WO2018082710A1 - 数据传输方法、基站和计算机可读存储介质 - Google Patents

数据传输方法、基站和计算机可读存储介质 Download PDF

Info

Publication number
WO2018082710A1
WO2018082710A1 PCT/CN2017/109803 CN2017109803W WO2018082710A1 WO 2018082710 A1 WO2018082710 A1 WO 2018082710A1 CN 2017109803 W CN2017109803 W CN 2017109803W WO 2018082710 A1 WO2018082710 A1 WO 2018082710A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
frequency
information
cell
interference
Prior art date
Application number
PCT/CN2017/109803
Other languages
English (en)
French (fr)
Inventor
云翔
孙立新
丁颖哲
周明宇
Original Assignee
北京佰才邦技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佰才邦技术有限公司 filed Critical 北京佰才邦技术有限公司
Publication of WO2018082710A1 publication Critical patent/WO2018082710A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/715Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present application relates to the field of data processing, and in particular to a data transmission method, a base station, and a computer readable storage medium.
  • the existing wireless communication includes wireless communication on a licensed frequency band (ie, a licensed frequency band) and on an Unlicensed frequency band (ie, an unlicensed frequency band), wherein wireless communication performed on the licensed frequency band refers to an operator deploying wireless access A network device (such as a base station), and a core network device (such as a Home Location Register, abbreviated as HLR), etc., provide a communication service system for a user terminal (such as a mobile phone).
  • a network device such as a base station
  • a core network device such as a Home Location Register, abbreviated as HLR), etc.
  • HLR Home Location Register
  • the communication provided by current mobile communication operators (such as China Mobile) the frequency band occupied by such wireless communication is used by a mobile communication carrier (hereinafter referred to as an operator), and the operator conducts resources for the frequency band.
  • Management and optimization eg, controlling the density of access devices operating in this band, transmit power, antenna tilt, etc. to ensure the reliability and effectiveness of the wireless communication
  • Wireless communication in the Unlicensed frequency band such as WiFi (Wireless Fidelity) is a general term for the 802.11 series of technologies developed by the Institute of Electrical and Electronics Engineers (IEEE).
  • IEEE Institute of Electrical and Electronics Engineers
  • 802.11a/g/n/ac 802.11a/g/n/ac.
  • WiFi is mainly used for local wireless communication, and the coverage is relatively small, which is a simple and relatively low-cost wireless communication means.
  • the original version of WiFi works at 2.4 GHz, but because of the small available bandwidth in the 2.4 GHz band, there are more wireless transmitting devices operating in the 2.4 GHz band, resulting in a decline in WiFi performance at 2.4 GHz. .
  • WiFi has discovered a new communication frequency of 5 GHz on later versions (Note: 5 GHz is not mentioned here)
  • a single frequency band but refers to each frequency band around 5 GHz, which can be understood as being from the 4.9 GHz to 5.9 GHz are the 5 GHz frequency bands described herein).
  • the current mobile communication system has been developed to the fourth generation mobile communication system, and the Long Term Evolution/Long Term Evolution-Advanced developed by the International Organization for Standardization (3GPP) (The Third Generation Partnership Project) , LTE/LTE-A).
  • 3GPP International Organization for Standardization
  • LTE/LTE-A Long Term Evolution/Long Term Evolution-Advanced developed by the International Organization for Standardization
  • LTE/LTE-A Long Term Evolution/Long Term Evolution-Advanced developed by the International Organization for Standardization
  • 3GPP has begun research on the application of LTE systems in the unlicensed band, aiming to increase the available bandwidth for LTE systems.
  • the Licensed Assisted Access (LAA) currently discussed in the 3GPP mainly aggregates the licensed frequency band and the unlicensed frequency band by carrier aggregation (CA), and extends the LTE system to the unlicensed frequency band for transmission. .
  • CA carrier aggregation
  • the embodiment of the present application provides a data transmission method, a base station, and a computer readable storage medium, to at least solve the problem that the data transmission reliability in the unlicensed frequency band is low in the prior art, and the LTE system cannot be solved by using the unlicensed frequency band frequency resource.
  • the technical problem of the throughput drop is not limited to the following problems:
  • a data transmission method includes: acquiring interference information of a first cell to which a communication device belongs; and determining, according to the interference information, a frequency band used for transmitting data according to a multi-band transmission mode Information; providing the frequency band information to the communication device.
  • the multi-band transmission mode includes: a frequency hopping transmission mode and/or a concurrent transmission mode.
  • determining, according to the interference information, frequency band information for transmitting data according to the multi-band transmission mode includes: generating, according to the interference information, The frequency hopping transmission mode transmits frequency band information of a frequency hopping sequence, wherein the frequency hopping sequence records a frequency band used in different time periods in a frequency hopping period.
  • generating, according to the interference information, frequency band information including a frequency hopping sequence for transmitting data according to the frequency hopping transmission manner comprising: generating, according to interference intensity of each frequency band of the first cell recorded in the interference information The frequency hopping sequence, wherein a ratio of occurrence of each frequency band in the frequency hopping sequence has an inverse relationship with an interference strength of the respective frequency bands; and/or according to a second cell recorded in the interference information, using each frequency band
  • the resource usage rate generates the hopping sequence, wherein a ratio of occurrence of each frequency band in the hopping sequence is inversely proportional to a resource usage rate of the each frequency band, where the second cell is the first The cell that generates interference.
  • determining, according to the interference information, frequency band information for transmitting data according to the multi-band transmission mode includes: determining, according to the interference information, The concurrent transmission mode concurrently transmits frequency band information including a combining factor of each frequency band of the data.
  • determining, according to the interference information, frequency band information that includes a combining factor of each frequency band for concurrently transmitting data according to the concurrent transmission manner includes: performing interference according to each frequency band of the first cell recorded in the interference information.
  • the intensity determines a combination factor of each frequency band, wherein the combination factor of each frequency band has an inverse relationship with the interference intensity of the respective frequency band; and/or the resource usage rate of each frequency band is used according to the second cell recorded in the interference information. Determining the consolidation factor for each frequency band, where The combining factor of the respective frequency bands is inversely proportional to the resource usage rate of the respective frequency bands, wherein the second cell is a cell that generates interference to the first cell.
  • determining, according to the interference information, frequency band information for transmitting data according to the multi-band transmission manner includes: determining a plurality of frequency bands used for transmitting data, and determining time-frequency resources for transmitting the data in each of the frequency bands. .
  • determining that the time-frequency resource used for transmitting the data in each of the frequency bands includes any one of the following: acquiring a time-frequency resource specified in the indication information; and channel quality of the first time-frequency resource in the frequency band
  • the first time-frequency resource is selected as a time-frequency resource for transmitting the data, and the time-frequency for transmitting the data is randomly selected in the frequency band. Resources.
  • acquiring the interference information of the first cell to which the communication device belongs includes: intercepting the interference information of the first cell by using a listener; and/or acquiring the interference information of the first cell reported by the communication device,
  • the interference information includes an interference strength of each frequency band in the first cell, and/or a second cell that interferes with the first cell uses a resource usage rate of each frequency band.
  • providing the frequency band information to the communication device includes one of: transmitting the frequency band information to the communication device in response to a request information of a user; and transmitting the frequency band information to the a communication device; broadcasting the frequency band information through a broadcast channel.
  • a base station is further provided, where the base station includes: an acquiring unit, configured to acquire interference information of a first cell to which the communication device belongs; and a determining unit, configured to determine, according to the interference information, The frequency band information for transmitting data according to the multi-band transmission mode; and a providing unit, configured to provide the frequency band information to the communication device.
  • the multi-band transmission mode includes: a frequency hopping transmission mode and/or a concurrent transmission mode.
  • the determining unit includes: a generating module, configured to generate, according to the interference information, data for transmitting according to the frequency hopping transmission manner, where the multi-band transmission mode includes the frequency hopping transmission mode Band information including a frequency hopping sequence, The frequency hopping sequence records a frequency band used in different time periods in the frequency hopping period.
  • the generating module includes: a first generating submodule, configured to generate the hopping sequence according to an interference strength of each frequency band of the first cell recorded in the interference information, where the hopping sequence The ratio of the occurrence of each frequency band is inversely proportional to the interference strength of the respective frequency bands; and/or the second generation sub-module is configured to use the resource usage rate of each frequency band according to the second cell recorded in the interference information.
  • a frequency hopping sequence wherein a ratio of occurrence of each frequency band in the frequency hopping sequence is inversely proportional to a resource usage rate of the respective frequency band, where the second cell is a cell that interferes with the first cell .
  • the determining unit includes: a determining module, configured to determine, according to the interference information, each of concurrently transmitting data according to the concurrent transmission manner, in a case where the multi-band transmission mode includes the concurrent transmission mode The band information of the frequency band containing the combining factor.
  • the determining module includes: a first determining submodule, configured to determine, according to an interference strength of each frequency band of the first cell recorded in the interference information, a combining factor of each frequency band, where each frequency band is The combining factor has an inverse relationship with the interference strength of the respective frequency bands; and/or the second determining submodule is configured to determine a combining factor of each frequency band according to a resource usage rate of each frequency band used by the second cell recorded in the interference information, The combining factors of the respective frequency bands are inversely proportional to the resource usage rates of the respective frequency bands, where the second cell is a cell that generates interference to the first cell.
  • the determining unit includes: a processing module, configured to determine a plurality of frequency bands for transmitting data, and determine time-frequency resources for transmitting the data in each of the frequency bands.
  • the processing module includes any one of the following: an obtaining submodule, configured to acquire a time-frequency resource specified in the indication information, and a selecting submodule, configured to perform channel quality of the first time-frequency resource in the frequency band.
  • a selecting submodule configured to perform channel quality of the first time-frequency resource in the frequency band.
  • the acquiring unit includes: a listening module, configured to listen to the interference information of the first cell by using a listener; and/or an acquiring module, configured to acquire the first cell reported by the communication device
  • the interference information where the interference information includes an interference strength of each frequency band in the first cell, and/or a second cell that interferes with the first cell uses a resource usage rate of each frequency band.
  • the providing unit includes one of: a response module, configured to send the frequency band information to the communication device in response to a request information of the user, and a sending module, configured to send the frequency band information by using a designated channel
  • the broadcast module is configured to broadcast the frequency band information through a broadcast channel.
  • a base station includes: a transmitter, a receiver, a memory, and a processor coupled to the memory, the transmitter, the receiver, and the The memory and the processor are in communication with a bus system; the memory stores a software program; the processor runs the software program to: acquire, by the receiver, interference information of a first cell to which the communication device belongs; The interference information determines frequency band information used for transmitting data according to the multi-band transmission mode; the frequency band information is provided to the communication device by the transmitter.
  • the multi-band transmission mode includes: a frequency hopping transmission mode and/or a concurrent transmission mode.
  • the processor is further configured to: when the multi-band transmission mode includes a frequency hopping transmission mode, generate, according to the interference information, frequency band information including a frequency hopping sequence for transmitting data according to a frequency hopping transmission manner, where the frequency hopping sequence The frequency band used in different time periods in the frequency hopping period is recorded.
  • the processor is further configured to: when the multi-band transmission mode includes a concurrent transmission mode, determine, according to the interference information, frequency band information that includes a combining factor of each frequency band for concurrently transmitting data according to the concurrent transmission manner.
  • a computer readable storage medium storing computer executable instructions, the computer executable instructions being set to the method flow described in any of the above.
  • the base station determines, according to the interference information of the first cell to which the communication device belongs, the frequency band information used when transmitting data according to the multi-band transmission mode, and provides the determined frequency band information to the communication device, and the base station and the communication device
  • the transmission of data is completed by the information of the frequency band.
  • the frequency band information that can be transmitted by using the multi-band transmission mode is determined based on the interference information corresponding to the communication device, and the data of the unlicensed frequency band is sent by using the frequency band information to ensure the data of the unlicensed frequency band.
  • the reliability of the transmission thereby fully utilizing the characteristics of the frequency resources of the unlicensed frequency band, improves the throughput of the LTE system, and solves the technical problem of low reliability of data transmission in the unlicensed frequency band in the prior art.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an optional data transmission in accordance with an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another alternative data transmission in accordance with an embodiment of the present application.
  • FIG. 4 is a schematic diagram of still another optional data transmission according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • Throughput refers to the number of successfully transmitted data (measured in bits, bytes, and minutes) per unit of time for a network, device, port, virtual circuit, or other facility.
  • Sniffer Translation sniffer, a network analysis method based on the principle of passive listening. With Sniffer, you can monitor the status of your network, the flow of data, and the information that is transmitted over the network.
  • Resource usage rate is the resource usage rate for a certain frequency band, which is the ratio of the resources of a certain frequency band to the resources of all frequency bands.
  • an embodiment of a data transmission method is provided, and it should be noted that the steps shown in the flowchart of the accompanying drawings may be performed in a computer system such as a set of computer executable instructions, and, although The logical order is shown in the flowcharts, but in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present application. As shown in FIG. 1 , the method includes the following steps:
  • Step S102 Acquire interference information of the first cell to which the communication device belongs.
  • Step S104 Determine frequency band information for transmitting data according to the multi-band transmission mode based on the interference information.
  • Step S106 Providing the frequency band information to the communication device.
  • the base station determines, according to the interference information of the first cell to which the communication device belongs, the frequency band information used when transmitting data according to the multi-band transmission mode, and provides the determined frequency band information to the communication device, and the base station and the communication device pass This band information completes the transmission of data.
  • the frequency band information that can be transmitted by using the multi-band transmission mode is determined based on the interference information corresponding to the communication device, and the data of the unlicensed frequency band is sent by using the frequency band information to ensure the data of the unlicensed frequency band.
  • the reliability of the transmission thereby fully utilizing the characteristics of the frequency resources of the unlicensed frequency band, improves the throughput of the LTE system, and solves the technical problem of low reliability of data transmission in the unlicensed frequency band in the prior art.
  • the above communication device may be a mobile communication network device, and the mobile communication network device may be a mobile communication network terminal, and the terminal refers to a terminal side product that can support a communication protocol of the land mobile communication system, such as a mobile phone, a tablet computer, or the like.
  • a special communication modem module (Wireless Modem), which can be integrated by various types of terminal forms such as mobile phones, tablets, and data cards to complete communication functions.
  • the interference information of the first cell to which the mobile communication network device belongs is obtained by the user reporting (ie, reporting by the mobile communication network device) or by means of air interface interception (ie, base station interception), and the interference information includes the mobile communication network.
  • the cell where the device is located i.e., the interference strength of each frequency band in the local cell
  • the interference source cell that interferes with the local cell uses the resource usage rate of each frequency band
  • the frequency band information in the multi-band transmission mode may be designed according to the interference information, and the base station selects the frequency band.
  • the information is sent to the receiving end, that is, sent to the mobile communication network device, so that the base station and the mobile communication network device complete the data transmission through the frequency band information.
  • the multi-band transmission mode includes: a frequency hopping transmission mode and/or a concurrent transmission mode.
  • the interference strength received by each frequency band in the cell where the mobile communication network device is located (ie, the local cell) and/or the interference source cell that interferes with the local cell may be obtained by reporting by the mobile communication network device or by means of the base station listening.
  • the resource usage rate of each frequency band is used; the frequency band information in the multi-band transmission mode is designed based on the obtained interference intensity of each frequency band of the local cell and/or the resource utilization rate of the interference source cell using each frequency band, that is, the hopping of the frequency hopping transmission mode is designed.
  • the base station sends the hopping sequence and/or the merging factor to the receiving end, that is, it is sent to the mobile communication network device, so that the base station and the mobile communication network device complete the data through the frequency band information. transmission.
  • the manner in which the base station and the mobile communication network complete the data transmission may include the following three types: the first method uses only the frequency hopping sequence to complete the frequency hopping transmission, that is, the frequency hopping transmission mode is adopted; the second type uses only the combining factor.
  • the method of concurrent transmission adopts the concurrent transmission mode; the third type combines the transmission mode of the frequency hopping transmission mode and the concurrent transmission mode.
  • any one of the methods can be used to transmit data of an unlicensed frequency band and improve reliability of data transmission in an unlicensed frequency band.
  • determining, according to the interference information, the frequency band information used for transmitting data according to the multi-band transmission mode includes: generating, according to the interference information, the frequency hopping according to the interference information
  • the transmission mode transmits data of the frequency band information including the frequency hopping sequence, wherein the frequency hopping sequence records the frequency band used in different time periods in the frequency hopping period.
  • generating the frequency band information including the frequency hopping sequence for transmitting the data according to the frequency hopping transmission manner according to the interference information includes: generating a frequency hopping sequence according to the interference intensity of each frequency band of the first cell recorded in the interference information, where the frequency hopping frequency The ratio of occurrence of each frequency band in the sequence has an inverse relationship with the interference intensity of each frequency band; and/or generates a frequency hopping sequence according to the resource usage rate of each frequency band recorded by the second cell recorded in the interference information, wherein each of the frequency hopping sequences The ratio of the frequency bands in the frequency band has an inverse relationship with the resource usage rate of each frequency band.
  • the second cell is a cell that interferes with the first cell, and the second cell is not limited because the cell that interferes with the first cell may be multiple. In a cell that produces interference.
  • the frequency hopping sequence is generated according to the interference intensity of each frequency band of the first cell recorded in the interference information, wherein the proportion of each frequency band in the frequency hopping sequence has an inverse relationship with the interference intensity of each frequency band, that is, the interference of each frequency band The greater the intensity, the smaller the proportion of each frequency band in the corresponding frequency hopping sequence. For example, when the interference intensity of the first frequency band is greater than the interference intensity of the second frequency band, the proportion of the first frequency band in the frequency hopping sequence is smaller than the second.
  • the proportion of each frequency band in the frequency hopping sequence is inversely proportional to the resource usage rate of each frequency band Relationship, that is, the higher the resource usage rate of each frequency band, the smaller the proportion of each frequency band in the corresponding frequency hopping sequence, for example, when the resource usage rate of the first frequency band is higher than the resource usage rate of the second frequency band,
  • the proportion of the first frequency band in the frequency sequence is smaller than the ratio of the second frequency band, wherein the second cell is the first cell The cell that caused the interference.
  • the interference strength of each frequency band of the first cell may be the interference intensity received by each frequency band in the local cell where the mobile communication network device is located; and the resource usage rate of the second cell using each frequency band may be used by the interference source cell that generates interference to the local cell. Resource usage for each frequency band.
  • the base station randomly generates a frequency hopping sequence used when transmitting data according to the frequency hopping transmission mode, and generates a hopping sequence. It is periodic, and a frequency hopping period contains frequency band resource information used in different time periods. In a frequency hopping week During the period, the proportion of different frequency bands is related to the interference intensity received by each frequency band in the cell and/or the resource usage rate of each frequency band used by the interference source cell.
  • the proportion that occurs in the frequency hopping period is large, that is, the frequency hopping ratio of the frequency band.
  • the proportion that occurs in the frequency hopping period is small, that is, the frequency hopping ratio of the frequency band is small; if the interference source cell uses the resource usage rate of each frequency band to determine the proportion of the different frequency bands If the resource usage rate of a certain frequency band is high in the interference source cell, the frequency of the frequency band occurring in the frequency hopping period is small, that is, the frequency hopping ratio of the frequency band is correspondingly small, and the interference source cell corresponds to a certain frequency band.
  • the resource usage rate is low, the frequency band appears to have a large proportion in the frequency hopping period, that is, the frequency hopping ratio of the frequency band is correspondingly large.
  • Figure 2 is analyzed. It is assumed that the proportion of different frequency bands occurring in the frequency hopping period is determined according to the interference intensity received by each frequency band in the cell. As shown in Fig. 2, the interference intensity of the F4 frequency band is the largest, in the frequency hopping period. Only once, the frequency hopping ratio is the smallest, the F3 frequency band receives the least interference intensity, and appears three times in the frequency hopping period, and the frequency hopping ratio is the largest. In addition, the interference intensity of the F1 frequency band and the F2 frequency band is medium, in the frequency hopping period. There are two occurrences in the middle, and the frequency hopping ratio is between the F3 band and the F4 band.
  • the frequency hopping period in the solution of the foregoing embodiment may include a plurality of frequency band resource information used in different time segments, and the number may be any number.
  • the frequency hopping transmission between the base station and the mobile communication network device can be completed based on the generated frequency hopping sequence, so that the data of the unlicensed frequency band is transmitted through the frequency hopping transmission manner, so as to fully utilize the unlicensed frequency band.
  • the purpose of the resource is not limited to the generated frequency hopping sequence.
  • determining, according to the interference information, the frequency band information for transmitting data according to the multi-band transmission mode includes: determining, according to the interference information, the method for performing the concurrent transmission The frequency band information of the merge factor of each frequency band is transmitted concurrently.
  • determining, according to the interference information, the frequency band information that includes the combining factors of the respective frequency bands for concurrently transmitting data according to the concurrent transmission manner includes: determining, according to the interference intensity of each frequency band of the first cell recorded in the interference information, a combining factor of each frequency band, Wherein, the combining factor of each frequency band has an inverse relationship with the interference intensity of each frequency band; and/or determining the combining factor of each frequency band according to the resource usage rate of each frequency band recorded by the second cell recorded in the interference information, wherein the combining factors of the respective frequency bands
  • the resource usage rate of each frequency band is inversely proportional, wherein the second cell is a cell that interferes with the first cell.
  • the combining factor of each frequency band is determined according to the interference intensity of each frequency band of the first cell recorded in the interference information, wherein the combining factor of each frequency band has an inverse relationship with the interference intensity of each frequency band, that is, the greater the interference intensity of each frequency band.
  • the smaller the combining factor of the corresponding frequency bands is, for example, when the interference intensity of the first frequency band is greater than the interference intensity of the second frequency band, the combining factor of the first frequency band is smaller than the combining factor of the second frequency band; and/or according to the interference information.
  • the recorded second cell determines the combining factor of each frequency band by using the resource usage rate of each frequency band, wherein the combining factor of each frequency band has an inverse proportional relationship with the resource usage rate of each frequency band, that is, the higher the resource utilization rate of each frequency band, corresponding to each frequency band.
  • the smaller the merging factor is, for example, when the resource usage rate of the first frequency band is greater than the resource usage rate of the second frequency band, the merging factor of the first frequency band is smaller than the combining factor of the second frequency band, where the second cell is the first cell The cell that caused the interference.
  • the above concurrent transmission means that data is concurrently transmitted on multiple frequency bands at the same time.
  • the consolidation factor of each frequency band of the data is transmitted concurrently.
  • each frequency band In the use of each frequency band in the community When the interference intensity of each frequency band is determined to determine the combining factor of each frequency band, for a certain frequency band resource with small interference, the combining factor of the corresponding frequency band is large, and for a certain frequency band resource with large interference, the combining factor of the corresponding frequency band is small; If the resource usage rate of each frequency band is determined by the interference source cell to determine the combining factor of each frequency band, if the resource usage rate of the interference source cell is high for a certain frequency band, the combining factor of the corresponding frequency band is small, and the interference source cell is small. In the case of a low resource utilization rate for a certain frequency band, the consolidation factor corresponding to the frequency band is large.
  • the data is placed in four frequency bands of F1, F2, F3, and F4 for parallel transmission.
  • the user terminal ie, the mobile communication network device
  • receives the F1 frequency band data, the F2 frequency band data, the F3 frequency band data, and the F4 frequency band data it is assumed that four frequency bands are determined according to the interference intensity received by each frequency band in the current cell.
  • the interference intensity of the F1 band is the smallest, SINR1 (the abbreviation of Signal to Interference plus Noise Ratio, that is, the ratio of signal to interference plus noise) is the largest, and the interference intensity of F2 band is the largest, then the SINR2 is the smallest, F3 band.
  • the interference intensity received by the F4 band is between the F1 band and the F2 band, and may be SINR1>SINR2>SINR3>SINR4, that is, the corresponding combining factor a1>a2>a3>a4.
  • a weighting factor with a better channel quality and a smaller interference intensity is given to ensure the transmission quality of the data transmitted by the concurrent transmission mode.
  • determining, according to the interference information, the frequency band information used for transmitting data according to the multi-band transmission manner includes: determining a plurality of frequency bands used for transmitting data, and determining time-frequency resources for transmitting data in each frequency band. .
  • determining the time-frequency resource used for transmitting data in each frequency band includes any one of the following: acquiring the time-frequency resource specified in the indication information; and the channel quality of the first time-frequency resource in the frequency band is higher than the second time-frequency In the case of the channel quality of the resource, the first time-frequency resource is selected as the time-frequency resource for transmitting data; and the time-frequency resource for transmitting the data is randomly selected in the frequency band.
  • the base station when data is transmitted by using a frequency hopping transmission method, according to each The interference intensity received by the frequency band and/or the resource usage rate of each frequency band used by the interference source cell, and the base station randomly generates frequency band resource information used in different time periods included in a frequency hopping period.
  • the combining factors of the respective frequency bands of the concurrent transmission data are determined at the same time, and The data is transmitted concurrently on each frequency band.
  • any of the following methods may be used to determine the time-frequency resource for transmitting data in each frequency band.
  • the time-frequency resource specified in the indication information that is, the data transmitted on the time-frequency resource in each frequency band specified in the indication information (as shown in FIG. 2 and FIG. 3, the specified time-frequency resource in each frequency band) Transfer data)
  • the first time-frequency resource is selected as the time-frequency resource for transmitting data. That is, the base station can select the time-frequency resources with good channel quality in each frequency band according to the channel quality information fed back by the user terminal, and the time-frequency resources in the selected frequency bands can be the same or different; (the solution is one of the preferred solutions) )
  • time-frequency resources for transmitting data are randomly selected in each frequency band. Random selection can be achieved by setting a random variation formula. For example, suppose the A-band has a 20MHz bandwidth, a total of 100 RBs (abbreviation of Resource Block, ie, resource blocks), and the resources allocated to a user terminal are the 10th RB to the first 15 RBs.
  • the frequency resource on the B-band is the RB resource position of the 10+x-pair 100 to the RB resource location of the 15+x-100 pair by generating the random number x.
  • the frequency hopping transmission mode when the time-frequency resources of the transmission data of each frequency band are randomly selected by setting a random variation formula, as described in detail with reference to FIG. 4, it is assumed that the resource allocated to a user terminal by the F1 frequency band is the 50th RB to the first 60 RBs are randomly changed in the F2 band, so that the resources allocated to the user terminal in the F2 band are the 20th RB to the 30th RB. Similarly, the resource allocated to the user terminal in the F3 band is the 70th RB. Up to the 80th RB, the resource allocated to the user terminal in the F4 band is the 30th RB to the 40th. RB to achieve frequency hopping transmission in different frequency bands.
  • the scheme of randomly selecting the time-frequency resources for transmitting data in each frequency band by setting a random variation formula is similar, and will not be described herein. (This program is the second option)
  • the specific time-frequency resource information is allocated to the data in different frequency bands, so as to fully utilize the frequency resource selectivity.
  • acquiring the interference information of the first cell to which the communication device belongs includes: intercepting the interference information of the first cell by using a listener; and/or acquiring the interference information of the first cell reported by the communication device,
  • the interference information includes the interference strength of each frequency band in the first cell, and/or the second cell that interferes with the first cell uses the resource usage rate of each frequency band.
  • the interference information of the first cell to which the mobile communication network device belongs is obtained by means of air interface listening (ie, base station listening) or user reporting (ie, reporting by the mobile communication network device). Details as follows:
  • LTE base stations are usually equipped with Sniffer, which can be used to listen to the interference intensity of different frequency bands in the local cell where the mobile communication network equipment is located, and can obtain interference to the local area after continuously listening for a certain frequency band for a period of time.
  • the interference source cell uses the resource usage rate of the frequency band.
  • the user terminal has its own receiver.
  • the receiver receives the external signal and analyzes it to obtain the interference intensity of multiple frequency bands in the cell and the resource usage rate of each frequency band used by the interference source cell.
  • the interference strength of each frequency band in the foregoing first cell may be the interference intensity received by each frequency band in the local cell where the mobile communication network device is located; the resource usage rate of the second cell using each frequency band may be interference to the local cell.
  • the interference source cell uses the resource usage rate of each frequency band, and the interference source cell that generates interference to the local cell may be one or multiple, that is, the second cell may be one or multiple.
  • the interference strength is measured by a CSI-IM (Channel State Information-Interference Measurement) reference signal, or the RSSI (Received Signal Strength) measured by RRM (Radio Resource Measurement) Indicator) Characterizes the intensity of the interference.
  • CSI-IM Channel State Information-Interference Measurement
  • RSSI Received Signal Strength
  • RRM Radio Resource Measurement
  • the interference strength of each frequency band of the local cell and/or the resource usage rate of each frequency band used by the interference source cell may be obtained by the base station or the mobile communication network device.
  • the providing the frequency band information to the communication device includes one of: transmitting the frequency band information to the communication device in response to the request information of the user; transmitting the frequency band information to the communication device through the designated channel; Broadcast band information.
  • the frequency band information may be provided to the communication device by any one of the following methods: First, when the user terminal (ie, the foregoing communication device, that is, the mobile communication network device) When transmitting the request information to the base station and requesting to transmit a plurality of hopping sequences required by the data, the base station sends a plurality of hopping sequence information to the communication device according to the request signal; second, the base station does not need to wait for the request information of the user terminal.
  • the hopping sequence information may be directly sent to the user terminal through a designated channel (such as a control channel or an RRC signaling channel, etc.). Third, the base station may directly broadcast the hopping sequence information through the broadcast channel, so that both ends of the transmitting and receiving are That is, the hopping sequences at both ends of the base station and the user terminal are synchronized.
  • the above RRC is an abbreviation of Radio Resource Control.
  • the frequency band information may be provided to the communication device by any one of the following methods: First, when the user terminal (ie, the above-mentioned communication device, that is, the mobile communication network device) When transmitting the request information to the base station and requesting the combination factor of each frequency band corresponding to the data transmission, the base station sends the combining factor of each frequency band to the communication device according to the request signal; second, the base station does not need to wait for the request information of the user terminal, Directly transmitting the combining factor of each frequency band to the user terminal through a designated channel (such as a control channel or an RRC signaling channel, etc.) Third, the base station can directly broadcast the combining factor of each frequency band through the broadcast channel, so that both ends of the transmitting and receiving, That is, the combining factors at both ends of the base station and the user terminal are synchronized.
  • a designated channel such as a control channel or an RRC signaling channel, etc.
  • the base station provides the frequency band information (including the frequency hopping sequence and the combining factor) to the user terminal, so as to synchronize the frequency band information at both ends of the base station and the user terminal, thereby ensuring the reliability of the data transmission.
  • the frequency band information including the frequency hopping sequence and the combining factor
  • the frequency hopping transmission mode and the concurrent transmission mode in the present application can be combined to complete data transmission.
  • the data is transmitted concurrently in the F1 frequency band and the F2 frequency band by using the concurrent transmission mode, and the data is transmitted concurrently in the F3 frequency band and the F4 frequency band in the T3 time period, and is concurrently transmitted in the T1 time period.
  • the frequency hopping transmission is completed by using a frequency hopping transmission method at two different times in the T2 time period.
  • the mobile communication network device monitors interference conditions of different frequency bands and/or resource usage rates of the interfering cells; and designs a frequency hopping sequence to complete frequency hopping transmission according to the interference situation and/or the resource usage rate of the interfering cell, or
  • the combining factor is designed for combined transmission; the hopping sequence and/or the combining factor are sent to the receiving end, and the receiving end receives the data to complete the transmission.
  • the frequency band information that can be transmitted by using the multi-band transmission mode is determined based on the interference information corresponding to the communication device, and the data of the unlicensed frequency band is sent by using the frequency band information to ensure the data of the unlicensed frequency band.
  • the reliability of the transmission thereby fully utilizing the characteristics of the frequency resources of the unlicensed frequency band, improves the throughput of the LTE system, and solves the technical problem of low reliability of data transmission in the unlicensed frequency band in the prior art.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the base station may include: an obtaining unit 51, a determining unit 53, and a providing unit 55.
  • the obtaining unit 51 is configured to acquire interference information of the first cell to which the communication device belongs.
  • the determining unit 53 is configured to determine, according to the interference information, frequency band information used for transmitting data according to the multi-band transmission mode.
  • the providing unit 55 is configured to provide the frequency band information to the communication device.
  • the base station determines, according to the interference information of the first cell to which the communication device belongs, the frequency band information used when transmitting data according to the multi-band transmission mode, and provides the determined frequency band information to the communication device, and the base station and the communication device pass The band letter Complete the transmission of data.
  • the frequency band information that can be transmitted by using the multi-band transmission mode is determined based on the interference information corresponding to the communication device, and the data of the unlicensed frequency band is sent by using the frequency band information to ensure the data of the unlicensed frequency band.
  • the reliability of the transmission thereby fully utilizing the characteristics of the frequency resources of the unlicensed frequency band, improves the throughput of the LTE system, and solves the technical problem of low reliability of data transmission in the unlicensed frequency band in the prior art.
  • the above communication device may be a mobile communication network device, and the mobile communication network device may be a mobile communication network terminal, and the terminal refers to a terminal side product that can support a communication protocol of the land mobile communication system, such as a mobile phone, a tablet computer, or the like.
  • a special communication modem module (Wireless Modem), which can be integrated by various types of terminal forms such as mobile phones, tablets, and data cards to complete communication functions.
  • the interference information of the first cell to which the mobile communication network device belongs is obtained by the user reporting (ie, reporting by the mobile communication network device) or by means of air interface interception (ie, base station interception), and the interference information includes the mobile communication network.
  • the interference intensity received by each frequency band in the cell where the device is located (ie, the local cell) and/or the interference source cell that interferes with the local cell use the resource usage rate of each frequency band, and the frequency band information in the multi-band transmission mode may be designed according to the interference information.
  • the base station sends the frequency band information to the receiving end, that is, sends the information to the mobile communication network device, so that the base station and the mobile communication network device complete the data transmission through the frequency band information.
  • the multi-band transmission mode includes: a frequency hopping transmission mode and/or a concurrent transmission mode.
  • the interference strength received by each frequency band in the cell where the mobile communication network device is located (ie, the local cell) and/or the interference source cell that interferes with the local cell may be obtained by reporting by the mobile communication network device or by means of the base station listening.
  • the resource usage rate of each frequency band is used; the frequency band information in the multi-band transmission mode is designed based on the obtained interference intensity of each frequency band of the local cell and/or the resource utilization rate of the interference source cell using each frequency band, that is, the hopping of the frequency hopping transmission mode is designed.
  • the base station transmitting a frequency hopping sequence and/or a combining factor to the receiving end, that is, sending to The mobile communication network device enables the base station and the mobile communication network device to complete the data transmission through the frequency band information.
  • the manner in which the base station and the mobile communication network complete the data transmission may include the following three types: the first method uses only the frequency hopping sequence to complete the frequency hopping transmission, that is, the frequency hopping transmission mode is adopted; the second type uses only the combining factor.
  • the method of concurrent transmission adopts the concurrent transmission mode; the third type combines the transmission mode of the frequency hopping transmission mode and the concurrent transmission mode.
  • any one of the methods can be used to transmit data of an unlicensed frequency band and improve reliability of data transmission in an unlicensed frequency band.
  • the determining unit includes: a generating module, configured to generate, according to the interference information, a hopping sequence for transmitting data according to the frequency hopping transmission manner, in a case where the multi-band transmission mode includes a frequency hopping transmission mode
  • the frequency band information, wherein the frequency hopping sequence records the frequency band used in different time periods in the frequency hopping period.
  • the generating module includes: a first generating submodule, configured to generate a frequency hopping sequence according to an interference strength of each frequency band of the first cell recorded in the interference information, where a proportion of each frequency band in the frequency hopping sequence and each frequency band occur The interference strength has an inverse proportional relationship; and/or the second generation submodule is configured to generate a frequency hopping sequence according to the resource usage rate of each frequency band used by the second cell recorded in the interference information, where each frequency band in the frequency hopping sequence occurs The ratio is inversely proportional to the resource usage rate of each frequency band, where the second cell is a cell that interferes with the first cell, and the second cell is not limited to one generated because there may be multiple cells that interfere with the first cell. Interfering cell.
  • the frequency hopping sequence is generated according to the interference intensity of each frequency band of the first cell recorded in the interference information, wherein the proportion of each frequency band in the frequency hopping sequence has an inverse relationship with the interference intensity of each frequency band, that is, the interference of each frequency band The greater the intensity, the smaller the proportion of each frequency band in the corresponding frequency hopping sequence. For example, when the interference intensity of the first frequency band is greater than the interference intensity of the second frequency band, the proportion of the first frequency band in the frequency hopping sequence is smaller than the second.
  • each frequency band is inversely proportional to the resource usage rate of each frequency band. That is, the higher the resource usage rate of each frequency band, the smaller the proportion of each frequency band in the corresponding frequency hopping sequence, for example, when the resources of the first frequency band are When the usage rate is higher than the resource usage rate of the second frequency band, the proportion of the first frequency band occurring in the frequency hopping sequence is smaller than the ratio of the second frequency band, wherein the second cell is a cell that interferes with the first cell.
  • the interference strength of each frequency band of the first cell may be the interference intensity received by each frequency band in the local cell where the mobile communication network device is located; and the resource usage rate of the second cell using each frequency band may be used by the interference source cell that generates interference to the local cell. Resource usage for each frequency band.
  • the base station randomly generates a frequency hopping sequence used when transmitting data according to the frequency hopping transmission mode, and generates a hopping sequence. It is periodic, and a frequency hopping period contains frequency band resource information used in different time periods. In a frequency hopping period, the proportion of different frequency bands is related to the interference intensity received by each frequency band in the cell and/or the resource usage rate of each frequency band used by the interference source cell.
  • the proportion that occurs in the frequency hopping period is large, that is, the frequency hopping ratio of the frequency band.
  • the proportion that occurs in the frequency hopping period is small, that is, the frequency hopping ratio of the frequency band is small; if the interference source cell uses the resource usage rate of each frequency band to determine the proportion of the different frequency bands If the resource usage rate of a certain frequency band is high in the interference source cell, the frequency of the frequency band occurring in the frequency hopping period is small, that is, the frequency hopping ratio of the frequency band is correspondingly small, and the interference source cell corresponds to a certain frequency band.
  • the resource usage rate is low, the frequency band appears to have a large proportion in the frequency hopping period, that is, the frequency hopping ratio of the frequency band is correspondingly large.
  • the frequency hopping period in the solution of the foregoing embodiment may include a plurality of frequency band resource information used in different time segments, and the number may be any number.
  • the frequency hopping transmission between the base station and the mobile communication network device can be completed based on the generated frequency hopping sequence, so that the unlicensed frequency is adopted by the frequency hopping transmission mode.
  • the data of the segment is sent out to achieve the purpose of making full use of the frequency resources of the unlicensed band.
  • the determining unit includes: a determining module, configured to determine, according to the interference information, a merge including each frequency band for concurrently transmitting data according to the concurrent transmission manner, in a case where the multi-band transmission mode includes a concurrent transmission mode Frequency band information of the factor.
  • the determining module includes: a first determining submodule, configured to determine, according to the interference intensity of each frequency band of the first cell recorded in the interference information, a combining factor of each frequency band, where the combining factor of each frequency band and the interference intensity of each frequency band Having an inverse proportional relationship; and/or a second determining sub-module, configured to determine a combining factor of each frequency band according to a resource usage rate of each frequency band used by the second cell recorded in the interference information, where a combining factor of each frequency band and resources of each frequency band The usage rate has an inverse proportional relationship, wherein the second cell is a cell that interferes with the first cell.
  • the combining factor of each frequency band is determined according to the interference intensity of each frequency band of the first cell recorded in the interference information, wherein the combining factor of each frequency band has an inverse relationship with the interference intensity of each frequency band, that is, the greater the interference intensity of each frequency band.
  • the smaller the combining factor of the corresponding frequency bands is, for example, when the interference intensity of the first frequency band is greater than the interference intensity of the second frequency band, the combining factor of the first frequency band is smaller than the combining factor of the second frequency band; and/or according to the interference information.
  • the recorded second cell determines the combining factor of each frequency band by using the resource usage rate of each frequency band, wherein the combining factor of each frequency band has an inverse proportional relationship with the resource usage rate of each frequency band, that is, the higher the resource utilization rate of each frequency band, corresponding to each frequency band.
  • the smaller the merging factor is, for example, when the resource usage rate of the first frequency band is greater than the resource usage rate of the second frequency band, the merging factor of the first frequency band is smaller than the combining factor of the second frequency band, where the second cell is the first cell The cell that caused the interference.
  • the above concurrent transmission means that data is concurrently transmitted on multiple frequency bands at the same time.
  • the consolidation factor of each frequency band of the data is transmitted concurrently.
  • each frequency band In the use of each frequency band in the community When the interference intensity of each frequency band is determined to determine the combining factor of each frequency band, for a certain frequency band resource with small interference, the combining factor of the corresponding frequency band is large, and for a certain frequency band resource with large interference, the combining factor of the corresponding frequency band is small; If the resource usage rate of each frequency band is determined by the interference source cell to determine the combining factor of each frequency band, if the resource usage rate of the interference source cell is high for a certain frequency band, the combining factor of the corresponding frequency band is small, and the interference source cell is small. In the case of a low resource utilization rate for a certain frequency band, the consolidation factor corresponding to the frequency band is large.
  • a weighting factor with a better channel quality and a smaller interference intensity is given to ensure the transmission quality of the data transmitted by the concurrent transmission mode.
  • the determining unit includes: a processing module, configured to determine a plurality of frequency bands for transmitting data, and determine time-frequency resources for transmitting data in each frequency band.
  • the processing module includes any one of the following: an acquiring submodule, configured to acquire a time-frequency resource specified in the indication information; and selecting a sub-module, the channel quality of the first time-frequency resource in the frequency band is higher than the second In the case of the channel quality of the time-frequency resource, the first time-frequency resource is selected as the time-frequency resource for transmitting the data; and the random selection sub-module is used to randomly select the time-frequency resource for transmitting the data in the frequency band.
  • the base station when data is transmitted by using a frequency hopping transmission mode, the base station randomly generates different times included in a hopping period according to the interference intensity received by each frequency band in the current cell and/or the resource usage rate of each frequency band used by the interference source cell. Band resource information used by the segment.
  • the combining factors of the respective frequency bands of the concurrent transmission data are determined at the same time, and The data is transmitted concurrently on each frequency band.
  • any of the following methods may be used to determine the time-frequency resource for transmitting data in each frequency band.
  • the time-frequency resource specified in the indication information that is, the data transmitted on the time-frequency resource in each frequency band specified in the indication information (as shown in FIG. 2 and FIG. 3, at the time of designation of each frequency band) Transmitting data on frequency resources);
  • the first time-frequency resource is selected as the time-frequency resource for transmitting data. That is, the base station can select the time-frequency resources with good channel quality in each frequency band according to the channel quality information fed back by the user terminal, and the time-frequency resources in the selected frequency bands can be the same or different; (the solution is one of the preferred solutions) )
  • time-frequency resources for transmitting data are randomly selected in each frequency band. Random selection can be achieved by setting a random variation formula. For example, suppose the A-band has a 20MHz bandwidth, a total of 100 RBs (abbreviation of Resource Block, ie, resource blocks), and the resources allocated to a user terminal are the 10th RB to the first 15 RBs.
  • the frequency resource on the B-band is the RB resource position of the 10+x-pair 100 to the RB resource location of the 15+x-100 pair by generating the random number x.
  • the frequency hopping transmission mode when the time-frequency resources of the transmission data of each frequency band are randomly selected by setting a random variation formula, as described in detail with reference to FIG. 4, it is assumed that the resource allocated to a user terminal by the F1 frequency band is the 50th RB to the first 60 RBs are randomly changed in the F2 band, so that the resources allocated to the user terminal in the F2 band are the 20th RB to the 30th RB. Similarly, the resource allocated to the user terminal in the F3 band is the 70th RB. Up to the 80th RB, the resources allocated to the user terminal in the F4 band are the 30th RB to the 40th RB to implement frequency hopping transmission in different frequency bands.
  • the scheme of randomly selecting the time-frequency resources for transmitting data in each frequency band by setting a random variation formula is similar, and will not be described herein. (This program is the second option)
  • the specific time-frequency resource information is allocated to the data in different frequency bands, so as to fully utilize the frequency resource selectivity.
  • the acquiring unit includes: a listening module, configured to listen to interference information of the first cell by using a listener; and/or an acquiring module, configured to acquire interference of the first cell reported by the communication device The information, wherein the interference information includes an interference strength of each frequency band in the first cell, and/or the second cell that interferes with the first cell uses a resource usage rate of each frequency band.
  • listening through air interface ie, base station listening
  • user reporting ie, moving
  • the communication network device reports the interference information of the first cell to which the mobile communication network device belongs. Details as follows:
  • LTE base stations are usually equipped with Sniffer, which can be used to listen to the interference intensity of different frequency bands in the local cell where the mobile communication network equipment is located, and can obtain interference to the local area after continuously listening for a certain frequency band for a period of time.
  • the interference source cell uses the resource usage rate of the frequency band.
  • the user terminal has its own receiver.
  • the receiver receives the external signal and analyzes it to obtain the interference intensity of multiple frequency bands in the cell and the resource usage rate of each frequency band used by the interference source cell.
  • the interference strength of each frequency band in the foregoing first cell may be the interference intensity received by each frequency band in the local cell where the mobile communication network device is located; the resource usage rate of the second cell using each frequency band may be interference to the local cell.
  • the interference source cell uses the resource usage rate of each frequency band, and the interference source cell that generates interference to the local cell may be one or multiple, that is, the second cell may be one or multiple.
  • the interference strength is measured by a CSI-IM (Channel State Information-Interference Measurement) reference signal, or the interference strength is characterized by an RSSI (Received Signal Strength Indicator) obtained by RRM (Radio Resource Measurement) measurement.
  • CSI-IM Channel State Information-Interference Measurement
  • RSSI Received Signal Strength Indicator
  • the interference strength of each frequency band of the local cell and/or the resource usage rate of each frequency band used by the interference source cell may be obtained by the base station or the mobile communication network device.
  • the providing unit includes one of: a response module, configured to send the frequency band information to the communication device in response to the request information of the user, and a sending module, configured to send the frequency band information to the communication by using the designated channel.
  • a device configured to broadcast frequency band information through a broadcast channel.
  • the frequency band information may be provided to the communication device by any one of the following methods: First, when the user terminal (ie, the foregoing communication device, that is, the mobile communication network device) Sending request information to the base station, When requesting to transmit multiple hopping sequences required for data transmission, the base station sends multiple hopping sequence information to the communication device according to the request signal; second, the base station does not need to wait for the request information of the user terminal, and can directly pass the designated channel (eg, The control channel or the RRC signaling channel or the like transmits the hopping sequence information to the user terminal. Third, the base station can directly broadcast the hopping sequence information through the broadcast channel, so that both ends of the transmitting and receiving, that is, the base station and the user terminal The hopping sequence of the end is synchronized.
  • the user terminal ie, the foregoing communication device, that is, the mobile communication network device
  • the base station sends multiple hopping sequence information to the communication device according to the request signal
  • the base station does not need to wait for the request information
  • the above RRC is an abbreviation of Radio Resource Control.
  • the frequency band information may be provided to the communication device by any one of the following methods: First, when the user terminal (ie, the above-mentioned communication device, that is, the mobile communication network device) When transmitting the request information to the base station and requesting the combination factor of each frequency band corresponding to the data transmission, the base station sends the combining factor of each frequency band to the communication device according to the request signal; second, the base station does not need to wait for the request information of the user terminal, Directly transmitting the combining factor of each frequency band to the user terminal through a designated channel (such as a control channel or an RRC signaling channel, etc.) Third, the base station can directly broadcast the combining factor of each frequency band through the broadcast channel, so that both ends of the transmitting and receiving, That is, the combining factors at both ends of the base station and the user terminal are synchronized.
  • a designated channel such as a control channel or an RRC signaling channel, etc.
  • the base station provides the frequency band information (including the frequency hopping sequence and the combining factor) to the user terminal, so as to synchronize the frequency band information at both ends of the base station and the user terminal, thereby ensuring the reliability of the data transmission.
  • the frequency band information including the frequency hopping sequence and the combining factor
  • the frequency hopping transmission mode and the concurrent transmission mode in the present application can be combined to complete data transmission.
  • the data is transmitted concurrently in the F1 frequency band and the F2 frequency band by using the concurrent transmission mode, and the data is transmitted concurrently in the F3 frequency band and the F4 frequency band in the T3 time period, and is concurrently transmitted in the T1 time period.
  • the frequency hopping transmission is completed by using a frequency hopping transmission method at two different times in the T2 time period.
  • the frequency band information that can be transmitted by using the multi-band transmission mode is determined based on the interference information corresponding to the communication device, and the data of the unlicensed frequency band is sent by using the frequency band information to ensure the unauthorized authorization.
  • the reliability of data transmission in the frequency band so as to make full use of the frequency resources of the unlicensed frequency band The point improves the throughput of the LTE system and solves the technical problem of low reliability of data transmission in the unlicensed frequency band in the prior art.
  • a base station comprising a transmitter, a receiver, a memory, and a processor coupled to the memory.
  • the transmitter, the receiver, the memory and the processor are in communication via the bus system; the memory stores the software program; the processor runs the software program for: obtaining, by the receiver, interference information of the first cell to which the communication device belongs; The information determines frequency band information for transmitting data according to the multi-band transmission mode; the frequency band information is provided to the communication device by the transmitter.
  • the base station determines, according to the interference information of the first cell to which the communication device belongs, the frequency band information used when transmitting data according to the multi-band transmission mode, and provides the determined frequency band information to the communication device, and the base station and the communication device pass This band information completes the transmission of data.
  • the frequency band information that can be transmitted by using the multi-band transmission mode is determined based on the interference information corresponding to the communication device, and the data of the unlicensed frequency band is sent by using the frequency band information to ensure the data of the unlicensed frequency band.
  • the reliability of the transmission thereby fully utilizing the characteristics of the frequency resources of the unlicensed frequency band, improves the throughput of the LTE system, and solves the technical problem of low reliability of data transmission in the unlicensed frequency band in the prior art.
  • the multi-band transmission mode includes: a frequency hopping transmission mode and/or a concurrent transmission mode.
  • the processor is further configured to: when the multi-band transmission mode includes a frequency hopping transmission mode, generate, according to the interference information, frequency band information including a frequency hopping sequence for transmitting data according to a frequency hopping transmission manner, where the frequency hopping sequence The frequency band used in different time periods in the frequency hopping period is recorded.
  • the processor is further configured to: when the multi-band transmission mode includes a concurrent transmission mode, determine, according to the interference information, frequency band information that includes a combining factor of each frequency band for concurrently transmitting data according to the concurrent transmission manner.
  • a computer readable storage medium storing computer executable instructions, the computer executable instruction settings The method flow described in any of the above embodiments.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a USB flash drive, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk, or A variety of media such as optical discs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输方法、基站和计算机可读存储介质。其中,该方法包括:获取通讯设备所属的第一小区的干扰信息;基于干扰信息确定用于按照多频段传输方式传输数据的频段信息;将频段信息提供给通讯设备。通过本申请,解决了现有技术中在非授权频段的数据传输可靠性低的技术问题,从而提高了LTE系统的吞吐量。

Description

数据传输方法、基站和计算机可读存储介质
本申请要求于2016年11月07日提交中国专利局、申请号为201610978477.6、发明名称为“数据传输方法和基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据处理领域,具体而言,涉及一种数据传输方法、基站和计算机可读存储介质。
背景技术
现有的无线通信包括在licensed频段(即授权频段)上和在Unlicensed频段(即免授权频段)上进行的无线通信,其中,在licensed频段上进行的无线通信是指运营商通过部署无线接入网设备(如基站),和核心网设备(如归属位置寄存器,Home Location Register,缩写为HLR)等,为用户终端(如手机)提供通信服务的系统。例如,现在的移动通信运营商(如中国移动)提供的通信,这类无线通信所占用的频段是被某移动通信运营商(下文称为运营商)单独使用,而运营商针对该频段资源进行管理和优化(例如控制工作在该频段的接入设备的密度、发送功率、天线倾角等),从而保证在该频段所提供的无线通信服务的可靠性和有效性。
而在Unlicensed频段上进行的无线通信,例如WiFi(Wireless Fidelity,即无线保真),是国际电工组织IEEE(Institute of Electrical and Electronics Engineers,美国电气电子工程师学会)开发的802.11系列技术的一个统称,如802.11a/g/n/ac等。WiFi主要应用于本地无线通信,通常情况下覆盖相对较小,是一种简单并且相对低价的无线通信手段。WiFi起初的版本工作在2.4GHz的频率上,但由于2.4GHz频段上的可用带宽较小,而工作在2.4GHz频段上的无线发射设备又较多,导致了在2.4GHz上工作的WiFi性能下降。WiFi在后来的版本上发掘了新的通信频率5GHz(注:此处所述5GHz不指 单个频段,而是指在5GHz附近的各个频段,可以理解为从4.9GHz~5.9GHz均为此处所述5GHz频段)。
随着现有技术的不断发展,目前的移动通信系统已经发展到第四代移动通信系统,为国际标准化组织3GPP(The third Generation Partnership Project)制定的长期演进(Long Term Evolution/Long Term Evolution-Advanced,LTE/LTE-A)。为了解决不断增长的数据流量的需求和日益紧缺的无线频率的矛盾,3GPP日前开始了将LTE系统应用在免授权频段上的研究工作,旨在为LTE系统增加可用带宽。3GPP中目前讨论的辅助授权接入系统(LAA,Licensed Assisted Access)主要通过载波聚合方式(CA,Carrier Aggregation)将授权频段和免授权频段聚合在一起,将LTE系统扩展到免授权频段上进行传输。需要说明的是,在免授权频段,个人、企业、运营商都可以部署无线接入设备,并且部署的位置也比较随意。因此在免授权频段上可能产生较大的干扰,并且干扰情况会经常变化。为了减少免授权频段的干扰对系统性能的影响,通常把高优先级业务,如语音业务等通过授权频段进行传输,把低优先级业务,如FTP(File Transfer Protocol,文件传输协议)下载,网页浏览等通过非授权频段进行传输。然而,当LTE系统采用独立接入(SAA,Standalone Access)的情况,即只有免授权频段可以使用的情况下,必须将高优先级业务通过免授权频段进行传输,当受到WiFi等其它使用免授权频段的无线接入设备干扰时,且由于在非授权频段的数据传输可靠性低,因此,LTE系统的吞吐量(throughput)会下降,时延增加。
针对现有技术中在非授权频段的数据传输可靠性低的问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种数据传输方法、基站和计算机可读存储介质,以至少解决现有技术中在非授权频段的数据传输可靠性低,导致不能利用非授权频段频率资源来解决LTE系统的吞吐量下降的技术问题。
根据本申请实施例的一个方面,提供了一种数据传输方法,该方法包括:获取通讯设备所属的第一小区的干扰信息;基于所述干扰信息确定用于按照多频段传输方式传输数据的频段信息;将所述频段信息提供给所述通讯设备。
进一步地,所述多频段传输方式包括:跳频传输方式和/或并发传输方式。
进一步地,在所述多频段传输方式包括所述跳频传输方式的情况下,基于所述干扰信息确定用于按照多频段传输方式传输数据的频段信息包括:基于所述干扰信息生成用于按照所述跳频传输方式传输数据的包含跳频序列的频段信息,其中,所述跳频序列中记录有跳频周期内不同时间段使用的频段。
进一步地,基于所述干扰信息生成用于按照所述跳频传输方式传输数据的包含跳频序列的频段信息包括:根据所述干扰信息中记录的所述第一小区的各个频段的干扰强度生成所述跳频序列,其中,所述跳频序列中的各个频段出现的比例与所述各个频段的干扰强度具有反比例关系;和/或根据所述干扰信息中记录的第二小区使用各个频段的资源使用率生成所述跳频序列,其中,所述跳频序列中的各个频段出现的比例与所述各个频段的资源使用率具有反比例关系,其中,所述第二小区为对所述第一小区产生干扰的小区。
进一步地,在所述多频段传输方式包括所述并发传输方式的情况下,基于所述干扰信息确定用于按照多频段传输方式传输数据的频段信息包括:基于所述干扰信息确定用于按照所述并发传输方式并发传输数据的各个频段的包含合并因子的频段信息。
进一步地,基于所述干扰信息确定用于按照所述并发传输方式并发传输数据的包含各个频段的合并因子的频段信息包括:根据所述干扰信息中记录的所述第一小区的各个频段的干扰强度确定各个频段的合并因子,其中,所述各个频段的合并因子与所述各个频段的干扰强度具有反比例关系;和/或根据所述干扰信息中记录的第二小区使用各个频段的资源使用率确定各个频段的合并因子,其中, 所述各个频段的合并因子与所述各个频段的资源使用率具有反比例关系,其中,所述第二小区为对所述第一小区产生干扰的小区。
进一步地,基于所述干扰信息确定用于按照多频段传输方式传输数据的频段信息包括:确定用于传输数据的多个频段,并确定各个所述频段内用于传输所述数据的时频资源。
进一步地,确定各个所述频段内用于传输所述数据的时频资源包括下述任意一种:获取指示信息中指定的时频资源;在所述频段内的第一时频资源的信道质量高于第二时频资源的信道质量的情况下,选取所述第一时频资源作为用于传输所述数据的时频资源;在所述频段中随机选取用于传输所述数据的时频资源。
进一步地,获取通讯设备所属的第一小区的干扰信息包括:通过侦听器侦听所述第一小区的干扰信息;和/或获取所述通讯设备上报的所述第一小区的干扰信息,其中,所述干扰信息包括所述第一小区中各个频段的干扰强度,和/或,对所述第一小区产生干扰的第二小区使用各个频段的资源使用率。
进一步地,将所述频段信息提供给所述通讯设备包括下述之一:响应用户的请求信息,将所述频段信息发送给所述通讯设备;通过指定信道将所述频段信息发送给所述通讯设备;通过广播信道广播所述频段信息。
根据本申请实施例的另一方面,还提供了一种基站,该基站包括:获取单元,用于获取通讯设备所属的第一小区的干扰信息;确定单元,用于基于所述干扰信息确定用于按照多频段传输方式传输数据的频段信息;提供单元,用于将所述频段信息提供给所述通讯设备。
进一步地,所述多频段传输方式包括:跳频传输方式和/或并发传输方式。
进一步地,所述确定单元包括:生成模块,在所述多频段传输方式包括所述跳频传输方式的情况下,用于基于所述干扰信息生成用于按照所述跳频传输方式传输数据的包含跳频序列的频段信息, 其中,所述跳频序列中记录有跳频周期内不同时间段使用的频段。
进一步地,所述生成模块包括:第一生成子模块,用于根据所述干扰信息中记录的所述第一小区的各个频段的干扰强度生成所述跳频序列,其中,所述跳频序列中的各个频段出现的比例与所述各个频段的干扰强度具有反比例关系;和/或第二生成子模块,用于根据所述干扰信息中记录的第二小区使用各个频段的资源使用率生成所述跳频序列,其中,所述跳频序列中的各个频段出现的比例与所述各个频段的资源使用率具有反比例关系,其中,所述第二小区为对所述第一小区产生干扰的小区。
进一步地,所述确定单元包括:确定模块,在所述多频段传输方式包括所述并发传输方式的情况下,用于基于所述干扰信息确定用于按照所述并发传输方式并发传输数据的各个频段的包含合并因子的频段信息。
进一步地,所述确定模块包括:第一确定子模块,用于根据所述干扰信息中记录的所述第一小区的各个频段的干扰强度确定各个频段的合并因子,其中,所述各个频段的合并因子与所述各个频段的干扰强度具有反比例关系;和/或第二确定子模块,用于根据所述干扰信息中记录的第二小区使用各个频段的资源使用率确定各个频段的合并因子,其中,所述各个频段的合并因子与所述各个频段的资源使用率具有反比例关系,其中,所述第二小区为对所述第一小区产生干扰的小区。
进一步地,所述确定单元包括:处理模块,用于确定用于传输数据的多个频段,并确定各个所述频段内用于传输所述数据的时频资源。
进一步地,所述处理模块包括下述任意一种:获取子模块,用于获取指示信息中指定的时频资源;选取子模块,用于在所述频段内的第一时频资源的信道质量高于第二时频资源的信道质量的情况下,选取所述第一时频资源作为用于传输所述数据的时频资源;随机选取子模块,用于在所述频段中随机选取用于传输所述数据的时 频资源。
进一步地,所述获取单元包括:侦听模块,用于通过侦听器侦听所述第一小区的干扰信息;和/或获取模块,用于获取所述通讯设备上报的所述第一小区的干扰信息,其中,所述干扰信息包括所述第一小区中各个频段的干扰强度,和/或,对所述第一小区产生干扰的第二小区使用各个频段的资源使用率。
进一步地,所述提供单元包括下述之一:响应模块,用于响应用户的请求信息,将所述频段信息发送给所述通讯设备;发送模块,用于通过指定信道将所述频段信息发送给所述通讯设备;广播模块,用于通过广播信道广播所述频段信息。
根据本申请实施例的另一方面,还提供了一种基站,该基站包括:发送器,接收器,存储器,以及与所述存储器耦合的处理器,所述发送器、所述接收器、所述存储器和所述处理器通过总线系统相通信;所述存储器存储软件程序;所述处理器通过运行所述软件程序以用于:通过接收器获取通讯设备所属的第一小区的干扰信息;基于干扰信息确定用于按照多频段传输方式传输数据的频段信息;通过发送器将频段信息提供给通讯设备。
进一步地,多频段传输方式包括:跳频传输方式和/或并发传输方式。
进一步地,处理器还用于:在多频段传输方式包括跳频传输方式的情况下,基于干扰信息生成用于按照跳频传输方式传输数据的包含跳频序列的频段信息,其中,跳频序列中记录有跳频周期内不同时间段使用的频段。
进一步地,处理器还用于:在多频段传输方式包括并发传输方式的情况下,基于干扰信息确定用于按照并发传输方式并发传输数据的包含各个频段的合并因子的频段信息。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为上述任一项所述的方法流程。
在本申请实施例中,基站基于通讯设备所属的第一小区的干扰信息,确定按照多频段传输方式传输数据时使用的频段信息,并将确定的频段信息提供给通讯设备,基站和通讯设备则通过该频段信息完成数据的传输。通过上述实施例,基于通讯设备对应的干扰信息确定可以采用多频段传输方式传输的频段信息,并采用多频段传输方式使用该频段信息将非授权频段的数据发送出来,以保障非授权频段的数据传输的可靠性,从而充分利用非授权频段频率资源丰富的特点,提高了LTE系统的吞吐量,解决了现有技术中在非授权频段的数据传输可靠性低的技术问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的一种数据传输方法的流程图;
图2是根据本申请实施例的一种可选的数据传输的示意图;
图3是根据本申请实施例的另一种可选的数据传输的示意图;
图4是根据本申请实施例的又一种可选的数据传输的示意图;
图5是根据本申请实施例的一种基站的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描 述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
首先,在对本申请实施例进行描述的过程中出现的部分名词或术语适用于如下解释:
吞吐量:是指对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组成测量)。
Sniffer:翻译嗅探器,一种基于被动侦听原理的网络分析方式。使用Sniffer,可以监视网络的状态、数据流动情况以及网络上传输的信息。
资源使用率:是针对某一个频段的资源使用率,为使用某一个频段资源与全部频段资源的比例。
根据本申请实施例,提供了一种数据传输方法的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本申请实施例的一种数据传输方法的流程图,如图1所示,该方法包括如下步骤:
步骤S102:获取通讯设备所属的第一小区的干扰信息。
步骤S104:基于干扰信息确定用于按照多频段传输方式传输数据的频段信息。
步骤S106:将频段信息提供给通讯设备。
采用本申请实施例,基站基于通讯设备所属的第一小区的干扰信息,确定按照多频段传输方式传输数据时使用的频段信息,并将确定的频段信息提供给通讯设备,基站和通讯设备则通过该频段信息完成数据的传输。通过上述实施例,基于通讯设备对应的干扰信息确定可以采用多频段传输方式传输的频段信息,并采用多频段传输方式使用该频段信息将非授权频段的数据发送出来,以保障非授权频段的数据传输的可靠性,从而充分利用非授权频段频率资源丰富的特点,提高了LTE系统的吞吐量,解决了现有技术中在非授权频段的数据传输可靠性低的技术问题。
上述的通讯设备可以为移动通信网络设备,移动通信网络设备可以为移动通信网络终端,该终端是指可以支持陆地移动通信系统的通信协议的终端侧产品,如手机、平板电脑等,也可以是特制通信的调制解调器模块(Wireless Modem),该调制解调器模块可以被手机、平板电脑、数据卡等各种类型的终端形态集成从而完成通信功能。
具体地,通过用户上报(即移动通讯网络设备上报),或者通过空口侦听(即基站侦听)的方式,获得移动通讯网络设备所属的第一小区的干扰信息,该干扰信息包括移动通讯网络设备所在的小区 (即本小区)中各个频段受到的干扰强度和/或对本小区产生干扰的干扰源小区使用各个频段的资源使用率,可以根据该干扰信息设计多频段传输方式中的频段信息,基站将该频段信息发送给接收端,即发送给移动通讯网络设备,使基站和移动通讯网络设备通过该频段信息完成数据的传输。
在本申请的上述实施例中,多频段传输方式包括:跳频传输方式和/或并发传输方式。
具体地,通过移动通讯网络设备上报,或者通过基站侦听的方式,可以获得移动通讯网络设备所在的小区(即本小区)中各个频段受到的干扰强度和/或对本小区产生干扰的干扰源小区使用各个频段的资源使用率;基于获得的本小区各个频段受到的干扰强度和/或干扰源小区使用各个频段的资源使用率设计多频段传输方式中的频段信息,即设计跳频传输方式的跳频序列和/或并发传输方式中的合并因子,基站将跳频序列和/或合并因子发送给接收端,即发送给移动通讯网络设备,使基站和移动通讯网络设备通过该频段信息完成数据的传输。
进一步地,基站和移动通讯网络完成数据传输的方式可以包括以下三种:第一种,仅采用跳频序列完成跳频传输的方式,即采用跳频传输方式;第二种,仅采用合并因子进行并发传输的方式,即采用并发传输方式;第三种,结合跳频传输方式和并发传输方式的传输方式。
通过上述实施例,限定了三种数据传输的方式,采用其中的任意一种方式,均可达到将非授权频段的数据发送出来,提高非授权频段的数据传输的可靠性的目的。
在本申请的上述实施例中,在多频段传输方式包括跳频传输方式的情况下,基于干扰信息确定用于按照多频段传输方式传输数据的频段信息包括:基于干扰信息生成用于按照跳频传输方式传输数据的包含跳频序列的频段信息,其中,跳频序列中记录有跳频周期内不同时间段使用的频段。
进一步地,基于干扰信息生成用于按照跳频传输方式传输数据的包含跳频序列的频段信息包括:根据干扰信息中记录的第一小区的各个频段的干扰强度生成跳频序列,其中,跳频序列中的各个频段出现的比例与各个频段的干扰强度具有反比例关系;和/或根据干扰信息中记录的第二小区使用各个频段的资源使用率生成跳频序列,其中,跳频序列中的各个频段出现的比例与各个频段的资源使用率具有反比例关系,其中,第二小区为对第一小区产生干扰的小区,由于对第一小区产生干扰的小区可能是多个,第二小区并不限定于一个产生干扰的小区。
进一步地,根据干扰信息中记录的第一小区的各个频段的干扰强度生成跳频序列,其中,跳频序列中的各个频段出现的比例与各个频段的干扰强度具有反比例关系,即各个频段的干扰强度越大,对应的跳频序列中各个频段出现的比例越小,例如,当第一频段的干扰强度大于第二频段的干扰强度时,在跳频序列中第一频段出现的比例小于第二频段出现的比例;和/或根据干扰信息中记录的第二小区使用各个频段的资源使用率生成跳频序列,其中,跳频序列中的各个频段出现的比例与各个频段的资源使用率具有反比例关系,即各个频段的资源使用率越高,对应的跳频序列中的各个频段出现的比例越小,例如,当第一频段的资源使用率高于第二频段的资源使用率时,在跳频序列中第一频段出现的比例小于第二频段出现的比例,其中,第二小区为对第一小区产生干扰的小区。
上述的第一小区的各个频段的干扰强度可以为移动通讯网络设备所在的本小区中各个频段受到的干扰强度;第二小区使用各个频段的资源使用率可以为对本小区产生干扰的干扰源小区使用各个频段的资源使用率。
具体地,根据本小区中各个频段受到的干扰强度大小和/或干扰源小区使用各个频段的资源使用率,基站随机产生按照跳频传输方式传输数据时使用的跳频序列,产生的跳频序列是周期性的,一个跳频周期内包含有不同时间段使用的频段资源信息。在一个跳频周 期中,不同频段出现的比例与本小区中各个频段受到的干扰强度大小和/或干扰源小区使用各个频段的资源使用率有关。在使用本小区中各个频段受到的干扰强度大小来确定不同频段出现的比例的情况下,对于干扰小的某个频段资源,在跳频周期中出现的比例就大,即该频段的跳频比例大,对于干扰大的某个频段资源,在跳频周期中出现的比例就小,即该频段的跳频比例小;若使用干扰源小区使用各个频段的资源使用率来确定不同频段出现的比例,则在干扰源小区对某个频段的资源使用率高的情况下,该频段在跳频周期中出现的比例小,即该频段的跳频比例相应就小,在干扰源小区对某个频段的资源使用率低的情况下,该频段在跳频周期中出现的比例大,即该频段的跳频比例相应就大。
下面结合图2详述本申请的上述实施例。如图2所示,一个跳频周期内包含的不同时间段使用的频段资源信息包括:{T1,F1},{T2,F2},{T3,F3},{T4,F4},{T5,F1},{T6,F3},{T7,F2},{T8,F3},即该实施例中包含了8个时间段和4个频段资源,其中,Ti表示一个跳频周期中的第i个时间段,Fn表示第i个时间段使用的频段,i=1,2,3,…8,n=1,2,3,4。
对图2进行分析,假设是根据本小区中各个频段受到的干扰强度大小确定不同频段在跳频周期中出现的比例,如图2所示,F4频段受到的干扰强度最大,在跳频周期中仅出现了一次,跳频比例最小,F3频段受到的干扰强度最小,在跳频周期中出现了三次,跳频比例最大,此外,F1频段和F2频段受到的干扰强度为中,在跳频周期中均出现两次,跳频比例介于F3频段和F4频段之间。
需要说明的是,上述实施例的方案中的跳频周期内可以包含若干个数的不同时间段使用的频段资源信息,若干个数可以为任意个数。
通过上述实施例,可以基于生成的跳频序列,完成基站和移动通讯网络设备之间的跳频传输,从而通过跳频传输方式将非授权频段的数据发送出来,以达到充分利用非授权频段频率资源的目的。
在本申请的上述实施例中,在多频段传输方式包括并发传输方式的情况下,基于干扰信息确定用于按照多频段传输方式传输数据的频段信息包括:基于干扰信息确定用于按照并发传输方式并发传输数据的包含各个频段的合并因子的频段信息。
进一步地,基于干扰信息确定用于按照并发传输方式并发传输数据的包含各个频段的合并因子的频段信息包括:根据干扰信息中记录的第一小区的各个频段的干扰强度确定各个频段的合并因子,其中,各个频段的合并因子与各个频段的干扰强度具有反比例关系;和/或根据干扰信息中记录的第二小区使用各个频段的资源使用率确定各个频段的合并因子,其中,各个频段的合并因子与各个频段的资源使用率具有反比例关系,其中,第二小区为对第一小区产生干扰的小区。
进一步地,根据干扰信息中记录的第一小区的各个频段的干扰强度确定各个频段的合并因子,其中,各个频段的合并因子与各个频段的干扰强度具有反比例关系,即各个频段的干扰强度越大,对应的各个频段的合并因子越小,例如,当第一频段的干扰强度大于第二频段的干扰强度时,第一频段的合并因子小于第二频段的合并因子;和/或根据干扰信息中记录的第二小区使用各个频段的资源使用率确定各个频段的合并因子,其中,各个频段的合并因子与各个频段的资源使用率具有反比例关系,即各个频段的资源使用率越高,对应各个频段的合并因子越小,例如,当第一频段的资源使用率大于第二频段的资源使用率时,第一频段的合并因子小于第二频段的合并因子,其中,第二小区为对第一小区产生干扰的小区。
上述的并发传输是指,在同一时刻,将数据在多个频段上进行并发传输。
具体地,为了将多个频段传输的数据充分合并起来,根据本小区中各个频段受到的干扰强度大小和/或干扰源小区使用各个频段的资源使用率,来确定采用并发传输方式传输数据时,在同一时刻,并发传输数据的各个频段的合并因子。在使用本小区中各个频段受 到的干扰强度大小来确定各个频段的合并因子的情况下,对于干扰小的某个频段资源,对应该频段的合并因子大,对于干扰大的某个频段资源,对应该频段的合并因子小;若使用干扰源小区使用各个频段的资源使用率来确定各个频段的合并因子,则在干扰源小区对某个频段的资源使用率高的情况下,对应该频段的合并因子小,在干扰源小区对某个频段的资源使用率低的情况下,对应该频段的合并因子大。
下面结合图3详述本申请的上述实施例。如图3所示,在T1时刻,将数据放到F1,F2,F3,F4共四个频段上进行并行传输。当用户终端(即移动通讯网络设备)接收到F1频段的数据,F2频段的数据,F3频段的数据,F4频段的数据时,假设根据本小区中各个频段受到的干扰强度大小来确定四个频段对应的合并因子,若F1频段受到的干扰强度最小,则SINR1(Signal to Interference plus Noise Ratio的缩写,即信号与干扰加噪声比)最大,F2频段受到的干扰强度最大,则SINR2最小,F3频段和F4频段受到的干扰强度介于F1频段和F2频段之间,可以为SINR1>SINR2>SINR3>SINR4,即对应的合并因子a1>a2>a3>a4。在用户终端进行数据x的接收合并时,用a1*x+a2*x+a3*x+a4*x获得合并增益。
通过上述实施例,给以信道质量好,干扰强度小的频段更大的加权因子,以保障采用并发传输方式传输数据的传输质量。
在本申请的上述实施例中,基于干扰信息确定用于按照多频段传输方式传输数据的频段信息包括:确定用于传输数据的多个频段,并确定各个频段内用于传输数据的时频资源。
进一步地,确定各个频段内用于传输数据的时频资源包括下述任意一种:获取指示信息中指定的时频资源;在频段内的第一时频资源的信道质量高于第二时频资源的信道质量的情况下,选取第一时频资源作为用于传输数据的时频资源;在频段中随机选取用于传输数据的时频资源。
具体地,在采用跳频传输方式传输数据时,根据本小区中各个 频段受到的干扰强度大小和/或干扰源小区使用各个频段的资源使用率,基站随机产生一个跳频周期内包含的不同时间段使用的频段资源信息。在采用并发传输方式传输数据时,根据本小区中各个频段受到的干扰强度大小和/或干扰源小区使用各个频段的资源使用率来确定在同一时刻,并发传输数据的各个频段的合并因子,并将数据在各个频段上并发传输。
需要说明的是,采用跳频传输方式传输数据,或采用并发传输方式传输数据,或采用两种传输方式的结合传输数据,都可以使用如下任意一种方式确定各个频段内传输数据的时频资源:第一,指示信息中指定的时频资源,即在指示信息中指定的各个频段内的时频资源上传输数据(如图2和图3中所示的,在各个频段的指定时频资源上传输数据);
第二,在各个频段内的第一时频资源的信道质量高于第二时频资源的信道质量的情况下,选取第一时频资源作为用于传输数据的时频资源。即基站可以根据用户终端反馈的信道质量信息,选择各个频段内信道质量好的时频资源进行传输,选择的各个频段内的时频资源可以相同,也可以不同;(该方案为优选方案之一)
第三,在各个频段中随机选取用于传输数据的时频资源。可以通过设定随机变化公式来实现随机选取,例如,假设A频段有20MHz带宽,共100个RB(Resource Block的缩写,即资源块),对某用户终端分配的资源为第10个RB至第15个RB。在B频段进行随机变化时,通过产生随机数x,使B频段上的频率资源为第10+x对100取余的RB资源位置至15+x对100取余的RB资源位置。若在跳频传输方式中,通过设定随机变化公式随机选取各个频段传输数据的时频资源时,结合图4进行详细说明,假设F1频段对某用户终端分配的资源为第50个RB至第60个RB,在F2频段进行随机变化,使F2频段对该用户终端分配的资源为第20个RB至第30个RB,同理,使F3频段对该用户终端分配的资源为第70个RB至第80个RB,使F4频段对该用户终端分配的资源为第30个RB至第40个 RB,以实现在不同频段内的跳频传输。在并发传输方式中,通过设定随机变化公式随机选取各个频段传输数据的时频资源的方案类似,在此不再赘述。(该方案为优选方案之二)
通过上述实施例,通过在不同频段内对数据分配具体的时频资源信息,以达到充分利用频率资源选择性的目的。
在本申请的上述实施例中,获取通讯设备所属的第一小区的干扰信息包括:通过侦听器侦听第一小区的干扰信息;和/或获取通讯设备上报的第一小区的干扰信息,其中,干扰信息包括第一小区中各个频段的干扰强度,和/或,对第一小区产生干扰的第二小区使用各个频段的资源使用率。
可选地,通过空口侦听(即基站侦听)或者用户上报(即移动通讯网络设备上报)的方式获得移动通讯网络设备所属的第一小区的干扰信息。具体如下:
空口侦听:LTE基站通常配备Sniffer,可以用来侦听移动通讯网络设备所在的本小区中不同频段受到的干扰强度,并在对某一频段持续侦听一段时间之后,可以获得对本小区产生干扰的干扰源小区使用该频段的资源使用率。
用户上报:用户终端自带接收机,通过接收机接收外界的信号并进行分析可以获得本小区中的多个频段受到的干扰强度以及干扰源小区使用各个频段的资源使用率。
需要说明的是,上述的第一小区中各个频段的干扰强度可以为移动通讯网络设备所在的本小区中各个频段受到的干扰强度;第二小区使用各个频段的资源使用率可以为对本小区产生干扰的干扰源小区使用各个频段的资源使用率,且对本小区产生干扰的干扰源小区可能为一个,也可能为多个,也即第二小区可以是一个,也可以是多个。
可选地,通过CSI-IM(Channel State Information–Interference Measurement)参考信号测量得到干扰强度,或者通过RRM(Radio Resource Measurement)测量得到的RSSI(Received Signal Strength  Indicator)表征干扰强度。
在上述实施例中,可以通过基站或者移动通讯网络设备获得本小区各个频段的干扰强度和/或干扰源小区使用各个频段的资源使用率。
在本申请的上述实施例中,将频段信息提供给通讯设备包括下述之一:响应用户的请求信息,将频段信息发送给通讯设备;通过指定信道将频段信息发送给通讯设备;通过广播信道广播频段信息。
具体地,在采用跳频传输方式传输数据的情况下,可以通过下述任意一种方式将频段信息提供给通讯设备:其一,当用户终端(即上述的通讯设备,也即移动通讯网络设备)向基站发送请求信息,请求传输数据需要的多个跳频序列时,基站则根据该请求信号,将多个跳频序列信息发送给通讯设备;其二,基站无需等待用户终端的请求信息,可以直接通过指定信道(如控制信道或者RRC信令信道等)将该跳频序列信息发送给用户终端;其三,基站可以直接将该跳频序列信息通过广播信道广播出来,使收发两端,也即基站和用户终端两端的跳频序列同步。
上述的RRC,为Radio Resource Control的缩写。
具体地,在采用并发传输方式传输数据的情况下,可以通过下述任意一种方式将频段信息提供给通讯设备:其一,当用户终端(即上述的通讯设备,也即移动通讯网络设备)向基站发送请求信息,请求传输数据时对应的各个频段的合并因子时,基站则根据该请求信号,将各个频段的合并因子发送给通讯设备;其二,基站无需等待用户终端的请求信息,可以直接通过指定信道(如控制信道或者RRC信令信道等)将各个频段的合并因子发送给用户终端;其三,基站可以直接将该各个频段的合并因子通过广播信道广播出来,使收发两端,也即基站和用户终端两端的合并因子同步。
通过上述实施例,基站将频段信息(包括跳频序列和合并因子)提供给用户终端,以实现基站和用户终端两端的频段信息的同步,从而保证数据传输的可靠性。
需要说明的是,本申请中的跳频传输方式和并发传输方式可以结合在一起,完成数据的传输。例如,T1时间段将数据在F1频段和F2频段上,采用并发传输方式完成并发传输,T2时间段将数据在F3频段和F4频段上,采用并发传输方式完成并发传输,并在T1时间段和T2时间段两个不同时间上采用跳频传输方式完成跳频传输。
在上述实施例中,移动通信网络设备对不同频段的干扰情况和/或干扰小区的资源使用率进行监测;根据干扰情况和/或干扰小区的资源使用率设计跳频序列完成跳频传输,或者设计合并因子进行合并传输;将跳频序列和/或合并因子发送给接收端,供接收端接收数据,完成传输。通过上述实施例,基于通讯设备对应的干扰信息确定可以采用多频段传输方式传输的频段信息,并采用多频段传输方式使用该频段信息将非授权频段的数据发送出来,以保障非授权频段的数据传输的可靠性,从而充分利用非授权频段频率资源丰富的特点,提高了LTE系统的吞吐量,解决了现有技术中在非授权频段的数据传输可靠性低的技术问题。
需要说明的是,本申请中的收发数据为统称,不限制具体的传输信息,比如控制信息,数据信息或者参考信号等都包含在本申请适用范围之内。
图5是根据本申请实施例的一种基站的结构示意图,如图5所示,该基站可以包括:获取单元51、确定单元53以及提供单元55。
其中,获取单元51,用于获取通讯设备所属的第一小区的干扰信息。
确定单元53,用于基于干扰信息确定用于按照多频段传输方式传输数据的频段信息。
提供单元55,用于将频段信息提供给通讯设备。
采用本申请实施例,基站基于通讯设备所属的第一小区的干扰信息,确定按照多频段传输方式传输数据时使用的频段信息,并将确定的频段信息提供给通讯设备,基站和通讯设备则通过该频段信 息完成数据的传输。通过上述实施例,基于通讯设备对应的干扰信息确定可以采用多频段传输方式传输的频段信息,并采用多频段传输方式使用该频段信息将非授权频段的数据发送出来,以保障非授权频段的数据传输的可靠性,从而充分利用非授权频段频率资源丰富的特点,提高了LTE系统的吞吐量,解决了现有技术中在非授权频段的数据传输可靠性低的技术问题。
上述的通讯设备可以为移动通信网络设备,移动通信网络设备可以为移动通信网络终端,该终端是指可以支持陆地移动通信系统的通信协议的终端侧产品,如手机、平板电脑等,也可以是特制通信的调制解调器模块(Wireless Modem),该调制解调器模块可以被手机、平板电脑、数据卡等各种类型的终端形态集成从而完成通信功能。
具体地,通过用户上报(即移动通讯网络设备上报),或者通过空口侦听(即基站侦听)的方式,获得移动通讯网络设备所属的第一小区的干扰信息,该干扰信息包括移动通讯网络设备所在的小区(即本小区)中各个频段受到的干扰强度和/或对本小区产生干扰的干扰源小区使用各个频段的资源使用率,可以根据该干扰信息设计多频段传输方式中的频段信息,基站将该频段信息发送给接收端,即发送给移动通讯网络设备,使基站和移动通讯网络设备通过该频段信息完成数据的传输。
在本申请的上述实施例中,多频段传输方式包括:跳频传输方式和/或并发传输方式。
具体地,通过移动通讯网络设备上报,或者通过基站侦听的方式,可以获得移动通讯网络设备所在的小区(即本小区)中各个频段受到的干扰强度和/或对本小区产生干扰的干扰源小区使用各个频段的资源使用率;基于获得的本小区各个频段受到的干扰强度和/或干扰源小区使用各个频段的资源使用率设计多频段传输方式中的频段信息,即设计跳频传输方式的跳频序列和/或并发传输方式中的合并因子,基站将跳频序列和/或合并因子发送给接收端,即发送给 移动通讯网络设备,使基站和移动通讯网络设备通过该频段信息完成数据的传输。
进一步地,基站和移动通讯网络完成数据传输的方式可以包括以下三种:第一种,仅采用跳频序列完成跳频传输的方式,即采用跳频传输方式;第二种,仅采用合并因子进行并发传输的方式,即采用并发传输方式;第三种,结合跳频传输方式和并发传输方式的传输方式。
通过上述实施例,限定了三种数据传输的方式,采用其中的任意一种方式,均可达到将非授权频段的数据发送出来,提高非授权频段的数据传输的可靠性的目的。
在本申请的上述实施例中,确定单元包括:生成模块,在多频段传输方式包括跳频传输方式的情况下,用于基于干扰信息生成用于按照跳频传输方式传输数据的包含跳频序列的频段信息,其中,跳频序列中记录有跳频周期内不同时间段使用的频段。
进一步地,生成模块包括:第一生成子模块,用于根据干扰信息中记录的第一小区的各个频段的干扰强度生成跳频序列,其中,跳频序列中的各个频段出现的比例与各个频段的干扰强度具有反比例关系;和/或第二生成子模块,用于根据干扰信息中记录的第二小区使用各个频段的资源使用率生成跳频序列,其中,跳频序列中的各个频段出现的比例与各个频段的资源使用率具有反比例关系,其中,第二小区为对第一小区产生干扰的小区,由于对第一小区产生干扰的小区可能是多个,第二小区并不限定于一个产生干扰的小区。
进一步地,根据干扰信息中记录的第一小区的各个频段的干扰强度生成跳频序列,其中,跳频序列中的各个频段出现的比例与各个频段的干扰强度具有反比例关系,即各个频段的干扰强度越大,对应的跳频序列中各个频段出现的比例越小,例如,当第一频段的干扰强度大于第二频段的干扰强度时,在跳频序列中第一频段出现的比例小于第二频段出现的比例;和/或根据干扰信息中记录的第二小区使用各个频段的资源使用率生成跳频序列,其中,跳频序列中 的各个频段出现的比例与各个频段的资源使用率具有反比例关系,即各个频段的资源使用率越高,对应的跳频序列中的各个频段出现的比例越小,例如,当第一频段的资源使用率高于第二频段的资源使用率时,在跳频序列中第一频段出现的比例小于第二频段出现的比例,其中,第二小区为对第一小区产生干扰的小区。
上述的第一小区的各个频段的干扰强度可以为移动通讯网络设备所在的本小区中各个频段受到的干扰强度;第二小区使用各个频段的资源使用率可以为对本小区产生干扰的干扰源小区使用各个频段的资源使用率。
具体地,根据本小区中各个频段受到的干扰强度大小和/或干扰源小区使用各个频段的资源使用率,基站随机产生按照跳频传输方式传输数据时使用的跳频序列,产生的跳频序列是周期性的,一个跳频周期内包含有不同时间段使用的频段资源信息。在一个跳频周期中,不同频段出现的比例与本小区中各个频段受到的干扰强度大小和/或干扰源小区使用各个频段的资源使用率有关。在使用本小区中各个频段受到的干扰强度大小来确定不同频段出现的比例的情况下,对于干扰小的某个频段资源,在跳频周期中出现的比例就大,即该频段的跳频比例大,对于干扰大的某个频段资源,在跳频周期中出现的比例就小,即该频段的跳频比例小;若使用干扰源小区使用各个频段的资源使用率来确定不同频段出现的比例,则在干扰源小区对某个频段的资源使用率高的情况下,该频段在跳频周期中出现的比例小,即该频段的跳频比例相应就小,在干扰源小区对某个频段的资源使用率低的情况下,该频段在跳频周期中出现的比例大,即该频段的跳频比例相应就大。
需要说明的是,上述实施例的方案中的跳频周期内可以包含若干个数的不同时间段使用的频段资源信息,若干个数可以为任意个数。
通过上述实施例,可以基于生成的跳频序列,完成基站和移动通讯网络设备之间的跳频传输,从而通过跳频传输方式将非授权频 段的数据发送出来,以达到充分利用非授权频段频率资源的目的。
在本申请的上述实施例中,确定单元包括:确定模块,在多频段传输方式包括并发传输方式的情况下,用于基于干扰信息确定用于按照并发传输方式并发传输数据的包含各个频段的合并因子的频段信息。
进一步地,确定模块包括:第一确定子模块,用于根据干扰信息中记录的第一小区的各个频段的干扰强度确定各个频段的合并因子,其中,各个频段的合并因子与各个频段的干扰强度具有反比例关系;和/或第二确定子模块,用于根据干扰信息中记录的第二小区使用各个频段的资源使用率确定各个频段的合并因子,其中,各个频段的合并因子与各个频段的资源使用率具有反比例关系,其中,第二小区为对第一小区产生干扰的小区。
进一步地,根据干扰信息中记录的第一小区的各个频段的干扰强度确定各个频段的合并因子,其中,各个频段的合并因子与各个频段的干扰强度具有反比例关系,即各个频段的干扰强度越大,对应的各个频段的合并因子越小,例如,当第一频段的干扰强度大于第二频段的干扰强度时,第一频段的合并因子小于第二频段的合并因子;和/或根据干扰信息中记录的第二小区使用各个频段的资源使用率确定各个频段的合并因子,其中,各个频段的合并因子与各个频段的资源使用率具有反比例关系,即各个频段的资源使用率越高,对应各个频段的合并因子越小,例如,当第一频段的资源使用率大于第二频段的资源使用率时,第一频段的合并因子小于第二频段的合并因子,其中,第二小区为对第一小区产生干扰的小区。
上述的并发传输是指,在同一时刻,将数据在多个频段上进行并发传输。
具体地,为了将多个频段传输的数据充分合并起来,根据本小区中各个频段受到的干扰强度大小和/或干扰源小区使用各个频段的资源使用率,来确定采用并发传输方式传输数据时,在同一时刻,并发传输数据的各个频段的合并因子。在使用本小区中各个频段受 到的干扰强度大小来确定各个频段的合并因子的情况下,对于干扰小的某个频段资源,对应该频段的合并因子大,对于干扰大的某个频段资源,对应该频段的合并因子小;若使用干扰源小区使用各个频段的资源使用率来确定各个频段的合并因子,则在干扰源小区对某个频段的资源使用率高的情况下,对应该频段的合并因子小,在干扰源小区对某个频段的资源使用率低的情况下,对应该频段的合并因子大。
通过上述实施例,给以信道质量好,干扰强度小的频段更大的加权因子,以保障采用并发传输方式传输数据的传输质量。
在本申请的上述实施例中,确定单元包括:处理模块,用于确定用于传输数据的多个频段,并确定各个频段内用于传输数据的时频资源。
进一步地,处理模块包括下述任意一种:获取子模块,用于获取指示信息中指定的时频资源;选取子模块,用于在频段内的第一时频资源的信道质量高于第二时频资源的信道质量的情况下,选取第一时频资源作为用于传输数据的时频资源;随机选取子模块,用于在频段中随机选取用于传输数据的时频资源。
具体地,在采用跳频传输方式传输数据时,根据本小区中各个频段受到的干扰强度大小和/或干扰源小区使用各个频段的资源使用率,基站随机产生一个跳频周期内包含的不同时间段使用的频段资源信息。在采用并发传输方式传输数据时,根据本小区中各个频段受到的干扰强度大小和/或干扰源小区使用各个频段的资源使用率来确定在同一时刻,并发传输数据的各个频段的合并因子,并将数据在各个频段上并发传输。
需要说明的是,采用跳频传输方式传输数据,或采用并发传输方式传输数据,或采用两种传输方式的结合传输数据,都可以使用如下任意一种方式确定各个频段内传输数据的时频资源:第一,指示信息中指定的时频资源,即在指示信息中指定的各个频段内的时频资源上传输数据(如图2和图3中所示的,在各个频段的指定时 频资源上传输数据);
第二,在各个频段内的第一时频资源的信道质量高于第二时频资源的信道质量的情况下,选取第一时频资源作为用于传输数据的时频资源。即基站可以根据用户终端反馈的信道质量信息,选择各个频段内信道质量好的时频资源进行传输,选择的各个频段内的时频资源可以相同,也可以不同;(该方案为优选方案之一)
第三,在各个频段中随机选取用于传输数据的时频资源。可以通过设定随机变化公式来实现随机选取,例如,假设A频段有20MHz带宽,共100个RB(Resource Block的缩写,即资源块),对某用户终端分配的资源为第10个RB至第15个RB。在B频段进行随机变化时,通过产生随机数x,使B频段上的频率资源为第10+x对100取余的RB资源位置至15+x对100取余的RB资源位置。若在跳频传输方式中,通过设定随机变化公式随机选取各个频段传输数据的时频资源时,结合图4进行详细说明,假设F1频段对某用户终端分配的资源为第50个RB至第60个RB,在F2频段进行随机变化,使F2频段对该用户终端分配的资源为第20个RB至第30个RB,同理,使F3频段对该用户终端分配的资源为第70个RB至第80个RB,使F4频段对该用户终端分配的资源为第30个RB至第40个RB,以实现在不同频段内的跳频传输。在并发传输方式中,通过设定随机变化公式随机选取各个频段传输数据的时频资源的方案类似,在此不再赘述。(该方案为优选方案之二)
通过上述实施例,通过在不同频段内对数据分配具体的时频资源信息,以达到充分利用频率资源选择性的目的。
在本申请的上述实施例中,获取单元包括:侦听模块,用于通过侦听器侦听第一小区的干扰信息;和/或获取模块,用于获取通讯设备上报的第一小区的干扰信息,其中,干扰信息包括第一小区中各个频段的干扰强度,和/或,对第一小区产生干扰的第二小区使用各个频段的资源使用率。
可选地,通过空口侦听(即基站侦听)或者用户上报(即移动 通讯网络设备上报)的方式获得移动通讯网络设备所属的第一小区的干扰信息。具体如下:
空口侦听:LTE基站通常配备Sniffer,可以用来侦听移动通讯网络设备所在的本小区中不同频段受到的干扰强度,并在对某一频段持续侦听一段时间之后,可以获得对本小区产生干扰的干扰源小区使用该频段的资源使用率。
用户上报:用户终端自带接收机,通过接收机接收外界的信号并进行分析可以获得本小区中的多个频段受到的干扰强度以及干扰源小区使用各个频段的资源使用率。
需要说明的是,上述的第一小区中各个频段的干扰强度可以为移动通讯网络设备所在的本小区中各个频段受到的干扰强度;第二小区使用各个频段的资源使用率可以为对本小区产生干扰的干扰源小区使用各个频段的资源使用率,且对本小区产生干扰的干扰源小区可能为一个,也可能为多个,也即第二小区可以是一个,也可以是多个。
可选地,通过CSI-IM(Channel State Information–Interference Measurement)参考信号测量得到干扰强度,或者通过RRM(Radio Resource Measurement)测量得到的RSSI(Received Signal Strength Indicator)表征干扰强度。
在上述实施例中,可以通过基站或者移动通讯网络设备获得本小区各个频段的干扰强度和/或干扰源小区使用各个频段的资源使用率。
在本申请的上述实施例中,提供单元包括下述之一:响应模块,用于响应用户的请求信息,将频段信息发送给通讯设备;发送模块,用于通过指定信道将频段信息发送给通讯设备;广播模块,用于通过广播信道广播频段信息。
具体地,在采用跳频传输方式传输数据的情况下,可以通过下述任意一种方式将频段信息提供给通讯设备:其一,当用户终端(即上述的通讯设备,也即移动通讯网络设备)向基站发送请求信息, 请求传输数据需要的多个跳频序列时,基站则根据该请求信号,将多个跳频序列信息发送给通讯设备;其二,基站无需等待用户终端的请求信息,可以直接通过指定信道(如控制信道或者RRC信令信道等)将该跳频序列信息发送给用户终端;其三,基站可以直接将该跳频序列信息通过广播信道广播出来,使收发两端,也即基站和用户终端两端的跳频序列同步。
上述的RRC,为Radio Resource Control的缩写。
具体地,在采用并发传输方式传输数据的情况下,可以通过下述任意一种方式将频段信息提供给通讯设备:其一,当用户终端(即上述的通讯设备,也即移动通讯网络设备)向基站发送请求信息,请求传输数据时对应的各个频段的合并因子时,基站则根据该请求信号,将各个频段的合并因子发送给通讯设备;其二,基站无需等待用户终端的请求信息,可以直接通过指定信道(如控制信道或者RRC信令信道等)将各个频段的合并因子发送给用户终端;其三,基站可以直接将该各个频段的合并因子通过广播信道广播出来,使收发两端,也即基站和用户终端两端的合并因子同步。
通过上述实施例,基站将频段信息(包括跳频序列和合并因子)提供给用户终端,以实现基站和用户终端两端的频段信息的同步,从而保证数据传输的可靠性。
需要说明的是,本申请中的跳频传输方式和并发传输方式可以结合在一起,完成数据的传输。例如,T1时间段将数据在F1频段和F2频段上,采用并发传输方式完成并发传输,T2时间段将数据在F3频段和F4频段上,采用并发传输方式完成并发传输,并在T1时间段和T2时间段两个不同时间上采用跳频传输方式完成跳频传输。
通过本申请的上述实施例,基于通讯设备对应的干扰信息确定可以采用多频段传输方式传输的频段信息,并采用多频段传输方式使用该频段信息将非授权频段的数据发送出来,以保障非授权频段的数据传输的可靠性,从而充分利用非授权频段频率资源丰富的特 点,提高了LTE系统的吞吐量,解决了现有技术中在非授权频段的数据传输可靠性低的技术问题。
根据本申请实施例,还提供了一种基站的实施例,该基站包括发送器,接收器,存储器,以及与存储器耦合的处理器。
其中,发送器、接收器、存储器和处理器通过总线系统相通信;存储器存储软件程序;处理器通过运行软件程序以用于:通过接收器获取通讯设备所属的第一小区的干扰信息;基于干扰信息确定用于按照多频段传输方式传输数据的频段信息;通过发送器将频段信息提供给通讯设备。
采用本申请实施例,基站基于通讯设备所属的第一小区的干扰信息,确定按照多频段传输方式传输数据时使用的频段信息,并将确定的频段信息提供给通讯设备,基站和通讯设备则通过该频段信息完成数据的传输。通过上述实施例,基于通讯设备对应的干扰信息确定可以采用多频段传输方式传输的频段信息,并采用多频段传输方式使用该频段信息将非授权频段的数据发送出来,以保障非授权频段的数据传输的可靠性,从而充分利用非授权频段频率资源丰富的特点,提高了LTE系统的吞吐量,解决了现有技术中在非授权频段的数据传输可靠性低的技术问题。
进一步地,多频段传输方式包括:跳频传输方式和/或并发传输方式。
进一步地,处理器还用于:在多频段传输方式包括跳频传输方式的情况下,基于干扰信息生成用于按照跳频传输方式传输数据的包含跳频序列的频段信息,其中,跳频序列中记录有跳频周期内不同时间段使用的频段。
进一步地,处理器还用于:在多频段传输方式包括并发传输方式的情况下,基于干扰信息确定用于按照并发传输方式并发传输数据的包含各个频段的合并因子的频段信息。
另外,根据本申请实施例的一个方面,提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置 为上述任一实施例所述的方法流程。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者 光盘等各种可以存储程序代码的介质。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (25)

  1. 一种数据传输方法,其特征在于,包括:
    获取通讯设备所属的第一小区的干扰信息;
    基于所述干扰信息确定用于按照多频段传输方式传输数据的频段信息;
    将所述频段信息提供给所述通讯设备。
  2. 根据权利要求1所述的方法,其特征在于,所述多频段传输方式包括:跳频传输方式和/或并发传输方式。
  3. 根据权利要求2所述的方法,其特征在于,在所述多频段传输方式包括所述跳频传输方式的情况下,基于所述干扰信息确定用于按照多频段传输方式传输数据的频段信息包括:
    基于所述干扰信息生成用于按照所述跳频传输方式传输数据的包含跳频序列的频段信息,其中,所述跳频序列中记录有跳频周期内不同时间段使用的频段。
  4. 根据权利要求3所述的方法,其特征在于,基于所述干扰信息生成用于按照所述跳频传输方式传输数据的包含跳频序列的频段信息包括:
    根据所述干扰信息中记录的所述第一小区的各个频段的干扰强度生成所述跳频序列,其中,所述跳频序列中的各个频段出现的比例与所述各个频段的干扰强度具有反比例关系;和/或
    根据所述干扰信息中记录的第二小区使用各个频段的资源使用率生成所述跳频序列,其中,所述跳频序列中的各个频段出现的比例与所述各个频段的资源使用率具有反比例关系,
    其中,所述第二小区为对所述第一小区产生干扰的小区。
  5. 根据权利要求2所述的方法,其特征在于,在所述多频段传输方式包括所述并发传输方式的情况下,基于所述干扰信息确定用于按照多频段传输方式传输数据的频段信息包括:
    基于所述干扰信息确定用于按照所述并发传输方式并发传输数据的包含各个频段的合并因子的频段信息。
  6. 根据权利要求5所述的方法,其特征在于,基于所述干扰信息确定用于按照所述并发传输方式并发传输数据的包含各个频段的合并因子的频段信息包括:
    根据所述干扰信息中记录的所述第一小区的各个频段的干扰强度确定各个频段的合并因子,其中,所述各个频段的合并因子与所述各个频段的干扰强度具有反比例关系;和/或
    根据所述干扰信息中记录的第二小区使用各个频段的资源使用率确定各个频段的合并因子,其中,所述各个频段的合并因子与所述各个频段的资源使用率具有反比例关系,
    其中,所述第二小区为对所述第一小区产生干扰的小区。
  7. 根据权利要求1至6中任意一项所述的方法,其特征在于,基于所述干扰信息确定用于按照多频段传输方式传输数据的频段信息包括:
    确定用于传输数据的多个频段,并确定各个所述频段内用于传输所述数据的时频资源。
  8. 根据权利要求7所述的方法,其特征在于,确定各个所述频段内用于传输所述数据的时频资源包括下述任意一种:
    获取指示信息中指定的时频资源;
    在所述频段内的第一时频资源的信道质量高于第二时频资源的信道质量的情况下,选取所述第一时频资源作为用于传输所述数据的时频资源;
    在所述频段中随机选取用于传输所述数据的时频资源。
  9. 根据权利要求1至6中任意一项所述的方法,其特征在于,获取通讯设备所属的第一小区的干扰信息包括:
    通过侦听器侦听所述第一小区的干扰信息;和/或
    获取所述通讯设备上报的所述第一小区的干扰信息,
    其中,所述干扰信息包括所述第一小区中各个频段的干扰强度,和/或,对所述第一小区产生干扰的第二小区使用各个频段的资源使用率。
  10. 根据权利要求1至6中任意一项所述的方法,其特征在于,将所述频段信息提供给所述通讯设备包括下述之一:
    响应用户的请求信息,将所述频段信息发送给所述通讯设备;
    通过指定信道将所述频段信息发送给所述通讯设备;
    通过广播信道广播所述频段信息。
  11. 一种基站,其特征在于,包括:
    获取单元,用于获取通讯设备所属的第一小区的干扰信息;
    确定单元,用于基于所述干扰信息确定用于按照多频段传输方式传输数据的频段信息;
    提供单元,用于将所述频段信息提供给所述通讯设备。
  12. 根据权利要求11所述的基站,其特征在于,所述多频段传输方式包括:跳频传输方式和/或并发传输方式。
  13. 根据权利要求12所述的基站,其特征在于,所述确定单元包括:
    生成模块,在所述多频段传输方式包括所述跳频传输方式的情况下,用于基于所述干扰信息生成用于按照所述跳频传输方式传输数据的包含跳频序列的频段信息,其中,所述跳频序列中记录有跳频周期内不同时间段使用的频段。
  14. 根据权利要求13所述的基站,其特征在于,所述生成模块包括:
    第一生成子模块,用于根据所述干扰信息中记录的所述第一小区的各个频段的干扰强度生成所述跳频序列,其中,所述跳频序列中的各个频段出现的比例与所述各个频段的干扰强度具有反比例关系;和/或
    第二生成子模块,用于根据所述干扰信息中记录的第二小区使用各个频段的资源使用率生成所述跳频序列,其中,所述跳频序列中的各个频段出现的比例与所述各个频段的资源使用率具有反比例关系,
    其中,所述第二小区为对所述第一小区产生干扰的小区。
  15. 根据权利要求12所述的基站,其特征在于,所述确定单元 包括:
    确定模块,在所述多频段传输方式包括所述并发传输方式的情况下,用于基于所述干扰信息确定用于按照所述并发传输方式并发传输数据的包含各个频段的合并因子的频段信息。
  16. 根据权利要求15所述的基站,其特征在于,所述确定模块包括:
    第一确定子模块,用于根据所述干扰信息中记录的所述第一小区的各个频段的干扰强度确定各个频段的合并因子,其中,所述各个频段的合并因子与所述各个频段的干扰强度具有反比例关系;和/或
    第二确定子模块,用于根据所述干扰信息中记录的第二小区使用各个频段的资源使用率确定各个频段的合并因子,其中,所述各个频段的合并因子与所述各个频段的资源使用率具有反比例关系,
    其中,所述第二小区为对所述第一小区产生干扰的小区。
  17. 根据权利要求11至16中任意一项所述的基站,其特征在于,所述确定单元包括:
    处理模块,用于确定用于传输数据的多个频段,并确定各个所述频段内用于传输所述数据的时频资源。
  18. 根据权利要求17所述的基站,其特征在于,所述处理模块包括下述任意一种:
    获取子模块,用于获取指示信息中指定的时频资源;
    选取子模块,用于在所述频段内的第一时频资源的信道质量高于第二时频资源的信道质量的情况下,选取所述第一时频资源作为用于传输所述数据的时频资源;
    随机选取子模块,用于在所述频段中随机选取用于传输所述数据的时频资源。
  19. 根据权利要求11至16中任意一项所述的基站,其特征在于,所述获取单元包括:
    侦听模块,用于通过侦听器侦听所述第一小区的干扰信息;和/或
    获取模块,用于获取所述通讯设备上报的所述第一小区的干扰信息,
    其中,所述干扰信息包括所述第一小区中各个频段的干扰强度,和/或,对所述第一小区产生干扰的第二小区使用各个频段的资源使用率。
  20. 根据权利要求11至16中任意一项所述的基站,其特征在于,所述提供单元包括下述之一:
    响应模块,用于响应用户的请求信息,将所述频段信息发送给所述通讯设备;
    发送模块,用于通过指定信道将所述频段信息发送给所述通讯设备;
    广播模块,用于通过广播信道广播所述频段信息。
  21. 一种基站,其特征在于,包括:
    发送器,接收器,存储器,以及与所述存储器耦合的处理器,所述发送器、所述接收器、所述存储器和所述处理器通过总线系统相通信;
    所述存储器存储软件程序;
    所述处理器通过运行所述软件程序以用于:
    通过所述接收器获取通讯设备所属的第一小区的干扰信息;
    基于所述干扰信息确定用于按照多频段传输方式传输数据的频段信息;
    通过所述发送器将所述频段信息提供给所述通讯设备。
  22. 根据权利要求21所述的基站,其特征在于,所述多频段传输方式包括:跳频传输方式和/或并发传输方式。
  23. 根据权利要求22所述的基站,其特征在于,所述处理器还用于:在所述多频段传输方式包括所述跳频传输方式的情况下,基于所述干扰信息生成用于按照所述跳频传输方式传输数据的包含跳频序列的频段信息,其中,所述跳频序列中记录有跳频周期内不同时间段使用的频段。
  24. 根据权利要求22所述的基站,其特征在于,所述处理器还用于:在所述多频段传输方式包括所述并发传输方式的情况下,基于所述干扰信息确定用于按照所述并发传输方式并发传输数据的包含各个频段的合并因子的频段信息。
  25. 一种计算机可读存储介质,其特征在于,存储有计算机可执行指令,所述计算机可执行指令设置为如权利要求1至10中任一项所述的数据传输方法。
PCT/CN2017/109803 2016-11-07 2017-11-07 数据传输方法、基站和计算机可读存储介质 WO2018082710A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610978477.6 2016-11-07
CN201610978477.6A CN106550468B (zh) 2016-11-07 2016-11-07 数据传输方法和基站

Publications (1)

Publication Number Publication Date
WO2018082710A1 true WO2018082710A1 (zh) 2018-05-11

Family

ID=58395637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109803 WO2018082710A1 (zh) 2016-11-07 2017-11-07 数据传输方法、基站和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN106550468B (zh)
WO (1) WO2018082710A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106550468B (zh) * 2016-11-07 2020-03-31 北京佰才邦技术有限公司 数据传输方法和基站
CN107370790A (zh) * 2017-06-21 2017-11-21 深圳市盛路物联通讯技术有限公司 一种物联网数据通信方法及系统
CN107360215A (zh) * 2017-06-21 2017-11-17 深圳市盛路物联通讯技术有限公司 一种物联网中基于地理位置的数据上报控制方法及系统
US10887828B2 (en) * 2017-08-24 2021-01-05 Qualcomm Incorporated Techniques and apparatuses for mobile network searching in multiple radio access technologies
CN110011691A (zh) * 2019-03-29 2019-07-12 联想(北京)有限公司 电子设备及用于电子设备的通信方法
CN114080043B (zh) * 2020-08-12 2023-11-10 维沃移动通信有限公司 资源传输方法、装置及通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105228199A (zh) * 2015-09-30 2016-01-06 宇龙计算机通信科技(深圳)有限公司 一种基于非授权频段的载波切换方法、基站和系统
CN105933099A (zh) * 2016-06-06 2016-09-07 深圳市金立通信设备有限公司 一种传输信道探测参考信号srs的方法、终端及基站
WO2016150167A1 (zh) * 2015-03-20 2016-09-29 索尼公司 无线通信设备和无线通信方法
CN106550468A (zh) * 2016-11-07 2017-03-29 北京佰才邦技术有限公司 数据传输方法和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150167A1 (zh) * 2015-03-20 2016-09-29 索尼公司 无线通信设备和无线通信方法
CN105228199A (zh) * 2015-09-30 2016-01-06 宇龙计算机通信科技(深圳)有限公司 一种基于非授权频段的载波切换方法、基站和系统
CN105933099A (zh) * 2016-06-06 2016-09-07 深圳市金立通信设备有限公司 一种传输信道探测参考信号srs的方法、终端及基站
CN106550468A (zh) * 2016-11-07 2017-03-29 北京佰才邦技术有限公司 数据传输方法和基站

Also Published As

Publication number Publication date
CN106550468B (zh) 2020-03-31
CN106550468A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
JP7340648B2 (ja) 車両間通信のためのロケーションおよびリッスンビフォアスケジュールベースのリソース割振り
WO2018082710A1 (zh) 数据传输方法、基站和计算机可读存储介质
EP3410761B1 (en) Base station and transmission method
US20210067258A1 (en) Radio Resource Management Measurement Method and Apparatus
WO2019091098A1 (zh) D2d通信中资源配置的方法、终端设备和网络设备
JP5992630B2 (ja) 共存ワイヤレスシステム間でのユーザの切り替え
WO2019214626A1 (zh) 一种数据传输、信号反馈方法及设备
TW201806403A (zh) 用於共存的技術的偵測
CN105491641B (zh) 一种发现信号的传输方法、小区发现的方法及装置
JP6466591B2 (ja) Fdd半二重ネットワークにおける電力制御コマンドを用いたアップリンクスケジューリング
JPWO2019159245A1 (ja) ユーザ端末及び無線通信方法
US20220329368A1 (en) Wireless communication method and terminal device
CN106411381B (zh) 数据传输方法和装置
CN113596880B (zh) 无线通信的方法、终端设备和网络设备
WO2018082551A1 (zh) 控制信道的资源配置方法、基站和终端设备
WO2019071573A1 (zh) 干扰处理方法、终端设备、网络设备及计算机存储介质
US11784746B2 (en) Bandwidth puncture and response rules
WO2022061544A1 (zh) 无线通信方法、终端设备和网络设备
JP7295264B2 (ja) 通信方法及び通信装置
WO2018107457A1 (zh) 数据复用装置、方法以及通信系统
TWI780252B (zh) 使用網路向下選擇替代方案的通道狀態回饋
WO2017206056A1 (zh) 一种基于非授权频带的通信方法、相关设备及系统
CN109151971B (zh) 一种下行功率分配参数的通知方法及装置
US20220086910A1 (en) Multi-User-RTS and CTS Frames for a Sub-Channel Selective Transmission Station
KR20200120701A (ko) 채널 전송 방법, 장치 및 컴퓨터 기억 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17866454

Country of ref document: EP

Kind code of ref document: A1