WO2019214626A1 - 一种数据传输、信号反馈方法及设备 - Google Patents
一种数据传输、信号反馈方法及设备 Download PDFInfo
- Publication number
- WO2019214626A1 WO2019214626A1 PCT/CN2019/085888 CN2019085888W WO2019214626A1 WO 2019214626 A1 WO2019214626 A1 WO 2019214626A1 CN 2019085888 W CN2019085888 W CN 2019085888W WO 2019214626 A1 WO2019214626 A1 WO 2019214626A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- channel
- base station
- request signal
- lbt
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 103
- 230000015654 memory Effects 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 14
- 230000011664 signaling Effects 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 13
- 230000000717 retained effect Effects 0.000 claims description 13
- 238000003860 storage Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 8
- 230000002123 temporal effect Effects 0.000 claims description 4
- 230000002452 interceptive effect Effects 0.000 abstract description 3
- 230000007246 mechanism Effects 0.000 description 25
- 238000010586 diagram Methods 0.000 description 21
- 238000001228 spectrum Methods 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 7
- 238000004590 computer program Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 101000577696 Homo sapiens Proline-rich transmembrane protein 2 Proteins 0.000 description 2
- 102100028840 Proline-rich transmembrane protein 2 Human genes 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 208000028626 extracranial carotid artery aneurysm Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
- H04W74/0816—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
- H04B7/06952—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
- H04B7/06966—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- the present application relates to the field of wireless communications technologies, and in particular, to a data transmission, signal feedback method, and device.
- Unlicensed spectrum is not planned for specific application systems and can be shared by multiple wireless communication systems.
- the existing unlicensed spectrum communication systems mainly include IEEE standardized Bluetooth, WiFi and its 3GPP standardized LTE-U (LTE in Unlicensed spectrum, LTE in the unlicensed band; LTE: Long Term Evolution (Long Term Evolution) system, which uses shared unlicensed spectrum resources by preempting resources among multiple systems.
- LBT cat.2 LBT cat.4 defined by 3GPP.
- the unlicensed band transmission distance is generally close. Perhaps the coverage radius is no longer the main reason for beam (beam) transmission, but the introduction of beam transmission introduces new variables to the LBT mechanism.
- NR-U NR in unlicensed spectrum, NR: new radio access technology, new radio access technology
- the direction-dependent LBT ie, directional LBT
- Performing a direction-based LBT will provide more transmission opportunities for NR-U.
- the shortcoming of the prior art is that the direction-based LBT brings about a more serious hidden node problem, but there is no technical solution in the prior art to avoid the hidden node problem.
- the present application provides a data transmission, signal feedback method and device for solving the problem of data transmission interference caused by interference nodes in LTE-U.
- a data transmission method is provided in the embodiment of the present application, including:
- the base station After performing the LBT operation in the direction corresponding to the at least one beam, the base station sends a channel occupation request signal to the terminal to request channel occupation;
- the base station After receiving the signal that the reserved channel is occupied, the base station performs data transmission on the beam transmitting the channel occupation request signal.
- the base station waits on the beam to receive a signal that the allowed channel is occupied; and/or,
- the base station After transmitting the channel occupation request signal to the terminal on the beam, the base station continues to send the channel occupation request signal to the terminal on the next beam, and receives the corresponding signal that the reserved channel is occupied on the beam that has transmitted the channel occupation request signal.
- the beam that sends the channel occupation request signal is all or part of the beam that the channel detects as idle after the LBT operation is performed in chronological order in the direction corresponding to at least one beam.
- the beam performing the LBT operation is all possible beams of the space, and/or is the portion of the possible beam that the network is pre-determined to configure.
- the beam performing the LBT operation is determined based on the prior information.
- the a priori information is whether the SSB (Synchronization Signal Block), or the transmission performance information of the beam acquired during the SSB transmission, can be correctly transmitted.
- SSB Synchronization Signal Block
- performing LBT operations includes one or a combination of the following:
- the LBT operation is performed in the direction corresponding to each beam by using the time division method of the beam scanning.
- performing LBT operations includes one or a combination of the following:
- the base station maintains a counter, and performs an LBT operation in a direction corresponding to a beam until the LBT succeeds;
- the base station maintains a counter and performs an LBT operation in a direction corresponding to a beam until a preset time period is exceeded. If it is not successful, the switch is switched to another counter, the value of the counter is reset, and the LBT operation is performed in the direction corresponding to the other beams. or,
- the base station maintains multiple counters and performs LBT operations in the direction corresponding to one beam until the preset time period is exceeded. If it is not successful, it switches to other counters, the value of the original counter is retained, and the LBT operation is performed in the direction corresponding to other beams. ;or,
- the base station maintains multiple counters and performs LBT operations in the direction corresponding to one beam until the preset time period is exceeded. If it is not successful, it switches to other counters. The value of the original counter is retained until the preset time period exceeds the preset value. Reset and switch to the direction corresponding to other beams to perform LBT operations; or,
- the base station maintains multiple counters, and performs LBT operations in the direction corresponding to each beam by using a time-division method of beam scanning, wherein the time granularity of the scanning is configurable.
- the time granularity of the scan is an integer multiple of the CCA slot (CCA slot; CCA: Clear Channel Assessment) or an integer multiple of the OFDM (Orthogonal Frequency Division Multiplex) symbol.
- it further includes:
- the LBT operation is stopped or the LBT operation is continued.
- the channel occupancy request signal includes one or a combination of the following information:
- the signal that the allowed channel is occupied is a signal that allows the channel to be occupied by interlace information dynamically indicated by the base station; and/or,
- the signal that the allowed channel is occupied is an interlace information that is semi-statically configured for the terminal through the network to feed back a signal that allows the channel to be occupied.
- the signal that the allowed channel is occupied is fed back according to the interlace information indicated by the base station.
- the channel occupation request signal is a signal that allows the channel to be occupied by the time information configured by the base station for the terminal;
- the channel occupancy request signal is fed back by each terminal at the same time.
- it further includes:
- the base station configures the LBT parameters required for the terminal to feed back signals that are allowed to be occupied by the channel.
- the size of the counter or the size information of the contention window for generating the counter is included in the LBT parameter.
- the base station when the base station receives the signal that allows the channel to be occupied on the multiple beams, the beam with the largest number of multiplexed users or the beam with the largest transmission capacity is selected for data transmission.
- the base station when the base station receives a signal that allows the channel to be occupied on multiple beams, the base station schedules the channel occupation request signal to perform data transmission with the user who has successfully handshaked the signal that the channel is occupied; and/or,
- the base station When the base station receives a signal that allows the channel to be occupied on the plurality of beams, the base station performs a beam on a beam that transmits a ratio of the number of users that allow the channel to be occupied and the number of users that receive the channel occupation request signal to be greater than a preset value. data transmission.
- data transmission is performed on the beam that is dominant in the LBT time sequence.
- the channel occupation request signal is transmitted by using subcarriers of 60K or more.
- the interval gap between the request signal occupation signal and the handshake signal that allows the channel occupation signal is an integer multiple of the OFDM symbol.
- the interval between the request signal occupation signal and the allowed channel occupation signal is 1 OFDM symbol;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 2 to 3 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 4 to 6 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 8 to 12 OFDM symbols.
- the interval value is that the base station notifies the terminal by signaling, or the network and the terminal pre-agreed.
- the LBT operation is performed by using LBT cat.1.
- a signal feedback method is provided in the embodiment of the present application, including:
- a channel occupation request signal sent by the base station to the terminal on the at least one beam, where the channel occupation request signal is a signal for requesting channel occupation;
- the terminal After correctly receiving the channel occupation request signal, the terminal feeds back to the base station a signal that allows the channel to be occupied on the beam that receives the signal.
- the signal that the allowed channel is occupied includes at least one of the following information or a combination thereof:
- the signal that allows the channel to be occupied is a signal that allows the channel to be occupied by the interlace information dynamically indicated by the base station; and/or,
- the signal that the allowed channel is occupied is an interlace information that is semi-statically configured for the terminal through the network to feed back a signal that allows the channel to be occupied.
- the signal that the allowed channel is occupied is fed back according to the interlace information indicated by the base station.
- the channel occupation request signal is a signal that allows the channel to be occupied by time information configured by the base station for the terminal.
- it further includes:
- the signal that the allowed channel is occupied is fed back to the base station.
- the LBT is performed according to the size of the counter included in the LBT parameter or the size information of the contention window for generating the counter.
- the channel occupation request signal is transmitted by using subcarriers of 60K or more.
- the interval gap between the request signal occupation signal and the handshake signal that allows the channel occupation signal is an integer multiple of the OFDM symbol.
- the interval between the request signal occupation signal and the allowed channel occupation signal is 1 OFDM symbol;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 2 to 3 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 4 to 6 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 8 to 12 OFDM symbols.
- the interval value is that the base station notifies the terminal by signaling, or the network and the terminal pre-agreed.
- a base station is provided in the embodiment of the present application, where the base station includes:
- a processor for reading a program in the memory performing the following process:
- a transceiver for receiving and transmitting data under the control of a processor, performing the following processes:
- the data After receiving the signal that the channel is occupied, the data is transmitted on the beam transmitting the channel occupancy request signal.
- the channel occupation request signal After transmitting the channel occupation request signal to the terminal on the beam, it continues to send the channel occupation request signal to the terminal on the next beam, and receives the corresponding signal that the reserved channel is occupied on the beam that has transmitted the channel occupation request signal.
- the beam that sends the channel occupation request signal is all or part of the beam whose channel detection is idle after the LBT operation is performed in chronological order in the direction corresponding to at least one beam.
- the beam performing the LBT operation is all possible beams of the space, and/or is the portion of the possible beam that the network is pre-determined to configure.
- the beam performing the LBT operation is determined based on the prior information.
- the a priori information is whether the SSB can be correctly transmitted, or the transmission performance information of the beam acquired during the SSB transmission.
- performing LBT operations includes one or a combination of the following:
- the LBT operation is performed in the direction corresponding to each beam by using the time division method of the beam scanning.
- performing LBT operations includes one or a combination of the following:
- the base station maintains a counter and performs an LBT operation in a direction corresponding to a beam until the LBT succeeds;
- the base station maintains a counter and performs an LBT operation in a direction corresponding to a beam until a preset time period is exceeded. If it is not successful, the switch is switched to another counter, the value of the counter is reset, and the LBT operation is performed in the direction corresponding to the other beams. or,
- the base station maintains multiple counters and performs LBT operations in the direction corresponding to one beam until the preset time period is exceeded. If it is not successful, it switches to other counters, the value of the original counter is retained, and the LBT operation is performed in the direction corresponding to other beams. ;or,
- the base station maintains multiple counters and performs LBT operations in the direction corresponding to one beam until the preset time period is exceeded. If it is not successful, it switches to other counters. The value of the original counter is retained until the preset time period exceeds the preset value. Reset and switch to the direction corresponding to other beams to perform LBT operations; or,
- the base station maintains multiple counters, and performs LBT operations in the direction corresponding to each beam by using a time-division method of beam scanning, wherein the time granularity of the scanning is configurable.
- the temporal granularity of the scan is an integer multiple of the CCA slot or an integer multiple of the OFDM symbol.
- it further includes:
- the execution of the LBT operation is stopped or the LBT operation is continued.
- the channel occupancy request signal includes one or a combination of the following information:
- the information of the scheduled UEID, the Beam ID of the beam transmitting the channel occupation request signal, the location information of the beam transmitting the channel occupation request signal in space, and the channel occupation time information of the beam transmitting the channel occupation request signal The terminal provides feedback on the resource configuration required to allow the channel to be occupied, the LBT type information required for the terminal to feed back the signal that the channel is occupied, and the pilot information used for channel quality measurement.
- the signal that allows the channel to be occupied is a signal that allows the channel to be occupied by the interlace information dynamically indicated by the base station; and/or,
- the signal that the allowed channel is occupied is an interlace information that is semi-statically configured for the terminal through the network to feed back a signal that allows the channel to be occupied.
- the signal that the allowed channel is occupied is fed back according to the interlace information indicated by the base station.
- the channel occupation request signal is a signal that allows the channel to be occupied by the time information configured by the base station for the terminal;
- the channel occupancy request signal is fed back by each terminal at the same time.
- it further includes:
- the LBT parameters that are required for the terminal to configure the feedback signal that is allowed to be occupied by the channel are required for the terminal to configure the feedback signal that is allowed to be occupied by the channel.
- the size of the counter or the size information of the contention window for generating the counter is included in the LBT parameter.
- the base station when the base station receives the signal that allows the channel to be occupied on the multiple beams, the beam with the largest number of multiplexed users or the beam with the largest transmission capacity is selected for data transmission.
- the base station when the base station receives a signal that allows the channel to be occupied on multiple beams, the base station schedules the channel occupation request signal to perform data transmission with the user who has successfully handshaked the signal that the channel is occupied; and/or,
- the base station When the base station receives a signal that allows the channel to be occupied on the plurality of beams, the base station performs a beam on a beam that transmits a ratio of the number of users that allow the channel to be occupied and the number of users that receive the channel occupation request signal to be greater than a preset value. data transmission.
- data transmission is performed on the beam that is dominant in the LBT time sequence.
- the channel occupation request signal is transmitted by using subcarriers of 60K or more.
- the interval gap between the request signal occupation signal and the handshake signal that allows the channel occupation signal is an integer multiple of the OFDM symbol.
- the interval between the request signal occupation signal and the allowed channel occupation signal is 1 OFDM symbol;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 2 to 3 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 4 to 6 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 8 to 12 OFDM symbols.
- the interval value is that the base station notifies the terminal by signaling, or the network and the terminal pre-agreed.
- the LBT operation is performed using LBT cat.1.
- a terminal is provided in the embodiment of the present application, where the terminal includes:
- a processor for reading a program in the memory performing the following process:
- a transceiver for receiving and transmitting data under the control of a processor, performing the following processes:
- a channel occupation request signal sent to the terminal on the at least one beam, where the channel occupation request signal is a signal for requesting channel occupation;
- the signal that allows the channel to be occupied is fed back to the base station on the beam that receives the signal.
- the signal that the allowed channel is occupied includes at least one of the following information or a combination thereof:
- Information related to channel occupation time ID information of the beam, UEID information of the own terminal, and beam-based CQI channel quality information.
- the signal that allows the channel to be occupied is a signal that allows the channel to be occupied by the interlace information dynamically indicated by the base station; and/or,
- the signal that the allowed channel is occupied is an interlace information that is semi-statically configured for the terminal through the network to feed back a signal that allows the channel to be occupied.
- the signal that the allowed channel is occupied is fed back according to the interlace information indicated by the base station.
- the channel occupation request signal is a signal that allows the channel to be occupied by time information configured by the base station for the terminal.
- it further includes:
- the signal that the allowed channel is occupied is fed back to the base station.
- the LBT is performed according to the size of the counter included in the LBT parameter or the size information of the contention window for generating the counter.
- the channel occupation request signal is transmitted by using subcarriers of 60K or more.
- the interval gap between the request signal occupation signal and the handshake signal that allows the channel occupation signal is an integer multiple of the OFDM symbol.
- the interval between the request signal occupation signal and the allowed channel occupation signal is 1 OFDM symbol;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 2 to 3 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 4 to 6 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 8 to 12 OFDM symbols.
- the interval value is that the base station notifies the terminal by signaling, or the network and the terminal pre-agreed.
- a data transmission apparatus is provided in the embodiment of the present application, including:
- a sending module configured to send a channel occupation request signal to the terminal to request channel occupation after performing an LBT operation in a direction corresponding to the at least one beam
- a transmission module configured to perform data transmission on a beam that transmits a channel occupation request signal after receiving a signal that allows the channel to be occupied.
- a signal feedback device is provided in the embodiment of the present application, including:
- a receiving module configured to receive a channel occupation request signal sent by the base station to the terminal on the at least one beam, where the channel occupation request signal is a signal for requesting channel occupation;
- a feedback module configured to: after receiving the channel occupation request signal correctly, feed back, to the base station, a signal that allows the channel to be occupied on the beam that receives the signal.
- the base station after performing the LBT operation in the direction corresponding to the at least one beam, the base station sends a channel occupation request signal to the terminal to request channel occupation; and the allowed channel that is fed back by the terminal is occupied. After the signal, the data is transmitted on the beam that received the signal. Therefore, the problem of data transmission interference caused by the interfering node is avoided.
- FIG. 1 is a schematic diagram of a method for preempting resources of WiFi on an unlicensed spectrum according to an embodiment of the present application
- FIG. 2 is a schematic diagram of an ETSI FBE channel access mechanism in an embodiment of the present application
- FIG. 3 is a schematic diagram of an ETSI LBE channel access mechanism in an embodiment of the present application.
- FIG. 4 is a schematic diagram of spatial multiplexing based on beam in the embodiment of the present application.
- FIG. 5 is a schematic diagram of a coexistence scenario of LAA and NR-U in the embodiment of the present application.
- FIG. 6 is a schematic diagram of a scenario in which NR-U and NR-U coexist in the embodiment of the present application;
- FIG. 7 is a schematic diagram of an implementation process of a data transmission method at a base station side according to an embodiment of the present application.
- FIG. 8 is a schematic diagram of an implementation process of a signal feedback method on a terminal side according to an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present application.
- FIG. 10 is a schematic structural diagram of a UE in an embodiment of the present application.
- Unlicensed spectrum is not planned for specific application systems and can be shared by multiple wireless communication systems.
- the existing unlicensed spectrum communication systems mainly include IEEE standardized Bluetooth, WiFi and its 3GPP standardized LTE-U (LTE in Unlicensed spectrum, LTE in the unlicensed band; LTE: Long Term Evolution (Long Term Evolution) system, which uses shared unlicensed spectrum resources by preempting resources among multiple systems.
- both WiFi and LTE-U use LBT as the basic means of LTE-U competition access.
- the 802.11 system adopts a channel access mechanism called Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA).
- Figure 1 shows the preemption resources of WiFi on the unlicensed spectrum.
- the schematic diagram of the mode, the way in which the WiFi system preempts resources on the unlicensed spectrum is as shown in FIG. 1 .
- the channel is monitored.
- the DISFS Distributed Inter-Frame Space
- the current channel is determined to be an idle channel, and then the stations waiting for access to the channel enter a random fallback. Phase to prevent multiple sites from colliding on the same resources.
- DISFS Distributed Inter-Frame Space
- Phase Phase to prevent multiple sites from colliding on the same resources.
- WiFi Access Points
- RTS/CTS Request-To-Send/Clear-To-Send protocol request sending/clearing transmission protocol
- the RTS/CTS handshake mechanism carries the time occupied by the channel during the current transmission. In this way, the nearby nodes will stop accessing the channel after receiving the CTS, thus avoiding collisions.
- the FBE access performs CCA detection at a fixed frame structure position, and as long as the channel has a CCA period (not less than 20 us), the channel is immediately accessed, and the data transmission process is initiated, and the channel transmission time is initiated.
- the occupation time is relatively fixed, the minimum time is 1ms and the maximum is 10ms, and the idle period should be at least 5% of the channel occupation time.
- the device performs a new CCA detection and accesses the channel again during the CCA time at the end of the idle period.
- the channel occupation time plus the idle period is a fixed value called frame period.
- the time and start point of the channel for each transmission are variable, and the extended CCA detection is performed before the channel is acquired.
- the size q of the CW (contention window) a The random factor N, until the channel idle time reaches N times the CCA time, and the channel is idle, accesses the channel, initiates a data transmission process, and the maximum channel occupation time is 13 ms.
- LBT cat.2 is similar to FBE without random back-off mechanism, but adopts fixed CCA time such as 20us; LBT cat.4 is highly similar to WiFi CSMA/CA mechanism.
- eNB first performs ED (Energy Detection). The CCA detection time is configurable. This CCA detection is called ICCA (Initial CCA).
- the channel is judged to be idle, and the device transmits immediately; otherwise, the current channel is occupied, and the device must Then, ECCA (Extension CCA) detection is performed.
- the eNB first generates a counter value N that needs to be counted according to the size of the contention window q, and finds an idle CCA slot counter value minus 1, when the counter value is 0. Access channel, initiate data transmission process.
- NR new radio access technology
- Massive MIMO Multiple Input Multiple Output
- the biggest feature of beam-based transmission is that there are multiple possible transmission beams in space.
- the base station and the terminal need to determine a pair of optimal transmit and receive beams.
- the initial access phase is specified in the NR.
- the base station sends the SSB on each beam.
- Synchronization Signal Block the terminal determines the best transmit beam and feeds back to the base station.
- the data transmission process can pass MAC CE (Media Access Control Control Unit; MAC: Media Access Control, Media Access Control; CE).
- the control element is configured to receive the change of the data beam through a PDCCH (physical downlink control channel).
- PDCCH physical downlink control channel
- FIG. 4 is a schematic diagram of spatial multiplexing based on beam. As shown in FIG. 4, it is assumed that gNB A, gNB and AP are close to each other. If omnidirectional LBT can be used to hear each other, only one node can access the channel in the same time. With direction-based LBT, gNB and WiFi will transmit on different beams at the same time without interfering with each other.
- FIG. 5 is a schematic diagram of the LAA and NR-U coexistence scenarios.
- the omni-directional transmit LAA (Licensed Assisted Access) gNB1 is used.
- the access channel of the first access channel is transmitted to the UE1, and the receive beam of the gNB2 based on the direction LBT cannot receive the signal sent by the gNB1, and the channel idle access channel is considered to initiate transmission to the UE2, so that the signals sent by the gNB1 and the gNB2 will be A collision occurs between UE1 and UE2.
- FIG. 6 is a schematic diagram of the NR-U and NR-U coexistence scenarios. If the eNB of the LAA in FIG. 5 is replaced with an NR-U gNB, the same problem still exists, as shown in FIG. 6.
- WiFi has proposed an RTS/CTS handshake mechanism.
- This RTS/CTS handshake mechanism can be applied to the NR-U. It is necessary to study how to use the handshake mechanism to solve the above coexistence problem according to the characteristics of the NR-U.
- FIG. 7 is a schematic flowchart of a method for implementing data transmission on a base station side, as shown in the figure, which may include:
- Step 701 After performing the LBT operation in the direction corresponding to the at least one beam, the base station sends a channel occupation request signal to the terminal to request channel occupation.
- Step 702 After receiving the signal that the allowed channel is occupied, the base station performs data transmission on the beam that sends the channel occupation request signal.
- FIG. 8 is a schematic flowchart of a method for implementing a signal feedback method on a terminal side, as shown in the figure, which may include:
- Step 801 The terminal receives a channel occupation request signal sent by the base station to the terminal on the at least one beam, where the channel occupation request signal is a signal for requesting channel occupation.
- Step 802 After correctly receiving the channel occupation request signal, the terminal feeds back, to the base station, a signal that allows the channel to be occupied on the beam that receives the signal.
- the base station firstly sends a channel occupation request signal on multiple beams, and after receiving the channel occupation request signal, the terminal returns a signal that allows the channel to be occupied on multiple beams or a beam. After the base station successfully solves the signal that the terminal sends the allowed channel to be occupied, the base station performs data transmission.
- Correct reception in the implementation means that the UE can correctly solve this signal. If there is no other strong interference at the UE, it means that there are no other nodes in the vicinity of the UE. Similarly, if the UE can correctly decode the feedback allowed signal, only the base station can decode. If the base station succeeds, the base station can know that sometimes the feedback beam is inconsistent with the receiving beam. Only when the base station correctly decodes the handshake signal, the handshake is successful.
- the beam that sends the channel occupation request signal is all or part of the beam that the channel detects as idle after the LBT operation is performed in chronological order in the direction corresponding to at least one beam.
- the beam performing the LBT operation is all possible beams of the space, and/or is the possible beam of the network that is pre-determined by the network.
- the channel occupancy request signal contains one or a combination of the following information:
- the information of the scheduled UEID, the Beam ID of the beam transmitting the channel occupation request signal, the location information of the beam transmitting the channel occupation request signal in space, and the channel occupation time information of the beam transmitting the channel occupation request signal The terminal provides feedback on the resource configuration required to allow the channel to be occupied, the LBT type information required for the terminal to feed back the signal that the channel is occupied, and the pilot information used for channel quality measurement.
- the base station When the base station receives a signal that allows the channel to be occupied on multiple beams, the beam with the largest number of multiplexed users or the beam with the largest transmission capacity is selected for data transmission.
- the signal that the allowed channel is occupied includes one or a combination of the following information:
- Information related to channel occupation time ID information of the beam, UEID (terminal identification) information of the terminal, and CQI (Channel Quality Indicator) channel quality information based on the beam.
- the base station first performs the LBT operation in the chronological order in the direction corresponding to the multiple beams, where the multiple beams may be all possible beams of the space, or may be a part of the possible beams configured by the network.
- the case of only one beam can be used as a special case and is not excluded. It can also be implemented in the same way; the LBT method can be a directional LBT.
- the base station sends a beam-based channel occupation signal request signal on all or part of the beam whose channel is detected to be idle, and the channel occupation request signal may include:
- the information may include the identifier of the Beam ID, and may further include location information of the beam in the space, such as the angle of the beam, etc., to determine related information of the beam position;
- the LBT type information required for the terminal to feed back the required resource configuration when the channel is occupied by the signal and the terminal feedback the signal for allowing the channel to be occupied may also be included;
- Pilot information may also be included for channel quality measurements.
- the terminal After correctly receiving the channel occupation signal request signal based on a beam, the terminal feeds back a signal for allowing the channel to be occupied for the beam channel occupation signal request signal, and the signal can occupy one OFDM (Orthogonal Frequency Division Multiplex).
- a sub-multiplexed symbol which may include information about the time occupied by the channel, and may also include ID information of the beam, and may also include UEID information, and may include beam-based CQI channel quality information, such as RSSI (Received Signal) Strength Indication, received signal strength indication) and/or RSRP (Reference Signal Received Power)/RSRQ (Reference Signal Received Quality).
- the beam-based CQI information is very important for the base station to determine whether there is a hidden node on the beam.
- the beam-based CQI can be carried in the UCI (Uplink Control Information) to measure the beam-based CQI.
- the frequency example may be based on a CSI-RS (channel state information reference signal) or a DMRS (demodulation reference signal) included in an SSB (Synchronization Signal Block).
- the base station Before receiving the signal that the reserved channel is occupied, the base station does not know whether the channel can be accessed. Therefore, at least before the base station receives the signal that the allowed channel is occupied, the base station sends a channel occupation request signal on multiple beams that the LBT passes.
- the base station sends a channel occupation request signal only on one optimal beam.
- the multiple channel can be used to receive the channel occupation request signal, and after the decoding succeeds, the signal that allows the channel to be occupied is fed back. After successfully receiving the signal that the channel is occupied, the base station determines that the channel can be accessed for data transmission.
- the signal that allows the channel to be occupied may be fed back to the multiple beams, or several beams may be selected according to the configuration of the base station to allow the channel to be occupied.
- the base station determines the beam of the access channel according to the signal that the allowed channel is occupied by multiple UEs (User Equipments), for example, the beam access channel with the largest number of multiplexed users or the largest transmission capacity can be selected for data transmission. Of course, there is no need to choose a single beam.
- UEs User Equipments
- the fairness of the scheduling may also be considered, based on the handshake success information on each beam or the information related to the user scheduling, such as the number of times of scheduling, the size of data to be transmitted, and the capabilities of the UE. select.
- the base station when the base station receives the signal that allows the channel to be occupied on the multiple beams, the base station schedules the channel occupation request signal to perform data transmission with the user who successfully handshakes the signal that allows the channel to be occupied; and/or,
- the base station When the base station receives a signal that allows the channel to be occupied on the plurality of beams, the base station performs a beam on a beam that transmits a ratio of the number of users that allow the channel to be occupied and the number of users that receive the channel occupation request signal to be greater than a preset value. data transmission.
- data transmission is performed on the beam that is dominant in the LBT time sequence.
- the base station often needs to schedule multiple terminals at a time, and the base station sends a channel occupation request signal to multiple terminals on the LBT successful beam, but the user who successfully receives the channel occupation signal by the base station is likely to be the base station transmitting the request channel occupation signal user. A subset of. After receiving the allowed channel occupation signal, the base station only schedules the uplink or downlink data transmission of the user who requests the occupied signal/allowed to occupy the handshake successfully after accessing the channel.
- another optional operation method of the base station is to set a threshold value, if the number of UEs that are allowed to occupy the signal received on the beam and the base station send a request. If the proportion of the number of UEs occupying the signal is less than the threshold, the base station is not allowed to perform channel access on the beam, and an example of the threshold size may be set to 20%;
- the signal that the allowed channel is occupied may be fed back based on the multiple beams, or may be selected according to the configuration of the base station. Several beam feedbacks allow the channel to be occupied by the signal.
- the base station determines, according to the signal that the allowed channel is occupied by the multiple UEs, which channel to access the channel, and can select the beam access channel with the largest number of multiplexed users or the largest transmission capacity for data transmission, and another method utilizes the foregoing
- the ratio of the number of allowed occupied signals received on the beam to the transmitted request-occupied signal is less than the threshold size, and the access channel on the beam that is dominant in the LBT time sequence is preferred.
- the consistency of the transmission and reception beams of the device is guaranteed to be good, but if the receive beam of the LBT is not calibrated with the beam of the transmitted signal, the same cannot be maintained.
- the meaning of performing LBT in the direction corresponding to the transmitting beam is not very large at this time, and the behavior of the base station may be that LBT is not executed in the direction corresponding to each beam, but directly corresponds to the allowed beam.
- the channel occupation request signal is sent in the direction, and other behaviors of the terminal and the base station may be consistent with Embodiment 1.
- the beam performing the LBT operation is determined based on the prior information of the channel.
- the a priori information is whether the SSB can be correctly transmitted, or the transmission performance information of the beam acquired during the SSB transmission.
- the base station may send a plurality of beams of the channel occupation request signal, and the base station may perform the LBT in the direction corresponding to all the possible beams, but this requires a relatively high complexity, and therefore, the base station may first The information determines a set of beams that can perform LBT.
- One method of determining is to use a priori information of the channel.
- the base station can use the beam capable of correctly transmitting the SSB as a beam set that needs to perform LBT; or can determine the SSB transmission process.
- Performing an LBT operation includes one or a combination of the following:
- the LBT operation is performed in the direction corresponding to each beam by using the time division method of the beam scanning.
- the LBT operation is stopped or the LBT operation is continued.
- the manner of performing LBT in the direction corresponding to the beam can be as follows:
- the first way is to continuously execute LBT for the direction corresponding to a beam until the LBT succeeds;
- the base station maintains a counter and performs an LBT operation in a direction corresponding to a beam until the LBT succeeds;
- the base station maintains a counter, and the LBT is always executed in a beam direction until it succeeds.
- the second method is to perform LBT for the direction corresponding to a beam, and if the time exceeds a certain threshold, switch to the direction corresponding to the other beam to execute the LBT;
- the base station maintains a counter and performs an LBT operation in a direction corresponding to a beam until a preset time period is exceeded. If it is not successful, the switch is switched to another counter, the value of the counter is reset, and the LBT operation is performed in the direction corresponding to the other beams.
- the base station maintains a counter, and after performing LBT exceeding a certain threshold 1 in a direction corresponding to a beam, it does not access the channel, and switches to another counter, and the value of the counter is reset.
- the third way is to perform LBT in the direction corresponding to each beam by using the time-division method of beam scanning.
- the time granularity of scanning is configurable, for example, it can be CCA slot (CCA slot; CCA: Clear Channel Assessment, idle
- CCA slot CCA slot
- CCA Clear Channel Assessment
- the integer multiple of the channel estimation may also be an integer multiple of the OFDM symbol.
- the base station performs the LBT in the direction corresponding to each beam, and then transmits the channel occupation request signal on the beam where the LBT is successfully obtained.
- the base station maintains multiple counters and performs LBT operations in the direction corresponding to one beam until the preset time period is exceeded. If it is not successful, it switches to other counters, the value of the original counter is retained, and the LBT operation is performed in the direction corresponding to other beams. ;or,
- the base station maintains multiple counters and performs LBT operations in the direction corresponding to one beam until the preset time period is exceeded. If it is not successful, it switches to other counters. The value of the original counter is retained until the preset time period exceeds the preset value. Reset and switch to the direction corresponding to other beams to perform LBT operation;
- the base station maintains multiple counters, and after performing LBT exceeding a certain threshold 1 in a beam direction and does not access the channel, it switches to other counters, and the value of the original counter continues to be retained. Or reset only after a certain threshold is exceeded.
- the base station maintains multiple counters, and performs LBT operations in the direction corresponding to each beam by using a time-division method of beam scanning, wherein the time granularity of the scanning is configurable;
- the base station maintains multiple counters, and performs LBT in the direction corresponding to each beam by using the time-division method of the beam scanning.
- the time granularity of the scanning is configurable, for example, it may be an integer multiple of the CCA slot. It may also be an integer multiple of the OFDM symbol, and the base station performs LBT in the direction corresponding to each beam, and maintains multiple counters according to the result of the LBT.
- the behavior of the base station may be to abandon the LBT in the direction corresponding to the other beams, or continue to perform the LBT in the direction corresponding to the other beams, depending on the implementation. Need.
- the signal that the allowed channel is occupied is a signal that allows the channel to be occupied by the interlace information dynamically indicated by the base station; and/or,
- the signal that the allowed channel is occupied is an interlace information that is semi-statically configured for the terminal through the network to feed back a signal that allows the channel to be occupied.
- the signal that the allowed channel is occupied is a signal that allows the channel to be occupied by the interlace information dynamically indicated by the base station; and/or,
- the signal that the allowed channel is occupied is an interlace information that is semi-statically configured for the terminal through the network to feed back a signal that allows the channel to be occupied.
- the signal that the allowed channel is occupied is fed back according to the interlace information indicated by the base station.
- the terminal after receiving the channel occupation request signal, the terminal needs to feed back, to the base station, a signal that allows the channel to be occupied.
- LAA Licensed Assisted Access
- an interlace structure that is, multiple PRBs (Physical Resource Blocks).
- Uniform distribution in the frequency domain as an interlace such as 100 PRB full bandwidth, occupying a PRB every 10 such that an interlace is obtained, and the full bandwidth supports 10 interlaces to support up to 10 users. Therefore, the base station may configure, for the UE, interlace information that feeds back a signal that allows the channel to be occupied, that is, the interlace information that may be included in the transmission channel occupation request signal may be included in the transmission of the signal that the UE is allowed to be occupied by the channel, such as an interlace index. (interleaved index).
- the indication of this method requires a certain amount of overhead;
- the network semi-statically configures an available interlace set for the UE, and the terminal freely selects the interlace transmission.
- the UEID information may be included in the signal that allows the channel to be occupied.
- the channel occupation request signal is a signal for allowing the channel to be occupied by the time information configured by the base station for the terminal;
- the channel occupancy request signal is fed back by each terminal at the same time.
- the base station configures the LBT parameters required for the terminal to feed back signals that are allowed to be occupied by the channel.
- the size of the counter or the size information of the contention window for generating the counter is included in the LBT parameter.
- the channel occupation request signal is a signal for allowing the channel to be occupied by the time information configured by the base station for the terminal.
- the signal that the allowed channel is occupied is fed back to the base station.
- the LBT is performed based on the size of the counter included in the LBT parameter or the size information of the contention window for generating the counter.
- the frequency domain transmission scheme of the scheduled multi-user transmission of the signal that the channel is occupied is given.
- the following scheme may be used:
- a plurality of scheduled users use the same time to transmit a signal that allows the channel to be occupied.
- the base station may configure the terminal to configure the LBT parameter that the UE needs to use to allow the channel to be occupied, and then use the channel occupation request signal or the uplink scheduling signaling of the base station.
- the LBT parameter that the UE needs to use to transmit the signal that allows the channel to be occupied is included, such as the LBT type. If the LBT type is LBT cat.4, the size of the counter or the size information of the contention window for generating the counter may also be given.
- Another solution is to transmit a signal that allows the channel to be occupied in a time division manner, for example, different terminals transmit signals that allow the channel to be occupied on different OFDM symbols.
- the base station can configure a feedback channel occupation request signal for the terminal.
- the time information of the base station includes the time information of the feedback channel occupation request signal in the channel occupation request signal or the uplink scheduling signaling of the base station.
- a time unit sent by multiple beams can only be sent in one beam direction, so the base station can sequentially send a channel occupation request signal to the terminal on at least one beam.
- the beam direction of the transmission channel occupation request signal is determined.
- An example of the determined method such as the carrier that successfully performs the LBT successfully, is not in the LBT phase in the respective beam directions described above, and some beam directions have been successfully LBT, and there are other Ldirections in the beam direction that have not been successful.
- the base station sends a channel occupation request signal in the beam direction determined in the foregoing. If the channel occupation request signal/the allowed channel is occupied, the signal handshake time is not significantly greater than the time for scanning the next beam.
- the base station may be allowed to perform the LBT in the other beam direction, and then return to the beam direction of the original transmission channel occupation request signal to receive the allowed channel in the corresponding time window. signal. So there are two options when allowing multi-beam LBT.
- the base station after the base station sends a channel occupation request signal to the terminal on the beam, the base station waits on the beam to receive the signal that the allowed channel is occupied, that is, after the channel occupation request signal is transmitted, waiting for the reception permission channel to be occupied in the beam direction. signal of.
- the base station after transmitting the channel occupation request signal to the terminal on the beam, the base station continues to send the channel occupation request signal to the terminal on the next beam, and receives the corresponding signal that the reserved channel is occupied on the beam that has sent the channel occupation request signal. That is, after the channel occupation request signal is transmitted, the scanning is continued on the other beams.
- the channel occupation request signal is transmitted by using subcarriers of 60K or more.
- the channel occupation request signal is transmitted by using subcarriers of 60K or more.
- the interval gap between the request signal occupation signal and the handshake signal that allows the channel occupation signal is an integer multiple of the OFDM symbol.
- the interval between the request signal occupation signal and the allowed channel occupation signal is 1 OFDM symbol;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 2 to 3 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 4 to 6 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 8 to 12 OFDM symbols.
- the interval value is that the base station notifies the terminal by signaling, or the network and the terminal pre-agreed.
- the terminal may directly transmit a signal that allows the channel to be occupied without using the LBT.
- ETSI it is stipulated that the short control signaling can be used without a cognitive channel.
- the interval between the RTS frame and the CTS frame of the WiFi is 16 us, and the CTS does not need to monitor the channel.
- NR supports flexible numerology (baseband parameters) as shown in the following table:
- the channel occupancy request signal/signal that allows the channel to be occupied can be transmitted using sub-carriers of 60K and above.
- the corresponding subcarrier size can be adopted according to the required frequency band.
- the interval between the request signal occupation signal and the allowed channel occupation signal is 1 OFDM symbol; the interval between the 120K subcarrier spacing request signal occupation signal and the allowed channel occupation signal is 2-3 OFDM symbols; for the 240K subcarrier spacing request signal occupation signal and the allowed channel occupation signal interval is 4- 6 OFDM symbols; the interval between the 480K subcarrier spacing request signal occupation signal and the allowed channel occupation signal is 8-12 OFDM symbols.
- the embodiment of the present application further provides a base station, a terminal, and a data transmission device and a signal feedback device. Since the principle of solving the problem of these devices is similar to the data transmission method and the signal feedback method, the implementation of the devices is implemented. See the implementation of the method, and the repetition will not be repeated.
- FIG. 9 is a schematic structural diagram of a base station, as shown in the figure, the base station includes:
- the processor 900 is configured to read a program in the memory 920 and perform the following process:
- the transceiver 910 is configured to receive and transmit data under the control of the processor 900, and performs the following processes:
- the data After receiving the signal that the channel is occupied, the data is transmitted on the beam transmitting the channel occupancy request signal.
- the channel occupation request signal After transmitting the channel occupation request signal to the terminal on the beam, it continues to send the channel occupation request signal to the terminal on the next beam, and receives the corresponding signal that the reserved channel is occupied on the beam that has transmitted the channel occupation request signal.
- the beam that sends the channel occupation request signal is all or part of the beam whose channel detection is idle after the LBT operation is performed in chronological order in the direction corresponding to at least one beam.
- the beam performing the LBT operation is all possible beams of the space, and/or is the portion of the possible beam that the network is pre-determined to configure.
- the beam performing the LBT operation is determined based on the prior information.
- the a priori information is whether the SSB can be correctly transmitted, or the transmission performance information of the beam acquired during the SSB transmission.
- performing LBT operations includes one or a combination of the following:
- the LBT operation is performed in the direction corresponding to each beam by using the time division method of the beam scanning.
- performing LBT operations includes one or a combination of the following:
- the base station maintains a counter and performs an LBT operation in a direction corresponding to a beam until the LBT succeeds;
- the base station maintains a counter and performs an LBT operation in a direction corresponding to a beam until a preset time period is exceeded. If it is not successful, the switch is switched to another counter, the value of the counter is reset, and the LBT operation is performed in the direction corresponding to the other beams. or,
- the base station maintains multiple counters and performs LBT operations in the direction corresponding to one beam until the preset time period is exceeded. If it is not successful, it switches to other counters, the value of the original counter is retained, and the LBT operation is performed in the direction corresponding to other beams. ;or,
- the base station maintains multiple counters and performs LBT operations in the direction corresponding to one beam until the preset time period is exceeded. If it is not successful, it switches to other counters. The value of the original counter is retained until the preset time period exceeds the preset value. Reset and switch to the direction corresponding to other beams to perform LBT operations; or,
- the base station maintains multiple counters, and performs LBT operations in the direction corresponding to each beam by using a time-division method of beam scanning, wherein the time granularity of the scanning is configurable.
- the temporal granularity of the scan is an integer multiple of the CCA slot or an integer multiple of the OFDM symbol.
- it further includes:
- the execution of the LBT operation is stopped or the LBT operation is continued.
- the channel occupancy request signal includes one or a combination of the following information:
- the information of the scheduled UEID, the Beam ID of the beam transmitting the channel occupation request signal, the location information of the beam transmitting the channel occupation request signal in space, and the channel occupation time information of the beam transmitting the channel occupation request signal The terminal provides feedback on the resource configuration required to allow the channel to be occupied, the LBT type information required for the terminal to feed back the signal that the channel is occupied, and the pilot information used for channel quality measurement.
- the signal that allows the channel to be occupied is a signal that allows the channel to be occupied by the interlace information dynamically indicated by the base station; and/or,
- the signal that the allowed channel is occupied is an interlace information that is semi-statically configured for the terminal through the network to feed back a signal that allows the channel to be occupied.
- the signal that the allowed channel is occupied is fed back according to the interlace information indicated by the base station.
- the channel occupation request signal is a signal that allows the channel to be occupied by the time information configured by the base station for the terminal;
- the channel occupancy request signal is fed back by each terminal at the same time.
- it further includes:
- the LBT parameters that are required for the terminal to configure the feedback signal that is allowed to be occupied by the channel are required for the terminal to configure the feedback signal that is allowed to be occupied by the channel.
- the size of the counter or the size information of the contention window for generating the counter is included in the LBT parameter.
- the base station when the base station receives the signal that allows the channel to be occupied on the multiple beams, the beam with the largest number of multiplexed users or the beam with the largest transmission capacity is selected for data transmission.
- the base station when the base station receives a signal that allows the channel to be occupied on multiple beams, the base station schedules the channel occupation request signal to perform data transmission with the user who has successfully handshaked the signal that the channel is occupied; and/or,
- the base station When the base station receives a signal that allows the channel to be occupied on the plurality of beams, the base station performs a beam on a beam that transmits a ratio of the number of users that allow the channel to be occupied and the number of users that receive the channel occupation request signal to be greater than a preset value. data transmission.
- data transmission is performed on the beam that is dominant in the LBT time sequence.
- the channel occupation request signal is transmitted by using subcarriers of 60K or more.
- the interval gap between the request signal occupation signal and the handshake signal that allows the channel occupation signal is an integer multiple of the OFDM symbol.
- the interval between the request signal occupation signal and the allowed channel occupation signal is 1 OFDM symbol;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 2 to 3 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 4 to 6 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 8 to 12 OFDM symbols.
- the interval value is that the base station notifies the terminal by signaling, or the network and the terminal pre-agreed.
- the LBT operation is performed using LBT cat.1.
- the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 900 and various circuits of memory represented by memory 920.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
- the bus interface provides an interface.
- Transceiver 910 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
- the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 can store data used by the processor 900 in performing operations.
- FIG. 10 is a schematic structural diagram of a UE. As shown in the figure, the user equipment includes:
- the processor 1000 is configured to read a program in the memory 1020 and perform the following process:
- the transceiver 1010 is configured to receive and transmit data under the control of the processor 1000, and performs the following processes:
- a channel occupation request signal sent to the terminal on the at least one beam, where the channel occupation request signal is a signal for requesting channel occupation;
- the signal that allows the channel to be occupied is fed back to the base station on the beam that receives the signal.
- the signal that the allowed channel is occupied includes at least one of the following information or a combination thereof:
- Information related to channel occupation time ID information of the beam, UEID information of the own terminal, and beam-based CQI channel quality information.
- the signal that allows the channel to be occupied is a signal that allows the channel to be occupied by the interlace information dynamically indicated by the base station; and/or,
- the signal that the allowed channel is occupied is an interlace information that is semi-statically configured for the terminal through the network to feed back a signal that allows the channel to be occupied.
- the signal that the allowed channel is occupied is fed back according to the interlace information indicated by the base station.
- the channel occupation request signal is a signal that allows the channel to be occupied by time information configured by the base station for the terminal.
- it further includes:
- the signal that the allowed channel is occupied is fed back to the base station.
- the LBT is performed according to the size of the counter included in the LBT parameter or the size information of the contention window for generating the counter.
- the channel occupation request signal is transmitted by using subcarriers of 60K or more.
- the interval gap between the request signal occupation signal and the handshake signal that allows the channel occupation signal is an integer multiple of the OFDM symbol.
- the interval between the request signal occupation signal and the allowed channel occupation signal is 1 OFDM symbol;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 2 to 3 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 4 to 6 OFDM symbols;
- the interval between the request signal occupation signal and the allowed channel occupation signal is 8 to 12 OFDM symbols.
- the interval value is that the base station notifies the terminal by signaling, or the network and the terminal pre-agreed.
- the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1000 and various circuits of memory represented by memory 1020.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
- the bus interface provides an interface.
- the transceiver 1010 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
- the user interface 1030 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
- the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 in performing operations.
- the processor may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or perform the embodiments in the present application.
- a general purpose processor can be a microprocessor or any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- a data transmission device is further provided in the embodiment of the present application, including:
- a sending module configured to send a channel occupation request signal to the terminal to request channel occupation after performing an LBT operation in a direction corresponding to the at least one beam
- a transmission module configured to perform data transmission on a beam that transmits a channel occupation request signal after receiving a signal that allows the channel to be occupied.
- a signal feedback device is further provided in the embodiment of the present application, including:
- a receiving module configured to receive a channel occupation request signal sent by the base station to the terminal on the at least one beam, where the channel occupation request signal is a signal for requesting channel occupation;
- a feedback module configured to: after receiving the channel occupation request signal correctly, feed back, to the base station, a signal that allows the channel to be occupied on the beam that receives the signal.
- the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores computer instructions, when the computer instructions are run on a computer, causing the computer to execute the foregoing embodiment of the present application. method.
- the readable storage medium may be a computer storage medium, and the computer storage medium may be any available media or data storage device accessible by the computer, including but not limited to magnetic memory (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk ( MO), etc.), optical memories (for example, CD, DVD, BD, HVD, etc.), and semiconductor memories (for example, ROM, EPROM, EEPROM, NAND FLASH, SSD).
- magnetic memory eg, floppy disk, hard disk, magnetic tape, magneto-optical disk ( MO), etc.
- optical memories for example, CD, DVD, BD, HVD, etc.
- semiconductor memories for example, ROM, EPROM, EEPROM, NAND FLASH, SSD.
- the user terminal UE involved in the embodiment of the present application may be a device that provides voice and/or data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem.
- the wireless user terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and has a mobile terminal.
- RAN Radio Access Network
- the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
- the wireless user terminal may also be referred to as a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, and an Access Point. , Remote Terminal, Access Terminal, User Terminal, User Agent, User Device.
- the base station involved in the embodiment of the present application may be used to convert a received air frame into an IP (Internet Protocol) packet, as a router between the wireless terminal device and the rest of the access network, where the access network
- IP Internet Protocol
- the rest of the network may include Internet Protocol (IP) network equipment.
- IP Internet Protocol
- the base station can also coordinate attribute management of the air interface.
- the base station may be a network device in a 5G system, such as a Next Generation Node B (gNB), or may be a Global System for Mobile Communication (GSM) or Code Division Multiple Access (Code Division Multiple).
- gNB Next Generation Node B
- GSM Global System for Mobile Communication
- Code Division Multiple Access Code Division Multiple
- Base Transceiver Station in Access, CDMA
- embodiments of the present application can be provided as a method, system, or computer program product.
- the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
- the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种数据传输、信号反馈方法及设备,包括:基站在至少一个beam对应的方向上执行LBT操作后,向终端发送信道占用请求信号用以请求进行信道占用;基站在接收到允许信道被占用的信号后,在发送信道占用请求信号的beam上进行数据传输。终端接收基站在至少一个beam上向终端发送的信道占用请求信号,所述信道占用请求信号是用以请求进行信道占用的信号;终端在正确接收到所述信道占用请求信号后,在接收到该信号的beam上向基站反馈允许信道被占用的信号。采用本申请,能够避免干扰节点带来的数据传输干扰问题。
Description
本申请要求在2018年5月11日提交中国专利局、申请号为201810450590.6、发明名称为“一种数据传输、信号反馈方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及无线通信技术领域,特别涉及一种数据传输、信号反馈方法及设备。
非授权频谱没有规划具体的应用系统,可以为多种无线通信系统共享,目前非授权频段(unlicensed spectrum)现存的通信系统主要有IEEE标准化的蓝牙、WiFi及其3GPP标准化的LTE-U(LTE in unlicensed spectrum,非授权频段中的LTE;LTE:Long Term Evolution,长期演进)系统,多种系统间通过抢占资源的方式使用共享的非授权频谱资源。
为了确保LTE-U与WiFi友好共存,3GPP针对LBT(listen Before Talk,对话前监听)技术展开了深入的讨论,提供了4种LBT方案。
–Cat.1:No LBT(无LBT);
–Cat.2:LBT without random back-off(无随机回退的LBT);
–Cat.3:LBT with random back-off with fixed size of contention window(具有固定竞争窗口大小的随机回退的LBT);
–Cat.4:LBT with random back-off with variable size of contention window(具有可变竞争窗口大小的随机回退的LBT)。
最后标准化了两种LBT机制,即3GPP定义的LBT cat.2与LBT cat.4。
非授权频段传输距离一般较近,也许覆盖半径不再是基于beam(波束)传输的主要理由,但是基于beam传输的引入给LBT机制带来新的变数。对于基于beam传输的NR-U(NR in unlicensed spectrum,非授权频段的NR;NR:new radio access technology,新无线接入技术)来说明显可以考虑与方向相关的LBT即directional LBT。执行基于方向的LBT,会提供NR-U更多的传输机会。
现有技术的不足在于,基于方向的LBT会带来较严重的隐藏节点问题,但现有技术中并没有避免隐藏节点问题的技术方案。
发明内容
本申请提供了一种数据传输、信号反馈方法及设备,用以解决LTE-U中能够避免干扰 节点带来的数据传输干扰问题。
本申请实施例中提供了一种数据传输方法,包括:
基站在至少一个beam对应的方向上执行LBT操作后,向终端发送信道占用请求信号用以请求进行信道占用;
基站在接收到允许信道被占用的信号后,在发送信道占用请求信号的beam上进行数据传输。
实施中,基站在beam上向终端发送信道占用请求信号后,基站在该beam上等待接收允许信道被占用的信号;和/或,
基站在beam上向终端发送信道占用请求信号后,继续在下一个beam上向终端发送信道占用请求信号,并在发送过信道占用请求信号的beam上接收相应的允许信道被占用的信号。
实施中,发送所述信道占用请求信号的beam,是基站在至少一个beam对应的方向上按照时间先后顺序执行LBT操作后,信道检测为空闲的所有或者部分beam。
实施中,执行LBT操作的beam是空间的所有可能的beam,和/或,是网络预先确定配置好的部分可能的beam。
实施中,执行LBT操作的beam是根据先验信息来确定的。
实施中,所述先验信息是是否能够正确传输SSB(Synchronization Signal Block,同步信号分组),或在SSB传输过程中获取的beam的传输性能信息。
实施中,执行LBT操作包括以下方式之一或者其组合:
针对某个beam对应的方向持续执行LBT操作直到LBT成功;或,
在预设时间段内针对某个beam对应的方向执行LBT,若未成功则切换到其它beam对应的方向上执行LBT操作;或,
利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作。
实施中,执行LBT操作包括以下方式之一或者其组合:
基站维护一个counter(计数器),在一个beam对应的方向上执行LBT操作直到LBT成功;或,
基站维护一个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,counter的值重置,并切换到其它beam对应的方向上执行LBT操作;或,
基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,原counter的值保留,并切换到其它beam对应的方向上执行LBT操作;或,
基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段, 若未成功则切换到其它counter,原counter的值保留至超过预设时间段的次数超过预设值后重置,并切换到其它beam对应的方向上执行LBT操作;或,
基站维护多个counter,利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作,其中,扫描的时间颗粒度是可配置的。
实施中,扫描的时间颗粒度是CCA slot(CCA时隙;CCA:Clear Channel Assessment,空闲信道评估)的整数倍或OFDM(Orthogonal Frequency Division Multiplex,正交频分复用)符号的整数倍。
实施中,进一步包括:
在基站接收到允许信道被占用的信号后,停止执行LBT操作或继续执行LBT操作。
实施中,所述信道占用请求信号包含以下信息之一或者其组合:
所调度的UEID(终端标识;UE:User Equipment,用户设备)的信息、发送所述信道占用请求信号的beam的Beam ID、发送所述信道占用请求信号的beam在空间中的位置信息、发送所述信道占用请求信号的beam的信道占用时间信息、终端反馈允许信道被占用的信号时所需的资源配置、终端反馈允许信道被占用的信号时所需的LBT类型信息、用于信道质量测量的导频信息。
实施中,所述允许信道被占用的信号是通过基站动态指示的interlace(交织)信息来反馈允许信道被占用的信号的;和/或,
所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
实施中,所述允许信道被占用的信号是根据基站指示的interlace信息来反馈的。
实施中,所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的;或,
所述信道占用请求信号是各终端在同一时间反馈的。
实施中,进一步包括:
基站为终端配置反馈允许信道被占用的信号需要采用的LBT参数。
实施中,在LBT参数中的LBT类型是LBT cat.4时,在LBT参数中包含counter的大小或者用于产生counter的竞争窗口的大小信息。
实施中,当基站在多个beam上接收到允许信道被占用的信号时,选择复用用户数最多的beam或者传输容量最大的beam进行数据传输。
实施中,当基站在多个beam上接收到允许信道被占用的信号时,基站调度信道占用请求信号与允许信道被占用的信号握手成功的用户进行数据传输;和/或,
当基站在多个beam上接收到允许信道被占用的信号时,基站在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上进行 数据传输。
实施中,在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上,选择LBT时间顺序上占优的beam上进行数据传输。
实施中,所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
实施中,请求信号占用信号与允许信道占用信号的握手信号间的间隔gap是OFDM符号的整数倍。
实施中,所述信道占用请求信号是采用60K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;或,
所述信道占用请求信号是采用120K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为2至3个OFDM符号;或,
所述信道占用请求信号是采用240K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为4至6个OFDM符号;或,
所述信道占用请求信号是采用480K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为8至12个OFDM符号。
实施中,所述间隔值是基站通过信令通知终端,或者网络与终端预先约定的。
实施中,在beam correspondence(波束对应关系)不能确保之时,采用LBT cat.1执行LBT操作。
本申请实施例中提供了一种信号反馈方法,包括:
终端接收基站在至少一个beam上向终端发送的信道占用请求信号,所述信道占用请求信号是用以请求进行信道占用的信号;
终端在正确接收到所述信道占用请求信号后,在接收到该信号的beam上向基站反馈允许信道被占用的信号。
实施中,所述允许信道被占用的信号至少包含以下信息之一或者其组合:
与信道占用时间相关的信息、该beam的ID信息、本终端的UEID信息、基于beam的CQI(Channel Quality Indicator,信道质量指示)信道质量信息。
实施中,所述允许信道被占用的信号是通过基站动态指示的interlace信息来反馈允许信道被占用的信号的;和/或,
所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
实施中,所述允许信道被占用的信号是根据基站指示的interlace信息来反馈的。
实施中,所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的。
实施中,进一步包括:
接收基站为终端配置反馈允许信道被占用的信号需要采用的LBT参数;
按该LBT参数在接收到该信号的beam对应的方向上进行LBT后,向基站反馈允许信道被占用的信号。
实施中,在LBT参数中的LBT类型是LBT cat.4时,根据在LBT参数中包含的counter的大小或者用于产生counter的竞争窗口的大小信息进行LBT。
实施中,所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
实施中,请求信号占用信号与允许信道占用信号的握手信号间的间隔gap是OFDM符号的整数倍。
实施中,所述信道占用请求信号是采用60K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;或,
所述信道占用请求信号是采用120K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为2至3个OFDM符号;或,
所述信道占用请求信号是采用240K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为4至6个OFDM符号;或,
所述信道占用请求信号是采用480K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为8至12个OFDM符号。
实施中,所述间隔值是基站通过信令通知终端,或者网络与终端预先约定的。
本申请实施例中提供了一种基站,基站中包括:
处理器,用于读取存储器中的程序,执行下列过程:
根据收发机需要进行数据处理;
收发机,用于在处理器的控制下接收和发送数据,执行下列过程:
在至少一个beam对应的方向上执行LBT操作后,向终端发送信道占用请求信号用以请求进行信道占用;
在接收到允许信道被占用的信号后,在发送信道占用请求信号的beam上进行数据传输。
实施中,在beam上向终端发送信道占用请求信号后,在该beam上等待接收允许信道被占用的信号;和/或,
在beam上向终端发送信道占用请求信号后,继续在下一个beam上向终端发送信道占用请求信号,并在发送过信道占用请求信号的beam上接收相应的允许信道被占用的信号。
实施中,发送所述信道占用请求信号的beam,是在至少一个beam对应的方向上按照时间先后顺序执行LBT操作后,信道检测为空闲的所有或者部分beam。
实施中,执行LBT操作的beam是空间的所有可能的beam,和/或,是网络预先确定配置好的部分可能的beam。
实施中,执行LBT操作的beam是根据先验信息来确定的。
实施中,所述先验信息是是否能够正确传输SSB,或在SSB传输过程中获取的beam的传输性能信息。
实施中,执行LBT操作包括以下方式之一或者其组合:
针对某个beam对应的方向持续执行LBT操作直到LBT成功;或,
在预设时间段内针对某个beam对应的方向执行LBT,若未成功则切换到其它beam对应的方向上执行LBT操作;或,
利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作。
实施中,执行LBT操作包括以下方式之一或者其组合:
基站维护一个counter,在一个beam对应的方向上执行LBT操作直到LBT成功;或,
基站维护一个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,counter的值重置,并切换到其它beam对应的方向上执行LBT操作;或,
基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,原counter的值保留,并切换到其它beam对应的方向上执行LBT操作;或,
基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,原counter的值保留至超过预设时间段的次数超过预设值后重置,并切换到其它beam对应的方向上执行LBT操作;或,
基站维护多个counter,利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作,其中,扫描的时间颗粒度是可配置的。
实施中,扫描的时间颗粒度是CCA slot的整数倍或OFDM符号的整数倍。
实施中,进一步包括:
在接收到允许信道被占用的信号后,停止执行LBT操作或继续执行LBT操作。
实施中,所述信道占用请求信号包含以下信息之一或者其组合:
所调度的UEID的信息、发送所述信道占用请求信号的beam的Beam ID、发送所述信道占用请求信号的beam在空间中的位置信息、发送所述信道占用请求信号的beam的信道占用时间信息、终端反馈允许信道被占用的信号时所需的资源配置、终端反馈允许信道被占用的信号时所需的LBT类型信息、用于信道质量测量的导频信息。
实施中,所述允许信道被占用的信号是通过基站动态指示的interlace信息来反馈允许信道被占用的信号的;和/或,
所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
实施中,所述允许信道被占用的信号是根据基站指示的interlace信息来反馈的。
实施中,所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的;或,
所述信道占用请求信号是各终端在同一时间反馈的。
实施中,进一步包括:
为终端配置反馈允许信道被占用的信号需要采用的LBT参数。
实施中,在LBT参数中的LBT类型是LBT cat.4时,在LBT参数中包含counter的大小或者用于产生counter的竞争窗口的大小信息。
实施中,当基站在多个beam上接收到允许信道被占用的信号时,选择复用用户数最多的beam或者传输容量最大的beam进行数据传输。
实施中,当基站在多个beam上接收到允许信道被占用的信号时,基站调度信道占用请求信号与允许信道被占用的信号握手成功的用户进行数据传输;和/或,
当基站在多个beam上接收到允许信道被占用的信号时,基站在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上进行数据传输。
实施中,在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上,选择LBT时间顺序上占优的beam上进行数据传输。
实施中,所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
实施中,请求信号占用信号与允许信道占用信号的握手信号间的间隔gap是OFDM符号的整数倍。
实施中,所述信道占用请求信号是采用60K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;或,
所述信道占用请求信号是采用120K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为2至3个OFDM符号;或,
所述信道占用请求信号是采用240K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为4至6个OFDM符号;或,
所述信道占用请求信号是采用480K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为8至12个OFDM符号。
实施中,所述间隔值是基站通过信令通知终端,或者网络与终端预先约定的。
实施中,在beam correspondence不能确保之时,采用LBT cat.1执行LBT操作。
本申请实施例中提供了一种终端,终端中包括:
处理器,用于读取存储器中的程序,执行下列过程:
根据收发机需要进行数据处理;
收发机,用于在处理器的控制下接收和发送数据,执行下列过程:
接收基站在至少一个beam上向终端发送的信道占用请求信号,所述信道占用请求信号是用以请求进行信道占用的信号;
在正确接收到所述信道占用请求信号后,在接收到该信号的beam上向基站反馈允许信道被占用的信号。
实施中,所述允许信道被占用的信号至少包含以下信息之一或者其组合:
与信道占用时间相关的信息、该beam的ID信息、本终端的UEID信息、基于beam的CQI信道质量信息。
实施中,所述允许信道被占用的信号是通过基站动态指示的interlace信息来反馈允许信道被占用的信号的;和/或,
所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
实施中,所述允许信道被占用的信号是根据基站指示的interlace信息来反馈的。
实施中,所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的。
实施中,进一步包括:
接收基站为终端配置反馈允许信道被占用的信号需要采用的LBT参数;
按该LBT参数在接收到该信号的beam对应的方向上进行LBT后,向基站反馈允许信道被占用的信号。
实施中,在LBT参数中的LBT类型是LBT cat.4时,根据在LBT参数中包含的counter的大小或者用于产生counter的竞争窗口的大小信息进行LBT。
实施中,所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
实施中,请求信号占用信号与允许信道占用信号的握手信号间的间隔gap是OFDM符号的整数倍。
实施中,所述信道占用请求信号是采用60K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;或,
所述信道占用请求信号是采用120K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为2至3个OFDM符号;或,
所述信道占用请求信号是采用240K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为4至6个OFDM符号;或,
所述信道占用请求信号是采用480K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为8至12个OFDM符号。
实施中,所述间隔值是基站通过信令通知终端,或者网络与终端预先约定的。
本申请实施例中提供了一种数据传输装置,包括:
发送模块,用于在至少一个beam对应的方向上执行LBT操作后,向终端发送信道占用请求信号用以请求进行信道占用;
传输模块,用于在接收到允许信道被占用的信号后,在发送信道占用请求信号的beam上进行数据传输。
本申请实施例中提供了一种信号反馈装置,包括:
接收模块,用于接收基站在至少一个beam上向终端发送的信道占用请求信号,所述信道占用请求信号是用以请求进行信道占用的信号;
反馈模块,用于在正确接收到所述信道占用请求信号后,在接收到该信号的beam上向基站反馈允许信道被占用的信号。
本申请有益效果如下:
本申请实施例提供的技术方案中,由于基站会在至少一个beam对应的方向上执行LBT操作后,向终端发送信道占用请求信号用以请求进行信道占用;在得到终端反馈的允许信道被占用的信号后,才在接收到该信号的beam上进行数据传输。因而避免了干扰节点带来的数据传输干扰问题。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例中WiFi在非授权频谱上的抢占资源方式的示意图;
图2为本申请实施例中ETSI FBE信道接入机制的示意图;
图3为本申请实施例中ETSI LBE信道接入机制的示意图;
图4为本申请实施例中基于beam的空间复用的示意图;
图5为本申请实施例中LAA与NR-U共存情景的示意图;
图6为本申请实施例中NR-U与NR-U共存情景的示意图;
图7为本申请实施例中基站侧的数据传输方法实施流程的示意图;
图8为本申请实施例中终端侧的信号反馈方法实施流程的示意图;
图9为本申请实施例中基站的结构示意图;
图10为本申请实施例中UE的结构示意图。
发明人在发明过程中注意到:
非授权频谱没有规划具体的应用系统,可以为多种无线通信系统共享,目前非授权频 段(unlicensed spectrum)现存的通信系统主要有IEEE标准化的蓝牙、WiFi及其3GPP标准化的LTE-U(LTE in unlicensed spectrum,非授权频段中的LTE;LTE:Long Term Evolution,长期演进)系统,多种系统间通过抢占资源的方式使用共享的非授权频谱资源。
为了确保各种通信系统在非授权频段友好共存,无论是WiFi还是LTE-U都将LBT作为LTE-U竞争接入的基本手段。
802.11系统采用信道接入机制称为载波监听/冲突避免CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance,载波监听多址接入/冲突避免)机制,图1为WiFi在非授权频谱上的抢占资源方式的示意图,WiFi系统在非授权频谱上的抢占资源方式如图1所示。首先对信道进行监听,当信道空闲时间达到DIFS(Distributed Inter-Frame Space,分布式帧间空间),便判断当前信道为空闲信道,然后各个等待接入的信道的站点,便进入一个随机回退阶段,用于避免多个站点在相同的资源发生碰撞。此外,为了保证公平性,还规定每个站点不能长期占用频谱资源,到达一定时间或数据传输量上限时,需要释放资源,以供其他WiFi或LTE系统抢占资源。
在WiFi系统中位于距离较远的两个AP(Access Point,接入点)相互不能听到对方,独立向两个站点STA(station,站点)传输数据,但是这两个STA距离很近,此时两个WiFi便互相构成隐藏节点,为了克服隐藏节点问题,WiFi还支持RTS/CTS(Request-To-Send/Clear-To-Send protocol请求发送/清除发送协议)握手机制。即AP广播一个RTS帧,如果站点STA收到RTS会回复一个CTS帧,在RTS/CTS握手机制中携带了本次传输时占用信道的时间。这样附近的节点收到CTS后会停止接入信道,从而避免碰撞发生。
为了提供一个灵活的公平的自适应信道接入机制,欧洲要求在非授权的5150-5350MHz与5470-5725MHz频段采用LBT技术,LBT过程类似于WiFi的CSMA/CA机制,每个设备利用信道之前要进行CCA(Clear Channel Assessment,空闲信道评估)检测。CCA利用能量检测来判断当前信道是否有信号传输,从而确定信道是否被占用。ETSI标准将非授权频段的设备分类为frame-based(基于帧)与load-based(基于负载),分别对应两类接入机制:FBE(Frame Based Equipment,基于帧的设备)与LBE(Load Based Equipment,基于负载的设备),图2为ETSI FBE信道接入机制示意图,图3为ETSI LBE信道接入机制示意图,FBE与LBE的信道接入机制如图2、图3所示。
在FBE信道接入机制中,FBE接入在固定的帧结构位置执行CCA检测,只要信道有一个CCA周期(不低于20us)判断为空就立刻接入信道,发起数据传输过程,信道传输时间占用时间相对固定,最小1ms最大10ms,空闲周期应该至少为信道占用时间的5%,在空闲周期的尾部的CCA时间内设备执行新的CCA检测再次接入信道。在FBE机制中信道占用时间加idle(空闲)周期是一个固定值称为frame period(帧周期)。
在LBE信道接入机制中,每次传输对信道的占用时间与起点都是可变的,在获取信道 之前要进行扩展CCA检测,首先根据CW(contention window,竞争窗口)的大小q,产生一个随机的因子N,直到信道空闲时间达到CCA时间的N倍,且信道为闲,才接入信道,发起数据传输过程,最大的信道占用时间为13ms。
LTE-U为了与WiFi友好共存,针对LBT技术展开了深入的讨论。最后标准化了两种LBT机制,即3GPP定义的LBT cat.2与LBT cat.4。LBT cat.2类似于FBE没有采用随机回退机制,而是采用固定CCA时间如20us;LBT cat.4高度类似于WiFi的CSMA/CA机制,eNB首先要执行一次基于ED(Energy Detection,能量检测)的CCA检测时间是可以配置的,这个CCA检测称为ICCA(Initial CCA,初始CCA),若ICCA能量水平低于预定门限,信道判断为闲,设备立即传输;否则当前信道被占用,设备要接着进行ECCA(Extension CCA,扩展CCA)检测,eNB要先根据竞争窗口q的大小生成一个需要倒计时的counter(计数器)值N,发现一个空闲CCA时隙counter值减去1,当counter值为0接入信道,发起数据传输过程。
为了提高数据速率,改善高频段的覆盖,NR(new radio access technology,新无线接入技术)中采用了Massive MIMO(大规模MIMO;MIMO:Multiple Input Multiple Output,多入多出)技术,特别在毫米波频段,大多数传输节点都采用基于Massive MIMO的波束赋形的数据传输。基于beam(波束)传输的最大特点是空间有多个可能的传输beam,基站与终端需要确定一对最佳的发送与接收beam,NR中规定初始接入阶段,首先基站在各个beam上发送SSB(Synchronization Signal Block,同步信号分组),终端确定最佳的发送beam后反馈给基站,数据传输过程中可以通过MAC CE(媒体接入控制控制单元;MAC:Media Access Control,媒体接入控制;CE:Control Element,控制单元)半静态配置,也可以通过PDCCH(physical downlink control channel,物理下行控制信道)指示终端用于接收数据beam的改变。
非授权频段传输距离一般较近,也许覆盖半径不再是基于beam传输的主要理由,但是基于beam传输的引入给LBT机制带来新的变数。前述的WiFi与LTE-U采用的CSMA/CA机制、LBT cat.2、LBT cat.4信道接入机制实际上都属于全向LBT,对于基于beam传输的NR-U(非授权频段的新无线接入技术)来说明显可以考虑与方向相关的LBT即directional LBT。执行基于方向的LBT,会提供NR-U更多的传输机会。图4为基于beam的空间复用示意图,如图4所示,假定gNB A、gNB与AP距离很近,如采用全向LBT可以相互听到,相同时间内只能一个节点接入信道,如果采用基于方向的LBT,gNB与WiFi会在相同的时间内在不同的beam上传输而互不干扰。
但是基于方向的LBT会带来较严重的隐藏节点问题,图5为LAA与NR-U共存情景示意图,如图5所示,采用全向发送LAA(Licensed Assisted Access,授权载波辅助接入)gNB1先接入信道向UE1进行传输,另一个采用基于方向LBT的gNB2的接收波束无法收 到gNB1发送的信号,认为信道空闲接入信道向UE2发起传输,如此一来gNB1与gNB2发送的信号会在UE1与UE2处发生碰撞。图6为NR-U与NR-U共存情景示意图,如果把图5中的LAA的eNB换成一个NR-U的gNB同样问题仍然存在,如图6所示。
如前面所述WiFi为了避免隐藏节点问题,提出了RTS/CTS握手机制。可以将此RTS/CTS握手机制应用到NR-U,需要研究如何根据NR-U的特点,利用这种握手机制解决上述共存难题。
随着移动数据业务量的不断增长,频谱资源越来越紧张,仅使用授权频谱资源进行网络部署和业务传输可能已经不能满足业务量需求。因此3GPP对LTE在非授权频段的传输进行了标准化。目前5G的第一个版本已经冻结了,类似于LTE-U将授权频段的NR技术应用到免许可频段需要根据5G的新特性,展开深入研究。目前NR系统如何在非授权频谱资源上工作还没有明确的方案因此,本申请实施例中给出一种NR系统在非授权频谱上的数据传输以及信号反馈方案。下面结合附图对本申请的具体实施方式进行说明。
在说明过程中,将分别从终端与基站侧的实施进行说明,然后还将给出二者配合实施的实例以更好地理解本申请实施例中给出的方案的实施。这样的说明方式并不意味着二者必须配合实施、或者必须单独实施,实际上,当终端与基站分开实施时,其也各自解决终端侧、基站侧的问题,而二者结合使用时,会获得更好的技术效果。
图7为基站侧的数据传输方法实施流程示意图,如图所示,可以包括:
步骤701、基站在至少一个beam对应的方向上执行LBT操作后,向终端发送信道占用请求信号用以请求进行信道占用;
步骤702、基站在接收到允许信道被占用的信号后,在发送信道占用请求信号的beam上进行数据传输。
图8为终端侧的信号反馈方法实施流程示意图,如图所示,可以包括:
步骤801、终端接收基站在至少一个beam上向终端发送的信道占用请求信号,所述信道占用请求信号是用以请求进行信道占用的信号;
步骤802、终端在正确接收到所述信道占用请求信号后,在接收到该信号的beam上向基站反馈允许信道被占用的信号。
实施中,基站首先在多个beam上依次发送信道占用请求信号,终端收到信道占用请求信号后会在多个beam或者一个beam上回复允许信道被占用的信号。基站成功解出终端发送的允许信道被占用的信号后,进行数据发送。
实施中正确接收表示UE能够正确解出这个信号,如果UE处没有其它强干扰,说明该UE附近不存在其它正在传输的节点;同理UE如果能够正确解码反馈允许占用信号,也只有基站能够解码成功,基站才能获知,有时反馈的beam与接收beam不一致,只有基站正确解码握手信号才算握手成功。
下面结合实例对具体的实施来进行说明。
实施例1
本例中,在基站侧上:
发送所述信道占用请求信号的beam,是基站在至少一个beam对应的方向上按照时间先后顺序执行LBT操作后,信道检测为空闲的所有或者部分beam。
执行LBT操作的beam是空间的所有可能的beam,和/或,是网络预先确定配置好的部分可能的beam。
信道占用请求信号包含以下信息之一或者其组合:
所调度的UEID的信息、发送所述信道占用请求信号的beam的Beam ID、发送所述信道占用请求信号的beam在空间中的位置信息、发送所述信道占用请求信号的beam的信道占用时间信息、终端反馈允许信道被占用的信号时所需的资源配置、终端反馈允许信道被占用的信号时所需的LBT类型信息、用于信道质量测量的导频信息。
当基站在多个beam上接收到允许信道被占用的信号时,选择复用用户数最多的beam或者传输容量最大的beam进行数据传输。
相应的,在终端侧上:
所述允许信道被占用的信号包含以下信息之一或者其组合:
与信道占用时间相关的信息、该beam的ID信息、本终端的UEID(终端标识)信息、基于beam的CQI(Channel Quality Indicator,信道质量指示)信道质量信息。
具体的,基站首先在多个beam对应的方向上按照时间先后顺序执行LBT操作,所述的多个beam可以是空间的所有可能的beam,也可以是网络预先确定配置好的部分可能的beam,只有一个beam的情况可以作为一种特例,并不被排除在外,也可以按同样方式实施;所述的LBT方式可以是基于方向性的LBT。
基站在信道检测为空闲的所有或者部分beam上,发送基于beam的信道占用信号请求信号,该信道占用请求信号中可以包含:
所调度的UEID的信息;
发送信道占用请求信号的beam信息,该信息除了可以包含Beam ID的标识,也可以进一步包含beam在空间中的位置信息,如beam的角度等可以确定beam位置的相关信息;
还可以包含信道占用时间信息,如开始占用时间及其最大信道占用时间;
还可以包含终端反馈允许信道被占用信号时的所需的资源配置、终端反馈允许信道被占用的信号时所需的LBT类型信息;
还可以包含导频信息用于信道质量测量。
终端在正确接收了基于某个beam的信道占用信号请求信号后,会针对该beam信道占用信号请求信号反馈一个允许信道被占用的信号,该信号可以占用一个OFDM(Orthogonal Frequency Division Multiplex,正交频分复用)符号,该信号中除了包含与信道占用时间相关的信息外,还可以包含该beam的ID信息,还可以包含UEID信息,可以包含基于beam的CQI信道质量信息,如RSSI(Received Signal Strength Indication,接收的信号强度指示)和/或RSRP(Reference Signal Received Power,参考信号接收功率)/RSRQ(Reference Signal Received Quality,参考信号接收质量)的估计值。
事实上,基于beam的CQI信息对与基站判断是否在该beam上是否有隐藏节点非常重要,基于beam的CQI可以在UCI(Uplink Control Information,上行控制信息)中承载,测量基于beam的CQI所用导频的例子可以是基于CSI-RS(channel state information reference signal,信道状态信息参考信号)或者SSB(Synchronization Signal Block,同步信号块)中所包含的DMRS(demodulation reference signal,解调参考信号)。
在没有收到允许信道被占用的信号之前,基站不知道是否可以接入信道,所以至少在基站收到允许信道被占用的信号之前,基站在LBT通过的多个beam上发送信道占用请求信号,当然,不排除基站只在一个最佳的beam上发信道占用请求信号的特例;
在终端接收信号时,可以利用多个beam接收信道占用请求信号,译码成功后反馈允许信道被占用的信号。基站成功接收允许信道被占用的信号后,确定可以接入信道,进行数据传输。
终端如果在多个beam上正确解出信道占用请求信号,可以向这多个beam都反馈允许信道被占用的信号,也可以根据基站配置选择几个beam反馈允许信道被占用的信号。
基站根据多个UE(User Equipment,用户设备)反馈的允许信道被占用的信号,来确定接入信道的beam,比如可以选择复用用户数最多或者传输容量最大的beam接入信道进行数据传输,当然只有一个beam的情况就无需选择。
具体实施中也可以考虑调度的公平性,基于各个beam上握手成功信息或还参考用户与数据调度相关的信息,如被调度的次数,需要传输的数据的大小,及其UE的能力等来进行选择。
实施例2:
本例中,实施中,当基站在多个beam上接收到允许信道被占用的信号时,基站调度信道占用请求信号与允许信道被占用的信号握手成功的用户进行数据传输;和/或,
当基站在多个beam上接收到允许信道被占用的信号时,基站在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上进行数据传输。
实施中,在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上,选择LBT时间顺序上占优的beam上进行数据传输。
具体的,基站经常一次欲调度多个终端,基站会在LBT成功的beam上向多个终端发 送信道占用请求信号,但是基站成功收到信道占用信号的用户很可能是基站发送请求信道占用信号用户的一个子集。基站收到允许信道占用信号后,基站接入信道后只调度请求占用信号/允许占用信号握手成功的用户的上行或者下行数据传输。考虑到反馈允许信道占用信号的用户数是多个,基站另外一种可选的操作方法为可以设定一个门限值,如果在该beam上收到的允许占用信号的UE数目与基站发送请求占用信号的UE数目的比例小于该门限值就不允许基站在该beam上进行信道接入,该门限值大小的一个例子如可设置为20%;
如基站在多个beam上发送了请求信道占用信号,如果终端在多个beam上正确解出信道占用请求信号,可以基于这多个beam都反馈允许信道被占用的信号,也可以根据基站配置选择几个beam反馈允许信道被占用的信号。基站根据多个UE反馈的允许信道被占用的信号,确定在哪个beam上接入信道,可以选择复用用户数最多或者传输容量最大的beam接入信道进行数据传输,另外一种方法利用前面所述的该beam上收到的允许占用信号的数目与发送的请求占用信号的比例小于该门限值大小优先在LBT时间顺序上占优的beam上接入信道。
实施例3:
如实施例1的例子,在设备的发送与接收beam的一致性,得到保证的条件下会有较好的效果,但是,如果执行LBT的接收beam与发送信号的beam没有校准因而无法保持是同一个beam的情况下,此时在发送beam对应的方向上执行LBT的意义不是很大,则基站的行为可以是在每个beam对应的方向上不执行LBT,而是直接在允许的beam对应的方向上发送信道占用请求信号,此时终端与基站的其它行为可以与实施例1一致。
实施例4:
本例中,在基站侧上:
执行LBT操作的beam是根据信道的先验信息来确定的。
先验信息是是否能够正确传输SSB,或在SSB传输过程中获取的beam的传输性能信息。
具体的,如实施例1中,基站发送信道占用请求信号的beam有多个,基站可以在所有可能的beam对应的方向上执行LBT,但是这需要比较高的复杂度,因此,基站可以根据先验信息确定可以执行LBT的beam的集合,一种确定方法是借助于信道的先验信息,比如基站可以将能够正确传输SSB的beam作为需要执行LBT的beam集合;也可以将SSB传输过程中确定的某一个最佳beam作为即将执行LBT的beam。
实施例5:
本例中,在基站侧上:
执行LBT操作包括以下方式之一或者其组合:
针对某个beam对应的方向持续执行LBT操作直到LBT成功;或,
在预设时间段内针对某个beam对应的方向执行LBT,若未成功则切换到其它beam对应的方向上执行LBT操作;或,
利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作。
还可以进一步包括:
在基站接收到允许信道被占用的信号后,停止执行LBT操作或继续执行LBT操作。
具体的,关于在beam对应的方向执行LBT的方式可以如下:
第一种方式是针对某个beam对应的方向持续执行LBT直到LBT成功;
基站维护一个counter,在一个beam对应的方向上执行LBT操作直到LBT成功;
也即,该方式下,基站维护一个counter,会在一个beam方向上一直执行LBT,直到成功。
第二种方式是针对某个beam对应的方向执行LBT如果时间超过某个门限值就切换到其它的beam对应的方向上执行LBT;
基站维护一个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,counter的值重置,并切换到其它beam对应的方向上执行LBT操作;
也即,该方式下,基站维护一个counter,在一个beam对应的方向上执行LBT超过某门限1后没接入信道,就切换到其它counter,counter的值重置。
第三种方式是利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT,扫描的时间颗粒度是可配置的,比如可以是CCA slot(CCA时隙;CCA:Clear Channel Assessment,空闲信道评估)的整数倍,也可以是OFDM符号的整数倍,基站在各个beam对应的方向上执行LBT,然后在LBT获得成功的beam上发送信道占用请求信号。
基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,原counter的值保留,并切换到其它beam对应的方向上执行LBT操作;或,
基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,原counter的值保留至超过预设时间段的次数超过预设值后重置,并切换到其它beam对应的方向上执行LBT操作;
也即,该方式下,基站维护多个counter,在一个beam方向上执行LBT超过某门限1后没接入信道,就切换到其它counter,原counter的值继续保留。或者只有超过某门限值2后才重置。
第四种方式,基站维护多个counter,利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作,其中,扫描的时间颗粒度是可配置的;
也即,该方式下,基站维护多个counter,利用beam扫描的先后时分的方式在各个beam 对应的方向上执行LBT,扫描的时间颗粒度是可配置的,比如可以是CCA slot的整数倍,也可以是OFDM符号的整数倍,基站在各个beam对应的方向上执行LBT,根据LBT的结果维护多个counter。
一旦终端发送的允许信道被占用的信号被基站成功接收,基站的行为可以是放弃在其它beam对应的方向上继续执行LBT,也可以是继续在其它beam对应的方向上执行LBT,这取决于实现的需要。
实施例6:
本例中,在基站侧上:
所述允许信道被占用的信号是通过基站动态指示的interlace信息来反馈允许信道被占用的信号的;和/或,
所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
相应的,在终端侧上:
所述允许信道被占用的信号是通过基站动态指示的interlace信息来反馈允许信道被占用的信号的;和/或,
所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
具体的,所述允许信道被占用的信号是根据基站指示的interlace信息来反馈的。
具体的,终端在接收到信道占用请求信号后需要向基站反馈允许信道被占用的信号。
免许可频段上行传输需要传输功率必须占用信道带宽的80%以上,所以LAA(Licensed Assisted Access,授权载波辅助接入)采用interlace(交织)结构,即多个PRB(Physical Resource Block,物理资源块)均匀的分布在频域作为一个interlace,如全带宽为100个PRB,每隔10个占用一个PRB这样就得到一个interlace,全带宽支持10个interlace最多支持10个用户。所以基站可以为UE配置反馈允许信道被占用的信号的传输的interlace信息,也即,在发送信道占用请求信号中可以包含分配给UE反馈允许信道被占用的信号的传输的interlace信息,如interlace index(交织索引)。此种方式的指示需要一定的开销;
另一种可能的方法是,网络半静态的为UE配置一个可以利用的interlace集合,由终端自由选择interlace发送,此时可以在允许信道被占用的信号中包含UEID的信息。
实施例7:
本例中,在基站侧上:
所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的;或,
所述信道占用请求信号是各终端在同一时间反馈的。
还可以进一步包括:
基站为终端配置反馈允许信道被占用的信号需要采用的LBT参数。
在LBT参数中的LBT类型是LBT cat.4时,在LBT参数中包含counter的大小或者用于产生counter的竞争窗口的大小信息。
相应的,在终端侧上:
所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的。
还可以进一步包括:
接收基站为终端配置反馈允许信道被占用的信号需要采用的LBT参数;
按该LBT参数在接收到该信号的beam对应的方向上进行LBT后,向基站反馈允许信道被占用的信号。
在LBT参数中的LBT类型是LBT cat.4时,根据在LBT参数中包含的counter的大小或者用于产生counter的竞争窗口的大小信息进行LBT。
具体的,在实施例5中给出了被调度的多用户发送允许信道被占用的信号的频域传送方案,对于被调度的多个用户发送被占用的信号的时间,可以有如下方案:
多个被调度用户采用相同的时刻传输允许信道被占用的信号,基站可以为终端配置UE发送允许信道被占用的信号需要采用的LBT参数,则在信道占用请求信号,或者基站的上行调度信令中包含UE发送允许信道被占用的信号需要采用的LBT参数,如LBT类型,如果LBT类型是LBT cat.4,还可以给出counter的大小或者用于产生counter的竞争窗口的大小信息。
另外一种方案是,以时分的方式传输允许信道被占用的信号,例如不同的终端在不同的OFDM符号上传输允许信道被占用的信号,此种情形下基站可以为终端配置反馈信道占用请求信号的时间信息,则基站在信道占用请求信号,或者基站的上行调度信令中包含反馈信道占用请求信号的时间信息。
实施例8:
本例中,多个beam发送的一个时间单位内一般只能在一个beam方向上发送,所以基站可以在至少一个beam上依次向终端发送信道占用请求信号。
实施中,对于在多个beam方向执行LBT时,在发送信道占用请求信号时,首先要确定允许发送信道占用请求信号的beam方向。确定的方法的例子,如率先成功执行LBT的载波,这时不是前面所述的各个beam方向都处于LBT阶段,有的beam方向已经LBT成功,也存在其它beam方向上LBT尚没成功。基站在前面确定的beam方向发送信道占用请求信号,如果信道占用请求信号/允许信道被占用的信号握手时间不是明显大于扫描下一个波束的时间,此时如果先去其它beam方向上执行LBT,会导致无法完成收发转换(Tx/Rx 转换射频需要时间)从而到发送信道占用请求信号的beam方向上接收允许信道被占用的信号。但是如果前面所叙述的时间足够长,则可以允许基站先去其它beam方向上执行LBT,然后再回到原发送信道占用请求信号的beam方向上在对应的时间窗内接收允许信道被占用的信号。所以在允许多beam LBT时存在两种方案。
因此,在允许多beam对应的方向上LBT时至少存在两种方案:
方案一,基站在beam上向终端发送信道占用请求信号后,基站在该beam上等待接收允许信道被占用的信号,即,发送完信道占用请求信号,在该beam方向上等待接收允许信道被占用的信号。
方案二,基站在beam上向终端发送信道占用请求信号后,继续在下一个beam上向终端发送信道占用请求信号,并在发送过信道占用请求信号的beam上接收相应的允许信道被占用的信号,即,发送完信道占用请求信号后,在其它beam上继续扫描。
当然前面执行LBT的beam对应的方向只有一个时,只能利用方案一。
实施例9:
本例中,在基站侧上:
所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
相应的,在终端侧上:
所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
具体实施中,请求信号占用信号与允许信道占用信号的握手信号间的间隔gap是OFDM符号的整数倍。
实施中,所述信道占用请求信号是采用60K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;或,
所述信道占用请求信号是采用120K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为2至3个OFDM符号;或,
所述信道占用请求信号是采用240K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为4至6个OFDM符号;或,
所述信道占用请求信号是采用480K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为8至12个OFDM符号。
实施中,所述间隔值是基站通过信令通知终端,或者网络与终端预先约定的。
具体的,基站发送信道占用请求信号后并未确认获得信道占用权,为了防止信道被其它系统抢去,终端可以不采用LBT,直接发送允许信道被占用的信号。在ETSI中规定短控制信令可以不用感知信道,如WiFi的RTS帧与CTS帧之间隔为16us,CTS不用监听信道。NR支持灵活的numerology(基带参数),具体如下表所示:
所以,为了确保允许信道被占用的信号不用执行LBT,信道占用请求信号/允许信道被占用的信号可以采用60K及60k以上的子载波进行发送。对于数据发送子载波可以根据所采用的频段根据需要采用相应的子载波大小。在子载波间隔大于等于60K的情形为了避免允许信道占用信号执行LBT操作,且为终端解码信道占用请求信号预留时间,对于60K子载波间隔,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;对于120K子载波间隔请求信号占用信号与允许信道占用信号间的间隔为2-3个OFDM符号;对于240K子载波间隔请求信号占用信号与允许信道占用信号间的间隔为4-6个OFDM符号;对于480K子载波间隔请求信号占用信号与允许信道占用信号间的间隔为8-12个OFDM符号。
基于同一发明构思,本申请实施例中还提供了一种基站、终端、及数据传输装置、信号反馈装置,由于这些设备解决问题的原理与数据传输方法、信号反馈方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
在实施本申请实施例提供的技术方案时,可以按如下方式实施。
图9为基站结构示意图,如图所示,基站中包括:
处理器900,用于读取存储器920中的程序,执行下列过程:
根据收发机需要进行数据处理;
收发机910,用于在处理器900的控制下接收和发送数据,执行下列过程:
在至少一个beam对应的方向上执行LBT操作后,向终端发送信道占用请求信号用以请求进行信道占用;
在接收到允许信道被占用的信号后,在发送信道占用请求信号的beam上进行数据传输。
实施中,在beam上向终端发送信道占用请求信号后,在该beam上等待接收允许信道被占用的信号;和/或,
在beam上向终端发送信道占用请求信号后,继续在下一个beam上向终端发送信道占用请求信号,并在发送过信道占用请求信号的beam上接收相应的允许信道被占用的信号。
实施中,发送所述信道占用请求信号的beam,是在至少一个beam对应的方向上按照时间先后顺序执行LBT操作后,信道检测为空闲的所有或者部分beam。
实施中,执行LBT操作的beam是空间的所有可能的beam,和/或,是网络预先确定配置好的部分可能的beam。
实施中,执行LBT操作的beam是根据先验信息来确定的。
实施中,所述先验信息是是否能够正确传输SSB,或在SSB传输过程中获取的beam的传输性能信息。
实施中,执行LBT操作包括以下方式之一或者其组合:
针对某个beam对应的方向持续执行LBT操作直到LBT成功;或,
在预设时间段内针对某个beam对应的方向执行LBT,若未成功则切换到其它beam对应的方向上执行LBT操作;或,
利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作。
实施中,执行LBT操作包括以下方式之一或者其组合:
基站维护一个counter,在一个beam对应的方向上执行LBT操作直到LBT成功;或,
基站维护一个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,counter的值重置,并切换到其它beam对应的方向上执行LBT操作;或,
基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,原counter的值保留,并切换到其它beam对应的方向上执行LBT操作;或,
基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,原counter的值保留至超过预设时间段的次数超过预设值后重置,并切换到其它beam对应的方向上执行LBT操作;或,
基站维护多个counter,利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作,其中,扫描的时间颗粒度是可配置的。
实施中,扫描的时间颗粒度是CCA slot的整数倍或OFDM符号的整数倍。
实施中,进一步包括:
在接收到允许信道被占用的信号后,停止执行LBT操作或继续执行LBT操作。
实施中,所述信道占用请求信号包含以下信息之一或者其组合:
所调度的UEID的信息、发送所述信道占用请求信号的beam的Beam ID、发送所述信道占用请求信号的beam在空间中的位置信息、发送所述信道占用请求信号的beam的信道占用时间信息、终端反馈允许信道被占用的信号时所需的资源配置、终端反馈允许信道被占用的信号时所需的LBT类型信息、用于信道质量测量的导频信息。
实施中,所述允许信道被占用的信号是通过基站动态指示的interlace信息来反馈允许信道被占用的信号的;和/或,
所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
实施中,所述允许信道被占用的信号是根据基站指示的interlace信息来反馈的。
实施中,所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的;或,
所述信道占用请求信号是各终端在同一时间反馈的。
实施中,进一步包括:
为终端配置反馈允许信道被占用的信号需要采用的LBT参数。
实施中,在LBT参数中的LBT类型是LBT cat.4时,在LBT参数中包含counter的大小或者用于产生counter的竞争窗口的大小信息。
实施中,当基站在多个beam上接收到允许信道被占用的信号时,选择复用用户数最多的beam或者传输容量最大的beam进行数据传输。
实施中,当基站在多个beam上接收到允许信道被占用的信号时,基站调度信道占用请求信号与允许信道被占用的信号握手成功的用户进行数据传输;和/或,
当基站在多个beam上接收到允许信道被占用的信号时,基站在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上进行数据传输。
实施中,在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上,选择LBT时间顺序上占优的beam上进行数据传输。
实施中,所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
实施中,请求信号占用信号与允许信道占用信号的握手信号间的间隔gap是OFDM符号的整数倍。
实施中,所述信道占用请求信号是采用60K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;或,
所述信道占用请求信号是采用120K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为2至3个OFDM符号;或,
所述信道占用请求信号是采用240K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为4至6个OFDM符号;或,
所述信道占用请求信号是采用480K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为8至12个OFDM符号。
实施中,所述间隔值是基站通过信令通知终端,或者网络与终端预先约定的。
实施中,在beam correspondence不能确保之时,采用LBT cat.1执行LBT操作。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器900 代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机910可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器900负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
图10为UE结构示意图,如图所示,用户设备包括:
处理器1000,用于读取存储器1020中的程序,执行下列过程:
根据收发机需要进行数据处理;
收发机1010,用于在处理器1000的控制下接收和发送数据,执行下列过程:
接收基站在至少一个beam上向终端发送的信道占用请求信号,所述信道占用请求信号是用以请求进行信道占用的信号;
在正确接收到所述信道占用请求信号后,在接收到该信号的beam上向基站反馈允许信道被占用的信号。
实施中,所述允许信道被占用的信号至少包含以下信息之一或者其组合:
与信道占用时间相关的信息、该beam的ID信息、本终端的UEID信息、基于beam的CQI信道质量信息。
实施中,所述允许信道被占用的信号是通过基站动态指示的interlace信息来反馈允许信道被占用的信号的;和/或,
所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
实施中,所述允许信道被占用的信号是根据基站指示的interlace信息来反馈的。
实施中,所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的。
实施中,进一步包括:
接收基站为终端配置反馈允许信道被占用的信号需要采用的LBT参数;
按该LBT参数在接收到该信号的beam对应的方向上进行LBT后,向基站反馈允许信道被占用的信号。
实施中,在LBT参数中的LBT类型是LBT cat.4时,根据在LBT参数中包含的counter的大小或者用于产生counter的竞争窗口的大小信息进行LBT。
实施中,所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
实施中,请求信号占用信号与允许信道占用信号的握手信号间的间隔gap是OFDM符号的整数倍。
实施中,所述信道占用请求信号是采用60K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;或,
所述信道占用请求信号是采用120K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为2至3个OFDM符号;或,
所述信道占用请求信号是采用240K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为4至6个OFDM符号;或,
所述信道占用请求信号是采用480K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为8至12个OFDM符号。
实施中,所述间隔值是基站通过信令通知终端,或者网络与终端预先约定的。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1010可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1030还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
本申请实施例中还提供了一种数据传输装置,包括:
发送模块,用于在至少一个beam对应的方向上执行LBT操作后,向终端发送信道占用请求信号用以请求进行信道占用;
传输模块,用于在接收到允许信道被占用的信号后,在发送信道占用请求信号的beam上进行数据传输。
具体的实施可以参见一种数据传输方法的实施。
本申请实施例中还提供了一种信号反馈装置,包括:
接收模块,用于接收基站在至少一个beam上向终端发送的信道占用请求信号,所述 信道占用请求信号是用以请求进行信道占用的信号;
反馈模块,用于在正确接收到所述信道占用请求信号后,在接收到该信号的beam上向基站反馈允许信道被占用的信号。
具体的实施可以参见一种信号反馈方法的实施。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本申请时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
基于同一发明构思,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行本申请实施例上述方法。
实施中,可读存储介质可以为计算机存储介质,且该计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例涉及的用户终端UE,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线用户终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线用户终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线用户终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户终端(User Device)。
本申请实施例所涉及基站,可用于将收到的空中帧与IP(Internet Protocol,网际协议)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络设备。该基站还可协调对空中接口的属性管理。例如,基站可以是5G系统中的网络设备,如下一代基站(Next generation Node B,gNB),还可以是全球移动通信系统(Global System for Mobile Communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB),还可 以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB),本申请实施例并不限定。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (73)
- 一种数据传输方法,其特征在于,包括:基站在至少一个波束beam对应的方向上执行对话前监听LBT操作后,向终端发送信道占用请求信号用以请求进行信道占用;基站在接收到允许信道被占用的信号后,在发送信道占用请求信号的beam上进行数据传输。
- 如权利要求1所述的方法,其特征在于,发送所述信道占用请求信号的beam,是基站在至少一个beam对应的方向上按照时间先后顺序执行LBT操作后,信道检测为空闲的所有或者部分beam。
- 如权利要求2所述的方法,其特征在于,执行LBT操作的beam是空间的至少一个beam,和/或,是网络预先确定配置好的至少一个beam。
- 如权利要求2所述的方法,其特征在于,执行LBT操作的beam是根据先验信息来确定的。
- 如权利要求4所述的方法,其特征在于,所述先验信息为:传输同步信号分组SSB的beam的传输性能信息,或在SSB传输过程中获取的beam的传输性能信息。
- 如权利要求1所述的方法,其特征在于,执行LBT操作包括以下方式之一或者其组合:针对某个beam对应的方向持续执行LBT操作直到LBT成功;或,在预设时间段内针对某个beam对应的方向执行LBT,若未成功则切换到其它beam对应的方向上执行LBT操作;或,利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作。
- 如权利要求6所述的方法,其特征在于,执行LBT操作包括以下方式之一或者其组合:基站维护一个计数器counter,在一个beam对应的方向上执行LBT操作直到LBT成功;或,基站维护一个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,counter的值重置,并切换到其它beam对应的方向上执行LBT操作;或,基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,原counter的值保留,并切换到其它beam对应的方向上执行LBT操作;或,基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段, 若未成功则切换到其它counter,原counter的值保留至超过预设时间段的次数超过预设值后重置,并切换到其它beam对应的方向上执行LBT操作;或,基站维护多个counter,利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作,其中,扫描的时间颗粒度是可配置的。
- 如权利要求7所述的方法,其特征在于,扫描的时间颗粒度是空闲信道评估时隙CCA slot的整数倍或正交频分复用OFDM符号的整数倍。
- 如权利要求1所述的方法,其特征在于,进一步包括:在基站接收到允许信道被占用的信号后,停止执行LBT操作或继续执行LBT操作。
- 如权利要求1所述的方法,其特征在于,所述信道占用请求信号包含以下信息之一或者其组合:所调度的用户设备标识UEID的信息、发送所述信道占用请求信号的beam的波束标识Beam ID、发送所述信道占用请求信号的beam在空间中的位置信息、发送所述信道占用请求信号的beam的信道占用时间信息、终端反馈允许信道被占用的信号时所需的资源配置、终端反馈允许信道被占用的信号时所需的LBT类型信息、用于信道质量测量的导频信息。
- 如权利要求1所述的方法,其特征在于,所述允许信道被占用的信号是通过基站动态指示的交织interlace信息来反馈允许信道被占用的信号的;和/或,所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
- 如权利要求11所述的方法,其特征在于,所述允许信道被占用的信号是根据基站指示的交织interlace信息来反馈的。
- 如权利要求1所述的方法,其特征在于,所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的;或,所述信道占用请求信号是各终端在同一时间反馈的。
- 如权利要求13所述的方法,其特征在于,进一步包括:基站为终端配置反馈允许信道被占用的信号需要采用的LBT参数。
- 如权利要求14所述的方法,其特征在于,在LBT参数中的LBT类型是LBT cat.4时,在LBT参数中包含counter的大小或者用于产生counter的竞争窗口的大小信息。
- 如权利要求1所述的方法,其特征在于,当基站在多个beam上接收到允许信道被占用的信号时,选择复用用户数最多的beam或者传输容量最大的beam进行数据传输。
- 如权利要求1所述的方法,其特征在于,当基站在多个beam上接收到允许信道被占用的信号时,基站调度信道占用请求信号与允许信道被占用的信号握手成功的用户进行数据传输;和/或,当基站在多个beam上接收到允许信道被占用的信号时,基站在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上进行数据传输。
- 如权利要求17所述的方法,其特征在于,在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上,选择LBT时间顺序上占优的beam上进行数据传输。
- 如权利要求1所述的方法,其特征在于,所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
- 如权利要求19所述的方法,其特征在于,请求信号占用信号与允许信道占用信号的握手信号间的间隔gap是OFDM符号的整数倍。
- 如权利要求20所述的方法,其特征在于,所述信道占用请求信号是采用60K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;或,所述信道占用请求信号是采用120K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为2至3个OFDM符号;或,所述信道占用请求信号是采用240K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为4至6个OFDM符号;或,所述信道占用请求信号是采用480K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为8至12个OFDM符号。
- 如权利要求20所述的方法,其特征在于,所述间隔值是基站通过信令通知终端,或者网络与终端预先约定的。
- 如权利要求1所述的方法,其特征在于,基站在beam上向终端发送信道占用请求信号后,基站在该beam上等待接收允许信道被占用的信号;和/或,基站在beam上向终端发送信道占用请求信号后,继续在下一个beam上向终端发送信道占用请求信号,并在发送过信道占用请求信号的beam上接收相应的允许信道被占用的信号。
- 如权利要求1所述的方法,其特征在于,在波束对应关系beam correspondence不能确保之时,采用LBT cat.1执行LBT操作。
- 一种信号反馈方法,其特征在于,包括:终端接收基站在至少一个beam上向终端发送的信道占用请求信号,所述信道占用请求信号是用以请求进行信道占用的信号;终端在正确接收到所述信道占用请求信号后,在接收到该信号的beam上向基站反馈允许信道被占用的信号。
- 如权利要求25所述的方法,其特征在于,所述允许信道被占用的信号至少包含以下信息之一或者其组合:与信道占用时间相关的信息、该beam的ID信息、本终端的UEID信息、基于beam的CQI信道质量信息。
- 如权利要求25所述的方法,其特征在于,所述允许信道被占用的信号是通过基站动态指示的interlace信息来反馈允许信道被占用的信号的;和/或,所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
- 如权利要求27所述的方法,其特征在于,所述允许信道被占用的信号是根据基站指示的交织interlace信息来反馈的。
- 如权利要求25所述的方法,其特征在于,所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的。
- 如权利要求29所述的方法,其特征在于,进一步包括:接收基站为终端配置反馈允许信道被占用的信号需要采用的LBT参数;按该LBT参数在接收到该信号的beam对应的方向上进行LBT后,向基站反馈允许信道被占用的信号。
- 如权利要求30所述的方法,其特征在于,在LBT参数中的LBT类型是LBT cat.4时,根据在LBT参数中包含的counter的大小或者用于产生counter的竞争窗口的大小信息进行LBT。
- 如权利要求25所述的方法,其特征在于,所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
- 如权利要求32所述的方法,其特征在于,请求信号占用信号与允许信道占用信号的握手信号间的间隔gap是OFDM符号的整数倍。
- 如权利要求33所述的方法,其特征在于,所述信道占用请求信号是采用60K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;或,所述信道占用请求信号是采用120K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为2至3个OFDM符号;或,所述信道占用请求信号是采用240K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为4至6个OFDM符号;或,所述信道占用请求信号是采用480K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为8至12个OFDM符号。
- 如权利要求33所述的方法,其特征在于,所述间隔值是基站通过信令通知终端, 或者网络与终端预先约定的。
- 一种基站,其特征在于,基站中包括:处理器,用于读取存储器中的程序,执行下列过程:根据收发机需要进行数据处理;收发机,用于在处理器的控制下接收和发送数据,执行下列过程:在至少一个beam对应的方向上执行LBT操作后,向终端发送信道占用请求信号用以请求进行信道占用;在接收到允许信道被占用的信号后,在发送信道占用请求信号的beam上进行数据传输。
- 如权利要求36所述的基站,其特征在于,在beam上向终端发送信道占用请求信号后,在该beam上等待接收允许信道被占用的信号;和/或,在beam上向终端发送信道占用请求信号后,继续在下一个beam上向终端发送信道占用请求信号,并在发送过信道占用请求信号的beam上接收相应的允许信道被占用的信号。
- 如权利要求36所述的基站,其特征在于,发送所述信道占用请求信号的beam,是在至少一个beam对应的方向上按照时间先后顺序执行LBT操作后,信道检测为空闲的所有或者部分beam。
- 如权利要求38所述的基站,其特征在于,执行LBT操作的beam是空间的至少一个beam,和/或,是网络预先确定配置好的至少一个beam。
- 如权利要求38所述的基站,其特征在于,执行LBT操作的beam是根据先验信息来确定的。
- 如权利要求40所述的基站,其特征在于,所述先验信息为;传输SSB的beam的传输性能信息,或在SSB传输过程中获取的beam的传输性能信息。
- 如权利要求36所述的基站,其特征在于,执行LBT操作包括以下方式之一或者其组合:针对某个beam对应的方向持续执行LBT操作直到LBT成功;或,在预设时间段内针对某个beam对应的方向执行LBT,若未成功则切换到其它beam对应的方向上执行LBT操作;或,利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作。
- 如权利要求42所述的基站,其特征在于,执行LBT操作包括以下方式之一或者其组合:基站维护一个counter,在一个beam对应的方向上执行LBT操作直到LBT成功;或,基站维护一个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,counter的值重置,并切换到其它beam对应的方向上执行 LBT操作;或,基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,原counter的值保留,并切换到其它beam对应的方向上执行LBT操作;或,基站维护多个counter,在一个beam对应的方向上执行LBT操作直到超过预设时间段,若未成功则切换到其它counter,原counter的值保留至超过预设时间段的次数超过预设值后重置,并切换到其它beam对应的方向上执行LBT操作;或,基站维护多个counter,利用beam扫描的先后时分的方式在各个beam对应的方向上执行LBT操作,其中,扫描的时间颗粒度是可配置的。
- 如权利要求43所述的基站,其特征在于,扫描的时间颗粒度是CCA slot的整数倍或OFDM符号的整数倍。
- 如权利要求36所述的基站,其特征在于,进一步包括:在接收到允许信道被占用的信号后,停止执行LBT操作或继续执行LBT操作。
- 如权利要求36所述的基站,其特征在于,所述信道占用请求信号包含以下信息之一或者其组合:所调度的UEID的信息、发送所述信道占用请求信号的beam的Beam ID、发送所述信道占用请求信号的beam在空间中的位置信息、发送所述信道占用请求信号的beam的信道占用时间信息、终端反馈允许信道被占用的信号时所需的资源配置、终端反馈允许信道被占用的信号时所需的LBT类型信息、用于信道质量测量的导频信息。
- 如权利要求36所述的基站,其特征在于,所述允许信道被占用的信号是通过基站动态指示的交织interlace信息来反馈允许信道被占用的信号的;和/或,所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
- 如权利要求47所述的基站,其特征在于,所述允许信道被占用的信号是根据基站指示的interlace信息来反馈的。
- 如权利要求36所述的基站,其特征在于,所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的;或,所述信道占用请求信号是各终端在同一时间反馈的。
- 如权利要求49所述的基站,其特征在于,进一步包括:为终端配置反馈允许信道被占用的信号需要采用的LBT参数。
- 如权利要求50所述的基站,其特征在于,在LBT参数中的LBT类型是LBT cat.4时,在LBT参数中包含counter的大小或者用于产生counter的竞争窗口的大小信息。
- 如权利要求36所述的基站,其特征在于,当基站在多个beam上接收到允许信道 被占用的信号时,选择复用用户数最多的beam或者传输容量最大的beam进行数据传输。
- 如权利要求36所述的基站,其特征在于,当基站在多个beam上接收到允许信道被占用的信号时,基站调度信道占用请求信号与允许信道被占用的信号握手成功的用户进行数据传输;和/或,当基站在多个beam上接收到允许信道被占用的信号时,基站在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上进行数据传输。
- 如权利要求53所述的基站,其特征在于,在发送允许信道被占用的信号的用户数与接收信道占用请求信号的用户数之间的比例大于预设值的beam上,选择LBT时间顺序上占优的beam上进行数据传输。
- 如权利要求36所述的基站,其特征在于,所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
- 如权利要求55所述的基站,其特征在于,请求信号占用信号与允许信道占用信号的握手信号间的间隔gap是OFDM符号的整数倍。
- 如权利要求56所述的基站,其特征在于,所述信道占用请求信号是采用60K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;或,所述信道占用请求信号是采用120K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为2至3个OFDM符号;或,所述信道占用请求信号是采用240K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为4至6个OFDM符号;或,所述信道占用请求信号是采用480K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为8至12个OFDM符号。
- 如权利要求56所述的基站,其特征在于,所述间隔值是基站通过信令通知终端,或者网络与终端预先约定的。
- 如权利要求36所述的基站,其特征在于,在beam correspondence不能确保之时,采用LBT cat.1执行LBT操作。
- 一种终端,其特征在于,终端中包括:处理器,用于读取存储器中的程序,执行下列过程:根据收发机需要进行数据处理;收发机,用于在处理器的控制下接收和发送数据,执行下列过程:接收基站在至少一个beam上向终端发送的信道占用请求信号,所述信道占用请求信号是用以请求进行信道占用的信号;在正确接收到所述信道占用请求信号后,在接收到该信号的beam上向基站反馈允许信道被占用的信号。
- 如权利要求60所述的终端,其特征在于,所述允许信道被占用的信号至少包含以下信息之一或者其组合:与信道占用时间相关的信息、该beam的ID信息、本终端的UEID信息、基于beam的CQI信道质量信息。
- 如权利要求60所述的终端,其特征在于,所述允许信道被占用的信号是通过基站动态指示的交织interlace信息来反馈允许信道被占用的信号的;和/或,所述允许信道被占用的信号是通过网络为终端半静态配置的interlace信息来反馈允许信道被占用的信号的。
- 如权利要求62所述的终端,其特征在于,所述允许信道被占用的信号是根据基站指示的interlace信息来反馈的。
- 如权利要求60所述的终端,其特征在于,所述信道占用请求信号是通过基站为终端配置的时间信息来反馈允许信道被占用的信号的。
- 如权利要求64所述的终端,其特征在于,进一步包括:接收基站为终端配置反馈允许信道被占用的信号需要采用的LBT参数;按该LBT参数在接收到该信号的beam对应的方向上进行LBT后,向基站反馈允许信道被占用的信号。
- 如权利要求65所述的终端,其特征在于,在LBT参数中的LBT类型是LBT cat.4时,根据在LBT参数中包含的counter的大小或者用于产生counter的竞争窗口的大小信息进行LBT。
- 如权利要求60所述的终端,其特征在于,所述信道占用请求信号是采用60K及60k以上的子载波进行发送的。
- 如权利要求67所述的终端,其特征在于,请求信号占用信号与允许信道占用信号的握手信号间的间隔gap是OFDM符号的整数倍。
- 如权利要求68所述的终端,其特征在于,所述信道占用请求信号是采用60K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为1个OFDM符号;或,所述信道占用请求信号是采用120K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为2至3个OFDM符号;或,所述信道占用请求信号是采用240K的子载波进行发送时,请求信号占用信号与允许信道占用信号间的间隔为4至6个OFDM符号;或,所述信道占用请求信号是采用480K的子载波进行发送时,请求信号占用信号与允许 信道占用信号间的间隔为8至12个OFDM符号。
- 如权利要求68所述的终端,其特征在于,所述间隔值是基站通过信令通知终端,或者网络与终端预先约定的。
- 一种数据传输装置,其特征在于,包括:发送模块,用于在至少一个beam对应的方向上执行LBT操作后,向终端发送信道占用请求信号用以请求进行信道占用;传输模块,用于在接收到允许信道被占用的信号后,在发送信道占用请求信号的beam上进行数据传输。
- 一种信号反馈装置,其特征在于,包括:接收模块,用于接收基站在至少一个beam上向终端发送的信道占用请求信号,所述信道占用请求信号是用以请求进行信道占用的信号;反馈模块,用于在正确接收到所述信道占用请求信号后,在接收到该信号的beam上向基站反馈允许信道被占用的信号。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行权利要求1至35中任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19800853.4A EP3806521A4 (en) | 2018-05-11 | 2019-05-07 | METHOD AND DEVICE FOR DATA TRANSMISSION AND METHOD AND DEVICE FOR SIGNAL FEEDBACK |
US17/054,520 US11647538B2 (en) | 2018-05-11 | 2019-05-07 | Data transmission method and device, and signal feedback method and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810450590.6A CN110475265B (zh) | 2018-05-11 | 2018-05-11 | 一种数据传输、信号反馈方法及设备 |
CN201810450590.6 | 2018-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019214626A1 true WO2019214626A1 (zh) | 2019-11-14 |
Family
ID=68467816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/085888 WO2019214626A1 (zh) | 2018-05-11 | 2019-05-07 | 一种数据传输、信号反馈方法及设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11647538B2 (zh) |
EP (1) | EP3806521A4 (zh) |
CN (1) | CN110475265B (zh) |
WO (1) | WO2019214626A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021163150A1 (en) * | 2020-02-11 | 2021-08-19 | Qualcomm Incorporated | Frame based channel access in wireless communication |
CN115696270A (zh) * | 2021-07-21 | 2023-02-03 | 展讯通信(上海)有限公司 | 一种通信方法及相关装置 |
WO2023011285A1 (zh) * | 2021-08-02 | 2023-02-09 | 索尼集团公司 | 用于无线通信的设备、方法和存储介质 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11381981B2 (en) * | 2019-01-31 | 2022-07-05 | Qualcomm Incorporated | Listen-before-talk schemes for directional communications |
US11638263B2 (en) * | 2019-06-20 | 2023-04-25 | Qualcomm Incorporated | Beamformed channel busy ratio |
US11785639B2 (en) * | 2019-09-26 | 2023-10-10 | Lg Electronics Inc. | Method and apparatus for transmitting and receiving signal in wireless communication system |
WO2021146841A1 (en) * | 2020-01-20 | 2021-07-29 | Qualcomm Incorporated | Synchronization point design for load-based equipment mode |
CN113225814B (zh) * | 2020-02-04 | 2022-11-01 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
CN113452461A (zh) * | 2020-03-28 | 2021-09-28 | 华为技术有限公司 | 通信方法及相关装置 |
WO2021253342A1 (zh) * | 2020-06-18 | 2021-12-23 | 北京小米移动软件有限公司 | 信息传输方法、装置、通信设备和存储介质 |
CN114070362B (zh) * | 2020-08-03 | 2023-04-07 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点及其方法 |
WO2023050049A1 (zh) * | 2021-09-28 | 2023-04-06 | 北京小米移动软件有限公司 | 信息上报、波束切换方法及装置、存储介质 |
WO2023053671A1 (ja) * | 2021-09-30 | 2023-04-06 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 通信装置および通信方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105230102A (zh) * | 2014-04-30 | 2016-01-06 | 华为技术有限公司 | 非授权频谱的调度方法、设备及用户设备ue |
CN105934988A (zh) * | 2014-12-26 | 2016-09-07 | 华为技术有限公司 | 非授权频谱的调度方法、用户设备及基站 |
CN106538027A (zh) * | 2014-07-11 | 2017-03-22 | Lg 电子株式会社 | 无线通信系统中在非许可频谱中发送wi‑fi信号的方法和装置 |
CN107135497A (zh) * | 2016-02-29 | 2017-09-05 | 中国移动通信集团公司 | 一种隐藏节点发现方法、基站及终端 |
CN107734560A (zh) * | 2016-08-12 | 2018-02-23 | 中兴通讯股份有限公司 | 信号传输方法、通信设备及通信系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10742562B2 (en) * | 2015-07-16 | 2020-08-11 | Samsung Electronics Co., Ltd. | Method and apparatus for adaptive control of contention window in LAA |
CN106559844B (zh) * | 2015-09-25 | 2020-03-24 | 电信科学技术研究院 | 一种上行传输资源调度及上行传输方法、装置 |
CN107466110B (zh) * | 2016-06-06 | 2022-06-07 | 北京三星通信技术研究有限公司 | 一种上行信号的发送方法、用户设备 |
WO2018062966A1 (en) * | 2016-09-30 | 2018-04-05 | Samsung Electronics Co., Ltd. | Methods and devices for transmitting and receiving signals |
CN107888256B (zh) * | 2016-09-30 | 2022-12-02 | 中兴通讯股份有限公司 | 数据传输、接收方法、装置、基站及终端 |
CN107889113B (zh) * | 2016-09-30 | 2024-03-29 | 北京三星通信技术研究有限公司 | 在非授权频段上的载波监测和信号发送方法与设备 |
US10257848B2 (en) * | 2016-10-04 | 2019-04-09 | Qualcomm Incorporated | Directional channel reservation for time-division multiplexing downlink and uplink data burst transmission |
EP3741179A1 (en) * | 2018-01-19 | 2020-11-25 | Telefonaktiebolaget LM Ericsson (publ) | Channel reservation for multiple wireless devices |
-
2018
- 2018-05-11 CN CN201810450590.6A patent/CN110475265B/zh active Active
-
2019
- 2019-05-07 EP EP19800853.4A patent/EP3806521A4/en not_active Withdrawn
- 2019-05-07 WO PCT/CN2019/085888 patent/WO2019214626A1/zh active Application Filing
- 2019-05-07 US US17/054,520 patent/US11647538B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105230102A (zh) * | 2014-04-30 | 2016-01-06 | 华为技术有限公司 | 非授权频谱的调度方法、设备及用户设备ue |
CN106538027A (zh) * | 2014-07-11 | 2017-03-22 | Lg 电子株式会社 | 无线通信系统中在非许可频谱中发送wi‑fi信号的方法和装置 |
CN105934988A (zh) * | 2014-12-26 | 2016-09-07 | 华为技术有限公司 | 非授权频谱的调度方法、用户设备及基站 |
CN107135497A (zh) * | 2016-02-29 | 2017-09-05 | 中国移动通信集团公司 | 一种隐藏节点发现方法、基站及终端 |
CN107734560A (zh) * | 2016-08-12 | 2018-02-23 | 中兴通讯股份有限公司 | 信号传输方法、通信设备及通信系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3806521A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021163150A1 (en) * | 2020-02-11 | 2021-08-19 | Qualcomm Incorporated | Frame based channel access in wireless communication |
US11863997B2 (en) | 2020-02-11 | 2024-01-02 | Qualcomm Incorporated | Frame based channel access in wireless communication |
CN115696270A (zh) * | 2021-07-21 | 2023-02-03 | 展讯通信(上海)有限公司 | 一种通信方法及相关装置 |
WO2023011285A1 (zh) * | 2021-08-02 | 2023-02-09 | 索尼集团公司 | 用于无线通信的设备、方法和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20210120583A1 (en) | 2021-04-22 |
EP3806521A4 (en) | 2021-09-29 |
CN110475265B (zh) | 2021-06-08 |
CN110475265A (zh) | 2019-11-19 |
EP3806521A1 (en) | 2021-04-14 |
US11647538B2 (en) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019214626A1 (zh) | 一种数据传输、信号反馈方法及设备 | |
Deng et al. | IEEE 802.11 ax: Next generation wireless local area networks | |
US20190335496A1 (en) | Channel listening method and apparatus | |
US10631333B2 (en) | Synchronized medium sharing with private network | |
US11665738B2 (en) | Method, device, and apparatus for transmitting and receiving a request signal | |
US11589384B2 (en) | Data transmission method, terminal device, and network device | |
US10952103B2 (en) | Transmission opportunity (TXOP) structure for new radio-unlicensed (NR-U) and new radio-synchronized sharing (NR-SS) | |
WO2020125121A1 (en) | Method and device operating in unlicensed spectrum | |
CN114793333A (zh) | 确定用于旁路通信的资源的方法和用户设备 | |
WO2018126952A1 (zh) | 通信方法、网络设备、及终端设备 | |
US20150163805A1 (en) | Operations on shared bands | |
US20160353485A1 (en) | Managing medium access for wireless devices | |
WO2020228665A1 (en) | Methods, terminal device and network node for uplink transmission | |
WO2016119219A1 (zh) | 通信方法、基站和用户设备 | |
WO2020259083A1 (en) | Methods, terminal device and network node for uplink transmission | |
Gong et al. | Distributed channel assignment algorithms for 802.11 n WLANs with heterogeneous clients | |
US11265728B2 (en) | Tight frequency reuse coloring for new radio-unlicensed (NR-U) | |
WO2017153630A1 (en) | Protecting transmissions in wireless network | |
WO2022205481A1 (zh) | 无线通信方法、第一设备和第二设备 | |
US20240251438A1 (en) | Channel access method, and device and storage medium | |
CN116097893A (zh) | 无线通信方法和设备 | |
CN114144986A (zh) | 上行信号的发送和接收方法以及装置 | |
WO2020005459A1 (en) | Transmission opportunity (txop) structure for new radio-unlicensed (nr-u) and new radio-synchronized sharing (nr-ss) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19800853 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019800853 Country of ref document: EP |