WO2009092239A1 - 一种驻波检测的方法、装置和基站 - Google Patents

一种驻波检测的方法、装置和基站 Download PDF

Info

Publication number
WO2009092239A1
WO2009092239A1 PCT/CN2008/073562 CN2008073562W WO2009092239A1 WO 2009092239 A1 WO2009092239 A1 WO 2009092239A1 CN 2008073562 W CN2008073562 W CN 2008073562W WO 2009092239 A1 WO2009092239 A1 WO 2009092239A1
Authority
WO
WIPO (PCT)
Prior art keywords
standing wave
carrier frequency
wave detection
time slot
detection
Prior art date
Application number
PCT/CN2008/073562
Other languages
English (en)
French (fr)
Inventor
Chun Wang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009092239A1 publication Critical patent/WO2009092239A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/04Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
    • G01R27/06Measuring reflection coefficients; Measuring standing-wave ratio

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, an apparatus, and a base station for standing wave detection. Background technique
  • the BTS Base Transceiver Station
  • the air interface realizes the BTS and the MS through the radio frequency signal propagating in the space. Communication between.
  • the RF signal transmitted and received by the BTS needs to be carried out by the antenna feed system of the base station.
  • the antenna feeder system mainly includes the feeder and the antenna.
  • the RF signal transmitted by the BTS is transmitted to the antenna through the feeder, and then radiated to the space through the antenna.
  • the antenna receives the MS radiation to the space.
  • the RF signal is then transmitted to the BTS via the feeder. This enables the transmission and reception of BTS RF signals.
  • the performance of the antenna system itself and its connection status with the BTS will directly affect the air interface performance of the BTS.
  • the detection of the performance of the antenna feeder system by the BTS and the detection of its connection state with the antenna feeder system are generally realized by standing wave detection of the antenna feeder system. Therefore, the standing wave alarm detection technology is one of the key technologies of the BTS.
  • the BTS antenna port is an interface between the BTS and the antenna feeder system.
  • the standing wave detection is performed by detecting the amplitudes of the forward and reverse signals of the BTS antenna port, and performing certain operations on the amplitude detection values of the forward and reverse signals. , get the standing wave ratio of the antenna feeder system. When the standing wave ratio exceeds a certain threshold, a standing wave alarm is generated, indicating that the performance of the antenna feeder system is degraded or
  • the connection status of the BTS is not good.
  • the amplitude detection of the BTS RF signal, the cylinder is called detection, and it has a decisive influence on whether the standing wave ratio detection is accurate.
  • the BTS uses a normal downlink signal as a detection signal to transmit to the antenna feeder system, and the generated forward and reverse signals are subjected to detection and a certain operation to obtain a standing wave ratio of the antenna feeder system.
  • the BTS when the BTS performs a traffic signal transmission, the BTS transmits a downlink signal to the antenna feeder system, the forward coupler 11 couples a part of the forward signal, and sends the partial forward signal to the forward detecting unit 13 for performing.
  • the reverse coupler 12 couples the reverse signal formed by the reflection of the partial antenna system, and sends the partial reverse signal to the reverse detection unit 14 for detection, and then the forward detection unit 13 and the reverse detection unit 14 respectively
  • the forward detection signal and the reverse detection signal are sent to the detection signal processing and operation unit 15 for arithmetic processing to obtain the standing wave ratio of the antenna feeder system.
  • the BTS downlink signal may be a combined signal of two carriers or more carriers, and the multi-carrier frequency combines to form a beat signal, and the amplitude of the beat signal has a large fluctuation in the time domain, thereby accurately detecting the downlink signal.
  • the average power or peak power becomes difficult, resulting in an inaccurate detection of the S WR (Standed Wave Ratio) of the antenna feeder system.
  • Embodiments of the present invention provide a method, a device, and a base station for standing wave detection, so as to avoid detection of a beat signal and improve accuracy and accuracy of standing wave detection.
  • an embodiment of the present invention provides a method for standing wave detection, including the following steps: acquiring a current carrier frequency occupied time slot condition, and identifying a time slot occupied by a single carrier frequency; according to the single carrier frequency Standing wave detection is performed in the case of occupying a time slot.
  • the embodiment of the present invention further provides a device for standing wave detection, including: a time slot status acquiring unit, configured to acquire a current carrier frequency occupied time slot condition; and a standing wave detecting unit, configured to The frequency occupied slot condition identifies the time slot occupied by the single carrier frequency, and performs standing wave detection according to the case where the single carrier frequency occupies the time slot.
  • a time slot status acquiring unit configured to acquire a current carrier frequency occupied time slot condition
  • a standing wave detecting unit configured to The frequency occupied slot condition identifies the time slot occupied by the single carrier frequency, and performs standing wave detection according to the case where the single carrier frequency occupies the time slot.
  • an embodiment of the present invention further provides a base station, including a device for standing wave detection, where the base station includes all devices that implement the function and performance of the mobile communication air interface.
  • the embodiments of the present invention have the following advantages: For example, the status of the current carrier frequency occupied time slot is obtained, and the time slot occupied by the single carrier frequency is identified, and the standing wave detection is performed according to the case of occupying the time slot by the single carrier frequency, thereby avoiding the detection of the beat signal and improving the standing wave detection.
  • the accuracy and precision of the software and hardware solutions reduce the implementation complexity.
  • FIG. 1 is a block diagram of a standing wave detection implementation of a prior art solution
  • FIG. 3 is a schematic diagram of occupancy of two carrier frequency slots according to Embodiment 1 of the present invention.
  • FIG. 5 is a structural diagram of a device for standing wave detection according to an embodiment of the present invention. detailed description
  • the amplitude of the beat signal formed by combining the multiple carrier frequency signals fluctuates greatly in the time domain, so the time slot of the signal simultaneously transmitted at multiple simultaneous carrier frequencies is stationed.
  • Wave detection is liable to cause the S WR detection of the antenna feeder system to be inaccurate or to increase the hardware and software overhead of the device to handle such a beat signal.
  • Embodiments of the present invention provide a method for standing wave detection, which utilizes the characteristics of a time division multiplexing system to avoid standing wave detection in a time slot in which multiple carrier frequencies of a combined carrier are simultaneously transmitted, only when a single carrier frequency is occupied.
  • the gap performs the standing wave detection, which solves the problem that the standing wave detection is not accurate due to the standing wave detection in the time slot occupied by the multi-carrier frequency of the combined path, improves the accuracy and accuracy of the standing wave detection, and reduces the softness.
  • the implementation complexity of the hardware solution Embodiments of the present invention are applicable to all time division multiplexing systems, such as GSM (Global System For Mobile Communication) systems.
  • GSM Global System For Mobile Communication
  • Embodiment 1 of the present invention is a flowchart of Embodiment 1 of the present invention, which specifically includes:
  • Step S201 Acquire a condition of a current carrier frequency occupied time slot, and identify a time slot occupied by a single carrier frequency.
  • the case of combining two carrier frequencies is taken as an example for description.
  • the GSM system adopts a time division multiplexing system.
  • One carrier frequency is divided into 8 time slots in the time domain, and each time slot represents one channel.
  • the channel has service occupation, it indicates that the time slot BTS has a transmission signal, and when the channel is idle, it indicates that the corresponding time slot BTS has no transmission signal.
  • the management control unit in the BTS identifies the occupancy status of the two carrier frequencies in the current time slot. The recognition result is shown in Figure 3.
  • the time slots 2, 3, and 7 are occupied by a single carrier frequency; the time slots 0, 4, and 6 are two carrier frequencies. Both are occupied; time slots 1, 5, both carrier frequencies are not occupied, no signal is transmitted.
  • the embodiment of the present invention is described by taking the GSM system as an example, but is not limited to the GSM system.
  • the above BTS includes all devices that can realize the function and performance of mobile communication air interface.
  • the BTS in the embodiment of the present invention may be a micro base station, an RRU (Remote Radio Unit), or an RFU (Radio Filter Unit).
  • Step S202 performing standing wave detection according to the case where the single carrier frequency occupies the time slot.
  • the standing wave detection may be performed in a time slot occupied by a single carrier frequency.
  • the above-mentioned standing wave detection may be that the standing wave detection is always performed during the operation of the base station, or a time period is selected, or the standing wave detection is performed periodically in one time period.
  • the standing wave detection function is usually completed by the standing wave detecting unit. Since the standing wave detecting unit usually does not know the configuration information of the carrier frequency, it is not known whether the transmitted signal is composed of a single carrier frequency, two or more carrier frequencies.
  • the path is formed, so the standing wave detecting unit cannot independently select the time slot for standing wave detection, and needs to know the time slot of the standing wave detection to the management control unit in the BTS, and then the standing wave detecting unit is further managed according to the BTS.
  • the control unit performs standing wave detection on the recognition result of the single carrier frequency occupied time slot.
  • the management control unit in the BTS recognizes that the time slots occupied by the single carrier frequency are time slots 2, 3, and 7, and then the standing wave detecting unit performs the standing wave detection in the time slots 2, 3, and 7 to obtain the final. Test results.
  • the management control unit since the management control unit, the carrier frequency unit and the standing wave detection unit are combined, the configuration is relatively fixed, so the cooperation problem of the time slot selection and the standing wave detection is easy to handle, and the standing wave detection process can be unified by The management control unit is completed.
  • multiple carrier frequency occupied time slots and no carrier frequency occupied time slots are not applicable to standing wave detection. Due to the characteristics of the time division multiplexing system of the GSM system, although the above two situations may occur, they will not last for a long time, and since the real-time requirements of the standing wave alarm detection are not high, only a certain time, such as several seconds, several minutes, or even Have a longer time The opportunity test is sufficient, so the above two cases have no effect on the implementation of the standing wave alarm function.
  • the method for detecting the standing wave can obtain the current carrier frequency occupied time slot condition and identify the time slot occupied by the single carrier frequency, and perform standing wave detection according to the situation that the single carrier frequency occupies the time slot, thereby avoiding the beat signal. Detection improves the accuracy and accuracy of standing wave detection and reduces the implementation complexity of hardware and software solutions.
  • Embodiment 2 of the present invention is a flowchart of Embodiment 2 of the present invention, which specifically includes:
  • Step S401 Obtain a status of a current carrier frequency occupied time slot, and identify a time slot occupied by a single carrier frequency.
  • the second embodiment uses the same method as the first embodiment to obtain the current carrier frequency occupied time slot and identify the time slot occupied by the single carrier frequency, and details are not described herein.
  • the standing wave detecting unit performs standing wave detection in all time slots, and transmits the detection result of the standing wave detection to the management control unit in the BTS.
  • the standing wave detection may be that the standing wave detection is always performed during the operation of the base station, or a time period is selected, or the standing wave detection is performed periodically in one time period.
  • the standing wave detection function is usually completed by the standing wave detection unit. Since the standing wave detection unit usually does not know the configuration information of the carrier frequency, it is not known whether the transmission signal is combined by a single carrier frequency, two or more carrier frequencies.
  • the standing wave detecting unit does not distinguish between time slots, and includes multiple carrier frequency occupied time slots, single carrier frequency occupied time slots, and no carrier frequency occupied time slots for standing wave detection in all time slots, and then detects standing wave detection.
  • the result is sent to the management control unit in the BTS that understands the carrier frequency configuration and the time slot occupancy status, and the detection result is selected by the management control unit in the BTS.
  • Step S403 the management control unit in the BTS selects the detection result of the standing wave detection performed in the time slot occupied by the single carrier frequency. After receiving the standing wave detection result sent by the standing wave detecting unit, the management control unit in the BTS that understands the carrier frequency configuration and the time slot occupation status selects the detection result of the standing wave detection performed in the time slot occupied by the single carrier frequency. This result is taken as the final test result.
  • the management control unit since the management control unit, the carrier frequency unit and the standing wave detection unit are combined, the configuration is relatively fixed, so the cooperation problem of the time slot selection and the standing wave detection is easy to handle, and the standing wave detection process can be unified by The management control unit is completed.
  • the standing wave detecting unit transmits the detection result of the standing wave detection to the management control unit in the BTS, and the management control unit in the BTS selects the single carrier based on the carrier frequency configuration and the slot occupancy status of the BTS.
  • the detection result of the standing wave detection by the frequency occupied time slot improves the accuracy and accuracy of the standing wave detection.
  • the device structure diagram of the standing wave detection includes: a time slot status obtaining unit 51, configured to acquire a status of a current carrier frequency occupied time slot; and a standing wave detecting unit 52, configured to The condition that the carrier frequency occupies the time slot identifies the time slot occupied by the single carrier frequency, and performs standing wave detection according to the case where the single carrier frequency occupies the time slot.
  • the standing wave detecting unit 52 may include: a slot standing wave detecting subunit 521, configured to perform standing wave detection in a time slot occupied by a single carrier frequency.
  • the standing wave detecting unit 52 may further include: a persistent standing wave detecting subunit 522, configured to perform standing wave detection in all time slots;
  • the result selection sub-unit 523 is configured to select, from the detection result of the persistent standing wave detection sub-unit 522, the detection result of the standing wave detection performed in the time slot occupied by the single carrier frequency.
  • the embodiment of the present invention further provides a base station, including the foregoing apparatus for standing wave detection, where the base station includes all devices that implement the function and performance of the mobile communication air interface.
  • the present invention can be implemented by hardware or by software plus a necessary general hardware platform.
  • the technical solution of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including several The instructions are for causing a BTS device to perform the methods described in various embodiments of the present invention.

Description

一种驻波检测的方法、 装置和基站 本申请要求于 2007 年 12 月 27 日提交中国专利局、 申请号为 200710301793.0, 及 2008 年 2 月 4 日提交中国专利局、 申请号为 200810006216.3 , 发明名称均为 "一种驻波检测的方法、 装置和基 站" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。
技术领域
本发明涉及通信技术领域, 尤其涉及一种驻波检测的方法、 装置 和基站。 背景技术
移动通信网络中的 BTS( Base Transceiver Station,基站收发信台 ) 实现与 MS ( Mobile Station, 移动台) 间的空中接口功能(下面筒称 空口 ), 空口通过在空间传播的射频信号实现 BTS与 MS间的通信。 BTS发射和接收的射频信号,都需要通过基站天馈系统进行, 天馈系 统主要包括馈线和天线, BTS发射的射频信号通过馈线传输到天线, 再通过天线向空间辐射; 天线接收 MS辐射到空间的射频信号, 再通 过馈线传输给 BTS。 这样就实现了 BTS射频信号的发射和接收。 天 馈系统本身的性能以及其与 BTS连接状态的好坏,都会直接影响 BTS 的空口性能。 BTS对天馈系统性能的检测和其与天馈系统连接状态的 检测, 一般是通过对天馈系统进行驻波检测来实现的, 因此驻波告警 检测技术是 BTS的关键技术之一。
BTS天线端口是 BTS与天馈系统连接的接口, 驻波检测是通过 检测 BTS天线端口的前向、 反向信号的幅度, 再对所述前向、 反向 信号的幅度检测值进行一定的运算, 得到天馈系统的驻波比。 当驻波 比超过一定门限时, 产生驻波告警, 表示天馈系统性能下降或者其与
BTS的连接状态不好。 在这样一个过程中, 对 BTS射频信号的幅度 检测, 筒称检波, 对驻波比检测是否准确, 有决定性的影响。 现有技术中 , BTS使用正常的下行信号作为探测信号向天馈系统 发射, 由此产生的前向、 反向信号经过检波和一定运算后, 得到天馈 系统的驻波比。 如图 1所示, 当 BTS进行业务信号传输时, 该 BTS 向天馈系统发射下行信号, 前向耦合器 11耦合一部分前向信号, 并 将该部分前向信号送到前向检波单元 13进行检波;反向耦合器 12耦 合部分天馈系统反射形成的反向信号,并将该部分反向信号送到反向 检波单元 14进行检波, 然后前向检波单元 13、 反向检波单元 14分 别将前向检波信号和反向检波信号送到检波信号处理与运算单元 15 进行运算处理, 得到天馈系统的驻波比。 其中, BTS下行信号可能是 两载波或更多载波的合路信号, 多载频合路形成差拍信号, 差拍信号 的幅度在时域上存在很大波动,从而使得准确的检出下行信号的平均 功率或峰值功率变得困难, 导致天馈系统的 S WR ( Standing Wave Ratio , 驻波比)检测不准。
发明内容
本发明实施例提供一种驻波检测的方法、 装置和基站, 以实现避 开对差拍信号的检测, 提高驻波检测的准确度和精度。
为达到上述目的, 本发明实施例一方面提供一种驻波检测的方 法, 包括以下步骤: 获取当前载频占用时隙的状况, 并识别单载频占 用的时隙; 根据所述单载频占用时隙的情况进行驻波检测。
另一方面, 本发明实施例还提供一种驻波检测的装置, 包括: 时 隙状况获取单元,用于获取当前载频占用时隙的状况;驻波检测单元, 用于根据所述当前载频占用时隙的状况识别单载频占用的时隙,并根 据所述单载频占用时隙的情况进行驻波检测。
再一方面, 本发明实施例还提供一种基站, 包括一种驻波检测的 装置, 所述基站包括所有实现移动通信空口功能和性能的设备。
与现有技术相比, 本发明实施例具有以下优点: 通过本发明实施 例, 获取当前载频占用时隙的状况, 并识别单载频占用的时隙, 根据 单载频占用时隙的情况进行驻波检测, 避免了对差拍信号进行检波, 提高了驻波检测的准确度和精度, 降低了软硬件方案的实现复杂度。 附图说明
图 1为现有技术方案的驻波检测实现框图;
图 2为本发明实施例一的流程图;
图 3为本发明实施例一的两载频时隙占用情况示意图;
图 4为本发明实施例二的流程图;
图 5为本发明实施例驻波检测的装置结构图。 具体实施方式
在实现本发明的过程中, 发明人发现现有技术至少存在以下问 题:
当下行信号为多载波的合路信号时,其多载频信号合路形成的差 拍信号的幅度在时域上波动较大,因此在合路的多载频同时发射信号 的时隙进行驻波检测容易造成天馈系统的 S WR检测不准或增加设备 在硬件、 软件方面的开销以处理这种差拍信号。
本发明实施例提供了一种驻波检测的方法,利用时分复用体制的 特点, 避免在合路的多个载频同时发射信号的时隙进行驻波检测, 只 在单载频占用的时隙进行驻波检测,从而解决了在合路的多载频占用 的时隙进行驻波检测而造成的驻波检测不准的问题,提高了驻波检测 的精度和准确度, 也降低了软硬件方案的实现复杂度。 本发明实施例 适用于所有的时分复用系统, 例如: GSM ( Global System For Mobile Communication, 全球移动通信系统) 系统。
如图 2所示, 为本发明实施例一的流程图, 具体包括:
步骤 S201 , 获取当前载频占用时隙的状况, 并识别单载频占用的 时隙。 本发明实施例以两载频合路的情况为例进行说明。 在两个载频 合路时, GSM系统采用时分复用体制, 一个载频在时域上分为 8个时 隙, 每个时隙代表一个信道。 当信道有业务占用时, 表示该时隙 BTS 有发射信号, 当该信道空闲时,表示对应时隙 BTS没有发射信号。 BTS 内的管理控制单元识别当前时隙两载频的占用状况, 识别结果如图 3 所示, 时隙 2、 3、 7只有单载频占用; 时隙 0、 4、 6, 两个载频都有占 用; 时隙 1、 5, 两个载频都没有占用, 没有发射信号。 本发明实施例 以 GSM系统为例进行说明, 但不局限于 GSM系统。 另外, 上述 BTS 包括所有能实现移动通信空口功能和性能的设备。本发明实施例中的 BTS具体可以为微基站、 RRU ( Remote Radio Unit, 远端射频单元) 或 RFU ( Radio Filter Unit, 无线滤波单元 )等。
步骤 S202,根据单载频占用时隙的情况进行驻波检测。 具体可以 是在单载频占用的时隙进行驻波检测。 上述驻波检测, 可以是在基站 工作的过程中, 始终进行不间断的驻波检测, 也可以是选择一个时间 段, 或周期性的在一个时间段内进行驻波检测。 在宏基站中, 该驻波 检测功能通常由驻波检测单元完成,由于驻波检测单元通常不了解载 频的配置信息, 不知道发射信号是否由单个载频、 两个或多个载频合 路形成, 因此驻波检测单元无法独立对用于驻波检测的时隙做出选 择, 需要向 BTS内的管理控制单元了解驻波检测的时隙, 然后驻波检 测单元再根据 BTS内的管理控制单元对单载频占用时隙的识别结果 进行驻波检测。 在本发明实施例中, BTS内的管理控制单元识别出单 载频占用的时隙为时隙 2、 3、 7 , 然后驻波检测单元在时隙 2、 3、 7 进行驻波检测得到最终的检测结果。
在微基站或 RRU、 RFU中, 由于管理控制单元、 载频单元和驻波 检测单元合一, 配置相对固定, 因此时隙选择与驻波检测的配合问题 容易处理, 驻波检测过程可以统一由管理控制单元完成。
在本发明实施例中, 多载频占用时隙和无载频占用时隙, 都不可 用于驻波检测。 由于 GSM系统时分复用体制的特点,上述两种情况虽 然可能出现, 但不会长期持续, 而且由于驻波告警检测的实时性要求 不高, 只需要一定时间, 比如几秒、 几分钟, 甚至更长时间内能够有 机会测试一次就足够了,因此上述两种情况对驻波告警功能的实现没 有影响。
上述驻波检测的方法, 通过获取当前载频占用时隙的状况, 并识 别单载频占用的时隙, 根据单载频占用时隙的情况进行驻波检测, 从 而避免了对差拍信号进行检波, 提高了驻波检测的精度和准确度, 也 降低了软硬件方案的实现复杂度。
如图 4所示, 为本发明实施例二的流程图, 具体包括:
步骤 S401 , 获取当前载频占用时隙的状况, 并识别单载频占用的 时隙。 实施例二采用与实施例一相同的方法, 获取当前载频占用时隙 的状况, 并识别单载频占用的时隙, 在此不再赘述。
步骤 S402, 驻波检测单元在所有的时隙进行驻波检测, 并将驻 波检测的检测结果发送给 BTS 内的管理控制单元。 上述驻波检测, 可以是在基站工作的过程中, 始终进行不间断的驻波检测, 也可以是 选择一个时间段, 或周期性的在一个时间段内进行驻波检测。 在宏基 站中, 驻波检测功能通常由驻波检测单元完成, 由于驻波检测单元通 常不了解载频的配置信息, 不知道发射信号是否由单个载频、 两个或 多个载频合路形成, 因此驻波检测单元不区分时隙, 在所有的时隙包 括多载频占用时隙、 单载频占用时隙和无载频占用时隙进行驻波检 测,然后将驻波检测的检测结果发送给了解载频配置和时隙占用状况 的 BTS内的管理控制单元, 由 BTS内的管理控制单元对检测结果进 行取舍。
步骤 S403, BTS 内的管理控制单元选择在单载频占用的时隙进 行的驻波检测的检测结果。在接收到驻波检测单元发送的驻波检测结 果之后, 由了解载频配置和时隙占用状况的 BTS内的管理控制单元, 选择在单载频占用的时隙进行的驻波检测的检测结果,将该结果作为 最终的检测结果。
在微基站或 RRU、 RFU中, 由于管理控制单元、 载频单元和驻波 检测单元合一, 配置相对固定, 因此时隙选择与驻波检测的配合问题 容易处理, 驻波检测过程可以统一由管理控制单元完成。 上述驻波检测的方法,驻波检测单元将驻波检测的检测结果发送 给 BTS内的管理控制单元,由 BTS内的管理控制单元根据该 BTS的 载频配置和时隙占用状况选择在单载频占用的时隙进行的驻波检测 的检测结果, 从而提高了驻波检测的精度和准确度。
如图 5所示, 为本发明实施例驻波检测的装置结构图, 包括: 时隙状况获取单元 51 , 用于获取当前载频占用时隙的状况; 驻波检测单元 52, 用于根据当前载频占用时隙的状况识别单载 频占用的时隙, 并根据单载频占用时隙的情况进行驻波检测。
其中, 驻波检测单元 52可以包括: 时隙驻波检测子单元 521 , 用于在单载频占用的时隙进行驻波检测。
其中, 驻波检测单元 52还可以包括: 持续驻波检测子单元 522, 用于在所有的时隙进行驻波检测;
结果选择子单元 523 , 用于从持续驻波检测子单元 522的检测结 果中选择在单载频占用的时隙进行的驻波检测的检测结果。
本发明实施例还提供了一种基站, 包括上述驻波检测的装置, 所 述基站包括所有实现移动通信空口功能和性能的设备。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明, 可以通过硬件实现, 也可以借助软件加必需的通用硬件平 台的方式来实现。基于这样的理解, 本发明的技术方案可以以软件产 品的形式体现出来, 该软件产品可以存储在一个非易失性存储介质 (可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使 得一台 BTS设备执行本发明各个实施例所述的方法。
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内所作的任何修改、 等 同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种驻波检测的方法, 其特征在于, 包括:
获取当前载频占用时隙的状况, 并识别单载频占用的时隙; 根据所述单载频占用时隙的情况进行驻波检测。
2、 如权利要求 1所述驻波检测的方法, 其特征在于, 所述根据 单载频占用时隙的情况进行驻波检测包括:在所述单载频占用的时隙 进行驻波检测。
3、 如权利要求 1所述驻波检测的方法, 其特征在于, 所述根据 单载频占用时隙的情况进行驻波检测还包括:
在所有的时隙进行驻波检测;
从所述驻波检测的结果中选择在所述单载频占用的时隙进行的 驻波检测的检测结果。
4、 一种驻波检测的装置, 其特征在于, 包括:
时隙状况获取单元, 用于获取当前载频占用时隙的状况; 驻波检测单元,用于根据所述当前载频占用时隙的状况识别单载 频占用的时隙, 并根据所述单载频占用时隙的情况进行驻波检测。
5、 如权利要求 4所述驻波检测的装置, 其特征在于, 所述驻波 检测单元包括:
时隙驻波检测子单元,用于在所述单载频占用的时隙进行驻波检 测。
6、 如权利要求 4所述驻波检测的装置, 其特征在于, 所述驻波 检测单元还包括:
持续驻波检测子单元, 用于在所有的时隙进行驻波检测; 结果选择子单元,用于从所述持续驻波检测子单元的检测结果中 选择在所述单载频占用的时隙进行的驻波检测的检测结果。
7、 一种基站, 其特征在于, 包括如权利要求 4至 6任意一项所 述一种驻波检测的装置,所述基站包括所有实现移动通信空口功能和 性能的设备。
PCT/CN2008/073562 2007-12-27 2008-12-17 一种驻波检测的方法、装置和基站 WO2009092239A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200710301793 2007-12-27
CN200710301793.0 2007-12-27
CNA2008100062163A CN101222739A (zh) 2007-12-27 2008-02-04 一种驻波检测的方法、装置和基站
CN200810006216.3 2008-02-04

Publications (1)

Publication Number Publication Date
WO2009092239A1 true WO2009092239A1 (zh) 2009-07-30

Family

ID=39632263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073562 WO2009092239A1 (zh) 2007-12-27 2008-12-17 一种驻波检测的方法、装置和基站

Country Status (2)

Country Link
CN (1) CN101222739A (zh)
WO (1) WO2009092239A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222739A (zh) * 2007-12-27 2008-07-16 华为技术有限公司 一种驻波检测的方法、装置和基站
CN102131204A (zh) * 2010-01-19 2011-07-20 华为技术有限公司 基站、系统及驻波检测方法
CN111130657B (zh) * 2019-12-31 2022-03-25 京信网络系统股份有限公司 驻波比检测方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408690A (en) * 1990-10-01 1995-04-18 Murata Mfg. Co., Ltd. Antenna supervising apparatus comprising a standing wave ratio measuring unit
CN1633197A (zh) * 2003-12-24 2005-06-29 中兴通讯股份有限公司 一种基站天线驻波比告警的实现装置及方法
CN1909428A (zh) * 2005-08-04 2007-02-07 中兴通讯股份有限公司 增强数据速率的gsm演进系统中驻波比告警检测装置
CN101222739A (zh) * 2007-12-27 2008-07-16 华为技术有限公司 一种驻波检测的方法、装置和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408690A (en) * 1990-10-01 1995-04-18 Murata Mfg. Co., Ltd. Antenna supervising apparatus comprising a standing wave ratio measuring unit
CN1633197A (zh) * 2003-12-24 2005-06-29 中兴通讯股份有限公司 一种基站天线驻波比告警的实现装置及方法
CN1909428A (zh) * 2005-08-04 2007-02-07 中兴通讯股份有限公司 增强数据速率的gsm演进系统中驻波比告警检测装置
CN101222739A (zh) * 2007-12-27 2008-07-16 华为技术有限公司 一种驻波检测的方法、装置和基站

Also Published As

Publication number Publication date
CN101222739A (zh) 2008-07-16

Similar Documents

Publication Publication Date Title
JP7000345B2 (ja) ワイヤレスローカルエリアネットワークにおけるトリガフレーム
US10667159B2 (en) Method, user equipment, base station, and system for enhancing reliability of wireless communication
JP5389922B2 (ja) ベースチャネルと60GHzチャネルとの間で切り替えるための方法および装置
KR101227305B1 (ko) 무선 네트워크에서의 연관 및 재연관을 위한 방법, 장치 및 저장 매체
WO2018228510A1 (zh) 通信方法、网络节点和无线接入网系统
JP7005759B2 (ja) データ伝送方法、端末装置、およびネットワーク装置
TWI672966B (zh) 一種初始接入信號的傳輸方法和裝置
US11026195B2 (en) Communication method and device
WO2020038331A1 (zh) 确定上行资源的方法与装置
WO2017133345A1 (zh) 业务传输的方法和装置
JP2016077011A (ja) Lteにおけるcqi報告のための構成
TW200913515A (en) Techniques for receiver beamforming and yielding-threshold adjustments in peer-to-peer networks
JP2011193466A (ja) ワイヤレス通信ネットワークの補助ノード伝送援助
WO2015062011A1 (zh) 一种测量配置方法、识别和测量方法、宏基站及ue
TW202038651A (zh) 輔小區之小區激活之方法及其電子設備
KR20150033747A (ko) 피어-투-피어 네트워크에서 리소스 충돌의 검출 및 해결을 위한 방법 및 장치
WO2018082710A1 (zh) 数据传输方法、基站和计算机可读存储介质
WO2011160567A1 (zh) 接收能力上报的方法及设备
JP2020532195A (ja) アップリンク情報送信方法および装置ならびにアップリンク情報受信方法および装置
WO2009092239A1 (zh) 一种驻波检测的方法、装置和基站
US20210136820A1 (en) Devices, systems, and methods for mitigating aggressive medium reservations
WO2022077165A1 (zh) 一种反射设备波束管理方法、装置及相关设备
JP5291195B2 (ja) フェイント接続セッションの設定
WO2017080489A1 (zh) 一种处理发现消息的方法和装置
JP5732136B2 (ja) マルチラジオを用いた通信方法及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08871476

Country of ref document: EP

Kind code of ref document: A1