for generating an address discharge between the scan electrodes and the address electrodes, and a sustain period for generating a sustain discharge between the sustain electrodes and the scan electrodes.
  • the driving unit receives a power supply voltage in the address period, and grounds when the first transistor for applying the power supply voltage to the address electrode based on the address control signal and the first transistor in the address period are off.
  • An address electrode application unit including a second transistor for receiving a voltage and applying a ground voltage to the address electrode based on an address control signal is provided. Furthermore, the drive unit includes a power supply cutoff unit that cuts off either the power supply voltage or the ground voltage supplied to the address electrode application unit during the sustain period.
  • power consumption can be reduced in a PDP device having a PDP in which three electrodes are provided on a front glass substrate.
  • FIG. 9 is a diagram illustrating an example of a subfield discharge operation by the address electrode driver illustrated in FIG. 8.
  • FIG. 15 is a diagram showing an example of a subfield discharge operation by the address electrode driver shown in FIG. 14.
  • FIG. 6 is a diagram illustrating a modification of the address electrode driving unit illustrated in FIG. 5.
  • FIG. 1 shows an embodiment of the present invention.
  • a plasma display device (hereinafter also referred to as a PDP device) includes a plasma display panel 10 having a square plate shape (hereinafter also referred to as a PDP), an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, A front housing 30 disposed on the image display surface 16 side of the PDP 10, a rear housing 40 and a base chassis 50 disposed on the back surface 18 side of the PDP 10, and attached to the rear housing 40 side of the base chassis 50 to drive the PDP 10.
  • the PDP 10 includes a front substrate portion 12 that constitutes the image display surface 16 and a rear substrate portion 14 that faces the front substrate portion 12.
  • a discharge space (cell) (not shown) is formed between the front substrate portion 12 and the rear substrate portion 14.
  • the front substrate unit 12 and the back substrate unit 14 are formed of, for example, a glass substrate.
  • the optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30.
  • the optical filter 20 may have a function of shielding electromagnetic waves.
  • the optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
  • FIG. 2 shows details of the main part of the PDP 10 shown in FIG.
  • An arrow D1 in the drawing indicates the first direction D1
  • an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface.
  • the discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, the concave portion of the rear substrate portion 14).
  • the front substrate portion 12 (first substrate) is formed in parallel along the first direction D1 on the glass substrate FS (lower side in the figure), and is alternately formed along the second direction D2.
  • Xb and Y bus electrodes Yb are provided.
  • An X transparent electrode Xt extending in the second direction D2 from the X bus electrode Xb to the Y bus electrode Yb is connected to the X bus electrode Xb.
  • a Y transparent electrode Yt extending in the second direction D2 from the Y bus electrode Yb to the X bus electrode Xb is connected to the Y bus electrode Yb.
  • the X transparent electrode Xt and the Y transparent electrode Yt face each other along the second direction D2.
  • the X bus electrode Xb and the Y bus electrode Yb are opaque electrodes formed of a metal material or the like, and the X transparent electrode Xt and the Y transparent electrode Yt transmit visible light formed of an ITO film or the like. It is a transparent electrode.
  • the X electrode XE (sustain electrode) is composed of the X bus electrode Xb and the X transparent electrode Xt
  • the Y electrode YE scanning electrode
  • a discharge is repeatedly generated at the electrode pair (more specifically, between the X transparent electrode Xt and the Y transparent electrode Yt) constituted by the X electrode XE and the Y electrode YE.
  • the transparent electrodes Xt and Yt may be disposed on the entire surface between the bus electrodes Xb and Yb to which the transparent electrodes Xt and Yt are connected and the glass substrate FS.
  • an electrode integral with the bus electrodes Xb and Yb may be formed in place of the transparent electrodes Xt and Yt, using the same material (metal material or the like) as the bus electrodes Xb and Yb.
  • the electrodes Xb, Xt, Yb, Yt are covered with the dielectric layer DL1.
  • the dielectric layer DL1 is an insulating film such as a silicon dioxide film formed by a CVD method.
  • a plurality of address electrodes AE extending in a direction orthogonal to the bus electrodes Xb and Yb (second direction D2) are provided on the dielectric layer DL1 (lower side in the drawing).
  • the address electrode AE is an opaque electrode made of a metal material or the like.
  • the PDP of this embodiment has three electrodes (electrodes XE, YE, AE) on the front substrate portion 12.
  • the address electrode AE and the dielectric layer DL1 are covered with a protective layer PL.
  • the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collision in order to easily generate discharge.
  • the rear substrate portion 14 (second substrate) facing the front substrate portion 12 through the discharge space DS has partition walls (barrier ribs) BR formed in parallel with each other on the glass base RS.
  • the barrier ribs BR extend in a direction (second direction D2) orthogonal to the bus electrodes Xb and Yb, and are arranged along the address electrodes AE.
  • the address electrode AE extends in the second direction D2 and is disposed along the partition wall BR.
  • a partition wall BR constitutes a side wall of the cell. Further, visible light of red (R), green (G), and blue (B) is generated on the side surface of the partition wall BR and the glass substrate RS between the adjacent partition walls BR by being excited by ultraviolet rays. Phosphors PHr, PHg, and PHb are respectively applied.
  • One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light.
  • one cell (one color pixel) is formed in a region surrounded by the bus electrodes Xb and Yb and the partition wall BR1.
  • the PDP 10 is configured by arranging cells in a matrix to display an image and alternately arranging a plurality of types of cells that generate light of different colors.
  • a display line is constituted by cells formed along the bus electrodes Xb and Yb.
  • the PDP 10 is configured by bonding the front substrate portion 12 and the rear substrate portion 14 so that the protective layer PL and the partition wall BR are in contact with each other, and enclosing a discharge gas such as Ne or Xe in the discharge space DS.
  • the bus electrodes Xb and Yb and the address electrode AE are respectively connected to an X electrode driving unit XDR (sustain electrode driving unit), a Y electrode driving unit YDR (scanning electrode driving unit) and an address electrode driving unit ADR shown in FIG. Connected.
  • FIG. 3 shows a configuration example of the field FLD for displaying an image of one screen.
  • the length of one field FLD is 1/60 second (about 16.7 ms), and is composed of, for example, eight subfields SF (SF1-SF8).
  • each subfield SF has a reset period RST, an address period ADR, and a sustain period SUS.
  • the amounts of wall charges accumulated in the electrodes XE, YE, and AE are adjusted in order to match the discharge start voltages (voltages at which address discharge in the address period ADR starts to occur) of all cells. It is a period.
  • the wall charges are, for example, plus charges and minus charges accumulated on the surface of the protective layer PL such as MgO shown in FIG. 2 in each cell.
  • the address period ADR is a period for selecting a cell to be lit during the sustain period SUS.
  • a cell to be lit in the sustain period SUS is selected by, for example, selectively generating an address discharge between the scan electrode YE and the address electrode AE in the address period as shown in FIG.
  • the sustain period SUS is a period in which discharge (sustain discharge) is generated in the cell selected in the address period ADR.
  • the length of the sustain period SUS varies depending on the subfield SF and depends on the number of discharges (luminance) of the cell. For this reason, it becomes possible to display an image with multiple gradations by changing the combination of the subfields SF to be lit.
  • the number of discharge cycles preset in the subfields SF1 to SF8 is 4, 8, 16, 32, 64, 128, 256, and 512, respectively.
  • the cell is discharged twice during one discharge cycle (star mark in the figure).
  • FIG. 4 shows an outline of the circuit unit 60 shown in FIG.
  • a capacitance Cax in the figure indicates a parasitic capacitance (interelectrode capacitance) formed between the address electrode AE and the sustain electrode XE, and a capacitance Cay is a parasitic capacitance (between electrodes) formed between the address electrode AE and the scan electrode YE. Capacity).
  • the interelectrode capacitances Cax and Cay are collectively referred to as interelectrode capacitance Caxy.
  • the circuit unit 60 includes a voltage generation unit PWR, an X electrode driving unit XDR (sustain electrode driving unit), a Y electrode driving unit YDR (scanning electrode driving unit), an address electrode driving unit ADR, and a control unit CNT.
  • the voltage generator PWR generates power supply voltages Vs / 2, ⁇ Vs / 2, Vsc, etc. to be supplied to the electrode drivers YDR and XDR.
  • the electrode drive units XDR, YDR, and ADR operate as drive units that drive the PDP 10.
  • the sustain electrode driver XDR applies a common pulse to the sustain electrode XE
  • the scan electrode driver YDR selectively applies a pulse to the scan electrode YE
  • the address electrode driver ADR applies to the address electrode AE.
  • a pulse is selectively applied.
  • the address electrode drive unit ADR includes a power cutoff unit PSI10 and an address driver AD (address electrode application unit, address voltage application unit) provided for each address electrode AE.
  • the power shutoff unit PSI10 supplies the ground voltage to the address driver AD during the reset period RST and the address period ADR shown in FIG. 3 described above, and shuts off the ground voltage supplied to the address driver AD during the sustain period SUS.
  • the address driver AD selectively applies an address pulse APL shown in FIG. 7 to be described later to the address electrode AE.
  • the description of the power supply for supplying the power supply voltage to the address driver AD is omitted.
  • the control unit CNT includes a driver control unit ADCN that generates a control signal ACNT (address control signal) for controlling the address driver AD, and a switch control unit SWCN that generates a control signal SCNT for controlling the power cutoff unit PSI10. have. Then, the control unit CNT selects a subfield to be used based on the image data R0-7, G0-7, B0-7, and outputs control signals YCNT, XCNT, and ACNT to the electrode drive units YDR, XDR, and ADR. . A multi-gradation image is displayed by selecting a subfield to be used for each cell constituting a pixel.
  • the image data R0-7, G0-7, and B0-7 are 8-bit data for displaying red, green, and blue, respectively, and are sequentially sent from the tuner unit or external input (not shown) to the control unit CNT. Entered.
  • FIG. 5 shows an example of the address electrode driver ADR shown in FIG.
  • the interelectrode capacitance Caxy between the address electrode AEb, the sustain electrode XE, and the scan electrode YE is omitted.
  • the voltage of the ground line GND is also referred to as a ground voltage GND.
  • the address electrode driver ADR includes an address driver AD (ADa, ADb) provided for each address electrode AE (AEa, AEb) and an isolator IS1 (IS1a, IS1b) provided for each address driver AD (ADa, ADb). And a power supply unit PS1 (internal power supply) and a power supply cutoff unit PSI10.
  • a circuit group of the address electrode drive unit ADR (a circuit group including the address driver AD and the power supply unit PS1) excluding the power supply cutoff unit PSI10 is also referred to as an address drive circuit ADRC.
  • the address driver AD includes a first transistor PM1 (PM1a, PM1b) and a second transistor NM1 (NM1a, NM1b) connected in series between the internal power supply line LN10 and the reference power supply line LN20.
  • the common node ND1 (ND1a, ND1b) connecting the transistor PM1 and the transistor NM1 is connected to the address electrode AE (AEa, AEb).
  • the transistor PM1 is a power pMOS transistor (P-channel FET) capable of flowing a large current, and has a parasitic diode whose anode is connected to the drain of the transistor PM1 and whose cathode is connected to the source of the transistor PM1.
  • P-channel FET power pMOS transistor
  • a threshold voltage between a drain and a gate to which an anode of a parasitic diode is connected is larger than a threshold voltage between a source and a gate to which a cathode of the parasitic diode is connected. Therefore, the power P-channel FET is turned on (off) based on the voltage between the source and the gate shown in the drawing.
  • the transistor NM1 is a power nMOS transistor (N-channel FET) capable of flowing a large current, and has a parasitic diode whose anode is connected to the source of the transistor NM1 and whose cathode is connected to the drain of the transistor NM1. Yes.
  • the threshold voltage between the drain and the gate to which the cathode of the parasitic diode is connected is larger than the threshold voltage between the source and the gate to which the anode of the parasitic diode is connected. Therefore, the power N-channel FET is turned on (off) based on the voltage between the source and the gate shown in the drawing.
  • the source of the transistor PM1 is connected to the internal power supply line LN10, and the source of the transistor NM1 is connected to the reference power supply line LN20. That is, the cathode of the parasitic diode of the transistor PM1 is connected to the internal power supply line LN10, and the anode of the parasitic diode of the transistor NM1 is connected to the reference power supply line LN20. As a result, leakage current can be prevented from flowing from the internal power supply line LN10 to the reference power supply line LN20 via the parasitic diode.
  • the gates of the transistors PM1 and NM1 are connected to each other and are connected to the driver control unit ADCN via the isolator IS1.
  • the isolator IS1 includes a light emitting diode and a phototransistor, and maintains an galvanic isolation between the driver control unit ADCN and the address driver AD, and the address control signal ACNT (ACNTa) from the driver control unit ADCN to the address driver AD. , ACNTb).
  • the isolator IS1 shifts the reference level of the address control signal ACNT from the ground voltage GND to the voltage of the reference power supply line LN20, and transmits the address control signal ACNT to the gates of the transistors PM1 and NM1.
  • the logic level (H level and L level) of address control signal ACNT is reliably transmitted to transistors PM1 and NM1.
  • the address control signal ACNT is at a high logic level (H level)
  • the transistor PM1 is turned off
  • the transistor NM1 is turned on
  • the address control signal ACNT is at a low logic level (L level)
  • the transistor PM1 is turned on. To do.
  • the power supply unit PS1 is connected to the ground line GND via the reference power supply line LN20 and the power supply cutoff unit PSI10, and supplies the power supply voltage Vadd to the internal power supply line LN10 to which the transistor PM1 is connected. That is, the power supply unit PS1 maintains the voltage between the reference power supply line LN20 and the internal power supply line LN10 at the voltage Vadd.
  • An example of the configuration of the power supply unit PS1 will be described later with reference to FIG.
  • the power cutoff unit PSI10 has a switch SW10 disposed between the reference power supply line LN20 and the ground line GND. On / off of the switch SW10 is controlled by a control signal SCNT output from the switch control unit SWCN.
  • the switch SW10 is configured such that no leakage current flows between the reference power supply line LN20 and the ground line GND when the switch SW10 is off.
  • the switch SW10 is configured by an IGBT (Insulated Gate Bipolar Transistor) or a power MOS transistor.
  • the IGBT is a bipolar transistor in which a MOSFET is incorporated in the gate.
  • an IGBT does not have a parasitic diode between a collector and an emitter. For this reason, in the switch SW10 constituted by the IGBT, no leakage current flows between the reference power supply line LN20 and the ground line GND when the switch SW10 is off. Details of the switch SW10 formed of a power MOS transistor having a parasitic diode will be described later with reference to FIG.
  • the switch SW10 is turned on to supply the ground voltage GND from the ground line GND to the reference power supply line LN20 in the address period ADR shown in FIG. That is, switch SW10 electrically connects address drive circuit ADRC having power supply unit PS1 and address driver AD and ground line GND in address period ADR.
  • the ground voltage GND is supplied to the reference power supply line LN20
  • the power supply voltage Vadd based on the ground voltage GND is supplied to the internal power supply line LN10.
  • the transistor NM1 can apply the ground voltage GND to the address electrode AE when the address control signal ACNT is at a high logic level (H level).
  • the transistor PM1 can apply the power supply voltage Vadd based on the ground voltage GND to the address electrode AE when the address control signal ACNT is at a low logic level (L level).
  • the switch SW10 is turned off to bring the reference power supply line LN20 into a floating state during the sustain period SUS. That is, the switch SW10 electrically disconnects the address drive circuit ADRC and the ground line GND during the sustain period SUS. As described above, no leakage current flows between the reference power supply line LN20 and the ground line GND when the switch SW10 is off. Therefore, in this embodiment, it is possible to prevent a leak current from flowing between the address electrode AE and the ground line GND during the sustain period SUS.
  • the sustain electrode XE and the scan electrode YE and the address electrode AE are connected via the interelectrode capacitance Caxy (the ground line GND-address electrode AE-interelectrode capacitance Caxy-sustain electrode XE).
  • the interelectrode capacitance Caxy the ground line GND-address electrode AE-interelectrode capacitance Caxy-sustain electrode XE.
  • FIG. 6 shows an example of the power supply unit PS1 and the switch SW10 shown in FIG.
  • the power supply unit PS1 includes, for example, a part of the transformer T1 (coil L2), a rectifier circuit (diode D1 in the figure), a smoothing circuit (capacitor C1 in the figure), and a voltage stabilization circuit VS1.
  • the transformer T1 has a configuration in which two coils L1 and L2 are coupled by a core, and the primary side (coil L1) and the secondary side (coil L2) are galvanically insulated, and one coil L1 is The applied change (AC voltage Vadd1 in the figure) is transmitted to the other coil L2.
  • one terminal of the coil L1 is connected to the ground line GND, and the AC voltage Vadd1 is applied to the other terminal.
  • the coil L2 has one terminal connected to the reference power line LN20 and the other terminal connected to the anode of the diode D1, and transmits a voltage change applied to the coil L1 to the diode D1.
  • the cathode of the diode D1 is connected to one terminal of the capacitor C1 and the voltage stabilizing circuit VS1, and the other terminal of the capacitor C1 is connected to the reference power supply line LN20.
  • a voltage rectified and smoothed with reference to the reference power supply line LN20 is supplied to the node where the diode D1 and the capacitor C1 are connected.
  • the voltage stabilization circuit VS1 stabilizes the voltage rectified and smoothed with reference to the reference power supply line LN20 as the power supply voltage Vadd and supplies it to the internal power supply line LN10. Thereby, even when the reference power supply line LN20 is in a floating state, the power supply unit PS1 can maintain the voltage between the reference power supply line LN20 and the internal power supply line LN10 at the voltage Vadd.
  • the switch SW10 of the power shut-off unit PSI10 is composed of, for example, a pair of power nMOS transistors NM10 and NM20 (N channel FET) connected in series between the reference power supply line LN20 and the ground line GND.
  • the common node that connects the gates of the transistors NM10 and NM20 to each other is connected to the switch control unit SWCN, and the control signal SCNT is received by the gate.
  • the nMOS transistor NM10 has a drain connected to the reference power supply line LN20 and a source connected to the source of the nMOS transistor NM20.
  • the nMOS transistor NM20 has a drain connected to the ground line GND. That is, the pair of power nMOS transistors NM10 and NM20 are connected in the direction in which the anodes of the parasitic diodes formed in the transistors NM10 and NM20 are connected to each other.
  • the parasitic diode of the transistor NM10 prevents a leakage current from flowing from the reference power supply line LN20 to the ground line GND, and the parasitic diode of the transistor NM20 is connected from the ground line GND to the reference power supply line LN20. To prevent leakage current from flowing through.
  • the switch SW10 transistors NM10 and NM20
  • leakage current can be prevented from flowing between the reference power supply line LN20 and the ground line GND.
  • FIG. 7 shows an example of the discharge operation of the subfield SF shown in FIG.
  • the star in the figure indicates the occurrence of discharge.
  • the shaded portion of the waveform of the address electrode AE in the figure indicates that the address electrode AE is in a floating state.
  • the switch SW10 shown in FIG. 5 is turned on when receiving a control signal SCNT at a high logic level (H level) and turned off when receiving a control signal SCNT at a low logic level (L level). .
  • a positive write voltage is applied to the sustain electrode XE (the bus electrode Xb and the transparent electrode Xt), and a positive write voltage is applied to the scan electrode YE (the bus electrode Yb and the transparent electrode Yt) ( FIG. 7 (a)).
  • the sustain electrode XE is maintained at a positive write voltage, and a positive write voltage (write obtuse wave) that gradually increases is applied to the scan electrode YE (FIG. 7B).
  • wall charges are accumulated in the sustain electrode XE, the scan electrode YE, and the address electrode AE, respectively, while suppressing the light emission of the cell.
  • negative wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively, and positive wall charges are accumulated in the address electrode AE.
  • the sustain electrode XE is maintained at a positive write voltage, and a negative adjustment voltage (adjustment blunt wave) is applied to the scan electrode YE (FIG. 7C).
  • a negative adjustment voltage adjustment blunt wave
  • the positive adjustment voltage applied to the sustain electrode XE is a voltage lower than the voltage Vs / 2
  • the minimum value of the negative adjustment voltage applied to the scan electrode YE is higher than the voltage ⁇ Vs / 2. It is a voltage (small voltage value as an absolute value).
  • the ground voltage GND is supplied to the reference voltage line LN20 illustrated in FIG. 5 via the switch SW10. Since the control signal ACNT is maintained at the H level, the transistor PM1 shown in FIG. 5 is turned off, the transistor NM1 is turned on, and the transistor NM1 applies the ground voltage GND to the address electrode AE.
  • the control signal SCNT is maintained at the H level by the switch control unit SWCN illustrated in FIG. 5, and the switch SW10 is maintained in the ON state.
  • a bias voltage serving as an anode during address discharge is applied to the sustain electrode XE
  • a scan pulse SPL (voltage ⁇ Vs / 2) serving as a cathode during address discharge is applied to the scan electrode YE, and during address discharge.
  • An address pulse APL (voltage Vadd) serving as an anode is applied to the address electrode AE corresponding to the lighted cell (FIG. 7D).
  • a discharge (address discharge) is temporarily generated between the scan electrode YE and the address electrode AE. Thereby, a cell to be lit in the sustain period SUS is selected.
  • the transistor PM1 is turned on and the transistor NM1 is turned off. That is, when the address control signal ACNT is at the L level, the transistor PM1 applies the power supply voltage Vadd to the address electrode AE. In other words, the transistor PM1 applies the power supply voltage Vadd to the address electrode AE based on the address control signal ACNT.
  • the transistor PM1 is turned off, the transistor NM1 is turned on, and the transistor NM1 applies the ground voltage GND to the address electrode AE. That is, the transistor NM1 applies the ground voltage GND to the address electrode AE based on the address control signal ACNT when the transistor PM1 in the address period ADR is off.
  • the second address pulse APL shown in the waveform of the address electrode AE is applied to select a cell of another display line (FIG. 7E).
  • the control signal SCNT is set to L level by the switch control unit SWCN shown in FIG. 5, and the switch SW10 is turned off. That is, in the sustain period SUS, as described above, the address drive circuit ADRC and the ground line GND are electrically disconnected. That is, in this embodiment, in the sustain period SUS, the address electrode AE can be in a floating (high impedance) state, and the average voltage of the sustain electrode XE and the scan electrode YE to which the sustain pulse is applied and the voltage of the address electrode AE The difference can be reduced.
  • the displacement current (leakage current) between the sustain electrode XE, the scan electrode YE, and the address electrode AE generated by the difference between the average voltage of the sustain electrode XE and the scan electrode YE and the voltage of the address electrode AE can be reduced.
  • the address control signal ACNT is maintained at the H level during the sustain period SUS. Note that, in the sustain period SUS, the address drive circuit ADRC and the ground line GND are not electrically connected, so the address control signal ACNT may be at the L level.
  • the switch SW10 power cutoff unit PSI10
  • the switch SW10 power cutoff unit PSI10 disposed between the reference power supply line LN20 and the ground line GND is turned off, and the ground voltage GND supplied to the reference power supply line LN20. Shut off. As a result, leakage current can be prevented from flowing between the reference power supply line LN20 and the ground line GND during the sustain period SUS, and power consumption can be reduced.
  • FIG. 8 shows an address electrode driver ADR2 and a driver controller ADCN2 of a PDP device according to another embodiment.
  • the address electrode drive unit ADR2 includes a 2-input OR circuit OR1 (OR1a, OR1b) added to the address electrode drive unit ADR shown in FIG. 5 described above, and the power cut-off unit PSI10 shown in FIG. Instead, a power cutoff unit PSI20 is provided.
  • OR1a, OR1b 2-input OR circuit OR1
  • the power supply unit PS1 and the isolator IS1 are omitted from the address electrode driver ADR shown in FIG.
  • the other configuration of the address electrode driver ADR2 is the same as that in FIG.
  • driver control unit ADCN2 of this embodiment is different from the driver control unit ADCN shown in FIG. 5 in that the address control signal SS is generated in addition to the address control signal ACNT.
  • Other configurations of the driver control unit ADCN2 are the same as those in FIGS.
  • the same elements as those described in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the source of the transistor NM1 (NM1a, NM1b) of the address driver AD (ADa, ADb) is connected to the ground line GND, and the source of the transistor PM1 (PM1a, PM1b) of the address driver AD (ADa, ADb) is a power cutoff unit
  • the PSI 20 is connected to the first power supply line LN12.
  • the power supply voltage Vadd is supplied to the first power supply line LN12 from the voltage generation unit PWR shown in FIG. 4 described above.
  • the power cutoff unit PSI20 is configured by a power nMOS transistor NM30 having a source connected to the first power supply line LN12, a drain connected to the source of the transistor PM1, and a gate connected to the switch control unit SWCN. That is, in the transistor NM30, the anode of the parasitic diode of the transistor NM30 is connected to the first power supply line LN12, and the cathode of the parasitic diode is connected to the source of the transistor PM1, between the first power supply line LN12 and the transistor PM1. Placed in.
  • the transistor NM30 is turned on during the reset period RST and the address period ADR shown in FIG. 3 described above, supplies the power supply voltage Vadd to the transistor PM1, turns off during the sustain period SUS, and cuts off the power supply voltage Vadd supplied to the transistor PM1. To do. That is, the transistor NM30 of the power cutoff unit PSI20 functions as a switch.
  • the power cutoff unit PSI20 may be configured using a power pMOS transistor, IGBT, or the like instead of the power nMOS transistor NM30. In this case, the power pMOS transistor and the IGBT function as a switch.
  • the two-input OR circuit OR1 receives the address control signal SS at one input terminal, receives the address control signal ACNT (ACNTa, ACNT1b) at the other input terminal, and receives the logic of the address control signals SS and ACNT. The sum is output to the gate of the transistor PM1 (PM1a, PM1b).
  • An address control signal ACNT ACNTa, ACNT1b is supplied to the gate of the transistor NM1 (NM1a, NM1b).
  • the driver control unit ADCN2 simultaneously turns off the transistors PM1 and NM1 by setting the address control signals SS and ACNT to the H level and the L level, respectively, during the sustain period SUS.
  • a logic circuit for simultaneously turning off the transistors PM1 and NM1 may be configured by using a negative logical sum, a logical product, a negative logical product, or the like instead of the two-input logical sum circuit OR1.
  • the two-input OR circuit OR1 may be provided in the driver control unit ADCN2.
  • the address electrodes AE can be in a floating (high impedance) state by simultaneously turning off the transistors PM1 and NM1.
  • the difference between the average voltage of the sustain electrode XE and the scan electrode YE to which the sustain pulse is applied and the voltage of the address electrode AE can be reduced, and the displacement current between the sustain electrode XE, the scan electrode YE, and the address electrode AE ( (Leakage current) can be reduced.
  • the transistors PM1, NM1, and NM30 can be turned off, and the sustain electrode XE, the scan electrode YE, and the address electrode AE are connected via the interelectrode capacitance Caxy. It is possible to prevent leakage current from flowing between them. As a result, in this embodiment, power consumption can be reduced.
  • FIG. 9 shows an example of the discharge operation of the subfield SF by the address electrode driver ADR2 shown in FIG. Detailed description of the same operations as those in FIG. 7 described above will be omitted.
  • the waveform shown in FIG. 9 is different from FIG. 7 in that the waveform of the address control signal SS is added.
  • Other waveforms are the same as those in FIG.
  • the meanings of stars and shaded portions in the figure are the same as those in FIG.
  • the address control signal SS is maintained at the L level.
  • the transistor PM1 shown in FIG. 8 described above can apply the power supply voltage Vadd to the address electrode AE, and when the address control signal ACNT is at the H level, the transistor NM1 A ground voltage GND can be applied to the electrode AE.
  • the address control signal SS is maintained at the H level, and the address control signal ACNT is maintained at the L level.
  • the transistors PM1 and NM1 are turned off.
  • the control signal SCNT is set to the L level, the transistor NM30 is turned off.
  • the sustain electrode XE and the scan electrode YE are connected via the interelectrode capacitance Caxy as described above with reference to FIG. It is possible to prevent a leak current from flowing between the address electrode AE. As described above, also in this embodiment, power consumption can be reduced.
  • FIG. 10 shows an address electrode drive unit ADR3 and a control unit CNT2 of a PDP device in another embodiment.
  • the interelectrode capacitance Caxy between the address electrode AEb, the sustain electrode XE, and the scan electrode YE is omitted.
  • the control unit CNT2 in the figure omits the description of the image data R0-7, G0-7, B0-7 and the control signals XCNT, YCNT.
  • the address electrode driver ADR3 is provided with a power cutoff unit PSI22 instead of the power cutoff unit PSI20 shown in FIG.
  • the other configuration of the address electrode driver ADR3 is the same as that in FIG.
  • control unit CNT2 of this embodiment is configured by omitting the switch control unit SWCN from the control unit CNT shown in FIG. 4 described above. Further, the control unit CNT2 is provided with the driver control unit ADCN2 shown in FIG. 8 described above instead of the driver control unit ADCN shown in FIG. The other configuration of the control unit CNT2 is the same as that in FIG.
  • the discharge operation of the subfield SF is the same as the waveform obtained by omitting the control signal SCNT from the waveform shown in FIG. That is, the waveforms of the electrodes XE, YE, AE and the control signals ACNT, SS are the same as those in FIG.
  • the same elements as those described in FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the power cutoff unit PSI22 is configured by a diode D10 having an anode connected to the first power supply line LN12 and a cathode connected to the source of the transistor PM1.
  • the power supply voltage Vadd is supplied from the first power supply line LN12 to the transistor PM1 via the diode D10.
  • a voltage that is lowered from the power supply voltage Vadd by the forward voltage of the diode D10 is supplied to the transistor PM1.
  • the diode D10 cuts off the power supply voltage Vadd supplied to the transistor PM1 by turning off the transistor PM1 during the sustain period SUS shown in FIG. Further, the diode D10 prevents a leakage current from flowing from the address electrode AE to the first power supply line LN12 through the parasitic diode of the transistor PM1 when the transistor PM1 is turned off.
  • the address control signals SS and ACNT are set to the H level and the L level, respectively, and the transistors PM1 and NM1 are turned off. Accordingly, the diode D10 can prevent a leak current from flowing from the address electrode AE to the first power supply line LN12 through the parasitic diode of the transistor PM1 during the sustain period SUS. In this case, since the transistor PM1 is off, it is possible to prevent a leak current from flowing from the first power supply line LN12 to the address electrode AE. Further, since the transistor NM1 is off, it is possible to prevent a leak current from flowing from the address electrode AE to the ground line GND.
  • the leakage current flows between the sustain electrode XE, the scan electrode YE, and the address electrode AE through the interelectrode capacitance Caxy by turning off the transistors PM1 and NM1 during the sustain period SUS. Can be prevented.
  • the same effect as that of the embodiment described with reference to FIGS. 8 and 9 can be obtained.
  • FIG. 11 shows an address electrode driver ADR4, a driver controller ADCN, and a switch controller SWCN of a PDP device in another embodiment.
  • the interelectrode capacitance Caxy between the address electrode AEb, the sustain electrode XE, and the scan electrode YE is omitted.
  • the address electrode driver ADR4 is configured by adding switches SW20 (SW20a, SW20b) to the address electrode driver ADR shown in FIG.
  • the power supply cutoff unit PSI10, the power supply unit PS1, and the isolator IS1 are omitted from the address electrode driver ADR shown in FIG.
  • the other configuration of the address electrode driver ADR4 is the same as that in FIG.
  • the configurations of the driver control unit ADCN and the switch control unit SWCN are the same as those in FIG. 5 except for the output destinations of the control signals ACNT and SCNT.
  • the discharge operation of the subfield SF is the same as that in FIG.
  • the same elements as those described in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the source of the transistor NM1 (NM1a, NM1b) of the address driver AD (ADa, ADb) is connected to the ground line GND
  • the source of the transistor PM1 (PM1a, PM1b) of the address driver AD (ADa, ADb) is the internal power supply line Connected to LN10.
  • the power supply voltage Vadd is supplied to the internal power supply line LN10 from the voltage generation unit PWR shown in FIG. 4 described above.
  • the gates of the transistors PM1 and NM1 are connected to each other and to the driver control unit ADCN.
  • the switch SW20 (SW20a, SW20b) is provided between the address driver AD (ADa, ADb) and the address electrode AE (AEa, AEb) for each address electrode AE (AEa, AEb).
  • ON / OFF of the switch SW20 is controlled by a control signal SCNT output from the switch control unit SWCN.
  • the switch SW20 is configured such that no leak current flows between the address driver AD and the address electrode AE when the switch SW20 is off. For example, by turning off the switch SW20 during the sustain period SUS, the current flowing from the transistor PM1 to the address electrode AE and the current flowing from the address electrode AE to the transistor NM1 are cut off.
  • the switch SW10 is configured by an IGBT or a power MOS transistor.
  • the IGBT does not have a parasitic diode between the collector and the emitter
  • the switch SW20 configured by the IGBT when the switch SW20 is off, a leakage current is generated between the address driver AD and the address electrode AE. Does not flow. Details of the switch SW20 formed of a power MOS transistor having a parasitic diode will be described later with reference to FIG.
  • the driver control unit ADCN turns off the switch SW20 by setting the control signal SCNT to the L level during the sustain period SUS.
  • the switch SW20 when the switch SW20 is turned off, no leak current flows between the address driver AD and the address electrode AE. Therefore, in this embodiment, it is possible to prevent a leak current from flowing between the address electrode AE and the ground line GND and between the internal power supply line LN10 and the address electrode AE during the sustain period SUS.
  • the switch SW20 by turning off the switch SW20 during the sustain period SUS, it is possible to prevent a leakage current from flowing between the sustain electrode XE, the scan electrode YE, and the address electrode AE via the interelectrode capacitance Caxy. . As a result, in this embodiment, power consumption can be reduced.
  • the address control signal ACNT during the sustain period SUS since the switch SW20 is turned off during the sustain period SUS, the address control signal ACNT during the sustain period SUS may be H level or L level.
  • FIG. 12 shows an example of the switch SW20 shown in FIG.
  • the switch SW20 includes, for example, a pair of power nMOS transistors NM40 connected in series between the node ND1 (the common node ND1 connecting the transistor PM1 and the transistor NM1 shown in FIG. 11 described above) and the address electrode AE.
  • NM50 N channel FET.
  • a common node that connects the gates of the transistors NM40 and NM50 is connected to the switch control unit SWCN, and the control signal SCNT is received by the gate.
  • the nMOS transistor NM40 has a drain connected to the node ND1 and a source connected to the source of the nMOS transistor NM50.
  • the nMOS transistor NM50 has a drain connected to the address electrode AE. That is, the pair of power nMOS transistors NM40 and NM50 are connected in the direction in which the anodes of the parasitic diodes formed in the transistors NM40 and NM50 are connected to each other.
  • the parasitic diode of the transistor NM40 prevents a leakage current from flowing from the node ND1 to the address electrode AE, and the parasitic diode of the transistor NM50 has a leakage current from the address electrode AE to the node ND1. Prevent it from flowing.
  • the switch SW20 is off, it is possible to prevent a leak current from flowing between the node ND1 (the address driver AD shown in FIG. 11 described above) and the address electrode AE.
  • the same effects as those of the embodiment described with reference to FIGS. 1 to 9 can be obtained.
  • FIG. 13 shows an address electrode driver ADR5, a driver controller ADCN2, and a switch controller SWCN of a PDP device in another embodiment.
  • the interelectrode capacitance Caxy between the address electrode AEb, the sustain electrode XE, and the scan electrode YE is omitted.
  • the address electrode driver ADR5 is configured by adding a two-input OR circuit OR1 (OR1a, OR1b) and an isolator IS2 to the address electrode driver ADR shown in FIG.
  • OR1a, OR1b OR1a, OR1b
  • the other configuration of the address electrode driver ADR5 is the same as that in FIG.
  • driver control unit ADCN2 of this embodiment is different from the driver control unit ADCN shown in FIG. 5 in that the address control signal SS is generated in addition to the address control signal ACNT.
  • Other configurations of the driver control unit ADCN2 are the same as those in FIGS.
  • the discharge operation of the subfield SF is the same as that in FIG.
  • the same elements as those described in FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • one input terminal of the two-input OR circuit OR1 (OR1a, OR1b) is connected to the driver control unit ADCN2 via the isolator IS2, and the other input terminal is a driver via the isolator IS1 (IS1a, IS1b). It is connected to the control unit ADCN2.
  • the output terminal of the 2-input OR circuit OR1 is connected to the gate of the transistor PM1 of the address driver AD.
  • the 2-input OR circuit OR1 (OR1a, OR1b) outputs the logical sum of the address control signals SS and ACNT to the gate of the transistor PM1 (PM1a, PM1b).
  • the gate of the transistor NM1 of the address driver AD is connected to one input terminal of a two-input OR circuit OR1 (OR1a, OR1b), and is connected to the driver control unit ADCN2 via the isolator IS1.
  • the driver control unit ADCN2 simultaneously turns off the transistors PM1 and NM1 by setting the address control signals SS and ACNT to the H level and the L level, respectively, during the sustain period SUS.
  • a logic circuit for simultaneously turning off the transistors PM1 and NM1 may be configured by using a negative logical sum, a logical product, a negative logical product, or the like instead of the two-input logical sum circuit OR1.
  • the two-input OR circuit OR1 may be provided in the driver control unit ADCN2.
  • the internal power supply line LN10 and the address electrode AE and the address electrode AE and the reference power supply line LN20 can be in a high impedance state.
  • the difference between the average voltage of the sustain electrode XE and the scan electrode YE to which the sustain pulse is applied and the voltage of the address electrode AE can be reliably reduced, and the displacement between the sustain electrode XE, the scan electrode YE, and the address electrode AE
  • the current (leakage current) can be reliably reduced.
  • FIG. 14 shows an address electrode drive unit ADR6, a driver control unit ADCN3, and a switch control unit SWCN of a PDP device in another embodiment.
  • the interelectrode capacitance Caxy between the address electrode AEb, the sustain electrode XE, and the scan electrode YE is omitted.
  • the address electrode driver ADR6 is configured by omitting the two-input OR circuit OR1 (OR1a, OR1b) from the address electrode driver ADR2 shown in FIG.
  • OR1a, OR1b OR circuit OR1 (OR1a, OR1b) from the address electrode driver ADR2 shown in FIG.
  • the configuration of the power cutoff unit PSI20 of the address electrode driver ADR6 is provided with a switch SW30 instead of the transistor NM30 shown in FIG.
  • the other configuration of the address electrode driver ADR6 is the same as that in FIG.
  • driver control unit ADCN3 of this embodiment is different from the driver control unit ADCN2 shown in FIG. 8 in that the address control signal SS shown in FIG. 8 is not generated.
  • Other configurations of the driver control unit ADCN3 are the same as those in FIG.
  • the same elements as those described in FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the power shut-off unit PSI20 is configured by a switch SW30 that is turned on during the reset period RST and the address period ADR shown in FIG. 3 and turned off during the sustain period SUS.
  • the switch SW30 the leakage current does not flow between the first power supply line LN12 and the transistor PM1 when the switch SW30 is turned off by the IGBT or the pair of power nMOS transistors shown in FIGS. 6 and 12 described above. Configured as follows.
  • the gates of the transistors PM1 and NM1 are connected to each other and to the driver control unit ADCN3.
  • the driver control unit ADCN3 turns off the transistor NM1 by setting the address control signal ACNT to the L level during the sustain period SUS.
  • the transistor NM1 it is possible to prevent a leak current from flowing between the address electrode AE and the reference power supply line LN20.
  • the switch SW30 since the switch SW30 is turned off during the sustain period SUS, it is possible to prevent a leak current from flowing between the first power supply line LN12 and the transistor PM1. That is, in this embodiment, by turning off the switch SW30 and the transistor NM1 during the sustain period SUS, a leakage current flows between the sustain electrode XE, the scan electrode YE, and the address electrode AE via the interelectrode capacitance Caxy. Can be prevented. As a result, power consumption can be reduced.
  • FIG. 15 shows an example of the discharge operation of the subfield SF by the address electrode driver ADR6 shown in FIG. Detailed description of the same operations as those in FIG. 9 described above will be omitted.
  • the waveform shown in FIG. 15 is different from FIG. 9 in that the waveform of the address control signal SS is omitted.
  • Other waveforms are the same as those in FIG.
  • the meanings of stars and shaded parts in the figure are the same as those in FIG.
  • the control signal SCNT is maintained at the H level.
  • the transistor PM1 shown in FIG. 14 described above can apply the power supply voltage Vadd to the address electrode AE, and when the address control signal ACNT is at the H level, the transistor NM1 A ground voltage GND can be applied to the electrode AE.
  • the address control signal ACNT and the control signal SCNT are set to L level, respectively, and the transistor NM1 and the switch SW30 are turned off.
  • the switch SW30 is configured such that no leakage current flows between the first power supply line LN12 and the transistor PM1 when the switch SW30 is turned off. For this reason, in the sustain period SUS, it is possible to prevent a leak current from flowing between the first power supply line LN12 and the transistor PM1 even if the transistor PM is turned on.
  • one pixel includes three cells (red (R), green (G), and blue (B)) has been described.
  • the present invention is not limited to such an embodiment.
  • one pixel may be composed of four or more cells.
  • one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), Cells that generate colors other than blue (B) may be included.
  • the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ⁇ 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
  • the present invention is not limited to such an embodiment.
  • the ground voltage GND and the voltage Vs may be alternately applied to the sustain electrode XE and the scan electrode YE during the sustain period SUS.
  • the address electrode AE can be prevented from becoming lower than the ground voltage GND during the sustain period SUS.
  • the address driver AD is configured by the pMOS transistor PM1 and the nMOS transistor NM1 .
  • the address driver AD may be composed of a PNP bipolar transistor and an NPN bipolar transistor instead of the pMOS transistor PM1 and the nMOS transistor NM1.
  • the address driver AD may be configured using an nMOS transistor NM2 instead of the pMOS transistor PM1.
  • the gate of the nMOS transistor NM2 receives, for example, a control signal whose logic level (high logic and low logic) is opposite to the control signal received by the gate of the pMOS transistor PM1 shown in FIG.
  • FIG. 16 shows a modification of the address electrode driver ADR shown in FIGS. 5 and 6 described above.
  • the address electrode driver ADR7 shown in FIG. 16 is provided with an address driver AD2 (AD2a) instead of the address driver AD shown in FIG.
  • a power supply unit PS2 (PS2a), an inverter INV1 (INV1a), and a level shifter LS1 (LS1a) provided for each address driver AD2 are added to the address electrode driver ADR shown in FIG. Configured.
  • PS2a power supply unit PS2
  • INV1a inverter INV1
  • LS1a level shifter LS1
  • a circuit group (a circuit group including the address driver AD2 and the power supply unit PS1) of the address electrode drive unit ADR7 excluding the power supply cutoff unit PSI10 is also referred to as an address drive circuit ADRC3.
  • the transistor NM2 of the address driver AD2 has a source connected to the node ND1 (address electrode AE and the drain of the transistor NM1), a drain connected to the internal power supply line LN10, and a gate connected to the output of the inverter INV1. That is, the cathode of the parasitic diode of the transistor NM2 is connected to the internal power supply line LN10, and the anode of the parasitic diode of the transistor NM2 is connected to the node ND1. As a result, leakage current can be prevented from flowing from the internal power supply line LN10 to the reference power supply line LN20 via the parasitic diode.
  • the configuration of the power supply unit PS2 (PS2a) is the same as that of the power supply unit PS1 except that the coil L2 and the capacitor C1 are connected to the node ND1 (ND1a).
  • the power supply unit PS2 Based on the AC voltage Vadd2 applied to the coil L1 of the transformer T1 of the power supply unit PS2, the power supply unit PS2 generates the power supply voltage Vadd3 using the voltage of the node ND1 as a reference (minimum voltage).
  • the power supply voltage Vadd3 is supplied to the inverter INV1 as the power supply voltage of the inverter INV1.
  • the voltage Vadd3 is a voltage higher than the threshold voltage of the transistor NM2.
  • the voltage of the node ND1 is supplied to the inverter INV1 as the reference voltage (minimum voltage) of the inverter INV1.
  • the transformer T1 of the power supply unit PS1 and the transformer T1 of the power supply unit PS2 may be configured to share the coil L1.
  • the input terminal of the inverter INV1 is connected to the driver control unit ADCN via the level shifter LS1 and the isolator IS1.
  • the level shifter LS1 is a circuit that shifts the input (output of the isolator IS1) signal to a level that matches the input range of the inverter INV1, and outputs the shifted signal to the inverter INV1.
  • the inverter INV1 can output a voltage higher than the voltage of the node ND1 by the voltage Vadd3 to the transistor NM2 when the address control signal ACNT is at the L level. At this time, the transistor NM2 is turned on because the voltage Vadd3 larger than the threshold voltage is applied between the gate and the source. Further, regardless of the state of the reference power supply line LN20, the inverter INV1 can output the voltage of the node ND1 to L level and output it to the transistor NM2 when the address control signal ACNT is at H level. At this time, the transistor NM2 is turned off because a voltage (0 V) smaller than the threshold voltage is applied between the gate and the source.
  • the gate of the transistor NM1 of the address driver AD2 is connected to the level shifter LS1 and to the driver control unit ADCN via the isolator IS1. Therefore, even in the configuration of FIG. 16, the discharge operation of subfield SF can be made the same as in FIG.
  • the address drive circuit ADRC3 and the ground line GND can be electrically disconnected by setting the control signal SCNT to the L level during the sustain period SUS.
  • the address driver AD2 is configured by the nMOS transistors NM1 and NM2, it is possible to obtain the same effect as that of the embodiment described with reference to FIGS. In the embodiment described with reference to FIG. 8 to FIG. 15, even when the address driver AD2 is used instead of the address driver AD, the same effect as that of the embodiment described with reference to FIG. 8 to FIG. Can be obtained.
  • the present invention can be applied to a plasma display device and a method for controlling the plasma display device.

Abstract

A plasma display unit has a plasma display panel (PDP) having a first substrate and a second substrate which face each other via a discharge space, and a drive section for driving the PDP. The first substrate has a holding electrode (XE), a scanning electrode (YE), and an address electrode (AE). The drive section has an address electrode voltage applying section (ADRC) including a first transistor (PM1) for applying the supply voltage (Vadd) to the address electrode (AE) on the basis of the address control signal (ACNT) during an addressing period and a second transistor (NM1) for applying the ground voltage (GND) to the address electrode (AE) when the first transistor (PM1) turns off during the addressing period. The drive section also has a power supply shutoff section (PS110) to shut off the ground voltage (GND) to be supplied to the address electrode voltage applying section (ADRC) during a sustain period, thereby allowing power consumption to be reduced.

Description

プラズマディスプレイ装置およびプラズマディスプレイ装置の制御方法Plasma display device and method for controlling plasma display device
 本発明は、プラズマディスプレイ装置およびプラズマディスプレイ装置の制御方法に関する。 The present invention relates to a plasma display device and a control method for the plasma display device.
 プラズマディスプレイパネル(PDP)は、2枚のガラス基板を互いに貼り合わせて構成されており、ガラス基板の間に形成される空間に放電光を発生させることで画像を表示する。画像における画素に対応するセルは、自発光型であり、放電により発生する紫外線を受けて赤、緑、青の可視光を発生する蛍光体が塗布されている。 A plasma display panel (PDP) is formed by bonding two glass substrates together, and displays an image by generating discharge light in a space formed between the glass substrates. The cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge.
 PDPでは、画像を多階調で表示するために、1画面を表示するためのフィールドは、例えば、リセット期間、アドレス期間およびサステイン期間を有する複数のサブフィールドで構成される。例えば、3電極構造のPDPは、サステイン期間に、走査電極および維持電極間でサステイン放電を発生させることで、画像を表示する。サステイン放電を発生させるセル(点灯させるセル)は、例えば、アドレス期間に、走査電極およびアドレス電極間でアドレス放電を発生させることにより、選択される。 In the PDP, in order to display an image with multiple gradations, a field for displaying one screen includes, for example, a plurality of subfields having a reset period, an address period, and a sustain period. For example, a three-electrode PDP displays an image by generating a sustain discharge between the scan electrode and the sustain electrode during the sustain period. A cell that generates a sustain discharge (a cell to be lit) is selected, for example, by generating an address discharge between the scan electrode and the address electrode in the address period.
 一般的なPDPでは、維持電極および走査電極が前面ガラス基板に配置され、アドレス電極が背面ガラス基板に配置される。また、近年、維持電極、走査電極およびアドレス電極の3電極を前面ガラス基板に配置したPDPが提案されている(例えば、特許文献1参照)。
特開2006-259516号公報
In a general PDP, sustain electrodes and scan electrodes are disposed on a front glass substrate, and address electrodes are disposed on a rear glass substrate. In recent years, a PDP in which three electrodes, that is, a sustain electrode, a scan electrode, and an address electrode, are arranged on a front glass substrate has been proposed (for example, see Patent Document 1).
JP 2006-259516 A
 3電極が前面ガラス基板に配置されたPDPでは、アドレス電極は、維持電極および走査電極に近い位置に配置される。例えば、アドレス電極が背面ガラス基板に配置されたPDP(一般的なPDP)では、維持電極および走査電極とアドレス電極との距離は、100μm程度である。これに対し、前面ガラス基板に3電極が配置されるPDPでは、維持電極および走査電極とアドレス電極との距離は、10~30μm程度である。 In the PDP in which the three electrodes are arranged on the front glass substrate, the address electrodes are arranged at positions close to the sustain electrodes and the scan electrodes. For example, in a PDP (general PDP) in which address electrodes are arranged on a rear glass substrate, the distances between the sustain electrodes, the scan electrodes, and the address electrodes are about 100 μm. In contrast, in a PDP in which three electrodes are arranged on the front glass substrate, the distances between the sustain electrode, the scan electrode, and the address electrode are about 10 to 30 μm.
 維持電極および走査電極とアドレス電極との距離が短いため、維持電極および走査電極とアドレス電極との間に大きな電極間容量が形成される。この結果、3電極が前面ガラス基板に配置されたPDPでは、電極間容量を介して維持電極および走査電極とアドレス電極との間(接地-アドレス電極-電極間容量-維持電極および走査電極-接地のループ)に大きな電流(例えば、一般的なPDPの3~10倍程度の電流)が流れる。すなわち、前面ガラス基板に3電極が設けられたPDPを有するPDP装置では、アドレス電極が背面ガラス基板に配置されたPDPを有するPDP装置に比べて、消費電力が大きい。 Since the distance between the sustain electrode / scan electrode and the address electrode is short, a large interelectrode capacitance is formed between the sustain electrode / scan electrode and the address electrode. As a result, in the PDP in which the three electrodes are arranged on the front glass substrate, between the sustain electrode and the scan electrode and the address electrode through the interelectrode capacitance (ground-address electrode-interelectrode capacitance-sustain electrode and scan electrode-ground). A large current (for example, a current about 3 to 10 times that of a general PDP) flows in the loop. In other words, a PDP device having a PDP in which three electrodes are provided on the front glass substrate consumes more power than a PDP device having a PDP in which address electrodes are arranged on the rear glass substrate.
 本発明の目的は、前面ガラス基板に3電極が設けられたPDPを有するPDP装置において、消費電力を小さくすることである。 An object of the present invention is to reduce power consumption in a PDP device having a PDP in which three electrodes are provided on a front glass substrate.
 プラズマディスプレイ装置は、放電空間を介して互いに対向する第1基板および第2基板を有するプラズマディスプレイパネル(PDP)と、PDPを駆動する駆動部とを有している。第1基板は、維持電極、走査電極およびアドレス電極を有している。1画面を表示するための1フィールドは、走査電極およびアドレス電極間でアドレス放電を発生させるためのアドレス期間と、維持電極および走査電極間でサステイン放電を発生させるためのサステイン期間とを有する複数のサブフィールドを有している。例えば、駆動部は、アドレス期間に、電源電圧を受け、アドレス制御信号に基づいて、アドレス電極に電源電圧を印加するための第1トランジスタと、アドレス期間の第1トランジスタがオフのときに、接地電圧を受け、アドレス制御信号に基づいて、アドレス電極に接地電圧を印加するための第2トランジスタとを含むアドレス電極印加部を有している。さらに、駆動部は、サステイン期間に、アドレス電極印加部に供給される電源電圧および接地電圧のいずれかを遮断する電源遮断部を有している。 The plasma display device has a plasma display panel (PDP) having a first substrate and a second substrate facing each other through a discharge space, and a drive unit for driving the PDP. The first substrate has sustain electrodes, scan electrodes, and address electrodes. One field for displaying one screen has a plurality of address periods for generating an address discharge between the scan electrodes and the address electrodes, and a sustain period for generating a sustain discharge between the sustain electrodes and the scan electrodes. Has subfields. For example, the driving unit receives a power supply voltage in the address period, and grounds when the first transistor for applying the power supply voltage to the address electrode based on the address control signal and the first transistor in the address period are off. An address electrode application unit including a second transistor for receiving a voltage and applying a ground voltage to the address electrode based on an address control signal is provided. Furthermore, the drive unit includes a power supply cutoff unit that cuts off either the power supply voltage or the ground voltage supplied to the address electrode application unit during the sustain period.
 本発明では、前面ガラス基板に3電極が設けられたPDPを有するPDP装置において、消費電力を小さくできる。 In the present invention, power consumption can be reduced in a PDP device having a PDP in which three electrodes are provided on a front glass substrate.
一実施形態におけるPDP装置を示す図である。It is a figure which shows the PDP apparatus in one Embodiment. 図1に示したPDPの要部を示す図である。It is a figure which shows the principal part of PDP shown in FIG. 1画面の画像を表示するためのフィールドの構成例を示す図である。It is a figure which shows the structural example of the field for displaying the image of 1 screen. 図1に示した回路部の概要を示す図である。It is a figure which shows the outline | summary of the circuit part shown in FIG. 図4に示したアドレス電極駆動部の一例を示している。5 shows an example of the address electrode driver shown in FIG. 図5に示した電源部およびスイッチの一例を示す図である。It is a figure which shows an example of the power supply part and switch which were shown in FIG. 図3に示したサブフィールドの放電動作の一例を示す図である。It is a figure which shows an example of discharge operation of the subfield shown in FIG. 別の実施形態におけるPDP装置のアドレス電極駆動部およびドライバ制御部を示す図である。It is a figure which shows the address electrode drive part and driver control part of the PDP apparatus in another embodiment. 図8に示したアドレス電極駆動部によるサブフィールドの放電動作の一例を示す図である。FIG. 9 is a diagram illustrating an example of a subfield discharge operation by the address electrode driver illustrated in FIG. 8. 別の実施形態におけるPDP装置のアドレス電極駆動部および制御部を示す図である。It is a figure which shows the address electrode drive part and control part of the PDP apparatus in another embodiment. 別の実施形態におけるPDP装置のアドレス電極駆動部、ドライバ制御部およびスイッチ制御部を示す図である。It is a figure which shows the address electrode drive part of the PDP apparatus in another embodiment, a driver control part, and a switch control part. 図11に示したスイッチの一例を示す図である。It is a figure which shows an example of the switch shown in FIG. 別の実施形態におけるPDP装置のアドレス電極駆動部、ドライバ制御部およびスイッチ制御部を示す図である。It is a figure which shows the address electrode drive part of the PDP apparatus in another embodiment, a driver control part, and a switch control part. 別の実施形態におけるPDP装置のアドレス電極駆動部、ドライバ制御部およびスイッチ制御部を示す図である。It is a figure which shows the address electrode drive part of the PDP apparatus in another embodiment, a driver control part, and a switch control part. 図14に示したアドレス電極駆動部によるサブフィールドの放電動作の一例を示す図である。FIG. 15 is a diagram showing an example of a subfield discharge operation by the address electrode driver shown in FIG. 14. 図5に示したアドレス電極駆動部の変形例を示す図である。FIG. 6 is a diagram illustrating a modification of the address electrode driving unit illustrated in FIG. 5.
 以下、本発明の実施形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態を示している。プラズマディスプレイ装置(以下、PDP装置とも称する)は、四角板形状を有するプラズマディスプレイパネル10(以下、PDPとも称する)、PDP10の画像表示面16側(光の出力側)に設けられる光学フィルタ20、PDP10の画像表示面16側に配置された前筐体30、PDP10の背面18側に配置された後筐体40およびベースシャーシ50、ベースシャーシ50の後筐体40側に取り付けられ、PDP10を駆動するための回路部60(駆動部)、およびPDP10をベースシャーシ50に貼り付けるための両面接着シート70を有している。回路部60は、複数の部品で構成されるため、図では、破線の箱で示している。 FIG. 1 shows an embodiment of the present invention. A plasma display device (hereinafter also referred to as a PDP device) includes a plasma display panel 10 having a square plate shape (hereinafter also referred to as a PDP), an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, A front housing 30 disposed on the image display surface 16 side of the PDP 10, a rear housing 40 and a base chassis 50 disposed on the back surface 18 side of the PDP 10, and attached to the rear housing 40 side of the base chassis 50 to drive the PDP 10. A double-sided adhesive sheet 70 for attaching the PDP 10 to the base chassis 50. Since the circuit unit 60 includes a plurality of components, the circuit unit 60 is indicated by a dashed box in the figure.
 PDP10は、画像表示面16を構成する前面基板部12と、前面基板部12に対向する背面基板部14とにより構成されている。前面基板部12と背面基板部14の間に図示しない放電空間(セル)が形成されている。前面基板部12および背面基板部14は、例えば、ガラス基板により形成されている。光学フィルタ20は、前筐体30の開口部32に取り付けられる保護ガラス(図示せず)に貼付される。なお、光学フィルタ20は、電磁波を遮蔽する機能を有してもよい。また、光学フィルタ20は、保護ガラスではなく、PDP10の画像表示面16側に直接貼付されてもよい。 The PDP 10 includes a front substrate portion 12 that constitutes the image display surface 16 and a rear substrate portion 14 that faces the front substrate portion 12. A discharge space (cell) (not shown) is formed between the front substrate portion 12 and the rear substrate portion 14. The front substrate unit 12 and the back substrate unit 14 are formed of, for example, a glass substrate. The optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30. The optical filter 20 may have a function of shielding electromagnetic waves. The optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
 図2は、図1に示したPDP10の要部の詳細を示している。図中の矢印D1は、第1方向D1を示し、矢印D2は、第1方向D1に画像表示面に平行な面内で直交する第2方向D2を示している。上述したように、前面基板部12と背面基板部14の間(より詳細には、背面基板部14の凹部)に放電空間DSが形成される。 FIG. 2 shows details of the main part of the PDP 10 shown in FIG. An arrow D1 in the drawing indicates the first direction D1, and an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface. As described above, the discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, the concave portion of the rear substrate portion 14).
 前面基板部12(第1基板)は、ガラス基材FS上(図では下側)に第1方向D1に沿って平行に形成され、第2方向D2に沿って交互に形成されたXバス電極XbおよびYバス電極Ybを有している。Xバス電極Xbには、Xバス電極XbからYバス電極Ybに向けて第2方向D2に延在するX透明電極Xtが接続されている。Yバス電極Ybには、Yバス電極YbからXバス電極Xbに向けて第2方向D2に延在するY透明電極Ytが接続されている。図の例では、X透明電極XtおよびY透明電極Ytは、第2方向D2に沿って対向している。 The front substrate portion 12 (first substrate) is formed in parallel along the first direction D1 on the glass substrate FS (lower side in the figure), and is alternately formed along the second direction D2. Xb and Y bus electrodes Yb are provided. An X transparent electrode Xt extending in the second direction D2 from the X bus electrode Xb to the Y bus electrode Yb is connected to the X bus electrode Xb. A Y transparent electrode Yt extending in the second direction D2 from the Y bus electrode Yb to the X bus electrode Xb is connected to the Y bus electrode Yb. In the illustrated example, the X transparent electrode Xt and the Y transparent electrode Yt face each other along the second direction D2.
 ここで、Xバス電極XbおよびYバス電極Ybは、金属材料等で形成された不透明な電極であり、X透明電極XtおよびY透明電極Ytは、ITO膜等で形成された可視光を透過する透明電極である。そして、X電極XE(維持電極)は、Xバス電極XbおよびX透明電極Xtにより構成され、Y電極YE(走査電極)は、Yバス電極YbおよびY透明電極Ytにより構成され、X電極XEと対をなしている。X電極XEおよびY電極YEで構成される電極対(より具体的には、X透明電極XtおよびY透明電極Yt間)で繰り返して放電(サステイン放電)を発生させる。 Here, the X bus electrode Xb and the Y bus electrode Yb are opaque electrodes formed of a metal material or the like, and the X transparent electrode Xt and the Y transparent electrode Yt transmit visible light formed of an ITO film or the like. It is a transparent electrode. The X electrode XE (sustain electrode) is composed of the X bus electrode Xb and the X transparent electrode Xt, and the Y electrode YE (scanning electrode) is composed of the Y bus electrode Yb and the Y transparent electrode Yt. Paired. A discharge (sustain discharge) is repeatedly generated at the electrode pair (more specifically, between the X transparent electrode Xt and the Y transparent electrode Yt) constituted by the X electrode XE and the Y electrode YE.
 また、透明電極XtおよびYtは、それぞれが接続されるバス電極XbおよびYbとガラス基材FSとの間に全面に配置されてもよい。なお、バス電極XbおよびYbと同じ材料(金属材料等)で、バス電極XbおよびYbと一体の電極が透明電極XtおよびYtの代わりに形成されてもよい。 Further, the transparent electrodes Xt and Yt may be disposed on the entire surface between the bus electrodes Xb and Yb to which the transparent electrodes Xt and Yt are connected and the glass substrate FS. Note that an electrode integral with the bus electrodes Xb and Yb may be formed in place of the transparent electrodes Xt and Yt, using the same material (metal material or the like) as the bus electrodes Xb and Yb.
 電極Xb、Xt、Yb、Ytは、誘電体層DL1に覆われている。例えば、誘電体層DL1は、CVD法により形成された二酸化シリコン膜等の絶縁膜である。そして、誘電体層DL1上(図では下側)には、バス電極Xb、Ybの直交方向(第2方向D2)に延在する複数のアドレス電極AEが設けられている。例えば、アドレス電極AEは、金属材料等で形成された不透明な電極である。このように、この実施形態のPDPは、前面基板部12に3電極(電極XE、YE、AE)を有している。また、アドレス電極AEおよび誘電体層DL1は、保護層PLに覆われている。例えば、保護層PLは、放電を容易に発生させるために、陽イオンの衝突による2次電子の放出特性の高いMgO膜で形成される。 The electrodes Xb, Xt, Yb, Yt are covered with the dielectric layer DL1. For example, the dielectric layer DL1 is an insulating film such as a silicon dioxide film formed by a CVD method. A plurality of address electrodes AE extending in a direction orthogonal to the bus electrodes Xb and Yb (second direction D2) are provided on the dielectric layer DL1 (lower side in the drawing). For example, the address electrode AE is an opaque electrode made of a metal material or the like. Thus, the PDP of this embodiment has three electrodes (electrodes XE, YE, AE) on the front substrate portion 12. The address electrode AE and the dielectric layer DL1 are covered with a protective layer PL. For example, the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collision in order to easily generate discharge.
 放電空間DSを介して前面基板部12に対向する背面基板部14(第2基板)は、ガラス基材RS上に、互いに平行に形成された隔壁(バリアリブ)BRを有している。例えば、隔壁BRは、バス電極Xb、Ybに直交する方向(第2方向D2)に延在し、アドレス電極AEに沿って配置されている。換言すれば、アドレス電極AEは、第2方向D2に延在し、隔壁BRに沿って配置されている。隔壁BRにより、セルの側壁が構成される。さらに、隔壁BRの側面と、互いに隣接する隔壁BRの間のガラス基材RS上とには、紫外線により励起されて赤(R)、緑(G)、青(B)の可視光を発生する蛍光体PHr、PHg、PHbが、それぞれ塗布されている。 The rear substrate portion 14 (second substrate) facing the front substrate portion 12 through the discharge space DS has partition walls (barrier ribs) BR formed in parallel with each other on the glass base RS. For example, the barrier ribs BR extend in a direction (second direction D2) orthogonal to the bus electrodes Xb and Yb, and are arranged along the address electrodes AE. In other words, the address electrode AE extends in the second direction D2 and is disposed along the partition wall BR. A partition wall BR constitutes a side wall of the cell. Further, visible light of red (R), green (G), and blue (B) is generated on the side surface of the partition wall BR and the glass substrate RS between the adjacent partition walls BR by being excited by ultraviolet rays. Phosphors PHr, PHg, and PHb are respectively applied.
 PDP10の1つの画素は、赤、緑および青の光を発生する3つのセルにより構成される。ここで、1つのセル(一色の画素)は、バス電極Xb、Ybと隔壁BR1とで囲われる領域に形成される。このように、PDP10は、画像を表示するためにセルをマトリックス状に配置し、かつ互いに異なる色の光を発生する複数種のセルを交互に配列して構成されている。特に図示していないが、バス電極Xb、Ybに沿って形成されたセルにより、表示ラインが構成される。 One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light. Here, one cell (one color pixel) is formed in a region surrounded by the bus electrodes Xb and Yb and the partition wall BR1. As described above, the PDP 10 is configured by arranging cells in a matrix to display an image and alternately arranging a plurality of types of cells that generate light of different colors. Although not particularly illustrated, a display line is constituted by cells formed along the bus electrodes Xb and Yb.
 PDP10は、前面基板部12および背面基板部14を、保護層PLと隔壁BRが互いに接するように貼り合わせ、Ne、Xe等の放電ガスを放電空間DSに封入することで構成される。なお、バス電極Xb、Ybおよびアドレス電極AEは、後述する図4に示すX電極駆動部XDR(維持電極駆動部)、Y電極駆動部YDR(走査電極駆動部)およびアドレス電極駆動部ADRにそれぞれ接続される。 The PDP 10 is configured by bonding the front substrate portion 12 and the rear substrate portion 14 so that the protective layer PL and the partition wall BR are in contact with each other, and enclosing a discharge gas such as Ne or Xe in the discharge space DS. The bus electrodes Xb and Yb and the address electrode AE are respectively connected to an X electrode driving unit XDR (sustain electrode driving unit), a Y electrode driving unit YDR (scanning electrode driving unit) and an address electrode driving unit ADR shown in FIG. Connected.
 図3は、1画面の画像を表示するためのフィールドFLDの構成例を示している。1つのフィールドFLDの長さは、1/60秒(約16.7ms)であり、例えば、8個のサブフィールドSF(SF1-SF8)で構成される。この例では、各サブフィールドSFは、リセット期間RSTと、アドレス期間ADRと、サステイン期間SUSとを有している。 FIG. 3 shows a configuration example of the field FLD for displaying an image of one screen. The length of one field FLD is 1/60 second (about 16.7 ms), and is composed of, for example, eight subfields SF (SF1-SF8). In this example, each subfield SF has a reset period RST, an address period ADR, and a sustain period SUS.
 例えば、リセット期間RSTは、全てのセルの放電開始電圧(アドレス期間ADRのアドレス放電が発生し始める電圧)を合わせるために、各電極XE、YE、AEに蓄積される壁電荷の量を調整する期間である。ここで、壁電荷とは、例えば、各セルにおいて、図2に示したMgO等の保護層PLの表面に蓄積されるプラス電荷およびマイナス電荷である。アドレス期間ADRは、サステイン期間SUSに点灯させるセルを選択する期間である。サステイン期間SUSに点灯させるセルは、例えば、アドレス期間において、後述する図7に示すように、走査電極YEおよびアドレス電極AE間で選択的にアドレス放電を発生させることにより、選択される。サステイン期間SUSは、アドレス期間ADRに選択されたセルで放電(サステイン放電)を発生させる期間である。 For example, in the reset period RST, the amounts of wall charges accumulated in the electrodes XE, YE, and AE are adjusted in order to match the discharge start voltages (voltages at which address discharge in the address period ADR starts to occur) of all cells. It is a period. Here, the wall charges are, for example, plus charges and minus charges accumulated on the surface of the protective layer PL such as MgO shown in FIG. 2 in each cell. The address period ADR is a period for selecting a cell to be lit during the sustain period SUS. A cell to be lit in the sustain period SUS is selected by, for example, selectively generating an address discharge between the scan electrode YE and the address electrode AE in the address period as shown in FIG. The sustain period SUS is a period in which discharge (sustain discharge) is generated in the cell selected in the address period ADR.
 サステイン期間SUSの長さは、サブフィールドSFにより異なり、セルの放電回数(輝度)に依存する。このため、点灯させるサブフィールドSFの組み合わせを変えることにより、画像を多階調で表示することが可能になる。この例では、サブフィールドSF1-SF8に予め設定されている放電サイクル数は、それぞれ4、8、16、32、64、128、256、512である。後述する図7に示すように1つの放電サイクル中に、セルは2回放電する(図の星印)。 The length of the sustain period SUS varies depending on the subfield SF and depends on the number of discharges (luminance) of the cell. For this reason, it becomes possible to display an image with multiple gradations by changing the combination of the subfields SF to be lit. In this example, the number of discharge cycles preset in the subfields SF1 to SF8 is 4, 8, 16, 32, 64, 128, 256, and 512, respectively. As shown in FIG. 7 described later, the cell is discharged twice during one discharge cycle (star mark in the figure).
 図4は、図1に示した回路部60の概要を示している。図中の容量Caxは、アドレス電極AEおよび維持電極XE間に形成される寄生容量(電極間容量)を示し、容量Cayは、アドレス電極AEおよび走査電極YE間に形成される寄生容量(電極間容量)を示している。以下、電極間容量Cax、Cayを合わせて電極間容量Caxyとも称する。 FIG. 4 shows an outline of the circuit unit 60 shown in FIG. A capacitance Cax in the figure indicates a parasitic capacitance (interelectrode capacitance) formed between the address electrode AE and the sustain electrode XE, and a capacitance Cay is a parasitic capacitance (between electrodes) formed between the address electrode AE and the scan electrode YE. Capacity). Hereinafter, the interelectrode capacitances Cax and Cay are collectively referred to as interelectrode capacitance Caxy.
 回路部60は、電圧生成部PWR、X電極駆動部XDR(維持電極駆動部)、Y電極駆動部YDR(走査電極駆動部)、アドレス電極駆動部ADRおよび制御部CNTを有している。電圧生成部PWRは、電極駆動部YDR、XDRに供給する電源電圧Vs/2、-Vs/2、Vsc等を生成する。電極駆動部XDR、YDR、ADRは、PDP10を駆動する駆動部として動作する。例えば、維持電極駆動部XDRは、維持電極XEに共通のパルスを印加し、走査電極駆動部YDRは、走査電極YEに選択的にパルスを印加し、アドレス電極駆動部ADRは、アドレス電極AEに選択的にパルスを印加する。 The circuit unit 60 includes a voltage generation unit PWR, an X electrode driving unit XDR (sustain electrode driving unit), a Y electrode driving unit YDR (scanning electrode driving unit), an address electrode driving unit ADR, and a control unit CNT. The voltage generator PWR generates power supply voltages Vs / 2, −Vs / 2, Vsc, etc. to be supplied to the electrode drivers YDR and XDR. The electrode drive units XDR, YDR, and ADR operate as drive units that drive the PDP 10. For example, the sustain electrode driver XDR applies a common pulse to the sustain electrode XE, the scan electrode driver YDR selectively applies a pulse to the scan electrode YE, and the address electrode driver ADR applies to the address electrode AE. A pulse is selectively applied.
 図の例では、アドレス電極駆動部ADRは、電源遮断部PSI10と、アドレス電極AE毎に設けられたアドレスドライバAD(アドレス電極印加部、アドレス電圧印加部)とを有している。例えば、電源遮断部PSI10は、上述した図3に示したリセット期間RSTおよびアドレス期間ADRに、アドレスドライバADに接地電圧を供給し、サステイン期間SUSに、アドレスドライバADに供給される接地電圧を遮断する。また、アドレスドライバADは、後述する図7に示すアドレスパルスAPLをアドレス電極AEに選択的に印加する。なお、この図では、アドレスドライバADに電源電圧を供給するための電源の記載を省略している。 In the example shown in the figure, the address electrode drive unit ADR includes a power cutoff unit PSI10 and an address driver AD (address electrode application unit, address voltage application unit) provided for each address electrode AE. For example, the power shutoff unit PSI10 supplies the ground voltage to the address driver AD during the reset period RST and the address period ADR shown in FIG. 3 described above, and shuts off the ground voltage supplied to the address driver AD during the sustain period SUS. To do. The address driver AD selectively applies an address pulse APL shown in FIG. 7 to be described later to the address electrode AE. In this figure, the description of the power supply for supplying the power supply voltage to the address driver AD is omitted.
 制御部CNTは、アドレスドライバADを制御するための制御信号ACNT(アドレス制御信号)を生成するドライバ制御部ADCNと、電源遮断部PSI10を制御するための制御信号SCNTを生成するスイッチ制御部SWCNとを有している。そして、制御部CNTは、画像データR0-7、G0-7、B0-7に基づいて使用するサブフィールドを選択し、電極駆動部YDR、XDR、ADRに制御信号YCNT、XCNT、ACNTを出力する。画素を構成するセル毎に、使用するサブフィールドを選択することにより、多階調の画像が表示される。なお、画像データR0-7、G0-7、B0-7は、赤、緑、青をそれぞれ表示するための8ビットからなるデータであり、図示しないチューナ部あるいは外部入力から制御部CNTに順次に入力される。 The control unit CNT includes a driver control unit ADCN that generates a control signal ACNT (address control signal) for controlling the address driver AD, and a switch control unit SWCN that generates a control signal SCNT for controlling the power cutoff unit PSI10. have. Then, the control unit CNT selects a subfield to be used based on the image data R0-7, G0-7, B0-7, and outputs control signals YCNT, XCNT, and ACNT to the electrode drive units YDR, XDR, and ADR. . A multi-gradation image is displayed by selecting a subfield to be used for each cell constituting a pixel. The image data R0-7, G0-7, and B0-7 are 8-bit data for displaying red, green, and blue, respectively, and are sequentially sent from the tuner unit or external input (not shown) to the control unit CNT. Entered.
 図5は、図4に示したアドレス電極駆動部ADRの一例を示している。なお、図では、アドレス電極AEbと維持電極XEおよび走査電極YEとの間の電極間容量Caxyの記載を省略している。また、以下、接地線GNDの電圧を、接地電圧GNDとも称する。 FIG. 5 shows an example of the address electrode driver ADR shown in FIG. In the figure, the interelectrode capacitance Caxy between the address electrode AEb, the sustain electrode XE, and the scan electrode YE is omitted. Hereinafter, the voltage of the ground line GND is also referred to as a ground voltage GND.
 アドレス電極駆動部ADRは、アドレス電極AE(AEa、AEb)毎に設けられたアドレスドライバAD(ADa、ADb)と、アドレスドライバAD(ADa、ADb)毎に設けられたアイソレータIS1(IS1a、IS1b)と、電源部PS1(内部電源)と、電源遮断部PSI10とを有している。なお、電源遮断部PSI10を除くアドレス電極駆動部ADRの回路群(アドレスドライバADおよび電源部PS1を含む回路群)をアドレス駆動回路ADRCとも称する。 The address electrode driver ADR includes an address driver AD (ADa, ADb) provided for each address electrode AE (AEa, AEb) and an isolator IS1 (IS1a, IS1b) provided for each address driver AD (ADa, ADb). And a power supply unit PS1 (internal power supply) and a power supply cutoff unit PSI10. A circuit group of the address electrode drive unit ADR (a circuit group including the address driver AD and the power supply unit PS1) excluding the power supply cutoff unit PSI10 is also referred to as an address drive circuit ADRC.
 例えば、アドレスドライバAD(ADa、ADb)は、内部電源線LN10と基準電源線LN20との間に直列に接続された第1トランジスタPM1(PM1a、PM1b)および第2トランジスタNM1(NM1a、NM1b)を有している。そして、トランジスタPM1とトランジスタNM1とを接続している共通ノードND1(ND1a、ND1b)がアドレス電極AE(AEa、AEb)に接続される。 For example, the address driver AD (ADa, ADb) includes a first transistor PM1 (PM1a, PM1b) and a second transistor NM1 (NM1a, NM1b) connected in series between the internal power supply line LN10 and the reference power supply line LN20. Have. The common node ND1 (ND1a, ND1b) connecting the transistor PM1 and the transistor NM1 is connected to the address electrode AE (AEa, AEb).
 例えば、トランジスタPM1は、大電流を流すことのできるパワーpMOSトランジスタ(PチャネルFET)であり、アノードがトランジスタPM1のドレインに接続され、カソードがトランジスタPM1のソースに接続された寄生ダイオードを有している。一般的に、パワーpMOSトランジスタでは、寄生ダイオードのアノードが接続されたドレインとゲートとの間の閾値電圧は、寄生ダイオードのカソードが接続されたソースとゲートとの間の閾値電圧に比べて大きい。このため、電力用のPチャネルFETは、図に示したソースおよびゲート間の電圧に基づいて、オン(オフ)する。 For example, the transistor PM1 is a power pMOS transistor (P-channel FET) capable of flowing a large current, and has a parasitic diode whose anode is connected to the drain of the transistor PM1 and whose cathode is connected to the source of the transistor PM1. Yes. Generally, in a power pMOS transistor, a threshold voltage between a drain and a gate to which an anode of a parasitic diode is connected is larger than a threshold voltage between a source and a gate to which a cathode of the parasitic diode is connected. Therefore, the power P-channel FET is turned on (off) based on the voltage between the source and the gate shown in the drawing.
 また、トランジスタNM1は、大電流を流すことのできるパワーnMOSトランジスタ(NチャネルFET)であり、アノードがトランジスタNM1のソースに接続され、カソードがトランジスタNM1のドレインに接続された寄生ダイオードを有している。パワーnMOSトランジスタでは、寄生ダイオードのカソードが接続されたドレインとゲートとの間の閾値電圧は、寄生ダイオードのアノードが接続されたソースとゲートとの間の閾値電圧に比べて大きい。このため、電力用のNチャネルFETは、図に示したソースおよびゲート間の電圧に基づいて、オン(オフ)する。 The transistor NM1 is a power nMOS transistor (N-channel FET) capable of flowing a large current, and has a parasitic diode whose anode is connected to the source of the transistor NM1 and whose cathode is connected to the drain of the transistor NM1. Yes. In the power nMOS transistor, the threshold voltage between the drain and the gate to which the cathode of the parasitic diode is connected is larger than the threshold voltage between the source and the gate to which the anode of the parasitic diode is connected. Therefore, the power N-channel FET is turned on (off) based on the voltage between the source and the gate shown in the drawing.
 図の例では、トランジスタPM1のソースは、内部電源線LN10に接続され、トランジスタNM1のソースは、基準電源線LN20に接続されている。すなわち、トランジスタPM1の寄生ダイオードのカソードが内部電源線LN10に接続され、トランジスタNM1の寄生ダイオードのアノードが基準電源線LN20に接続されている。これにより、内部電源線LN10から寄生ダイオードを介して基準電源線LN20にリーク電流が流れることを防止できる。 In the illustrated example, the source of the transistor PM1 is connected to the internal power supply line LN10, and the source of the transistor NM1 is connected to the reference power supply line LN20. That is, the cathode of the parasitic diode of the transistor PM1 is connected to the internal power supply line LN10, and the anode of the parasitic diode of the transistor NM1 is connected to the reference power supply line LN20. As a result, leakage current can be prevented from flowing from the internal power supply line LN10 to the reference power supply line LN20 via the parasitic diode.
 トランジスタPM1、NM1のゲートは、互いに接続され、アイソレータIS1を介してドライバ制御部ADCNに接続されている。例えば、アイソレータIS1は、発光ダイオードおよびフォトトランジスタを有し、ドライバ制御部ADCNおよびアドレスドライバAD間で直流的に絶縁を維持した状態で、ドライバ制御部ADCNからアドレスドライバADにアドレス制御信号ACNT(ACNTa、ACNTb)を伝達する。 The gates of the transistors PM1 and NM1 are connected to each other and are connected to the driver control unit ADCN via the isolator IS1. For example, the isolator IS1 includes a light emitting diode and a phototransistor, and maintains an galvanic isolation between the driver control unit ADCN and the address driver AD, and the address control signal ACNT (ACNTa) from the driver control unit ADCN to the address driver AD. , ACNTb).
 図の例では、アイソレータIS1は、アドレス制御信号ACNTの基準レベルを接地電圧GNDから基準電源線LN20の電圧にレベルシフトして、トランジスタPM1、NM1のゲートにアドレス制御信号ACNTを伝達する。これにより、アドレス制御信号ACNTの論理レベル(HレベルおよびLレベル)は、トランジスタPM1、NM1に確実に伝達される。例えば、アドレス制御信号ACNTが高論理レベル(Hレベル)のときに、トランジスタPM1がオフし、トランジスタNM1がオンし、アドレス制御信号ACNTが低論理レベル(Lレベル)のときに、トランジスタPM1がオンする。 In the example of the figure, the isolator IS1 shifts the reference level of the address control signal ACNT from the ground voltage GND to the voltage of the reference power supply line LN20, and transmits the address control signal ACNT to the gates of the transistors PM1 and NM1. Thereby, the logic level (H level and L level) of address control signal ACNT is reliably transmitted to transistors PM1 and NM1. For example, when the address control signal ACNT is at a high logic level (H level), the transistor PM1 is turned off, the transistor NM1 is turned on, and when the address control signal ACNT is at a low logic level (L level), the transistor PM1 is turned on. To do.
 電源部PS1は、基準電源線LN20および電源遮断部PSI10を介して接地線GNDに接続され、トランジスタPM1が接続された内部電源線LN10に電源電圧Vaddを供給する。すなわち、電源部PS1は、基準電源線LN20と内部電源線LN10との間の電圧を、電圧Vaddに維持する。なお、電源部PS1の構成の一例は、後述する図6で説明する。 The power supply unit PS1 is connected to the ground line GND via the reference power supply line LN20 and the power supply cutoff unit PSI10, and supplies the power supply voltage Vadd to the internal power supply line LN10 to which the transistor PM1 is connected. That is, the power supply unit PS1 maintains the voltage between the reference power supply line LN20 and the internal power supply line LN10 at the voltage Vadd. An example of the configuration of the power supply unit PS1 will be described later with reference to FIG.
 電源遮断部PSI10は、基準電源線LN20と接地線GNDとの間に配置されたスイッチSW10を有している。スイッチSW10のオン、オフは、スイッチ制御部SWCNから出力される制御信号SCNTにより制御される。例えば、スイッチSW10は、スイッチSW10がオフのときに、基準電源線LN20と接地線GNDとの間にリーク電流が流れないように構成される。 The power cutoff unit PSI10 has a switch SW10 disposed between the reference power supply line LN20 and the ground line GND. On / off of the switch SW10 is controlled by a control signal SCNT output from the switch control unit SWCN. For example, the switch SW10 is configured such that no leakage current flows between the reference power supply line LN20 and the ground line GND when the switch SW10 is off.
 例えば、スイッチSW10は、IGBT(Insulated Gate Bipolar Transistor)やパワーMOSトランジスタにより構成される。IGBTは、ゲートにMOSFETを組み込んだバイポーラトランジスタである。IGBTは、パワーMOSトランジスタと異なり、コレクタ、エミッタ間に寄生ダイオードを持たない。このため、IGBTで構成されたスイッチSW10では、スイッチSW10がオフのときに、基準電源線LN20と接地線GNDとの間にリーク電流は流れない。なお、寄生ダイオードを有するパワーMOSトランジスタで構成されたスイッチSW10の詳細は、後述する図6で説明する。 For example, the switch SW10 is configured by an IGBT (Insulated Gate Bipolar Transistor) or a power MOS transistor. The IGBT is a bipolar transistor in which a MOSFET is incorporated in the gate. Unlike a power MOS transistor, an IGBT does not have a parasitic diode between a collector and an emitter. For this reason, in the switch SW10 constituted by the IGBT, no leakage current flows between the reference power supply line LN20 and the ground line GND when the switch SW10 is off. Details of the switch SW10 formed of a power MOS transistor having a parasitic diode will be described later with reference to FIG.
 上述したように、スイッチSW10は、図3に示したアドレス期間ADRに、接地線GNDから基準電源線LN20に接地電圧GNDを供給するためにオンする。すなわち、スイッチSW10は、アドレス期間ADRでは、電源部PS1およびアドレスドライバADを有するアドレス駆動回路ADRCと接地線GNDとを電気的に接続する。換言すれば、アドレス期間ADRでは、接地電圧GNDが基準電源線LN20に供給され、接地電圧GNDを基準にした電源電圧Vaddが内部電源線LN10に供給される。これにより、トランジスタNM1は、アドレス制御信号ACNTが高論理レベル(Hレベル)のときに、接地電圧GNDをアドレス電極AEに印加できる。また、トランジスタPM1は、アドレス制御信号ACNTが低論理レベル(Lレベル)のときに、接地電圧GNDを基準にした電源電圧Vaddをアドレス電極AEに印加できる。 As described above, the switch SW10 is turned on to supply the ground voltage GND from the ground line GND to the reference power supply line LN20 in the address period ADR shown in FIG. That is, switch SW10 electrically connects address drive circuit ADRC having power supply unit PS1 and address driver AD and ground line GND in address period ADR. In other words, in the address period ADR, the ground voltage GND is supplied to the reference power supply line LN20, and the power supply voltage Vadd based on the ground voltage GND is supplied to the internal power supply line LN10. Thus, the transistor NM1 can apply the ground voltage GND to the address electrode AE when the address control signal ACNT is at a high logic level (H level). Further, the transistor PM1 can apply the power supply voltage Vadd based on the ground voltage GND to the address electrode AE when the address control signal ACNT is at a low logic level (L level).
 また、スイッチSW10は、サステイン期間SUSに、基準電源線LN20をフローティング状態にするためにオフする。すなわち、スイッチSW10は、サステイン期間SUSでは、アドレス駆動回路ADRCと接地線GNDとを電気的に非接続にする。なお、上述したように、スイッチSW10がオフのときに、基準電源線LN20と接地線GNDとの間にリーク電流は流れない。したがって、この実施形態では、サステイン期間SUSに、アドレス電極AEと接地線GNDとの間にリーク電流が流れることを防止できる。 Further, the switch SW10 is turned off to bring the reference power supply line LN20 into a floating state during the sustain period SUS. That is, the switch SW10 electrically disconnects the address drive circuit ADRC and the ground line GND during the sustain period SUS. As described above, no leakage current flows between the reference power supply line LN20 and the ground line GND when the switch SW10 is off. Therefore, in this embodiment, it is possible to prevent a leak current from flowing between the address electrode AE and the ground line GND during the sustain period SUS.
 すなわち、この実施形態では、サステイン期間SUSに、電極間容量Caxyを介して維持電極XEおよび走査電極YEとアドレス電極AEとの間(接地線GND-アドレス電極AE-電極間容量Caxy-維持電極XEおよび走査電極YE-接地線GNDのループ)にリーク電流が流れることを防止できる。この結果、この実施形態では、消費電力を小さくできる。 That is, in this embodiment, in the sustain period SUS, the sustain electrode XE and the scan electrode YE and the address electrode AE are connected via the interelectrode capacitance Caxy (the ground line GND-address electrode AE-interelectrode capacitance Caxy-sustain electrode XE). In addition, it is possible to prevent a leak current from flowing through the scan electrode YE and the loop of the ground line GND. As a result, in this embodiment, power consumption can be reduced.
 図6は、図5に示した電源部PS1およびスイッチSW10の一例を示している。電源部PS1は、例えば、トランスT1の一部(コイルL2)、整流回路(図では、ダイオードD1)、平滑回路(図では、容量C1)および電圧安定化回路VS1を有している。例えば、トランスT1は、2つのコイルL1、L2をコアで結合させた構成であり、1次側(コイルL1)と2次側(コイルL2)とを直流的に絶縁し、一方のコイルL1に加えた変化(図では、交流電圧Vadd1)を、他方のコイルL2に伝送する。 FIG. 6 shows an example of the power supply unit PS1 and the switch SW10 shown in FIG. The power supply unit PS1 includes, for example, a part of the transformer T1 (coil L2), a rectifier circuit (diode D1 in the figure), a smoothing circuit (capacitor C1 in the figure), and a voltage stabilization circuit VS1. For example, the transformer T1 has a configuration in which two coils L1 and L2 are coupled by a core, and the primary side (coil L1) and the secondary side (coil L2) are galvanically insulated, and one coil L1 is The applied change (AC voltage Vadd1 in the figure) is transmitted to the other coil L2.
 例えば、コイルL1は、一方の端子が接地線GNDに接続され、他方の端子に交流電圧Vadd1が印加される。コイルL2は、一方の端子が基準電源線LN20に接続され、他方の端子がダイオードD1のアノードに接続され、コイルL1に加えられた電圧変化をダイオードD1に伝達する。ダイオードD1のカソードは、容量C1の一方の端子および電圧安定化回路VS1に接続され、容量C1の他方の端子は、基準電源線LN20に接続されている。これにより、ダイオードD1と容量C1とが接続されたノードに、基準電源線LN20を基準にして整流および平滑された電圧が供給される。 For example, one terminal of the coil L1 is connected to the ground line GND, and the AC voltage Vadd1 is applied to the other terminal. The coil L2 has one terminal connected to the reference power line LN20 and the other terminal connected to the anode of the diode D1, and transmits a voltage change applied to the coil L1 to the diode D1. The cathode of the diode D1 is connected to one terminal of the capacitor C1 and the voltage stabilizing circuit VS1, and the other terminal of the capacitor C1 is connected to the reference power supply line LN20. As a result, a voltage rectified and smoothed with reference to the reference power supply line LN20 is supplied to the node where the diode D1 and the capacitor C1 are connected.
 電圧安定化回路VS1は、基準電源線LN20を基準にして整流および平滑された電圧を、電源電圧Vaddとして安定化させて内部電源線LN10に供給する。これにより、基準電源線LN20がフローティング状態の場合でも、電源部PS1は、基準電源線LN20と内部電源線LN10との間の電圧を、電圧Vaddに維持できる。 The voltage stabilization circuit VS1 stabilizes the voltage rectified and smoothed with reference to the reference power supply line LN20 as the power supply voltage Vadd and supplies it to the internal power supply line LN10. Thereby, even when the reference power supply line LN20 is in a floating state, the power supply unit PS1 can maintain the voltage between the reference power supply line LN20 and the internal power supply line LN10 at the voltage Vadd.
 電源遮断部PSI10のスイッチSW10は、例えば、基準電源線LN20と接地線GNDとの間に直列に接続された一対のパワーnMOSトランジスタNM10、NM20(NチャネルFET)で構成されている。なお、パワーnMOSトランジスタNM10、NM20は、トランジスタNM10、NM20のゲートを互いに接続している共通ノードがスイッチ制御部SWCNに接続され、制御信号SCNTをゲートで受けている。 The switch SW10 of the power shut-off unit PSI10 is composed of, for example, a pair of power nMOS transistors NM10 and NM20 (N channel FET) connected in series between the reference power supply line LN20 and the ground line GND. In the power nMOS transistors NM10 and NM20, the common node that connects the gates of the transistors NM10 and NM20 to each other is connected to the switch control unit SWCN, and the control signal SCNT is received by the gate.
 また、nMOSトランジスタNM10は、ドレインが基準電源線LN20に接続され、ソースがnMOSトランジスタNM20のソースに接続されている。nMOSトランジスタNM20は、ドレインが接地線GNDに接続されている。すなわち、一対のパワーnMOSトランジスタNM10、NM20は、トランジスタNM10、NM20に形成される各寄生ダイオードのアノードを互いに接続する向きに接続されている。 The nMOS transistor NM10 has a drain connected to the reference power supply line LN20 and a source connected to the source of the nMOS transistor NM20. The nMOS transistor NM20 has a drain connected to the ground line GND. That is, the pair of power nMOS transistors NM10 and NM20 are connected in the direction in which the anodes of the parasitic diodes formed in the transistors NM10 and NM20 are connected to each other.
 トランジスタNM10、NM20がオフ状態のとき、トランジスタNM10の寄生ダイオードは、基準電源線LN20から接地線GNDにリーク電流が流れることを防止し、トランジスタNM20の寄生ダイオードは、接地線GNDから基準電源線LN20にリーク電流が流れることを防止する。これにより、スイッチSW10(トランジスタNM10、NM20)がオフのときに、基準電源線LN20と接地線GNDとの間にリーク電流が流れることを防止できる。 When the transistors NM10 and NM20 are in the off state, the parasitic diode of the transistor NM10 prevents a leakage current from flowing from the reference power supply line LN20 to the ground line GND, and the parasitic diode of the transistor NM20 is connected from the ground line GND to the reference power supply line LN20. To prevent leakage current from flowing through. As a result, when the switch SW10 (transistors NM10 and NM20) is off, leakage current can be prevented from flowing between the reference power supply line LN20 and the ground line GND.
 図7は、図3に示したサブフィールドSFの放電動作の例を示している。図中の星印は、放電の発生を示している。なお、図中のアドレス電極AEの波形の網掛け部分は、アドレス電極AEがフローティング状態であることを示している。なお、上述した図5に示したスイッチSW10は、高論理レベル(Hレベル)の制御信号SCNTを受けたときにオンし、低論理レベル(Lレベル)の制御信号SCNTを受けたときにオフする。 FIG. 7 shows an example of the discharge operation of the subfield SF shown in FIG. The star in the figure indicates the occurrence of discharge. The shaded portion of the waveform of the address electrode AE in the figure indicates that the address electrode AE is in a floating state. Note that the switch SW10 shown in FIG. 5 is turned on when receiving a control signal SCNT at a high logic level (H level) and turned off when receiving a control signal SCNT at a low logic level (L level). .
 まず、リセット期間RSTでは、正の書き込み電圧が維持電極XE(バス電極Xbおよび透明電極Xt)に印加され、正の書き込み電圧が走査電極YE(バス電極Ybおよび透明電極Yt)に印加される(図7(a))。そして、維持電極XEは、正の書き込み電圧に維持され、緩やかに上昇する正の書き込み電圧(書き込み鈍波)が走査電極YEに印加される(図7(b))。これにより、セルの発光を抑えながら維持電極XE、走査電極YEおよびアドレス電極AEに壁電荷がそれぞれ蓄積される。例えば、維持電極XEと走査電極YEに負の壁電荷がそれぞれ蓄積され、アドレス電極AEに正の壁電荷が蓄積される。 First, in the reset period RST, a positive write voltage is applied to the sustain electrode XE (the bus electrode Xb and the transparent electrode Xt), and a positive write voltage is applied to the scan electrode YE (the bus electrode Yb and the transparent electrode Yt) ( FIG. 7 (a)). Then, the sustain electrode XE is maintained at a positive write voltage, and a positive write voltage (write obtuse wave) that gradually increases is applied to the scan electrode YE (FIG. 7B). Thus, wall charges are accumulated in the sustain electrode XE, the scan electrode YE, and the address electrode AE, respectively, while suppressing the light emission of the cell. For example, negative wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively, and positive wall charges are accumulated in the address electrode AE.
 次に、維持電極XEは、正の書き込み電圧に維持され、負の調整電圧(調整鈍波)が走査電極YEに印加される(図7(c))。これにより、維持電極XEと走査電極YEとアドレス電極AEにそれぞれ蓄積された負と正の壁電荷の量が減るとともに、全てのセルの壁電荷の量が調整される。なお、例えば、維持電極XEに印加される正の調整電圧は、電圧Vs/2より低い電圧であり、走査電極YEに印加される負の調整電圧の最小値は、電圧-Vs/2より高い電圧(絶対値としては小さい電圧値)である。 Next, the sustain electrode XE is maintained at a positive write voltage, and a negative adjustment voltage (adjustment blunt wave) is applied to the scan electrode YE (FIG. 7C). As a result, the amount of negative and positive wall charges accumulated in the sustain electrode XE, the scan electrode YE, and the address electrode AE is reduced, and the amount of wall charges in all cells is adjusted. For example, the positive adjustment voltage applied to the sustain electrode XE is a voltage lower than the voltage Vs / 2, and the minimum value of the negative adjustment voltage applied to the scan electrode YE is higher than the voltage −Vs / 2. It is a voltage (small voltage value as an absolute value).
 なお、リセット期間RSTでは、制御信号SCNTがHレベルに維持されているため、上述した図5に示した基準電圧線LN20にスイッチSW10を介して接地電圧GNDが供給される。また、制御信号ACNTがHレベルに維持されているため、図5に示したトランジスタPM1がオフし、トランジスタNM1がオンし、トランジスタNM1は、アドレス電極AEに接地電圧GNDを印加する。 In the reset period RST, since the control signal SCNT is maintained at the H level, the ground voltage GND is supplied to the reference voltage line LN20 illustrated in FIG. 5 via the switch SW10. Since the control signal ACNT is maintained at the H level, the transistor PM1 shown in FIG. 5 is turned off, the transistor NM1 is turned on, and the transistor NM1 applies the ground voltage GND to the address electrode AE.
 アドレス期間ADRでは、制御信号SCNTは、図5に示したスイッチ制御部SWCNにより、Hレベルに維持され、スイッチSW10はオン状態を維持する。そして、アドレス期間ADRでは、アドレス放電時に陽極となるバイアス電圧が維持電極XEに印加され、アドレス放電時に陰極となるスキャンパルスSPL(電圧-Vs/2)が走査電極YEに印加され、アドレス放電時に陽極となるアドレスパルスAPL(電圧Vadd)が、点灯するセルに対応するアドレス電極AEに印加される(図7(d))。スキャンパルスSPLとアドレスパルスAPLにより選択されたセルは、走査電極YEとアドレス電極AE間で一時的に放電(アドレス放電)が発生する。これにより、サステイン期間SUSに点灯させるセルが選択される。 In the address period ADR, the control signal SCNT is maintained at the H level by the switch control unit SWCN illustrated in FIG. 5, and the switch SW10 is maintained in the ON state. In the address period ADR, a bias voltage serving as an anode during address discharge is applied to the sustain electrode XE, and a scan pulse SPL (voltage −Vs / 2) serving as a cathode during address discharge is applied to the scan electrode YE, and during address discharge. An address pulse APL (voltage Vadd) serving as an anode is applied to the address electrode AE corresponding to the lighted cell (FIG. 7D). In the cell selected by the scan pulse SPL and the address pulse APL, a discharge (address discharge) is temporarily generated between the scan electrode YE and the address electrode AE. Thereby, a cell to be lit in the sustain period SUS is selected.
 例えば、点灯するセルに対応するアドレス制御信号ACNTをLレベルにすることにより、点灯するセルに対応するアドレス電極AEに接続されたアドレスドライバADでは、トランジスタPM1がオンし、トランジスタNM1がオフする。すなわち、アドレス制御信号ACNTがLレベルのときに、トランジスタPM1は、アドレス電極AEに電源電圧Vaddを印加する。換言すれば、トランジスタPM1は、アドレス制御信号ACNTに基づいて、アドレス電極AEに電源電圧Vaddを印加する。 For example, by setting the address control signal ACNT corresponding to the lighted cell to L level, in the address driver AD connected to the address electrode AE corresponding to the lighted cell, the transistor PM1 is turned on and the transistor NM1 is turned off. That is, when the address control signal ACNT is at the L level, the transistor PM1 applies the power supply voltage Vadd to the address electrode AE. In other words, the transistor PM1 applies the power supply voltage Vadd to the address electrode AE based on the address control signal ACNT.
 また、Hレベルのアドレス制御信号ACNTを受けたアドレスドライバADでは、トランジスタPM1はオフし、トランジスタNM1はオンし、トランジスタNM1は、アドレス電極AEに接地電圧GNDを印加する。すなわち、トランジスタNM1は、アドレス期間ADRのトランジスタPM1がオフのときに、アドレス制御信号ACNTに基づいて、アドレス電極AEに接地電圧GNDを印加する。なお、アドレス電極AEの波形に示される2回目のアドレスパルスAPLは、他の表示ラインのセルを選択するために印加される(図7(e))。 Further, in the address driver AD that has received the address control signal ACNT at the H level, the transistor PM1 is turned off, the transistor NM1 is turned on, and the transistor NM1 applies the ground voltage GND to the address electrode AE. That is, the transistor NM1 applies the ground voltage GND to the address electrode AE based on the address control signal ACNT when the transistor PM1 in the address period ADR is off. Note that the second address pulse APL shown in the waveform of the address electrode AE is applied to select a cell of another display line (FIG. 7E).
 サステイン期間SUSでは、負および正のサステインパルス(電圧Vs/2、-Vs/2)が、維持電極XEおよび走査電極YEにそれぞれ印加される(図7(f、g))。これにより、点灯したセルの放電状態が維持される。互いに極性の異なるサステインパルスが、維持電極XEおよび走査電極YEに繰り返して印加されることにより、サステイン期間SUSに点灯したセルの放電(サステイン放電)が繰り返し行われる。図3で説明したように、1放電サイクル中(例えば、図7(f、g))に2回の放電が実施される。例えば、サブフィールドSF4は、32個の放電サイクルで構成され、64回の放電が実施される。 In the sustain period SUS, negative and positive sustain pulses (voltages Vs / 2, −Vs / 2) are applied to the sustain electrode XE and the scan electrode YE, respectively (FIG. 7 (f, g)). Thereby, the discharge state of the lighted cell is maintained. Sustain pulses having different polarities are repeatedly applied to the sustain electrode XE and the scan electrode YE, so that the discharge of the cells lit in the sustain period SUS (sustain discharge) is repeatedly performed. As described in FIG. 3, two discharges are performed during one discharge cycle (for example, FIG. 7 (f, g)). For example, the subfield SF4 is composed of 32 discharge cycles, and 64 discharges are performed.
 なお、サステイン期間SUSでは、制御信号SCNTは、図5に示したスイッチ制御部SWCNにより、Lレベルに設定され、スイッチSW10はオフする。すなわち、サステイン期間SUSでは、上述したように、アドレス駆動回路ADRCと接地線GNDとが電気的に非接続にされる。すなわち、この実施形態では、サステイン期間SUSに、アドレス電極AEを、フローティング(ハイインピーダンス)状態にでき、サステインパルスが印加された維持電極XEおよび走査電極YEの平均電圧とアドレス電極AEの電圧との差を小さくできる。 In the sustain period SUS, the control signal SCNT is set to L level by the switch control unit SWCN shown in FIG. 5, and the switch SW10 is turned off. That is, in the sustain period SUS, as described above, the address drive circuit ADRC and the ground line GND are electrically disconnected. That is, in this embodiment, in the sustain period SUS, the address electrode AE can be in a floating (high impedance) state, and the average voltage of the sustain electrode XE and the scan electrode YE to which the sustain pulse is applied and the voltage of the address electrode AE The difference can be reduced.
 これにより、維持電極XEおよび走査電極YEの平均電圧とアドレス電極AEの電圧との差により発生する維持電極XEおよび走査電極YEとアドレス電極AEとの間の変位電流(リーク電流)を小さくできる。なお、この実施形態では、上述した図5で説明したように、スイッチSW10がオフのときに、アドレス電極AEと接地線GNDとの間にリーク電流が流れることを防止でき、消費電力を小さくできる。また、図の例では、アドレス制御信号ACNTは、サステイン期間SUS中、Hレベルに維持されている。なお、サステイン期間SUSでは、アドレス駆動回路ADRCと接地線GNDとが電気的に非接続にされているため、アドレス制御信号ACNTは、Lレベルでもよい。 Thereby, the displacement current (leakage current) between the sustain electrode XE, the scan electrode YE, and the address electrode AE generated by the difference between the average voltage of the sustain electrode XE and the scan electrode YE and the voltage of the address electrode AE can be reduced. In this embodiment, as described with reference to FIG. 5 described above, when the switch SW10 is off, it is possible to prevent a leakage current from flowing between the address electrode AE and the ground line GND, thereby reducing power consumption. . In the example shown in the figure, the address control signal ACNT is maintained at the H level during the sustain period SUS. Note that, in the sustain period SUS, the address drive circuit ADRC and the ground line GND are not electrically connected, so the address control signal ACNT may be at the L level.
 以上、この実施形態では、サステイン期間SUSに、基準電源線LN20と接地線GNDとの間に配置されたスイッチSW10(電源遮断部PSI10)がオフし、基準電源線LN20に供給される接地電圧GNDを遮断する。これにより、サステイン期間SUSに、基準電源線LN20と接地線GNDとの間にリーク電流が流れることを防止でき、消費電力を小さくできる。 As described above, in this embodiment, during the sustain period SUS, the switch SW10 (power cutoff unit PSI10) disposed between the reference power supply line LN20 and the ground line GND is turned off, and the ground voltage GND supplied to the reference power supply line LN20. Shut off. As a result, leakage current can be prevented from flowing between the reference power supply line LN20 and the ground line GND during the sustain period SUS, and power consumption can be reduced.
 図8は、別の実施形態におけるPDP装置のアドレス電極駆動部ADR2およびドライバ制御部ADCN2を示している。なお、図では、アドレス電極AEbと維持電極XEおよび走査電極YEとの間の電極間容量Caxyの記載を省略している。この実施形態では、アドレス電極駆動部ADR2は、上述した図5に示したアドレス電極駆動部ADRに2入力論理和回路OR1(OR1a、OR1b)が追加され、図5に示した電源遮断部PSI10の代わりに、電源遮断部PSI20が設けられている。また、アドレス電極駆動部ADR2は、図5に示したアドレス電極駆動部ADRから電源部PS1およびアイソレータIS1が省かれている。アドレス電極駆動部ADR2のその他の構成は、図5と同じである。 FIG. 8 shows an address electrode driver ADR2 and a driver controller ADCN2 of a PDP device according to another embodiment. In the figure, the interelectrode capacitance Caxy between the address electrode AEb, the sustain electrode XE, and the scan electrode YE is omitted. In this embodiment, the address electrode drive unit ADR2 includes a 2-input OR circuit OR1 (OR1a, OR1b) added to the address electrode drive unit ADR shown in FIG. 5 described above, and the power cut-off unit PSI10 shown in FIG. Instead, a power cutoff unit PSI20 is provided. In the address electrode driver ADR2, the power supply unit PS1 and the isolator IS1 are omitted from the address electrode driver ADR shown in FIG. The other configuration of the address electrode driver ADR2 is the same as that in FIG.
 また、この実施形態のドライバ制御部ADCN2では、アドレス制御信号ACNTの他に、アドレス制御信号SSを生成する点が、図5に示したドライバ制御部ADCNと相違する。ドライバ制御部ADCN2のその他の構成は、図4、図5と同じである。図1-図7で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 Further, the driver control unit ADCN2 of this embodiment is different from the driver control unit ADCN shown in FIG. 5 in that the address control signal SS is generated in addition to the address control signal ACNT. Other configurations of the driver control unit ADCN2 are the same as those in FIGS. The same elements as those described in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 アドレスドライバAD(ADa、ADb)のトランジスタNM1(NM1a、NM1b)のソースは、接地線GNDに接続され、アドレスドライバAD(ADa、ADb)のトランジスタPM1(PM1a、PM1b)のソースは、電源遮断部PSI20を介して第1電源線LN12に接続されている。第1電源線LN12には、例えば、上述した図4に示した電圧生成部PWRから電源電圧Vaddが供給される。 The source of the transistor NM1 (NM1a, NM1b) of the address driver AD (ADa, ADb) is connected to the ground line GND, and the source of the transistor PM1 (PM1a, PM1b) of the address driver AD (ADa, ADb) is a power cutoff unit The PSI 20 is connected to the first power supply line LN12. For example, the power supply voltage Vadd is supplied to the first power supply line LN12 from the voltage generation unit PWR shown in FIG. 4 described above.
 例えば、電源遮断部PSI20は、ソースが第1電源線LN12に接続され、ドレインがトランジスタPM1のソースに接続され、ゲートがスイッチ制御部SWCNに接続されたパワーnMOSトランジスタNM30で構成されている。すなわち、トランジスタNM30は、トランジスタNM30の寄生ダイオードのアノードが第1電源線LN12に接続され、寄生ダイオードのカソードがトランジスタPM1のソースに接続される向きで、第1電源線LN12とトランジスタPM1との間に配置される。 For example, the power cutoff unit PSI20 is configured by a power nMOS transistor NM30 having a source connected to the first power supply line LN12, a drain connected to the source of the transistor PM1, and a gate connected to the switch control unit SWCN. That is, in the transistor NM30, the anode of the parasitic diode of the transistor NM30 is connected to the first power supply line LN12, and the cathode of the parasitic diode is connected to the source of the transistor PM1, between the first power supply line LN12 and the transistor PM1. Placed in.
 トランジスタNM30は、上述した図3に示したリセット期間RSTおよびアドレス期間ADRにオンし、トランジスタPM1に電源電圧Vaddを供給し、サステイン期間SUSにオフし、トランジスタPM1に供給される電源電圧Vaddを遮断する。すなわち、電源遮断部PSI20のトランジスタNM30は、スイッチとして機能する。 The transistor NM30 is turned on during the reset period RST and the address period ADR shown in FIG. 3 described above, supplies the power supply voltage Vadd to the transistor PM1, turns off during the sustain period SUS, and cuts off the power supply voltage Vadd supplied to the transistor PM1. To do. That is, the transistor NM30 of the power cutoff unit PSI20 functions as a switch.
 この実施形態では、トランジスタNM30の寄生ダイオードのアノードが第1電源線LN12に接続され、寄生ダイオードのカソードがトランジスタPM1のソースに接続されているため、トランジスタNM30がオフ状態のとき、トランジスタPM1から第1電源線LN12にリーク電流が流れることを防止できる。なお、電源遮断部PSI20は、パワーnMOSトランジスタNM30の代わりにパワーpMOSトランジスタやIGBT等を用いて構成されてもよい。この場合、パワーpMOSトランジスタやIGBTは、スイッチとして機能する。 In this embodiment, since the anode of the parasitic diode of the transistor NM30 is connected to the first power supply line LN12 and the cathode of the parasitic diode is connected to the source of the transistor PM1, when the transistor NM30 is in the off state, Leakage current can be prevented from flowing through one power supply line LN12. The power cutoff unit PSI20 may be configured using a power pMOS transistor, IGBT, or the like instead of the power nMOS transistor NM30. In this case, the power pMOS transistor and the IGBT function as a switch.
 2入力論理和回路OR1(OR1a、OR1b)は、一方の入力端子にアドレス制御信号SSを受け、他方の入力端子にアドレス制御信号ACNT(ACNTa、ACNT1b)を受け、アドレス制御信号SSおよびACNTの論理和をトランジスタPM1(PM1a、PM1b)のゲートに出力する。なお、トランジスタNM1(NM1a、NM1b)のゲートには、アドレス制御信号ACNT(ACNTa、ACNT1b)が供給されている。 The two-input OR circuit OR1 (OR1a, OR1b) receives the address control signal SS at one input terminal, receives the address control signal ACNT (ACNTa, ACNT1b) at the other input terminal, and receives the logic of the address control signals SS and ACNT. The sum is output to the gate of the transistor PM1 (PM1a, PM1b). An address control signal ACNT (ACNTa, ACNT1b) is supplied to the gate of the transistor NM1 (NM1a, NM1b).
 例えば、ドライバ制御部ADCN2は、サステイン期間SUSに、アドレス制御信号SS、ACNTをHレベルおよびLレベルにそれぞれ設定することにより、トランジスタPM1、NM1を同時にオフする。なお、トランジスタPM1およびNM1を同時にオフするための論理回路は、2入力論理和回路OR1の代わりに、否定論理和、論理積、否定論理積等を用いて構成されてもよい。また、2入力論理和回路OR1は、ドライバ制御部ADCN2内に設けられてもよい。 For example, the driver control unit ADCN2 simultaneously turns off the transistors PM1 and NM1 by setting the address control signals SS and ACNT to the H level and the L level, respectively, during the sustain period SUS. Note that a logic circuit for simultaneously turning off the transistors PM1 and NM1 may be configured by using a negative logical sum, a logical product, a negative logical product, or the like instead of the two-input logical sum circuit OR1. The two-input OR circuit OR1 may be provided in the driver control unit ADCN2.
 ここで、電源遮断部PSI20(トランジスタNM30)を設けずに、サステイン期間SUSに、トランジスタPM1、NM1をオフする構成が、本発明の過程で考えられた。この構成では、トランジスタPM1およびNM1を同時にオフすることにより、アドレス電極AEを、フローティング(ハイインピーダンス)状態にできる。これにより、サステインパルスが印加された維持電極XEおよび走査電極YEの平均電圧とアドレス電極AEの電圧との差を小さくでき、維持電極XEおよび走査電極YEとアドレス電極AEとの間の変位電流(リーク電流)を小さくできる。 Here, a configuration in which the transistors PM1 and NM1 are turned off during the sustain period SUS without providing the power cutoff unit PSI20 (transistor NM30) was considered in the process of the present invention. In this configuration, the address electrodes AE can be in a floating (high impedance) state by simultaneously turning off the transistors PM1 and NM1. As a result, the difference between the average voltage of the sustain electrode XE and the scan electrode YE to which the sustain pulse is applied and the voltage of the address electrode AE can be reduced, and the displacement current between the sustain electrode XE, the scan electrode YE, and the address electrode AE ( (Leakage current) can be reduced.
 しかし、この構成では、ハイインピーダンス状態のアドレス電極AEの電圧が電源電圧Vaddより高くなる場合、アドレス電極AEからトランジスタPM1の寄生ダイオードを介して第1電源線LN12にリーク電流が流れる。例えば、維持電極XEあるいは走査電極YEの電圧が電源電圧Vaddより高いとき、ハイインピーダンス状態のアドレス電極AEの電圧が電源電圧Vaddより高くなるおそれがある。すなわち、電源遮断部PSI20(トランジスタNM30)を設けずに、サステイン期間SUSに、トランジスタPM1、NM1をオフする構成では、維持電極XEあるいは走査電極YEの電圧が電源電圧Vaddより高いときに、アドレス電極AEからトランジスタPM1の寄生ダイオードを介して第1電源線LN12にリーク電流が流れるおそれがある。 However, in this configuration, when the voltage of the address electrode AE in the high impedance state is higher than the power supply voltage Vadd, a leakage current flows from the address electrode AE to the first power supply line LN12 via the parasitic diode of the transistor PM1. For example, when the voltage of the sustain electrode XE or the scan electrode YE is higher than the power supply voltage Vadd, the voltage of the address electrode AE in the high impedance state may be higher than the power supply voltage Vadd. That is, in the configuration in which the transistors PM1 and NM1 are turned off during the sustain period SUS without providing the power cutoff unit PSI20 (transistor NM30), when the voltage of the sustain electrode XE or the scan electrode YE is higher than the power supply voltage Vadd, the address electrode There is a possibility that a leakage current flows from the AE to the first power supply line LN12 through the parasitic diode of the transistor PM1.
 これに対し、この実施形態では、ハイインピーダンス状態のアドレス電極AEの電圧が電源電圧Vaddより高くなる場合でも、トランジスタNM30をオフすることにより、上述したように、トランジスタPM1から第1電源線LN12にリーク電流が流れることを防止できる。すなわち、この実施形態では、トランジスタPM1、NM30をオフすることにより、アドレス電極AEと第1電源線LN12との間にリーク電流が流れることを防止できる。なお、アドレスドライバADのトランジスタPM1をオフすることにより、第1電源線LN12からアドレス電極AEにリーク電流が流れることを防止できる。また、アドレスドライバADのトランジスタNM1をオフすることにより、アドレス電極AEから接地線GNDにリーク電流が流れることを防止できる。 On the other hand, in this embodiment, even when the voltage of the address electrode AE in the high impedance state is higher than the power supply voltage Vadd, by turning off the transistor NM30, as described above, from the transistor PM1 to the first power supply line LN12. Leakage current can be prevented from flowing. That is, in this embodiment, by turning off the transistors PM1 and NM30, it is possible to prevent a leakage current from flowing between the address electrode AE and the first power supply line LN12. Note that by turning off the transistor PM1 of the address driver AD, it is possible to prevent a leak current from flowing from the first power supply line LN12 to the address electrode AE. Further, by turning off the transistor NM1 of the address driver AD, it is possible to prevent a leak current from flowing from the address electrode AE to the ground line GND.
 したがって、この実施形態では、後述する図9に示すように、サステイン期間SUSに、トランジスタPM1、NM1、NM30をオフでき、電極間容量Caxyを介して維持電極XEおよび走査電極YEとアドレス電極AEとの間にリーク電流が流れることを防止できる。この結果、この実施形態では、消費電力を小さくできる。 Therefore, in this embodiment, as shown in FIG. 9 described later, in the sustain period SUS, the transistors PM1, NM1, and NM30 can be turned off, and the sustain electrode XE, the scan electrode YE, and the address electrode AE are connected via the interelectrode capacitance Caxy. It is possible to prevent leakage current from flowing between them. As a result, in this embodiment, power consumption can be reduced.
 図9は、図8に示したアドレス電極駆動部ADR2によるサブフィールドSFの放電動作の一例を示している。上述した図7と同じ動作については、詳細な説明を省略する。図9に示した波形は、アドレス制御信号SSの波形が追加されている点が図7と異なる。その他の波形は、図7と同じである。図中の星印および網掛け部分の意味は、図7と同じである。 FIG. 9 shows an example of the discharge operation of the subfield SF by the address electrode driver ADR2 shown in FIG. Detailed description of the same operations as those in FIG. 7 described above will be omitted. The waveform shown in FIG. 9 is different from FIG. 7 in that the waveform of the address control signal SS is added. Other waveforms are the same as those in FIG. The meanings of stars and shaded portions in the figure are the same as those in FIG.
 リセット期間RSTおよびアドレス期間ADRでは、アドレス制御信号SSは、Lレベルに維持される。これにより、アドレス制御信号ACNTがLレベルのとき、上述した図8に示したトランジスタPM1は、アドレス電極AEに電源電圧Vaddを印加でき、アドレス制御信号ACNTがHレベルのとき、トランジスタNM1は、アドレス電極AEに接地電圧GNDを印加できる。 In the reset period RST and the address period ADR, the address control signal SS is maintained at the L level. Thus, when the address control signal ACNT is at the L level, the transistor PM1 shown in FIG. 8 described above can apply the power supply voltage Vadd to the address electrode AE, and when the address control signal ACNT is at the H level, the transistor NM1 A ground voltage GND can be applied to the electrode AE.
 サステイン期間SUSでは、アドレス制御信号SSはHレベルに維持され、アドレス制御信号ACNTはLレベルに維持される。これにより、トランジスタPM1およびNM1は、オフする。さらに、制御信号SCNTがLレベルに設定されるため、トランジスタNM30はオフする。このように、この実施形態では、サステイン期間SUSに、トランジスタPM1、NM1、NM30がオフするため、上述した図8で説明したように、電極間容量Caxyを介して維持電極XEおよび走査電極YEとアドレス電極AEとの間にリーク電流が流れることを防止できる。以上、この実施形態においても、消費電力を小さくできる。 In the sustain period SUS, the address control signal SS is maintained at the H level, and the address control signal ACNT is maintained at the L level. Thereby, the transistors PM1 and NM1 are turned off. Further, since the control signal SCNT is set to the L level, the transistor NM30 is turned off. Thus, in this embodiment, since the transistors PM1, NM1, and NM30 are turned off during the sustain period SUS, the sustain electrode XE and the scan electrode YE are connected via the interelectrode capacitance Caxy as described above with reference to FIG. It is possible to prevent a leak current from flowing between the address electrode AE. As described above, also in this embodiment, power consumption can be reduced.
 図10は、別の実施形態におけるPDP装置のアドレス電極駆動部ADR3および制御部CNT2を示している。なお、図では、アドレス電極AEbと維持電極XEおよび走査電極YEとの間の電極間容量Caxyの記載を省略している。また、図の制御部CNT2は、画像データR0-7、G0-7、B0-7および制御信号XCNT、YCNTの記載を省略している。この実施形態では、アドレス電極駆動部ADR3は、上述した図8に示した電源遮断部PSI20の代わりに、電源遮断部PSI22が設けられている。アドレス電極駆動部ADR3のその他の構成は、図8と同じである。 FIG. 10 shows an address electrode drive unit ADR3 and a control unit CNT2 of a PDP device in another embodiment. In the figure, the interelectrode capacitance Caxy between the address electrode AEb, the sustain electrode XE, and the scan electrode YE is omitted. Further, the control unit CNT2 in the figure omits the description of the image data R0-7, G0-7, B0-7 and the control signals XCNT, YCNT. In this embodiment, the address electrode driver ADR3 is provided with a power cutoff unit PSI22 instead of the power cutoff unit PSI20 shown in FIG. The other configuration of the address electrode driver ADR3 is the same as that in FIG.
 また、この実施形態の制御部CNT2は、上述した図4に示した制御部CNTからスイッチ制御部SWCNが省かれて構成されている。さらに、制御部CNT2は、図4に示したドライバ制御部ADCNの代わりに上述した図8に示したドライバ制御部ADCN2が設けられている。制御部CNT2のその他の構成は、図4と同じである。 Also, the control unit CNT2 of this embodiment is configured by omitting the switch control unit SWCN from the control unit CNT shown in FIG. 4 described above. Further, the control unit CNT2 is provided with the driver control unit ADCN2 shown in FIG. 8 described above instead of the driver control unit ADCN shown in FIG. The other configuration of the control unit CNT2 is the same as that in FIG.
 なお、この実施形態では、サブフィールドSFの放電動作は、上述した図9に示した波形から制御信号SCNTを省いた波形と同じである。すなわち、電極XE、YE、AE、制御信号ACNT、SSの波形は、上述した図9と同じである。図1-図9で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 In this embodiment, the discharge operation of the subfield SF is the same as the waveform obtained by omitting the control signal SCNT from the waveform shown in FIG. That is, the waveforms of the electrodes XE, YE, AE and the control signals ACNT, SS are the same as those in FIG. The same elements as those described in FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 電源遮断部PSI22は、アノードが第1電源線LN12に接続され、カソードがトランジスタPM1のソースに接続されたダイオードD10により構成されている。例えば、トランジスタPM1がオンしているときは、第1電源線LN12からダイオードD10を介してトランジスタPM1に電源電圧Vaddが供給される。なお、詳細には、電源電圧VaddからダイオードD10の順方向電圧分だけ降下した電圧が、トランジスタPM1に供給される。 The power cutoff unit PSI22 is configured by a diode D10 having an anode connected to the first power supply line LN12 and a cathode connected to the source of the transistor PM1. For example, when the transistor PM1 is on, the power supply voltage Vadd is supplied from the first power supply line LN12 to the transistor PM1 via the diode D10. Specifically, a voltage that is lowered from the power supply voltage Vadd by the forward voltage of the diode D10 is supplied to the transistor PM1.
 また、例えば、トランジスタPM1がオフしたときは、第1電源線LN12からアドレス電極AEに電流が流れないため、電源電圧VaddはトランジスタPM1に供給されない。すなわち、ダイオードD10は、上述した図3に示したサステイン期間SUSに、トランジスタPM1をオフすることにより、トランジスタPM1に供給される電源電圧Vaddを遮断する。さらに、ダイオードD10は、トランジスタPM1がオフしたとき、アドレス電極AEからトランジスタPM1の寄生ダイオードを介して第1電源線LN12にリーク電流が流れることを防止する。 For example, when the transistor PM1 is turned off, no current flows from the first power supply line LN12 to the address electrode AE, so that the power supply voltage Vadd is not supplied to the transistor PM1. That is, the diode D10 cuts off the power supply voltage Vadd supplied to the transistor PM1 by turning off the transistor PM1 during the sustain period SUS shown in FIG. Further, the diode D10 prevents a leakage current from flowing from the address electrode AE to the first power supply line LN12 through the parasitic diode of the transistor PM1 when the transistor PM1 is turned off.
 例えば、この実施形態では、サステイン期間SUSに、アドレス制御信号SS、ACNTがHレベルおよびLレベルにそれぞれ設定され、トランジスタPM1、NM1がオフする。これにより、ダイオードD10は、サステイン期間SUSに、アドレス電極AEからトランジスタPM1の寄生ダイオードを介して第1電源線LN12にリーク電流が流れることを防止できる。なお、この場合、トランジスタPM1がオフしているため、第1電源線LN12からアドレス電極AEにリーク電流が流れることを防止できる。また、トランジスタNM1がオフしているため、アドレス電極AEから接地線GNDにリーク電流が流れることを防止できる。 For example, in this embodiment, in the sustain period SUS, the address control signals SS and ACNT are set to the H level and the L level, respectively, and the transistors PM1 and NM1 are turned off. Accordingly, the diode D10 can prevent a leak current from flowing from the address electrode AE to the first power supply line LN12 through the parasitic diode of the transistor PM1 during the sustain period SUS. In this case, since the transistor PM1 is off, it is possible to prevent a leak current from flowing from the first power supply line LN12 to the address electrode AE. Further, since the transistor NM1 is off, it is possible to prevent a leak current from flowing from the address electrode AE to the ground line GND.
 すなわち、この実施形態では、サステイン期間SUSに、トランジスタPM1、NM1をオフすることにより、電極間容量Caxyを介して維持電極XEおよび走査電極YEとアドレス電極AEとの間にリーク電流が流れることを防止できる。以上、この実施形態においても、上述した図8、図9で説明した実施形態と同様の効果を得ることができる。 That is, in this embodiment, the leakage current flows between the sustain electrode XE, the scan electrode YE, and the address electrode AE through the interelectrode capacitance Caxy by turning off the transistors PM1 and NM1 during the sustain period SUS. Can be prevented. As described above, also in this embodiment, the same effect as that of the embodiment described with reference to FIGS. 8 and 9 can be obtained.
 図11は、別の実施形態におけるPDP装置のアドレス電極駆動部ADR4、ドライバ制御部ADCNおよびスイッチ制御部SWCNを示している。なお、図では、アドレス電極AEbと維持電極XEおよび走査電極YEとの間の電極間容量Caxyの記載を省略している。この実施形態では、アドレス電極駆動部ADR4は、上述した図5に示したアドレス電極駆動部ADRにスイッチSW20(SW20a、SW20b)が追加されている。また、アドレス電極駆動部ADR4は、図5に示したアドレス電極駆動部ADRから電源遮断部PSI10、電源部PS1およびアイソレータIS1が省かれている。アドレス電極駆動部ADR4のその他の構成は、図5と同じである。 FIG. 11 shows an address electrode driver ADR4, a driver controller ADCN, and a switch controller SWCN of a PDP device in another embodiment. In the figure, the interelectrode capacitance Caxy between the address electrode AEb, the sustain electrode XE, and the scan electrode YE is omitted. In this embodiment, the address electrode driver ADR4 is configured by adding switches SW20 (SW20a, SW20b) to the address electrode driver ADR shown in FIG. Further, in the address electrode driver ADR4, the power supply cutoff unit PSI10, the power supply unit PS1, and the isolator IS1 are omitted from the address electrode driver ADR shown in FIG. The other configuration of the address electrode driver ADR4 is the same as that in FIG.
 また、ドライバ制御部ADCNおよびスイッチ制御部SWCNの構成は、制御信号ACNT、SCNTの出力先を除いて図5と同じである。なお、この実施形態では、サブフィールドSFの放電動作は、上述した図7と同じである。図1-図7で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 The configurations of the driver control unit ADCN and the switch control unit SWCN are the same as those in FIG. 5 except for the output destinations of the control signals ACNT and SCNT. In this embodiment, the discharge operation of the subfield SF is the same as that in FIG. The same elements as those described in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 アドレスドライバAD(ADa、ADb)のトランジスタNM1(NM1a、NM1b)のソースは、接地線GNDに接続され、アドレスドライバAD(ADa、ADb)のトランジスタPM1(PM1a、PM1b)のソースは、内部電源線LN10に接続されている。内部電源線LN10には、例えば、上述した図4に示した電圧生成部PWRから電源電圧Vaddが供給される。また、トランジスタPM1、NM1のゲートは、互いに接続され、ドライバ制御部ADCNに接続されている。 The source of the transistor NM1 (NM1a, NM1b) of the address driver AD (ADa, ADb) is connected to the ground line GND, and the source of the transistor PM1 (PM1a, PM1b) of the address driver AD (ADa, ADb) is the internal power supply line Connected to LN10. For example, the power supply voltage Vadd is supplied to the internal power supply line LN10 from the voltage generation unit PWR shown in FIG. 4 described above. The gates of the transistors PM1 and NM1 are connected to each other and to the driver control unit ADCN.
 スイッチSW20(SW20a、SW20b)は、アドレス電極AE(AEa、AEb)毎に、アドレスドライバAD(ADa、ADb)とアドレス電極AE(AEa、AEb)との間に設けられている。スイッチSW20のオン、オフは、スイッチ制御部SWCNから出力される制御信号SCNTにより制御される。例えば、スイッチSW20は、スイッチSW20がオフのときに、アドレスドライバADとアドレス電極AEとの間にリーク電流が流れないように構成される。例えば、サステイン期間SUSにスイッチSW20をオフすることにより、トランジスタPM1からアドレス電極AEに流れる電流およびアドレス電極AEからトランジスタNM1に流れる電流は遮断される。 The switch SW20 (SW20a, SW20b) is provided between the address driver AD (ADa, ADb) and the address electrode AE (AEa, AEb) for each address electrode AE (AEa, AEb). ON / OFF of the switch SW20 is controlled by a control signal SCNT output from the switch control unit SWCN. For example, the switch SW20 is configured such that no leak current flows between the address driver AD and the address electrode AE when the switch SW20 is off. For example, by turning off the switch SW20 during the sustain period SUS, the current flowing from the transistor PM1 to the address electrode AE and the current flowing from the address electrode AE to the transistor NM1 are cut off.
 例えば、スイッチSW10は、IGBTやパワーMOSトランジスタにより構成される。上述したように、IGBTは、コレクタ、エミッタ間に寄生ダイオードを持たないため、IGBTで構成されたスイッチSW20では、スイッチSW20がオフのときに、アドレスドライバADとアドレス電極AEとの間にリーク電流は流れない。なお、寄生ダイオードを有するパワーMOSトランジスタで構成されたスイッチSW20の詳細は、後述する図12で説明する。 For example, the switch SW10 is configured by an IGBT or a power MOS transistor. As described above, since the IGBT does not have a parasitic diode between the collector and the emitter, in the switch SW20 configured by the IGBT, when the switch SW20 is off, a leakage current is generated between the address driver AD and the address electrode AE. Does not flow. Details of the switch SW20 formed of a power MOS transistor having a parasitic diode will be described later with reference to FIG.
 例えば、ドライバ制御部ADCNは、上述した図7に示したように、サステイン期間SUSに、制御信号SCNTをLレベルに設定することにより、スイッチSW20をオフする。上述したように、スイッチSW20がオフしたときは、アドレスドライバADとアドレス電極AEとの間にリーク電流は流れない。したがって、この実施形態では、サステイン期間SUSに、アドレス電極AEと接地線GNDとの間および内部電源線LN10とアドレス電極AEとの間にリーク電流が流れることを防止できる。 For example, as shown in FIG. 7 described above, the driver control unit ADCN turns off the switch SW20 by setting the control signal SCNT to the L level during the sustain period SUS. As described above, when the switch SW20 is turned off, no leak current flows between the address driver AD and the address electrode AE. Therefore, in this embodiment, it is possible to prevent a leak current from flowing between the address electrode AE and the ground line GND and between the internal power supply line LN10 and the address electrode AE during the sustain period SUS.
 すなわち、この実施形態では、サステイン期間SUSに、スイッチSW20をオフすることにより、電極間容量Caxyを介して維持電極XEおよび走査電極YEとアドレス電極AEとの間にリーク電流が流れることを防止できる。この結果、この実施形態では、消費電力を小さくできる。なお、この実施形態では、サステイン期間SUS中、スイッチSW20をオフさせるため、サステイン期間SUS中のアドレス制御信号ACNTは、Hレベルでもよいし、Lレベルでもよい。 That is, in this embodiment, by turning off the switch SW20 during the sustain period SUS, it is possible to prevent a leakage current from flowing between the sustain electrode XE, the scan electrode YE, and the address electrode AE via the interelectrode capacitance Caxy. . As a result, in this embodiment, power consumption can be reduced. In this embodiment, since the switch SW20 is turned off during the sustain period SUS, the address control signal ACNT during the sustain period SUS may be H level or L level.
 図12は、図11に示したスイッチSW20の一例を示している。スイッチSW20は、例えば、ノードND1(上述した図11に示したトランジスタPM1とトランジスタNM1とを接続している共通ノードND1)とアドレス電極AEとの間に直列に接続された一対のパワーnMOSトランジスタNM40、NM50(NチャネルFET)で構成されている。なお、パワーnMOSトランジスタNM40、NM50は、トランジスタNM40、NM50のゲートを互いに接続している共通ノードがスイッチ制御部SWCNに接続され、制御信号SCNTをゲートで受けている。 FIG. 12 shows an example of the switch SW20 shown in FIG. The switch SW20 includes, for example, a pair of power nMOS transistors NM40 connected in series between the node ND1 (the common node ND1 connecting the transistor PM1 and the transistor NM1 shown in FIG. 11 described above) and the address electrode AE. NM50 (N channel FET). In the power nMOS transistors NM40 and NM50, a common node that connects the gates of the transistors NM40 and NM50 is connected to the switch control unit SWCN, and the control signal SCNT is received by the gate.
 また、nMOSトランジスタNM40は、ドレインがノードND1に接続され、ソースがnMOSトランジスタNM50のソースに接続されている。nMOSトランジスタNM50は、ドレインがアドレス電極AEに接続されている。すなわち、一対のパワーnMOSトランジスタNM40、NM50は、トランジスタNM40、NM50に形成される各寄生ダイオードのアノードを互いに接続する向きに接続されている。 The nMOS transistor NM40 has a drain connected to the node ND1 and a source connected to the source of the nMOS transistor NM50. The nMOS transistor NM50 has a drain connected to the address electrode AE. That is, the pair of power nMOS transistors NM40 and NM50 are connected in the direction in which the anodes of the parasitic diodes formed in the transistors NM40 and NM50 are connected to each other.
 トランジスタNM40、NM50がオフ状態のとき、トランジスタNM40の寄生ダイオードは、ノードND1からアドレス電極AEにリーク電流が流れることを防止し、トランジスタNM50の寄生ダイオードは、アドレス電極AEからノードND1にリーク電流が流れることを防止する。これにより、スイッチSW20がオフのときに、ノードND1(上述した図11に示したアドレスドライバAD)とアドレス電極AEとの間にリーク電流が流れることを防止できる。以上、この実施形態においても、上述した図1-図9で説明した実施形態と同様の効果を得ることができる。 When the transistors NM40 and NM50 are off, the parasitic diode of the transistor NM40 prevents a leakage current from flowing from the node ND1 to the address electrode AE, and the parasitic diode of the transistor NM50 has a leakage current from the address electrode AE to the node ND1. Prevent it from flowing. Thereby, when the switch SW20 is off, it is possible to prevent a leak current from flowing between the node ND1 (the address driver AD shown in FIG. 11 described above) and the address electrode AE. As described above, also in this embodiment, the same effects as those of the embodiment described with reference to FIGS. 1 to 9 can be obtained.
 図13は、別の実施形態におけるPDP装置のアドレス電極駆動部ADR5、ドライバ制御部ADCN2およびスイッチ制御部SWCNを示している。なお、図では、アドレス電極AEbと維持電極XEおよび走査電極YEとの間の電極間容量Caxyの記載を省略している。この実施形態では、アドレス電極駆動部ADR5は、上述した図5に示したアドレス電極駆動部ADRに2入力論理和回路OR1(OR1a、OR1b)およびアイソレータIS2が追加されて構成されている。アドレス電極駆動部ADR5のその他の構成は、図5と同じである。 FIG. 13 shows an address electrode driver ADR5, a driver controller ADCN2, and a switch controller SWCN of a PDP device in another embodiment. In the figure, the interelectrode capacitance Caxy between the address electrode AEb, the sustain electrode XE, and the scan electrode YE is omitted. In this embodiment, the address electrode driver ADR5 is configured by adding a two-input OR circuit OR1 (OR1a, OR1b) and an isolator IS2 to the address electrode driver ADR shown in FIG. The other configuration of the address electrode driver ADR5 is the same as that in FIG.
 また、この実施形態のドライバ制御部ADCN2では、アドレス制御信号ACNTの他に、アドレス制御信号SSを生成する点が、図5に示したドライバ制御部ADCNと相違する。ドライバ制御部ADCN2のその他の構成は、図4、図5と同じである。なお、この実施形態では、サブフィールドSFの放電動作は、上述した図9と同じである。図1-図9で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 Further, the driver control unit ADCN2 of this embodiment is different from the driver control unit ADCN shown in FIG. 5 in that the address control signal SS is generated in addition to the address control signal ACNT. Other configurations of the driver control unit ADCN2 are the same as those in FIGS. In this embodiment, the discharge operation of the subfield SF is the same as that in FIG. The same elements as those described in FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 なお、2入力論理和回路OR1(OR1a、OR1b)の一方の入力端子は、アイソレータIS2を介してドライバ制御部ADCN2に接続され、他方の入力端子は、アイソレータIS1(IS1a、IS1b)を介してドライバ制御部ADCN2に接続されている。そして、2入力論理和回路OR1の出力端子は、アドレスドライバADのトランジスタPM1のゲートに接続されている。 Note that one input terminal of the two-input OR circuit OR1 (OR1a, OR1b) is connected to the driver control unit ADCN2 via the isolator IS2, and the other input terminal is a driver via the isolator IS1 (IS1a, IS1b). It is connected to the control unit ADCN2. The output terminal of the 2-input OR circuit OR1 is connected to the gate of the transistor PM1 of the address driver AD.
 すなわち、2入力論理和回路OR1(OR1a、OR1b)は、アドレス制御信号SSおよびACNTの論理和をトランジスタPM1(PM1a、PM1b)のゲートに出力する。また、アドレスドライバADのトランジスタNM1のゲートは、2入力論理和回路OR1(OR1a、OR1b)の一方の入力端子に接続され、かつ、アイソレータIS1を介してドライバ制御部ADCN2に接続されている。 That is, the 2-input OR circuit OR1 (OR1a, OR1b) outputs the logical sum of the address control signals SS and ACNT to the gate of the transistor PM1 (PM1a, PM1b). The gate of the transistor NM1 of the address driver AD is connected to one input terminal of a two-input OR circuit OR1 (OR1a, OR1b), and is connected to the driver control unit ADCN2 via the isolator IS1.
 例えば、ドライバ制御部ADCN2は、上述した図9に示したように、サステイン期間SUSに、アドレス制御信号SS、ACNTをHレベルおよびLレベルにそれぞれ設定することにより、トランジスタPM1、NM1を同時にオフする。なお、トランジスタPM1およびNM1を同時にオフするための論理回路は、2入力論理和回路OR1の代わりに、否定論理和、論理積、否定論理積等を用いて構成されてもよい。また、2入力論理和回路OR1は、ドライバ制御部ADCN2内に設けられてもよい。 For example, as shown in FIG. 9 described above, the driver control unit ADCN2 simultaneously turns off the transistors PM1 and NM1 by setting the address control signals SS and ACNT to the H level and the L level, respectively, during the sustain period SUS. . Note that a logic circuit for simultaneously turning off the transistors PM1 and NM1 may be configured by using a negative logical sum, a logical product, a negative logical product, or the like instead of the two-input logical sum circuit OR1. The two-input OR circuit OR1 may be provided in the driver control unit ADCN2.
 トランジスタPM1およびNM1を同時にオフすることにより、内部電源線LN10とアドレス電極AEとの間、およびアドレス電極AEと基準電源線LN20との間を、ハイインピーダンス状態にできる。これにより、サステインパルスが印加された維持電極XEおよび走査電極YEの平均電圧とアドレス電極AEの電圧との差を確実に小さくでき、維持電極XEおよび走査電極YEとアドレス電極AEとの間の変位電流(リーク電流)を確実に小さくできる。 By simultaneously turning off the transistors PM1 and NM1, the internal power supply line LN10 and the address electrode AE and the address electrode AE and the reference power supply line LN20 can be in a high impedance state. Thereby, the difference between the average voltage of the sustain electrode XE and the scan electrode YE to which the sustain pulse is applied and the voltage of the address electrode AE can be reliably reduced, and the displacement between the sustain electrode XE, the scan electrode YE, and the address electrode AE The current (leakage current) can be reliably reduced.
 なお、サステイン期間SUSでは、スイッチSW10がオフしているため、上述した図1-図7で説明した実施形態と同様に、基準電源線LN20と接地線GNDとの間にリーク電流が流れることを防止でき、消費電力を小さくできる。以上、この実施形態においても、上述した図1-図9で説明した実施形態と同様の効果を得ることができる。 In the sustain period SUS, since the switch SW10 is off, a leakage current flows between the reference power supply line LN20 and the ground line GND, as in the embodiment described with reference to FIGS. Can be prevented and power consumption can be reduced. As described above, also in this embodiment, the same effects as those of the embodiment described with reference to FIGS. 1 to 9 can be obtained.
 図14は、別の実施形態におけるPDP装置のアドレス電極駆動部ADR6、ドライバ制御部ADCN3およびスイッチ制御部SWCNを示している。なお、図では、アドレス電極AEbと維持電極XEおよび走査電極YEとの間の電極間容量Caxyの記載を省略している。この実施形態では、アドレス電極駆動部ADR6は、上述した図8に示したアドレス電極駆動部ADR2から2入力論理和回路OR1(OR1a、OR1b)が省かれて構成されている。また、アドレス電極駆動部ADR6の電源遮断部PSI20の構成は、図8に示したトランジスタNM30の代わりにスイッチSW30が設けられている。アドレス電極駆動部ADR6のその他の構成は、図8と同じである。 FIG. 14 shows an address electrode drive unit ADR6, a driver control unit ADCN3, and a switch control unit SWCN of a PDP device in another embodiment. In the figure, the interelectrode capacitance Caxy between the address electrode AEb, the sustain electrode XE, and the scan electrode YE is omitted. In this embodiment, the address electrode driver ADR6 is configured by omitting the two-input OR circuit OR1 (OR1a, OR1b) from the address electrode driver ADR2 shown in FIG. The configuration of the power cutoff unit PSI20 of the address electrode driver ADR6 is provided with a switch SW30 instead of the transistor NM30 shown in FIG. The other configuration of the address electrode driver ADR6 is the same as that in FIG.
 また、この実施形態のドライバ制御部ADCN3では、図8に示したアドレス制御信号SSを生成しない点が、図8に示したドライバ制御部ADCN2と相違する。ドライバ制御部ADCN3のその他の構成は、図8と同じである。図1-図9で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 Further, the driver control unit ADCN3 of this embodiment is different from the driver control unit ADCN2 shown in FIG. 8 in that the address control signal SS shown in FIG. 8 is not generated. Other configurations of the driver control unit ADCN3 are the same as those in FIG. The same elements as those described in FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 電源遮断部PSI20は、上述した図3に示したリセット期間RSTおよびアドレス期間ADRにオンし、サステイン期間SUSにオフするスイッチSW30により構成されている。例えば、スイッチSW30は、IGBTや上述した図6、図12に示した一対のパワーnMOSトランジスタにより、スイッチSW30がオフのときに、第1電源線LN12とトランジスタPM1との間にリーク電流が流れないように構成される。 The power shut-off unit PSI20 is configured by a switch SW30 that is turned on during the reset period RST and the address period ADR shown in FIG. 3 and turned off during the sustain period SUS. For example, in the switch SW30, the leakage current does not flow between the first power supply line LN12 and the transistor PM1 when the switch SW30 is turned off by the IGBT or the pair of power nMOS transistors shown in FIGS. 6 and 12 described above. Configured as follows.
 トランジスタPM1、NM1のゲートは、互いに接続され、ドライバ制御部ADCN3に接続されている。例えば、ドライバ制御部ADCN3は、後述する図15に示すように、サステイン期間SUSに、アドレス制御信号ACNTをLレベルに設定することにより、トランジスタNM1をオフする。この実施形態では、トランジスタNM1をオフすることにより、アドレス電極AEと基準電源線LN20との間にリーク電流が流れることを防止できる。 The gates of the transistors PM1 and NM1 are connected to each other and to the driver control unit ADCN3. For example, as shown in FIG. 15 described later, the driver control unit ADCN3 turns off the transistor NM1 by setting the address control signal ACNT to the L level during the sustain period SUS. In this embodiment, by turning off the transistor NM1, it is possible to prevent a leak current from flowing between the address electrode AE and the reference power supply line LN20.
 また、この実施形態では、サステイン期間SUSに、スイッチSW30がオフしているため、第1電源線LN12とトランジスタPM1との間にリーク電流が流れることを防止できる。すなわち、この実施形態では、サステイン期間SUSに、スイッチSW30およびトランジスタNM1をオフすることにより、電極間容量Caxyを介して維持電極XEおよび走査電極YEとアドレス電極AEとの間にリーク電流が流れることを防止できる。この結果、消費電力を小さくできる。 Further, in this embodiment, since the switch SW30 is turned off during the sustain period SUS, it is possible to prevent a leak current from flowing between the first power supply line LN12 and the transistor PM1. That is, in this embodiment, by turning off the switch SW30 and the transistor NM1 during the sustain period SUS, a leakage current flows between the sustain electrode XE, the scan electrode YE, and the address electrode AE via the interelectrode capacitance Caxy. Can be prevented. As a result, power consumption can be reduced.
 図15は、図14に示したアドレス電極駆動部ADR6によるサブフィールドSFの放電動作の一例を示している。上述した図9と同じ動作については、詳細な説明を省略する。図15に示した波形は、アドレス制御信号SSの波形が省かれている点が図9と異なる。その他の波形は、図9と同じである。図中の星印および網掛け部分の意味は、図9と同じである。 FIG. 15 shows an example of the discharge operation of the subfield SF by the address electrode driver ADR6 shown in FIG. Detailed description of the same operations as those in FIG. 9 described above will be omitted. The waveform shown in FIG. 15 is different from FIG. 9 in that the waveform of the address control signal SS is omitted. Other waveforms are the same as those in FIG. The meanings of stars and shaded parts in the figure are the same as those in FIG.
 リセット期間RSTおよびアドレス期間ADRでは、制御信号SCNTは、Hレベルに維持される。これにより、アドレス制御信号ACNTがLレベルのとき、上述した図14に示したトランジスタPM1は、アドレス電極AEに電源電圧Vaddを印加でき、アドレス制御信号ACNTがHレベルのとき、トランジスタNM1は、アドレス電極AEに接地電圧GNDを印加できる。 In the reset period RST and the address period ADR, the control signal SCNT is maintained at the H level. Thus, when the address control signal ACNT is at the L level, the transistor PM1 shown in FIG. 14 described above can apply the power supply voltage Vadd to the address electrode AE, and when the address control signal ACNT is at the H level, the transistor NM1 A ground voltage GND can be applied to the electrode AE.
 サステイン期間SUSでは、アドレス制御信号ACNTおよび制御信号SCNTはLレベルにそれぞれ設定され、トランジスタNM1およびスイッチSW30は、オフする。なお、上述したように、スイッチSW30は、スイッチSW30がオフしたとき、第1電源線LN12とトランジスタPM1との間にリーク電流が流れないように構成されている。このため、サステイン期間SUSでは、トランジスタPMがオンしても、第1電源線LN12とトランジスタPM1との間にリーク電流が流れることを防止できる。 In the sustain period SUS, the address control signal ACNT and the control signal SCNT are set to L level, respectively, and the transistor NM1 and the switch SW30 are turned off. As described above, the switch SW30 is configured such that no leakage current flows between the first power supply line LN12 and the transistor PM1 when the switch SW30 is turned off. For this reason, in the sustain period SUS, it is possible to prevent a leak current from flowing between the first power supply line LN12 and the transistor PM1 even if the transistor PM is turned on.
 このように、この実施形態では、サステイン期間SUSに、トランジスタNM1およびスイッチSW30がオフするため、電極間容量Caxyを介して維持電極XEおよび走査電極YEとアドレス電極AEとの間にリーク電流が流れることを防止できる。この結果、消費電力を小さくできる。以上、この実施形態においても、上述した図8、図9で説明した実施形態と同様の効果を得ることができる。 Thus, in this embodiment, since the transistor NM1 and the switch SW30 are turned off during the sustain period SUS, a leakage current flows between the sustain electrode XE, the scan electrode YE, and the address electrode AE via the interelectrode capacitance Caxy. Can be prevented. As a result, power consumption can be reduced. As described above, also in this embodiment, the same effect as that of the embodiment described with reference to FIGS. 8 and 9 can be obtained.
 なお、上述した実施形態では、1つの画素が、3つのセル(赤(R)、緑(G)、青(B))により構成される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、1つの画素を4つ以上のセルにより構成してもよい。あるいは、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルにより構成されてもよく、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルを含んでもよい。 In the above-described embodiment, an example in which one pixel includes three cells (red (R), green (G), and blue (B)) has been described. The present invention is not limited to such an embodiment. For example, one pixel may be composed of four or more cells. Alternatively, one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), Cells that generate colors other than blue (B) may be included.
 上述した実施形態では、第2方向D2が、第1方向D1に直交する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、第2方向D2は、第1方向D1と、ほぼ直角方向(例えば、90度±5度)に交差してもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the second direction D2 is orthogonal to the first direction D1 has been described. The present invention is not limited to such an embodiment. For example, the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ± 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、サステイン期間SUSに、電圧-Vs/2および電圧Vs/2が維持電極XEおよび走査電極YEに交互に印加される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、サステイン期間SUSに、接地電圧GNDおよび電圧Vsが維持電極XEおよび走査電極YEに交互に印加されてもよい。この場合、サステイン期間SUS中の維持電極XEおよび走査電極YEの電圧が常に接地電圧GND以上のため、サステイン期間SUSに、アドレス電極AEが接地電圧GNDより低くなることを防止できる。これにより、トランジスタNM1がオフのときに、トランジスタNM1の寄生ダイオードを介して、接地線GNDからアドレス電極AEにリーク電流が流れることを確実に防止できる。この結果、消費電力を確実に小さくできる。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the voltage −Vs / 2 and the voltage Vs / 2 are alternately applied to the sustain electrode XE and the scan electrode YE in the sustain period SUS has been described. The present invention is not limited to such an embodiment. For example, the ground voltage GND and the voltage Vs may be alternately applied to the sustain electrode XE and the scan electrode YE during the sustain period SUS. In this case, since the voltages of the sustain electrode XE and the scan electrode YE during the sustain period SUS are always equal to or higher than the ground voltage GND, the address electrode AE can be prevented from becoming lower than the ground voltage GND during the sustain period SUS. Thereby, when the transistor NM1 is off, it is possible to reliably prevent leakage current from flowing from the ground line GND to the address electrode AE via the parasitic diode of the transistor NM1. As a result, power consumption can be reliably reduced. Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、アドレスドライバADがpMOSトランジスタPM1およびnMOSトランジスタNM1により構成される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、アドレスドライバADは、pMOSトランジスタPM1およびnMOSトランジスタNM1の代わりに、PNPバイポーラトランジスタおよびNPNバイポーラトランジスタにより構成されてもよい。あるいは、図16に示すように、アドレスドライバADは、pMOSトランジスタPM1の代わりに、nMOSトランジスタNM2を用いて構成されてもよい。この場合、nMOSトランジスタNM2のゲートは、例えば、上述した図5に示したpMOSトランジスタPM1のゲートが受けていた制御信号と論理レベル(高論理および低論理)が逆の制御信号を受ける。 In the above-described embodiment, the example in which the address driver AD is configured by the pMOS transistor PM1 and the nMOS transistor NM1 has been described. The present invention is not limited to such an embodiment. For example, the address driver AD may be composed of a PNP bipolar transistor and an NPN bipolar transistor instead of the pMOS transistor PM1 and the nMOS transistor NM1. Alternatively, as illustrated in FIG. 16, the address driver AD may be configured using an nMOS transistor NM2 instead of the pMOS transistor PM1. In this case, the gate of the nMOS transistor NM2 receives, for example, a control signal whose logic level (high logic and low logic) is opposite to the control signal received by the gate of the pMOS transistor PM1 shown in FIG.
 図16は、上述した図5、図6に示したアドレス電極駆動部ADRの変形例を示している。図16に示したアドレス電極駆動部ADR7は、図5に示したアドレスドライバADの代わりに、アドレスドライバAD2(AD2a)が設けられている。また、アドレス電極駆動部ADR7は、図5に示したアドレス電極駆動部ADRに、アドレスドライバAD2毎に設けられた電源部PS2(PS2a)、インバータINV1(INV1a)およびレベルシフタLS1(LS1a)が追加されて構成されている。その他の構成は、図5と同じである(電源部PS1の構成は、図6と同じ)。図1-図7で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。なお、電源遮断部PSI10を除くアドレス電極駆動部ADR7の回路群(アドレスドライバAD2および電源部PS1を含む回路群)をアドレス駆動回路ADRC3とも称する。 FIG. 16 shows a modification of the address electrode driver ADR shown in FIGS. 5 and 6 described above. The address electrode driver ADR7 shown in FIG. 16 is provided with an address driver AD2 (AD2a) instead of the address driver AD shown in FIG. Further, in the address electrode driver ADR7, a power supply unit PS2 (PS2a), an inverter INV1 (INV1a), and a level shifter LS1 (LS1a) provided for each address driver AD2 are added to the address electrode driver ADR shown in FIG. Configured. Other configurations are the same as those in FIG. 5 (the configuration of the power supply unit PS1 is the same as that in FIG. 6). The same elements as those described in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof will be omitted. Note that a circuit group (a circuit group including the address driver AD2 and the power supply unit PS1) of the address electrode drive unit ADR7 excluding the power supply cutoff unit PSI10 is also referred to as an address drive circuit ADRC3.
 例えば、アドレスドライバAD2のトランジスタNM2は、ソースがノードND1(アドレス電極AEおよびトランジスタNM1のドレイン)に接続され、ドレインが内部電源線LN10に接続され、ゲートがインバータINV1の出力に接続されている。すなわち、トランジスタNM2の寄生ダイオードのカソードが内部電源線LN10に接続され、トランジスタNM2の寄生ダイオードのアノードがノードND1に接続されている。これにより、内部電源線LN10から寄生ダイオードを介して基準電源線LN20にリーク電流が流れることを防止できる。 For example, the transistor NM2 of the address driver AD2 has a source connected to the node ND1 (address electrode AE and the drain of the transistor NM1), a drain connected to the internal power supply line LN10, and a gate connected to the output of the inverter INV1. That is, the cathode of the parasitic diode of the transistor NM2 is connected to the internal power supply line LN10, and the anode of the parasitic diode of the transistor NM2 is connected to the node ND1. As a result, leakage current can be prevented from flowing from the internal power supply line LN10 to the reference power supply line LN20 via the parasitic diode.
 電源部PS2(PS2a)の構成は、コイルL2および容量C1がノードND1(ND1a)に接続されている点を除いて、電源部PS1と同じである。電源部PS2は、電源部PS2のトランスT1のコイルL1に加えられた交流電圧Vadd2に基づいて、ノードND1の電圧を基準(最低電圧)にして、電源電圧Vadd3を生成する。そして、電源電圧Vadd3は、インバータINV1の電源電圧として、インバータINV1に供給される。例えば、電圧Vadd3は、トランジスタNM2の閾値電圧より大きい電圧である。また、インバータINV1の基準電圧(最低電圧)として、ノードND1の電圧が、インバータINV1に供給される。なお、電源部PS1のトランスT1および電源部PS2のトランスT1は、互いのコイルL1を共有して構成してもよい。 The configuration of the power supply unit PS2 (PS2a) is the same as that of the power supply unit PS1 except that the coil L2 and the capacitor C1 are connected to the node ND1 (ND1a). Based on the AC voltage Vadd2 applied to the coil L1 of the transformer T1 of the power supply unit PS2, the power supply unit PS2 generates the power supply voltage Vadd3 using the voltage of the node ND1 as a reference (minimum voltage). The power supply voltage Vadd3 is supplied to the inverter INV1 as the power supply voltage of the inverter INV1. For example, the voltage Vadd3 is a voltage higher than the threshold voltage of the transistor NM2. Further, the voltage of the node ND1 is supplied to the inverter INV1 as the reference voltage (minimum voltage) of the inverter INV1. Note that the transformer T1 of the power supply unit PS1 and the transformer T1 of the power supply unit PS2 may be configured to share the coil L1.
 インバータINV1の入力端子は、レベルシフタLS1およびアイソレータIS1を介して、ドライバ制御部ADCNに接続されている。レベルシフタLS1は、入力(アイソレータIS1の出力)信号を、インバータINV1の入力範囲に合わせたレベルにシフトして、インバータINV1に出力する回路である。 The input terminal of the inverter INV1 is connected to the driver control unit ADCN via the level shifter LS1 and the isolator IS1. The level shifter LS1 is a circuit that shifts the input (output of the isolator IS1) signal to a level that matches the input range of the inverter INV1, and outputs the shifted signal to the inverter INV1.
 これにより、インバータINV1は、基準電源線LN20の状態に拘わらず、アドレス制御信号ACNTがLレベルのとき、ノードND1の電圧から電圧Vadd3だけ高い電圧をHレベルとして、トランジスタNM2に出力できる。このとき、トランジスタNM2は、ゲートおよびソース間に閾値電圧より大きい電圧Vadd3が印加されるため、オンする。また、インバータINV1は、基準電源線LN20の状態に拘わらず、アドレス制御信号ACNTがHレベルのとき、ノードND1の電圧をLレベルとして、トランジスタNM2に出力できる。このとき、トランジスタNM2は、ゲートおよびソース間に閾値電圧より小さい電圧(0V)が印加されるため、オフする。 Thereby, regardless of the state of the reference power supply line LN20, the inverter INV1 can output a voltage higher than the voltage of the node ND1 by the voltage Vadd3 to the transistor NM2 when the address control signal ACNT is at the L level. At this time, the transistor NM2 is turned on because the voltage Vadd3 larger than the threshold voltage is applied between the gate and the source. Further, regardless of the state of the reference power supply line LN20, the inverter INV1 can output the voltage of the node ND1 to L level and output it to the transistor NM2 when the address control signal ACNT is at H level. At this time, the transistor NM2 is turned off because a voltage (0 V) smaller than the threshold voltage is applied between the gate and the source.
 アドレスドライバAD2のトランジスタNM1のゲートは、レベルシフタLS1に接続され、かつ、アイソレータIS1を介して、ドライバ制御部ADCNに接続されている。したがって、図16の構成でも、サブフィールドSFの放電動作を、上述した図7と同じにできる。例えば、サステイン期間SUSに、制御信号SCNTをLレベルに設定することにより、アドレス駆動回路ADRC3と接地線GNDとを電気的に非接続にできる。nMOSトランジスタNM1、NM2によりアドレスドライバAD2を構成した場合でも、上述した図1-図7で説明した実施形態と同様の効果を得ることができる。なお、上述した図8-図15で説明した実施形態で、アドレスドライバADの代わりにアドレスドライバAD2を用いた構成にした場合でも、上述した図8-図15で説明した実施形態と同様の効果を得ることができる。 The gate of the transistor NM1 of the address driver AD2 is connected to the level shifter LS1 and to the driver control unit ADCN via the isolator IS1. Therefore, even in the configuration of FIG. 16, the discharge operation of subfield SF can be made the same as in FIG. For example, the address drive circuit ADRC3 and the ground line GND can be electrically disconnected by setting the control signal SCNT to the L level during the sustain period SUS. Even when the address driver AD2 is configured by the nMOS transistors NM1 and NM2, it is possible to obtain the same effect as that of the embodiment described with reference to FIGS. In the embodiment described with reference to FIG. 8 to FIG. 15, even when the address driver AD2 is used instead of the address driver AD, the same effect as that of the embodiment described with reference to FIG. 8 to FIG. Can be obtained.
 以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。 As described above, the present invention has been described in detail. However, the above-described embodiment and its modification are merely examples of the present invention, and the present invention is not limited thereto. Obviously, modifications can be made without departing from the scope of the present invention.
 本発明は、プラズマディスプレイ装置およびプラズマディスプレイ装置の制御方法に適用できる。 The present invention can be applied to a plasma display device and a method for controlling the plasma display device.

Claims (11)

  1.  維持電極および走査電極間でサステイン放電を発生させ、前記走査電極およびアドレス電極間でアドレス放電を発生させるプラズマディスプレイパネルと、前記プラズマディスプレイパネルを駆動する駆動部とを備え、
     前記プラズマディスプレイパネルは、前記維持電極、前記走査電極および前記アドレス電極を有する第1基板と、放電空間を介して前記第1基板に対向する第2基板とを備え、
     1画面を表示するための1フィールドは、アドレス放電を発生させるためのアドレス期間と、サステイン放電を発生させるためのサステイン期間とを有する複数のサブフィールドを含んで構成され、
     前記駆動部は、
     前記アドレス期間に、電源電圧を受け、アドレス制御信号に基づいて、前記アドレス電極に前記電源電圧を印加するための第1トランジスタと、前記アドレス期間の前記第1トランジスタがオフのときに、接地電圧を受け、前記アドレス制御信号に基づいて、前記アドレス電極に前記接地電圧を印加するための第2トランジスタとを含むアドレス電極印加部と、
     前記サステイン期間に、前記アドレス電極印加部に供給される前記電源電圧および前記接地電圧のいずれかを遮断する電源遮断部とを備えていることを特徴とするプラズマディスプレイ装置。
    A plasma display panel that generates a sustain discharge between the sustain electrode and the scan electrode and generates an address discharge between the scan electrode and the address electrode; and a driving unit that drives the plasma display panel,
    The plasma display panel includes a first substrate having the sustain electrodes, the scan electrodes, and the address electrodes, and a second substrate facing the first substrate through a discharge space,
    One field for displaying one screen includes a plurality of subfields having an address period for generating an address discharge and a sustain period for generating a sustain discharge.
    The drive unit is
    A first transistor for receiving a power supply voltage during the address period and applying the power supply voltage to the address electrode based on an address control signal, and a ground voltage when the first transistor during the address period is off. An address electrode applying unit including a second transistor for applying the ground voltage to the address electrode based on the address control signal;
    A plasma display apparatus comprising: a power cutoff unit that cuts off either the power supply voltage or the ground voltage supplied to the address electrode application unit during the sustain period.
  2.  請求項1記載のプラズマディスプレイ装置において、
     前記電源遮断部は、前記第2トランジスタが接続された基準電源線と接地線との間に配置され、前記アドレス期間に接地線から前記基準電源線に前記接地電圧を供給するためにオンし、前記サステイン期間にオフするスイッチで構成され、
     前記駆動部は、
     前記基準電源線および前記電源遮断部を介して接地線に接続され、前記第1トランジスタが接続された内部電源線に前記電源電圧を供給する電源部を備えていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    The power shut-off unit is disposed between a reference power line connected to the second transistor and a ground line, and is turned on to supply the ground voltage from the ground line to the reference power line during the address period, A switch that is turned off during the sustain period;
    The drive unit is
    A plasma display device comprising: a power supply unit connected to a ground line through the reference power supply line and the power supply cutoff unit, and supplying the power supply voltage to an internal power supply line to which the first transistor is connected. .
  3.  請求項2記載のプラズマディスプレイ装置において、
     前記駆動部は、前記アドレス期間に前記スイッチをオンし、前記サステイン期間に前記スイッチをオフするスイッチ制御部を備え、
     前記スイッチは、前記基準電源線と接地線との間に直列に接続された一対のNチャネルFETで構成され、
     前記一対のNチャネルFETは、NチャネルFETに形成される各寄生ダイオードのアノードを互いに接続する向きに接続され、前記一対のNチャネルFETのゲートを互いに接続している共通ノードが前記スイッチ制御部に接続されていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 2, wherein
    The drive unit includes a switch control unit that turns on the switch during the address period and turns off the switch during the sustain period;
    The switch is composed of a pair of N-channel FETs connected in series between the reference power line and the ground line,
    The pair of N-channel FETs are connected in a direction in which the anodes of the parasitic diodes formed in the N-channel FET are connected to each other, and a common node that connects the gates of the pair of N-channel FETs to each other is the switch control unit A plasma display device connected to the plasma display device.
  4.  請求項2記載のプラズマディスプレイ装置において、
     前記駆動部は、前記サステイン期間に前記第1および第2トランジスタをオフするための前記アドレス制御信号を生成するドライバ制御部を備えていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 2, wherein
    The plasma display apparatus, wherein the driving unit includes a driver control unit that generates the address control signal for turning off the first and second transistors during the sustain period.
  5.  請求項1記載のプラズマディスプレイ装置において、
     前記駆動部は、前記サステイン期間に前記第1および第2トランジスタをオフするための前記アドレス制御信号を生成するドライバ制御部を備え、
     前記電源遮断部は、前記電源電圧が供給される第1電源線と前記第1トランジスタとの間に配置され、前記アドレス期間に前記第1トランジスタに前記電源電圧を供給するためにオンし、前記サステイン期間にオフするスイッチで構成され、
     前記第2トランジスタは、前記接地電圧を受けるために接地線に接続されていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    The driving unit includes a driver control unit that generates the address control signal for turning off the first and second transistors during the sustain period,
    The power cutoff unit is disposed between a first power supply line to which the power supply voltage is supplied and the first transistor, and is turned on to supply the power supply voltage to the first transistor in the address period, Consists of switches that turn off during the sustain period,
    The plasma display apparatus, wherein the second transistor is connected to a ground line to receive the ground voltage.
  6.  請求項5記載のプラズマディスプレイ装置において、
     前記駆動部は、前記アドレス期間に前記スイッチをオンし、前記サステイン期間に前記スイッチをオフするスイッチ制御部を備え、
     前記スイッチは、ソース、ドレインおよびゲートが前記第1電源線、前記第1トランジスタおよび前記スイッチ制御部にそれぞれ接続されたNチャネルFETで構成されていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 5, wherein
    The drive unit includes a switch control unit that turns on the switch during the address period and turns off the switch during the sustain period;
    2. The plasma display device according to claim 1, wherein the switch includes an N-channel FET having a source, a drain, and a gate connected to the first power line, the first transistor, and the switch control unit, respectively.
  7.  請求項1記載のプラズマディスプレイ装置において、
     前記駆動部は、前記サステイン期間に前記第1および第2トランジスタをオフするための前記アドレス制御信号を生成するドライバ制御部を備え、
     前記電源遮断部は、前記電源電圧が供給される第1電源線と前記第1トランジスタとの間に配置され、アノードが前記第1電源線に接続され、カソードが前記第1トランジスタに接続されたダイオードで構成され、
     前記第2トランジスタは、前記接地電圧を受けるために接地線に接続されていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    The driving unit includes a driver control unit that generates the address control signal for turning off the first and second transistors during the sustain period,
    The power shut-off unit is disposed between a first power supply line to which the power supply voltage is supplied and the first transistor, an anode is connected to the first power supply line, and a cathode is connected to the first transistor. Composed of diodes,
    The plasma display apparatus, wherein the second transistor is connected to a ground line to receive the ground voltage.
  8.  維持電極および走査電極間でサステイン放電を発生させ、前記走査電極およびアドレス電極間でアドレス放電を発生させるプラズマディスプレイパネルと、前記プラズマディスプレイパネルを駆動する駆動部とを備え、
     前記プラズマディスプレイパネルは、前記維持電極、前記走査電極および前記アドレス電極を有する第1基板と、放電空間を介して前記第1基板に対向する第2基板とを備え、
     1画面を表示するための1フィールドは、アドレス放電を発生させるためのアドレス期間と、サステイン放電を発生させるためのサステイン期間とを有する複数のサブフィールドを含んで構成され、
     前記駆動部は、
     前記アドレス期間に、電源電圧を受け、アドレス制御信号に基づいて、前記アドレス電極に前記電源電圧を印加するための第1トランジスタと、前記アドレス期間の前記第1トランジスタがオフのときに、接地電圧を受け、前記アドレス制御信号に基づいて、前記アドレス電極に前記接地電圧を印加するための第2トランジスタとを含むアドレス電極印加部と、
     前記アドレス電極印加部と前記アドレス電極との間に配置され、前記サステイン期間に、前記第1トランジスタから前記アドレス電極に流れる電流および前記アドレス電極から前記第2トランジスタに流れる電流を遮断するためのスイッチとを備えていることを特徴とするプラズマディスプレイ装置。
    A plasma display panel that generates a sustain discharge between the sustain electrode and the scan electrode and generates an address discharge between the scan electrode and the address electrode; and a driving unit that drives the plasma display panel,
    The plasma display panel includes a first substrate having the sustain electrodes, the scan electrodes, and the address electrodes, and a second substrate facing the first substrate through a discharge space,
    One field for displaying one screen includes a plurality of subfields having an address period for generating an address discharge and a sustain period for generating a sustain discharge.
    The drive unit is
    A first transistor for receiving a power supply voltage during the address period and applying the power supply voltage to the address electrode based on an address control signal, and a ground voltage when the first transistor during the address period is off. An address electrode applying unit including a second transistor for applying the ground voltage to the address electrode based on the address control signal;
    A switch disposed between the address electrode application unit and the address electrode and configured to cut off a current flowing from the first transistor to the address electrode and a current flowing from the address electrode to the second transistor during the sustain period. And a plasma display device.
  9.  請求項8記載のプラズマディスプレイ装置において、
     前記駆動部は、前記アドレス期間に前記スイッチをオンし、前記サステイン期間に前記スイッチをオフするスイッチ制御部を備え、
     前記スイッチは、前記アドレス電極印加部と前記アドレス電極との間に直列に接続された一対のNチャネルFETで構成され、
     前記一対のNチャネルFETは、NチャネルFETに形成される各寄生ダイオードのアノードを互いに接続する向きに接続され、前記一対のNチャネルFETのゲートを互いに接続している共通ノードが前記スイッチ制御部に接続されていることを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 8, wherein
    The drive unit includes a switch control unit that turns on the switch during the address period and turns off the switch during the sustain period;
    The switch includes a pair of N-channel FETs connected in series between the address electrode application unit and the address electrode,
    The pair of N-channel FETs are connected in a direction in which the anodes of the parasitic diodes formed in the N-channel FET are connected to each other, and a common node that connects the gates of the pair of N-channel FETs to each other is the switch control unit A plasma display device connected to the plasma display device.
  10.  第1基板に備えられた維持電極および走査電極間でサステイン放電を発生させ、前記走査電極および前記第1基板に備えられたアドレス電極間でアドレス放電を発生させるプラズマディスプレイパネルと、前記アドレス電極に選択的にパルスを印加するアドレス駆動回路とを備え、前記アドレス駆動回路が、前記パルスを生成するための内部電源を含んで構成されたプラズマディスプレイ装置の制御方法であって、
     1画面を表示するための1フィールドは、アドレス放電を発生させるためのアドレス期間と、サステイン放電を発生させるためのサステイン期間とを有する複数のサブフィールドを含んで構成され、
     前記アドレス期間では、前記アドレス駆動回路と接地線とを電気的に接続し、前記サステイン期間では、前記アドレス駆動回路と接地線とを電気的に非接続にすることを特徴とするプラズマディスプレイ装置の制御方法。
    A plasma display panel for generating a sustain discharge between the sustain electrode and the scan electrode provided on the first substrate and generating an address discharge between the scan electrode and the address electrode provided on the first substrate; and the address electrode An address driving circuit for selectively applying a pulse, wherein the address driving circuit includes an internal power source for generating the pulse,
    One field for displaying one screen includes a plurality of subfields having an address period for generating an address discharge and a sustain period for generating a sustain discharge.
    In the plasma display apparatus, the address driving circuit and the ground line are electrically connected in the address period, and the address driving circuit and the ground line are electrically disconnected in the sustain period. Control method.
  11.  第1基板に備えられた維持電極および走査電極間でサステイン放電を発生させ、前記走査電極および前記第1基板に備えられたアドレス電極間でアドレス放電を発生させるプラズマディスプレイパネルと、前記アドレス電極に選択的にパルスを印加するアドレス電圧印加部とを備え、前記アドレス電圧印加部が、電源線と接地線との間に直列に接続された第1トランジスタおよび第2トランジスタを含んで構成され、前記第1トランジスタと前記第2トランジスタとを互いに接続している共通ノードが前記アドレス電極に接続されるプラズマディスプレイ装置の制御方法であって、
     1画面を表示するための1フィールドは、アドレス放電を発生させるためのアドレス期間と、サステイン放電を発生させるためのサステイン期間とを有する複数のサブフィールドを含んで構成され、
     前記アドレス期間に、前記電源線に電源電圧を供給し、
     前記サステイン期間に、前記電源線に供給される電源電圧を遮断し、かつ、前記第2トランジスタをオフすることを特徴とするプラズマディスプレイ装置の制御方法。
    A plasma display panel for generating a sustain discharge between the sustain electrode and the scan electrode provided on the first substrate and generating an address discharge between the scan electrode and the address electrode provided on the first substrate; and the address electrode An address voltage application unit that selectively applies a pulse, and the address voltage application unit includes a first transistor and a second transistor connected in series between a power supply line and a ground line, A control method of a plasma display apparatus, wherein a common node connecting the first transistor and the second transistor to each other is connected to the address electrode,
    One field for displaying one screen includes a plurality of subfields having an address period for generating an address discharge and a sustain period for generating a sustain discharge.
    In the address period, supply a power supply voltage to the power supply line,
    A method of controlling a plasma display device, wherein a power supply voltage supplied to the power supply line is cut off and the second transistor is turned off during the sustain period.
PCT/JP2008/000083 2008-01-24 2008-01-24 Plasma display unit and method for controlling the same WO2009093285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000083 WO2009093285A1 (en) 2008-01-24 2008-01-24 Plasma display unit and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000083 WO2009093285A1 (en) 2008-01-24 2008-01-24 Plasma display unit and method for controlling the same

Publications (1)

Publication Number Publication Date
WO2009093285A1 true WO2009093285A1 (en) 2009-07-30

Family

ID=40900806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000083 WO2009093285A1 (en) 2008-01-24 2008-01-24 Plasma display unit and method for controlling the same

Country Status (1)

Country Link
WO (1) WO2009093285A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025474A (en) * 2011-07-19 2013-02-04 Asahi Kasei Electronics Co Ltd Detection circuit of connection apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778751A (en) * 1980-10-31 1982-05-17 Fujitsu Ltd Gas discharge panel
JPH0297113A (en) * 1988-10-03 1990-04-09 Toshiba Corp Solid-state relay
JPH06130914A (en) * 1992-06-09 1994-05-13 Nec Corp Plasma display driving device
JPH06216736A (en) * 1993-01-14 1994-08-05 Matsushita Electric Works Ltd Solid-state relay with varistor
JPH08123362A (en) * 1994-10-28 1996-05-17 Noritake Co Ltd Driving method for plasma display panel
US6376995B1 (en) * 1998-12-25 2002-04-23 Matsushita Electric Industrial Co., Ltd. Plasma display panel, display apparatus using the same and driving method thereof
JP2004273265A (en) * 2003-03-07 2004-09-30 Fujitsu Hitachi Plasma Display Ltd Plasma display panel
JP2006323362A (en) * 2005-05-17 2006-11-30 Lg Electronics Inc Plasma display apparatus, method for operating same, and plasma display panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778751A (en) * 1980-10-31 1982-05-17 Fujitsu Ltd Gas discharge panel
JPH0297113A (en) * 1988-10-03 1990-04-09 Toshiba Corp Solid-state relay
JPH06130914A (en) * 1992-06-09 1994-05-13 Nec Corp Plasma display driving device
JPH06216736A (en) * 1993-01-14 1994-08-05 Matsushita Electric Works Ltd Solid-state relay with varistor
JPH08123362A (en) * 1994-10-28 1996-05-17 Noritake Co Ltd Driving method for plasma display panel
US6376995B1 (en) * 1998-12-25 2002-04-23 Matsushita Electric Industrial Co., Ltd. Plasma display panel, display apparatus using the same and driving method thereof
JP2004273265A (en) * 2003-03-07 2004-09-30 Fujitsu Hitachi Plasma Display Ltd Plasma display panel
JP2006323362A (en) * 2005-05-17 2006-11-30 Lg Electronics Inc Plasma display apparatus, method for operating same, and plasma display panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025474A (en) * 2011-07-19 2013-02-04 Asahi Kasei Electronics Co Ltd Detection circuit of connection apparatus

Similar Documents

Publication Publication Date Title
WO1998044531A1 (en) Plane display panel, method for manufacturing the same, controller for controlling the same, and method for driving the same
KR100639540B1 (en) Plasma display panel driving method, plasma display panel driver circuit, and plasma display device
JPH07295506A (en) Driving method for plasma display panel
EP1693821A2 (en) Plasma display apparatus and driving method thereof
JP2005250489A (en) Apparatus and method for driving plasma display panel
WO2009093285A1 (en) Plasma display unit and method for controlling the same
JPWO2007023744A1 (en) Plasma display panel driving circuit and plasma display device
JP2005338842A (en) Plasma display apparatus
WO2002086854A1 (en) Plasma display panel drive method and plasma display apparatus
JP4496703B2 (en) Driving method of plasma display panel
JP2006317811A (en) Plasma display apparatus and driving method used for this plasma display apparatus
KR100333414B1 (en) Plasma Address Electroluminescence Display Apparatus and Driving Method thereof
US8081143B2 (en) Plasma display apparatus
KR20020085026A (en) Driving Method of Plasma Display Panel and Driving Apparatus of Data Electrode in the Same
KR20060082987A (en) Display device and method for controlling power thereof
JP2005189848A (en) Driving method of plasma display panel, driving circuit of plasma display panel, and plasma display
KR100264452B1 (en) Method and circuit for driving three-electrodes surface-discharge plasma display panel
KR100325301B1 (en) Plasma display panel
US20080061704A1 (en) Plasma Display Device
WO2009104220A1 (en) Plasma display unit
JP2001306027A (en) Method for driving plasma display panel
JP2012018392A (en) Method for driving plasma display device and plasma display device
JP2011257620A (en) Driving method of plasma display device and plasma display device
JPWO2009078065A1 (en) Plasma display panel driving method and plasma display device
JP2005100869A (en) Plasma display and its drive method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08702824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08702824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP