WO2023011285A1 - 用于无线通信的设备、方法和存储介质 - Google Patents

用于无线通信的设备、方法和存储介质 Download PDF

Info

Publication number
WO2023011285A1
WO2023011285A1 PCT/CN2022/108257 CN2022108257W WO2023011285A1 WO 2023011285 A1 WO2023011285 A1 WO 2023011285A1 CN 2022108257 W CN2022108257 W CN 2022108257W WO 2023011285 A1 WO2023011285 A1 WO 2023011285A1
Authority
WO
WIPO (PCT)
Prior art keywords
cca
beams
counter
value
lbt
Prior art date
Application number
PCT/CN2022/108257
Other languages
English (en)
French (fr)
Inventor
崔琪楣
张文璐
李浩进
樊婷婷
Original Assignee
索尼集团公司
崔琪楣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 崔琪楣 filed Critical 索尼集团公司
Priority to US18/292,876 priority Critical patent/US20240340947A1/en
Priority to EP22851999.7A priority patent/EP4376536A1/en
Priority to CN202280052416.0A priority patent/CN117751675A/zh
Publication of WO2023011285A1 publication Critical patent/WO2023011285A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Definitions

  • the present disclosure relates generally to wireless communication techniques, and in particular to techniques for multi-beam sensing and access.
  • the frequency band includes frequency range 1 (FR1) and frequency range 2 (FR2).
  • FR1 includes frequency bands below 6GHz, and FR2 includes frequency bands in the range of 24.25GHz to 52.6GHz.
  • the frequency range used will be extended to a higher frequency range of 60 GHz (for example, 52.6 GHz to 71 GHz).
  • LBT Listen Before Talk
  • a first aspect of the present disclosure relates to an electronic device for wireless communication.
  • the electronic device may include processing circuitry.
  • the processing circuit may be configured to initiate a plurality of listen-before-talk LBT procedures on a plurality of beams; for the LBT procedure of a first beam of the plurality of beams, determining that a first threshold number of successful clear channel assessment CCA detections have been completed ; for the LBT process of at least one other beam of the plurality of beams, determining that a corresponding threshold number of successful CCA detections has not been completed; and determining whether to proceed with at least one additional CCA detection on the first beam.
  • a second aspect of the present disclosure relates to a method for wireless communication.
  • the method includes initiating a plurality of listen-before-talk LBT procedures on a plurality of beams; for the LBT procedure of a first beam of the plurality of beams, determining that a first threshold number of successful clear channel assessment CCAs have been completed detecting; for a LBT process on at least one other beam of the plurality of beams, determining that a corresponding threshold number of successful CCA detections has not been completed; and determining whether to proceed with at least one additional CCA detection on the first beam.
  • a third aspect of the present disclosure relates to a computer-readable storage medium having stored thereon executable instructions that, when executed by one or more processors, implement methods according to various embodiments of the present disclosure operation.
  • a fourth aspect of the present disclosure relates to a computer program product comprising instructions which, when executed by a computer, cause the computer to perform a method according to various embodiments of the present disclosure.
  • FIG. 1 illustrates an example wireless communication system according to an embodiment of the disclosure.
  • FIG. 2 shows an example timing diagram of a single beam LBT process according to an embodiment of the present disclosure.
  • FIG. 3 illustrates an example electronic device for wireless communication according to an embodiment of the disclosure.
  • FIG. 4 shows an example timing diagram of a multi-beam parallel LBT process according to an embodiment of the disclosure.
  • FIG. 5 illustrates an example process for coordinating multi-beam parallel LBT according to an embodiment of the disclosure.
  • FIG. 6 illustrates an example process for determining whether a multi-beam SDM transmission condition is satisfied according to an embodiment of the present disclosure.
  • FIG. 7 shows an example timing diagram of multi-beam parallel LBT operation according to an embodiment of the disclosure.
  • 8A and 8B illustrate example timing diagrams for multi-beam parallel LBT operation according to embodiments of the disclosure.
  • FIG. 9 illustrates an example process for performing parallel LBT based on beam grouping according to an embodiment of the disclosure.
  • FIG. 10 illustrates an example method for wireless communication according to an embodiment of the disclosure.
  • Fig. 11 shows an example block diagram of a computer that can be implemented as a terminal device or a network device according to an embodiment of the present disclosure.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 1 illustrates an example wireless communication system 100 according to an embodiment of the disclosure. It should be understood that Figure 1 illustrates only one of many types and possible arrangements of wireless communication systems; the features of the present disclosure may be implemented in any of a variety of systems, as desired.
  • a wireless communication system 100 includes a base station 120A and one or more terminals 110A, 110B to 110N.
  • the base station 120A and each terminal can communicate through a transmission medium.
  • Base station 120A may be in communication with a network 130 (eg, a cellular service provider's core network, a telecommunications network such as the Public Switched Telephone Network (PSTN), and/or the Internet).
  • PSTN Public Switched Telephone Network
  • base station 120A may facilitate communication between terminals 110A through 110N and/or between terminals 110A through 110N and network 130 .
  • PSTN Public Switched Telephone Network
  • base station 120A may be referred to as a cell.
  • Base station 120A and other similar base stations (not shown) operating in accordance with one or more cellular communication technologies may provide continuous or near continuous communication signal coverage to terminals 110A through 110N and the like over a wide geographic area.
  • the base station and the terminal may communicate through a licensed frequency band (licensed spectrum) and/or an unlicensed frequency band (unlicensed spectrum).
  • Licensed frequency bands and unlicensed frequency bands can follow the definition of industry standards or follow regional frequency management regulations.
  • the base station can allocate uplink and downlink time domain and frequency domain resources.
  • frequency domain resources can be contiguous or separated subcarriers.
  • the time domain resource may correspond to a certain time period, for example, it may be a certain number of symbols, time slots or subframes.
  • the communication between the base station and the terminal may use a millimeter wave frequency band, such as FR2 and a frequency range above 60 GHz.
  • the base station can use multi-user MIMO (MU-MIMO) to communicate with multiple terminals through multiple beams, thereby obtaining Space Division Multiplexing (SDM) gain.
  • MU-MIMO multi-user MIMO
  • SDM Space Division Multiplexing
  • FIG. 1 only a single base station 120A is shown in FIG. 1 , it can be understood that in the uplink, for example, the terminal 110A can similarly use MU-MIMO to communicate with multiple base stations through multi-beams, so as to obtain SDM gain.
  • high-layer signaling such as radio resource control (RRC) signaling
  • RRC radio resource control
  • physical layer signaling such as downlink control information DCI in NR system
  • uplink At least one of the control information (UCI) performs signaling interaction.
  • the base station may be a 5G NR base station, such as gNB and ng-eNB.
  • gNB can provide NR user plane and control plane protocol for terminal equipment termination
  • ng-eNB is a node defined for compatibility with 4G LTE communication system, which can be an evolved node B (eNB) of LTE radio access network Upgrade to provide Evolved Universal Terrestrial Radio Access (E-UTRA) user plane and control plane protocols for UE termination.
  • eNB evolved node B
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • examples of base stations may include, but are not limited to, the following: at least one of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system; a radio network controller (RNC) and a Node B in a WCDMA system At least one of them; an access point (AP) in a WLAN or a WiMAX system; and a corresponding network node in a communication system to be or being developed.
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • AP access point
  • Part of the functions of the base station in this paper can also be implemented as an entity that has a control function for communication in the D2D, M2M, and V2X communication scenarios, or as an entity that plays a role in spectrum coordination in the cognitive radio communication scenario.
  • a terminal device may have its full range of common meanings, for example, a terminal device may be a mobile station (Mobile Station, MS), a user equipment (User Equipment, UE), an access node, and the like.
  • a terminal device may be implemented as a mobile phone, handheld device, media player, computer, laptop, tablet, vehicle-mounted unit or vehicle or virtually any type of wireless device.
  • end devices may communicate using multiple wireless communication technologies.
  • a terminal device may be configured to communicate using one or more of GSM, UMTS, CDMA2000, WiMAX, LTE, LTE-A, WLAN, NR, Bluetooth, and the like. It should be understood that the embodiments described in this disclosure are applicable to any type of terminal equipment.
  • the base station and the terminal may only use multiple beams and corresponding working channels based on their own communication requirements.
  • the base station and the terminal can sense the beam/channel (such as through the LBT mechanism) before accessing the working channel, and determine that the channel may be idle In the case of access to the working channel. Since beams and channels have correspondence, in the following description, beams and corresponding channels may be used interchangeably. For example, beam sensing means sensing the corresponding channel; and vice versa.
  • the device that first sends a message to the other party can be called the initiating device, and the corresponding counterpart can be called the responding device.
  • the initiating device For example, if a base station sends a downlink message first, the base station is the initiating device, and the corresponding terminal is the responding device; the opposite situation can be understood similarly.
  • the base station/terminal acts as an initiating device or a responding device, the LBT process described in this disclosure is applicable.
  • the initiating device may initiate multiple LBT processes on multiple beams.
  • Each LBT process may include a series of Clear Channel Assessment (CCA) tests on the corresponding beam to determine whether the channel may be clear or occupied.
  • CCA detection can be based on the signal energy or power situation heard on the working channel. For example, when the detected signal energy or power is lower than a specific threshold, it may be considered that the working channel is unoccupied (or idle, and the CCA detection is successful at this time). It should be understood that, based on channel occupancy conditions, the series of CCA detections may include successful and unsuccessful CCA detections.
  • the LBT process needs to include at least a threshold number of successful CCA detections and even additional successful CCA detections before the channel or beam can be used for transmission.
  • FIG. 2 shows an example timing diagram 200 of a single beam LBT process according to an embodiment of the disclosure.
  • a series of time slots are labeled 201 to 207, including channel occupied time slots, empty time slots and time slots used for transmission.
  • the first window and the second window are used to indicate channel sensing time periods of different lengths, and different legends are used to indicate whether the channel sensing result in each window is idle or occupied. The same legend is used in the following similar drawings.
  • Timing diagram 200 is invoked when an initiating device desires a downlink or uplink transmission.
  • a channel is sensed to be idle within a first window at the end of a channel occupied slot.
  • the first window may have a slot length of 8 microseconds.
  • a series of CCA detections of the LBT process are initiated for transmission backoff.
  • the transmission backoff needs to last for at least D empty time slots (also called contention windows), that is to say, the LBT process includes at least D times of CCA detection.
  • D is a random value between 0 and a specific maximum number, and the maximum number is not less than 3.
  • D takes a value of 2.
  • D may be set to a counter for counting successful CCA detections (hereinafter referred to as the CCA counter).
  • a successful CCA detection can reduce the value of the CCA counter by 1; the value of the CCA counter is 0, indicating that the LBT process of the beam and the corresponding transmission backoff have been completed.
  • Table 1 shows the values of the CCA counter C1 of a single beam in FIG. 2 .
  • time slot 201 202 203 204 205 206 C1 2 1 1 1 1 1 0
  • the channel is sensed to be idle within the second window at the end of the empty time slot, that is, the CCA detection is successful this time.
  • the value of the CCA counter is decremented by 1 (that is, equal to 1).
  • the second window may have a slot length of 5 microseconds.
  • channel occupancy is sensed within a second window at the end of an empty slot. Accordingly, this CCA test was unsuccessful.
  • channel occupancy is sensed within a first window at the end of the channel occupancy slot.
  • the channel is sensed to be idle within a first window at the end of the next channel occupied slot.
  • CCA detection continues for transmission backoff.
  • the channel is sensed to be idle within the second window at the end of the empty time slot, that is, the CCA detection is successful this time.
  • the value of the CCA counter is decremented by 1 (that is, equal to 0). So far, the LBT process and the corresponding transmission backoff have been completed, and the beam can be used for transmission, as shown in 207 .
  • the maximum channel occupancy time (Maximum Channel Occupancy Time, MCOT) of the transmission may be limited, for example, 5 milliseconds.
  • FIG. 2 Only a single LBT process corresponding to a single beam or channel is shown in FIG. 2 . It should be understood that in a multi-beam scenario, parallel LBT sensing may be performed on multiple beams, and multiple beams may be used for transmission. For example, SDM transmission gain can be obtained through MU-MIMO in the case that there are at least two beams available for transmission.
  • the channel availability varies greatly in the spatial region of the mmWave frequency band, so that the parallel LBT process of multiple directional beams may have a large gap. Even if these beams use the same time-frequency resource, this phenomenon is still obvious. Therefore, when the LBT process shown in FIG. 2 is initiated on multiple beams, the end time of the LBT process on each beam may vary greatly. In order to transmit simultaneously with multiple beams to obtain SDM gain, the beam that ends the LBT process early needs to wait for other beams to complete the LBT process. In this way, the channel condition of the beam that terminates the LBT process prematurely will change during the waiting process, so that subsequent transmission cannot be reliably performed and SDM gain can be obtained.
  • the end times of the multiple parallel LBT processes can be aligned as much as possible.
  • SDM transmissions on multiple beams may be initiated substantially simultaneously to achieve SDM gain, as described in detail below.
  • FIG. 3 illustrates an example electronic device for wireless communication according to an embodiment of the disclosure.
  • the electronic device 300 shown in FIG. 3 may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 300 may include an LBT control unit 302 , an LBT execution unit 304 and an optional transceiving unit 306 .
  • the electronic device 300 may be implemented as the base station 120A (or a part thereof) in FIG. .
  • Various operations described below in connection with the base station may be implemented by the units 302 to 306 of the electronic device 300 or other possible units.
  • the electronic device 300 may be implemented as any one (or a part thereof) of the terminal devices 110A to 110N in FIG. 1 .
  • Various operations described below in connection with the terminal may be implemented by the units 302 to 306 of the electronic device 300 or other possible units.
  • LBT control unit 302 may initiate multiple LBT procedures on multiple beams.
  • the LBT control unit 302 may also determine whether a particular beam (eg, a first beam) of the plurality of beams has completed a threshold number of successful CCA detections. For the LBT process of at least one other beam of the plurality of beams, the LBT control unit 302 may determine that it has not completed a corresponding threshold number of successful CCA detections. Correspondingly, the control unit 302 may also determine whether to continue to perform at least one additional CCA detection on the first beam.
  • the LBT execution unit 304 may execute a multi-beam parallel LBT process under the control of the control unit 302, and perform at least one additional CCA detection on a specific beam.
  • the transceiver unit 306 may perform SDM transmission through multiple beams.
  • the electronic device 300 may be implemented at a chip level, or may also be implemented at a device level by including other external components (such as radio links, antennas, etc.).
  • the electronic device 300 can function as a communication device as a complete machine, such as a network device, a vehicle-mounted unit, or a vehicle equipped with communication capabilities.
  • each of the above-mentioned units is only a logical module divided according to the specific functions they implement, and is not used to limit the specific implementation manner. For example, it can be implemented in software, hardware, or a combination of software and hardware. In actual implementation, each of the above units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • processing circuitry may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital) circuitry that performs a function in a computing system.
  • Processing circuitry may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), portions or circuits of individual processor cores, entire processor cores, individual processors, such as field programmable gate arrays (FPGAs) programmable hardware devices, and/or systems including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the configuration or function of the base station, terminal, or electronic device 300 can be understood in conjunction with example processes or operations described below. These processes or operations may be performed by at least one of the base station, the terminal, or the electronic device 300 .
  • FIG. 4 shows an example timing diagram of a multi-beam parallel LBT process according to an embodiment of the disclosure.
  • 3 LBT procedures are initiated on beam 1, beam 2 and beam 3.
  • Initiating the plurality of LBT procedures includes generating, for each of the plurality of beams, a respective random number, wherein the random number defines a threshold number of successful CCA detections to be included in the LBT procedure for the corresponding beam.
  • Table 2 below shows the change of the value of the CCA counter in this example.
  • the channel is sensed to be idle within a first window at the end of the channel occupied slot.
  • CCA detection will be performed on each beam for transmission backoff.
  • the contention window is determined by generating a random number.
  • the LBT process on beam 1 can be understood with reference to the description in FIG. 2 , and a brief description is as follows.
  • channel occupancy is sensed within a first window at the end of the channel occupancy slot. Accordingly, no transmission backoff is performed.
  • the channel is sensed to be idle within a first window at the end of the channel occupied slot. Then, transmission backoff can continue.
  • the channel is sensed to be idle within the second window at the end of the empty time slot, that is, the CCA detection is successful this time.
  • the value of the CCA counter is decremented by 1 (that is, equal to 0). So far, the LBT process of beam 1 and the corresponding transmission backoff have been completed, indicating that this channel can be used for transmission.
  • the LBT process on Beam 2 and Beam 3 can be understood similarly with reference to the description of FIG. 2 , except for some changes.
  • an unsuccessful CCA detection at 402 ends the backoff procedure.
  • the channel is sensed to be idle within a first window at the end of the channel occupied slot. Then, transmission backoff can continue.
  • Successful CCA detection at 404 and 405 causes the CCA counter to be reset to zero, which would have ended the LBT process.
  • the LBT process i.e. CCA detection
  • at least one beam such as beam 1
  • at least one additional CCA detection is different from FIG.
  • the value of C2 is adjusted to increase by 1 (as shown in "0->1" corresponding to beam 2 and time slot 405 in Table 2).
  • an additional CCA detection is performed on beam 2.
  • the addition of 1 in this adjustment is just an example.
  • C2 can increase other values N, such as the minimum value, average value or maximum value among other beam counter values.
  • the CCA detection is successful, and the value of C2 is reset to zero.
  • successful CCA detection at 402 to 404 causes the value of CCA counter C3 to be reset to zero, which would have ended the current LBT process.
  • the LBT process i.e., CCA detection
  • the execution can be continued on beam 3
  • At least one additional CCA test In this example, the value of C3 is adjusted to increase by 1 (as shown in "0->1" corresponding to beam 3 and time slot 404 in Table 2). Accordingly, an additional CCA detection is performed on beam 3.
  • a successful CCA detection at 405 resets the CCA counter C3 to zero again.
  • the LBT process i.e., CCA detection
  • at least one beam such as beam 1 and beam 2
  • it can continue to perform at least one time on beam 3 Additional CCA detection.
  • the value of C3 is also adjusted to increase by 1 (as shown in "0->1" corresponding to beam 3 and time slot 405 in Table 2). Accordingly, an additional CCA detection is performed on beam 3.
  • the CCA detection is successful, and the value of C3 is reset to zero.
  • the three beams can be used together for SDM transmission.
  • SDM transmission gain can be obtained through MU-MIMO.
  • FIG. 5 illustrates an example process 500 for coordinating multi-beam parallel LBT according to an embodiment of the disclosure.
  • the example process 500 may be performed by the base station 120A or the terminal device 110 to be downlink or uplink transmitting.
  • the example process is described by taking downlink transmission as an example; the process is also applicable to uplink transmission.
  • Process 500 may correspond to a LBT process on either beam i or channel i. For multiple beams, there may be a single process 500 corresponding to its LBT process.
  • base station 120A may generate a CCA counter value Ci.
  • the base station 120A may perform channel sensing within a first window at the end of the channel occupied slot. This first window can have, for example, a time slot length of 8 microseconds.
  • base station 120A may determine whether channel i is free based on the channel sensing results at 504. If channel i is occupied, go back to 504 for next channel sensing. If channel i is idle, proceed to 508 to perform channel backoff (ie, CCA detection) in subsequent empty slots. At 508, base station 120A may perform channel sensing within a second window at the end of the next empty slot. This second window can have, for example, a time slot length of 5 microseconds.
  • base station 120A may determine whether channel i is free based on the channel sensing results at 508. If the channel i is occupied, that is, the CCA detection in the second window is unsuccessful, return to step 504 to perform channel sensing in the first window. If the channel i is idle, then proceed to 512, so that the value of the CCA counter is decremented by 1. Next, proceeding from 512 to 514, it is determined whether multiple beams satisfy the SDM transmission condition based on the parallel LBT process. Satisfying the SDM transmission condition means that the multiple beams to be used have all completed the LBT process and the channels are idle. An example of how to determine that the SDM transmission condition is satisfied will be specifically described below. If the SDM transmission condition is met, proceed from 514 to 516 to use multiple beams for SDM transmission. Otherwise, proceed from 514 to 518 to determine whether the value Ci of the CCA counter of beam i is 0.
  • Ci not equal to 0 may indicate that Ci successful CCA detections are still required to determine that beam i is free and available. Accordingly, proceeding from 518 to 508, channel sensing is performed within a second window at the end of the next empty time slot. This process is the same as the processing described above with reference to 508 to 518 and will not be described again.
  • Ci 0 may indicate that successful CCA detection has been completed on beam i. Accordingly, proceed from 518 to 520 to set Ci to a non-zero value (eg, add 1 to Ci). Next, proceeding from 520 to 508, channel sensing is performed within a second window at the end of the next empty time slot. This process is the same as the processing described above with reference to 508 to 518 and will not be described again.
  • Ci returning to zero at 518 may indicate that beam i is free and can be used for transmission.
  • process 500 in the case where it is determined at 514 that multiple beams do not yet meet the SDM transmission conditions, by setting the zeroed Ci to a non-zero value, it is possible to make further sensing on beam i before the SDM transmission conditions are met.
  • Check channel status Through the operations in 514 to 520, additional CCA detection will be performed on beam i, so that the accurate state of the corresponding channel can be obtained before SDM transmission.
  • FIG. 6 illustrates an example process 600 for determining whether multi-beam SDM transmission conditions are met, according to an embodiment of the disclosure.
  • satisfying the SDM transmission condition means that the multiple beams to be used have all completed the LBT process and the channels are idle.
  • the success rate SR of the LBT process can be defined for multiple beams, for example, SR can be defined as the ratio of the number of beams whose CCA counter value is 0 to the total number of multiple beams.
  • the success rate SR is calculated.
  • the success rate SR may be calculated when there is a CCA counter with a value of 0 (corresponding to a beam that has completed the LBT process).
  • the success rate based processing in FIG. 6 is only an example.
  • values of CCA counters of multiple beams may be traversed to determine whether there is a CCA counter with a value other than 0.
  • the present disclosure advantageously, performing SDM transmission through as many beams as possible can help obtain higher SDM gain.
  • waiting for the LBT process of multiple beams to be completed may take a long time, which is disadvantageous. This disadvantage is more prominent if the channel condition of a certain beam is poor (eg, the channel is frequently contended for).
  • only a part of beams from multiple beams may be selected for SDM transmission based on the parallel LBT process, as described in detail below.
  • the number of adjustments that increase the value of the counter of any one of the multiple beams may be recorded.
  • the parallel LBT process of the multi-beams may be ended, and the multi-beam transmission may be performed without using the beams that have not yet completed the LBT process.
  • FIG. 7 shows an example timing diagram of multi-beam parallel LBT operation according to an embodiment of the disclosure.
  • a beam for SDM transmission may be selected from multiple beams based on multi-beam parallel LBT.
  • Table 3 below shows the change of the value of the CCA counter in FIG. 7 . Similar to the example in Fig. 4, "0->1" means one adjustment (ie increment by 1) to the CCA counter of the corresponding beam.
  • a threshold number of CCA counters for adjusting multiple beams is set, and the threshold number of times is 5, for example.
  • Table 3 since the channel conditions of beam 2 and beam 3 are good, beam 2 completes the LBT process in time slots 703 to 705 respectively, and adjusts the CCA counter value C2 three times; Complete the LBT process, and adjust the CCA counter value C3 twice. Therefore, at 705, the values of the CCA counters for beam 2 and beam 3 have been adjusted 5 times in total, reaching the set threshold number of times.
  • the threshold times of the above-mentioned CCA counters for adjusting multiple beams can be appropriately set to balance or select between SDM gain and waiting time. For example, in an area where terminals or access nodes are densely distributed, the threshold number of times may be larger to improve transmission gain and reduce interference; in an area where terminals or access nodes are sparsely distributed, the threshold number of times may be smaller. For urgent transmission tasks, the threshold number of times can be set smaller to reduce the LBT process delay; for delay-tolerant services or tasks with higher reliability requirements, the threshold number of times can be larger.
  • beams can be grouped based on the channel state of multiple beams. For example, beams may be grouped based on sensing results within periodic sensing windows, which reflect channel conditions.
  • a common CCA counter for each group can be set, and the LBT process of the beam members of the corresponding group can be controlled through the common CCA counter.
  • FIG. 8A shows an example timing diagram of multi-beam parallel LBT operation according to an embodiment of the disclosure.
  • 4 LBT procedures are initiated on Beam 1 , Beam 2 , Beam 3 and Beam 4 .
  • Initiating the plurality of LBT procedures includes generating, for each of the plurality of beams, a respective random number, wherein the random number defines a threshold number of successful CCA detections to be included in the LBT procedure for the corresponding beam.
  • the LBT process on multiple beams in time slots 801 to 804 may be understood with reference to the description of FIG. 4 .
  • the channel is sensed to be idle within the second window at the end of the empty time slot, that is, the CCA detection is successful this time.
  • the value of C1 is minus 1 (that is, equal to 0).
  • the value of C1 is increased by 1 (that is, it is equal to 1).
  • a first subset of the plurality of beams may be divided into a first group based on sensing within a periodic window.
  • the CCA detection can reduce the value of the common CCA counter by 1.
  • the particular beam is the member of the first subset with the largest CCA counter value.
  • time slots 802 to 804 and time slots 805 to 807 respectively define periodic sensing windows. Within each periodic sensing window, channel conditions of multiple beams can be tracked. In some embodiments, the channel status may include statistical results of channel occupancy of multiple beams, such as the number of channels occupied by multiple beams within the sensing window or the distribution positions of channel occupancy within the sensing window. Taking time slots 802 to 804 as an example, for beams 1 and 3, one successful CCA detection is tracked. Therefore, at 804, Beam 1 and Beam 3 can be divided into Group 1 and both beams are collectively controlled to perform the LBT process. For both beams 1 and 3, successful CCA detections are tracked at 802, ie both have the same or similar distribution of channel occupancy. In some embodiments, this may be an alternative or additional consideration for dividing Group 1 .
  • the Ci situation of each beam after group 1 is divided at 804 is shown by 804'.
  • the value of Cg1 will take precedence over the values of C1 and C3 of beam 1 and beam 3. It can be assumed that individual CCA detections will continue to be made on beam 1 and beam 3, but the CCA detections of both will be associated with a common CCA counter Cg1.
  • the value of the common CCA counter is decremented by 1, as shown at 806 and 807 .
  • the beam members of Group 1 may be updated (eg, including member additions and replacements) based on sensing within the second window.
  • the common CCA counter for group 1 may be updated based on the maximum CCA counter value of the beam members.
  • At least two beams with similar channel conditions are divided into the same group. It should be understood that this grouping is merely an example. Additionally or alternatively, multiple beams may be grouped based on CCA counter values. For example, at least two beams with similar CCA counter values may be divided into a group, or at least two beams with diverse CCA counter values (that is, a large difference) may be divided into a group. It will be appreciated that, in beam groupings, a common CCA counter replaces individual CCA counters for each beam, which may reduce the complexity associated with maintenance and adjustment of the CCA counters. This helps reduce the complexity of the parallel LBT process.
  • FIG. 9 illustrates an example process 900 for performing parallel LBT based on beam grouping, according to an embodiment of the disclosure.
  • the example process 900 may be performed by the base station 120A or the terminal device 110 to be downlink or uplink transmitting.
  • the example process is described by taking downlink transmission as an example; the process is also applicable to uplink transmission.
  • the common CCA counter of this group is denoted as Cgi. It should be appreciated that the example process 900 may begin at operation 908, depending on the LBT specifics on the k beams, in response to the grouping operation.
  • the base station 120A may perform channel sensing on the k beams within a second window at the end of the next empty slot.
  • This second window can have, for example, a time slot length of 5 microseconds.
  • base station 120A may determine whether all k channels are free based on the channel sensing results at 908. If at least one channel i is occupied, that is, the CCA detection in the second window is unsuccessful, then the process 900 proceeds to 901, and the LBT process is respectively performed on the k channels. It should be understood that at 901 , the LBT process on each channel can be independently performed based on the logic of the above-mentioned processing 500 . At 910, if all the k channels are idle, proceed to 912, so that the value of the common CCA counter Cgi is decremented by 1.
  • Cgi not equal to 0 may indicate that Cgi successful CCA detections on k beams are still required to determine that the k beams are free and available. Accordingly, proceeding from 918 to 908, channel sensing is performed within a second window at the end of the next empty time slot. It should be understood that the next operation may be another cycle of the above operations, and the description will not be repeated.
  • Cgi equal to 0 may indicate that successful CCA detection has been completed on the k beams. Accordingly, proceed from 918 to 920 to set Cgi to a non-zero value (eg, increment Cgi by 1). Then, proceed from 920 to 908, and perform another cycle of the above operations.
  • Cgi being zeroed at 918 may indicate that k beams are free and available for transmission.
  • a beam with an idle channel can also be selected from multiple beams through the parallel LBT process for SDM transmission.
  • Figure 8B shows an example timing diagram for multi-beam parallel LBT operation according to an embodiment of the disclosure.
  • three adjustments of the CCA counter value have been performed before step 1007, as shown by "0 -> 1" at positions 1002, 1005 and 1006 in Table 5 below.
  • the CCA detections of Beam 1 , Beam 3 and Beam 4 are all successful.
  • the values of C1, C3 and C4 are reset to zero.
  • only beam 1, beam 3, and beam 4 may be used for SDM transmission (and beam 2 is not used).
  • FIG. 10 illustrates an example method for wireless communication according to an embodiment of the disclosure.
  • the method may be executed by any one of the electronic device 300, the base station or the terminal.
  • the method 1000 may include initiating multiple listen-before-talk LBT procedures on multiple beams (block 1012).
  • the method may also include determining, for the LBT process for the first beam of the plurality of beams, that a first threshold number of successful CCA detections have been completed (block 1014).
  • the method may also include, for the LBT process of at least one other beam of the plurality of beams, determining whether a corresponding threshold number of successful CCA detections has not been completed (block 1016).
  • the method may also include determining whether to continue performing at least one additional CCA detection on the first beam (block 1018).
  • initiating said plurality of LBT procedures comprises: generating, for each beam of said plurality of beams, a respective random number, wherein said random number defines a threshold of successful CCA detection to be included in the LBT procedure of the corresponding beam quantity.
  • the method 1000 may include setting a value of a CCA counter of a corresponding beam equal to the random number, wherein a successful CCA detection on a beam decrements the value of the CCA counter by one.
  • determining that a first threshold number of successful CCA detections have been completed includes determining that a CCA counter of the first beam has a value of zero. Determining for the LBT process of the at least one other beam that a corresponding threshold number of successful CCA detections has not been completed includes determining that the value of the CCA counter of the at least one other beam is not zero. Determining to continue to perform at least one additional CCA detection on the first beam includes increasing the value of the CCA counter of the first beam by N, where N ⁇ 1.
  • the LBT process of the at least one other beam it is determined based on one of the following that a corresponding threshold number of successful CCA detections has not been completed: The ratio is less than 1; or the sum of the CCA counter values of the multiple beams is greater than 0.
  • the method 1000 may include dividing a first subset of the plurality of beams into a first group based on sensing within a first window; and dividing a CCA counter of a second beam in the first subset The value is set to the common CCA counter of the first group, wherein the common CCA counter takes precedence over the individual CCA counters of the first subset member, and a simultaneous successful CCA detection on the first subset member causes the take-off of the common CCA counter value minus 1.
  • the first subset includes at least two beams with similar channel conditions; the first subset includes at least two beams with similar CCA counter values; or the first subset includes at least two beams with diverse CCA counter values. beams.
  • the second beam is the member with the largest CCA counter value in the first subset.
  • the method 1000 may include updating the first set to include a second subset of the plurality of beams based on sensing within the second window; and updating the CCA of the third beam in the second subset to The counter value is set to the common CCA counter of the first group.
  • the method 1000 may include recording the number of times that the counter value of any beam in the plurality of beams is increased; when the number of times reaches a second threshold, end the plurality of LBT processes; As well as perform multi-beam transmission without using beams that have not completed the LBT process.
  • said plurality of beams comprises a plurality of downlink beams
  • said electronic device can be implemented as at least part of a base station.
  • said plurality of beams comprises a plurality of uplink beams
  • said electronic device can be implemented as at least a part of a terminal device.
  • machine-readable storage medium or the machine-executable instructions in the program product may be configured to perform operations corresponding to the above-mentioned device and method embodiments.
  • the embodiments of the machine-readable storage medium or the program product will be obvious to those skilled in the art, so the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-mentioned machine-executable instructions also fall within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • FIG. 11 is a block diagram showing an example structure of a personal computer as an information processing device employable in an embodiment of the present disclosure.
  • the personal computer may correspond to the above-mentioned example terminal device according to the present disclosure.
  • a central processing unit (CPU) 1301 executes various processes according to programs stored in a read only memory (ROM) 1302 or loaded from a storage section 1308 to a random access memory (RAM) 1303 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1301 executes various processing and the like is also stored as necessary.
  • the CPU 1301, ROM 1302, and RAM 1303 are connected to each other via a bus 1304.
  • the input/output interface 1305 is also connected to the bus 1304 .
  • the following components are connected to the input/output interface 1305: an input section 1306 including a keyboard, a mouse, etc.; an output section 1307 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker; a storage section 1308 , including a hard disk, etc.; and the communication part 1309, including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1309 performs communication processing via a network such as the Internet.
  • a driver 1310 is also connected to the input/output interface 1305 as needed.
  • a removable medium 1311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is mounted on the drive 1310 as necessary, so that a computer program read therefrom is installed into the storage section 1308 as necessary.
  • the programs constituting the software are installed from a network such as the Internet or a storage medium such as the removable medium 1311 .
  • a storage medium is not limited to the removable medium 1311 shown in FIG. 11 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable media 1311 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including )) and semiconductor memory.
  • the storage medium may be a ROM 1302, a hard disk contained in the storage section 1308, or the like, in which programs are stored and distributed to users together with devices containing them.
  • the base stations mentioned in this disclosure may be implemented as any type of evolved Node B (gNB), such as macro gNB and small gNB.
  • gNB evolved Node B
  • a small gNB may be a gNB that covers a cell smaller than a macro cell, such as a pico gNB, a micro gNB, and a home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the base station may include: a main body (also referred to as base station equipment) configured to control wireless communication; and one or more remote radio heads (Remote Radio Head, RRH) arranged in places different from the main body.
  • a main body also referred to as base station equipment
  • RRH Remote Radio Head
  • various types of terminals to be described below can operate as a base station by temporarily or semi-permanently performing the base station function.
  • the terminal equipment mentioned in this disclosure is also referred to as user equipment in some examples, and can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile routers and digital cameras) or vehicle-mounted terminals (such as car navigation equipment).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned terminals.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1400 includes multiple antennas 1410 and base station equipment 1420.
  • the base station apparatus 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or the base station device 1420) here may correspond to the above-mentioned electronic devices 300A, 1300A and/or 1500B.
  • Each of the antennas 1410 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a Multiple Input Multiple Output (MIMO) antenna, and is used for the base station apparatus 1420 to transmit and receive wireless signals.
  • MIMO Multiple Input Multiple Output
  • a gNB 1400 may include multiple antennas 1410.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by gNB 1400.
  • the base station device 1420 includes a controller 1421 , a memory 1422 , a network interface 1423 and a wireless communication interface 1425 .
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1420 .
  • the controller 1421 generates a data packet according to data in a signal processed by the wireless communication interface 1425 and transfers the generated packet via the network interface 1423 .
  • the controller 1421 may bundle data from a plurality of baseband processors to generate a bundled packet, and transfer the generated bundled packet.
  • the controller 1421 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby gNBs or core network nodes.
  • the memory 1422 includes RAM and ROM, and stores programs executed by the controller 1421 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1423 is a communication interface for connecting the base station apparatus 1420 to the core network 1424 .
  • the controller 1421 may communicate with a core network node or another gNB via a network interface 1423 .
  • gNB 1400 and core network nodes or other gNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1423 can also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1423 is a wireless communication interface, the network interface 1423 may use a higher frequency band for wireless communication than that used by the wireless communication interface 1425 .
  • the wireless communication interface 1425 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the gNB 1400 via the antenna 1410.
  • Wireless communication interface 1425 may generally include, for example, a baseband (BB) processor 1426 and RF circuitry 1427 .
  • the BB processor 1426 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and execute layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol ( Various types of signal processing for PDCP)).
  • L1 Medium Access Control
  • RLC Radio Link Control
  • Packet Data Convergence Protocol Various types of signal processing for PDCP
  • the BB processor 1426 may have a part or all of the logic functions described above.
  • the BB processor 1426 may be a memory storing a communication control program, or a module including a processor configured to execute a program and related circuits.
  • the update program can cause the function of the BB processor 1426 to change.
  • the module may be a card or blade inserted into a slot of the base station device 1420 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1410 .
  • FIG. 12 shows an example in which one RF circuit 1427 is connected to one antenna 1410, the present disclosure is not limited to this illustration, but one RF circuit 1427 may be connected to a plurality of antennas 1410 at the same time.
  • the wireless communication interface 1425 may include multiple BB processors 1426 .
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427 .
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 1425 includes a plurality of BB processors 1426 and a plurality of RF circuits 1427 , the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427 .
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1530 includes multiple antennas 1540, base station equipment 1550 and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via RF cables.
  • the base station apparatus 1550 and the RRH 1560 may be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 1530 (or the base station device 1550) here may correspond to the above-mentioned electronic devices 300A, 1300A and/or 1500B.
  • Each of the antennas 1540 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the RRH 1560 to transmit and receive wireless signals.
  • a gNB 1530 may include multiple antennas 1540.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by gNB 1530.
  • the base station device 1550 includes a controller 1551 , a memory 1552 , a network interface 1553 , a wireless communication interface 1555 and a connection interface 1557 .
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG. 12 .
  • the wireless communication interface 1555 supports any cellular communication scheme such as LTE and LTE-Advanced, and provides wireless communication to a terminal located in a sector corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • Wireless communication interface 1555 may generally include, for example, BB processor 1556 .
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 12 except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include multiple BB processors 1556 .
  • multiple BB processors 1556 may be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 13 shows an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556 , the wireless communication interface 1555 may also include a single BB processor 1556 .
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 can also be a communication module used to connect the base station equipment 1550 (wireless communication interface 1555) to the communication in the above-mentioned high-speed line of the RRH 1560.
  • the RRH 1560 includes a connection interface 1561 and a wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540 .
  • Wireless communication interface 1563 may generally include RF circuitry 1564, for example.
  • the RF circuit 1564 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1540 .
  • FIG. 13 shows an example in which one RF circuit 1564 is connected to one antenna 1540, the present disclosure is not limited to this illustration, but one RF circuit 1564 may be connected to a plurality of antennas 1540 at the same time.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564 .
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564 , the wireless communication interface 1563 may also include a single RF circuit 1564 .
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the technology of the present disclosure can be applied.
  • the smart phone 1600 includes a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, a camera device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, one or more Antenna switch 1615 , one or more antennas 1616 , bus 1617 , battery 1618 , and auxiliary controller 1619 .
  • the smart phone 1600 (or the processor 1601 ) here may correspond to the above-mentioned terminal device 300B and/or 1500A.
  • the processor 1601 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 1600 .
  • the memory 1602 includes RAM and ROM, and stores data and programs executed by the processor 1601 .
  • the storage device 1603 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1604 is an interface for connecting an external device, such as a memory card and a universal serial bus (USB) device, to the smartphone 1600 .
  • USB universal serial bus
  • the imaging device 1606 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1607 may include a set of sensors such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1608 converts sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 1610, a keypad, a keyboard, buttons, or switches, and receives operations or information input from the user.
  • the display device 1610 includes a screen such as a Liquid Crystal Display (LCD) and an Organic Light Emitting Diode (OLED) display, and displays an output image of the smartphone 1600 .
  • the speaker 1611 converts an audio signal output from the smartphone 1600 into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1612 may generally include, for example, a BB processor 1613 and an RF circuit 1614 .
  • the BB processor 1613 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1614 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1616 .
  • the wireless communication interface 1612 may be a chip module on which a BB processor 1613 and an RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 may include multiple BB processors 1613 and multiple RF circuits 1614 .
  • FIG. 14 shows an example in which the wireless communication interface 1612 includes a plurality of BB processors 1613 and a plurality of RF circuits 1614
  • the wireless communication interface 1612 may include a single BB processor 1613 or a single RF circuit 1614 .
  • the wireless communication interface 1612 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme, in addition to a cellular communication scheme.
  • the wireless communication interface 1612 may include a BB processor 1613 and an RF circuit 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 among a plurality of circuits included in the wireless communication interface 1612 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 1616 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 1612 to transmit and receive wireless signals.
  • smartphone 1600 may include multiple antennas 1616 . While FIG. 14 shows an example in which the smartphone 1600 includes multiple antennas 1616 , the smartphone 1600 may include a single antenna 1616 as well.
  • the smartphone 1600 may include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 may be omitted from the configuration of the smartphone 1600 .
  • the bus 1617 connects the processor 1601, memory 1602, storage device 1603, external connection interface 1604, camera device 1606, sensor 1607, microphone 1608, input device 1609, display device 1610, speaker 1611, wireless communication interface 1612, and auxiliary controller 1619 to each other. connect.
  • the battery 1618 provides power to the various blocks of the smartphone 1600 shown in FIG. 14 via feed lines, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 1619 operates minimum necessary functions of the smartphone 1600, for example, in a sleep mode.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device 1720 to which the technology of the present disclosure can be applied.
  • Car navigation device 1720 includes processor 1721, memory 1722, global positioning system (GPS) module 1724, sensor 1725, data interface 1726, content player 1727, storage medium interface 1728, input device 1729, display device 1730, speaker 1731, wireless communication interface 1733 , one or more antenna switches 1736 , one or more antennas 1737 , and battery 1738 .
  • GPS global positioning system
  • the car navigation device 1720 (or the processor 1721 ) here may correspond to the above-mentioned terminal devices 300B and/or 1500A.
  • the processor 1721 may be, for example, a CPU or a SoC, and controls a navigation function and other functions of the car navigation device 1720 .
  • the memory 1722 includes RAM and ROM, and stores data and programs executed by the processor 1721 .
  • the GPS module 1724 measures the location (such as latitude, longitude, and altitude) of the car navigation device 1720 using GPS signals received from GPS satellites.
  • Sensors 1725 may include a set of sensors such as gyroscopic sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1726 is connected to, for example, an in-vehicle network 1741 via a terminal not shown, and acquires data generated by the vehicle such as vehicle speed data.
  • the content player 1727 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 1728 .
  • the input device 1729 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1730, and receives an operation or information input from a user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1731 outputs sound of a navigation function or reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1733 may generally include, for example, a BB processor 1734 and RF circuitry 1735 .
  • the BB processor 1734 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1735 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1737 .
  • the wireless communication interface 1733 can also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 may include multiple BB processors 1734 and multiple RF circuits 1735 .
  • FIG. 15 shows an example in which the wireless communication interface 1733 includes a plurality of BB processors 1734 and a plurality of RF circuits 1735, the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735.
  • the wireless communication interface 1733 may support another type of wireless communication scheme, such as a short-distance wireless communication scheme, a near field communication scheme, and a wireless LAN scheme, in addition to the cellular communication scheme.
  • the wireless communication interface 1733 may include a BB processor 1734 and an RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 among a plurality of circuits included in the wireless communication interface 1733 , such as circuits for different wireless communication schemes.
  • Each of the antennas 1737 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a MIMO antenna, and is used for the wireless communication interface 1733 to transmit and receive wireless signals.
  • the car navigation device 1720 may include a plurality of antennas 1737 .
  • FIG. 15 shows an example in which the car navigation device 1720 includes a plurality of antennas 1737
  • the car navigation device 1720 may also include a single antenna 1737 .
  • the car navigation device 1720 may include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 can be omitted from the configuration of the car navigation device 1720 .
  • the battery 1738 provides power to the various blocks of the car navigation device 1720 shown in FIG. 15 via feeder lines, which are partially shown as dotted lines in the figure.
  • the battery 1738 accumulates electric power supplied from the vehicle.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 including one or more blocks in a car navigation device 1720 , an in-vehicle network 1741 , and a vehicle module 1742 .
  • the vehicle module 1742 generates vehicle data such as vehicle speed, engine speed, and breakdown information, and outputs the generated data to the in-vehicle network 1741 .
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be respectively implemented by separate devices.
  • one of the above functions may be realized by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order but also processing performed in parallel or individually and not necessarily in time series. Furthermore, even in the steps of time-series processing, needless to say, the order can be appropriately changed.
  • An electronic device comprising a processing circuit configured to:
  • initiating the plurality of LBT procedures includes: generating a corresponding random number for each of the plurality of beams, wherein the random number defines a threshold number of successful CCA detections to be included in the LBT procedure of the corresponding beam, and
  • the processing circuit is further configured to: set the value of the CCA counter of the corresponding beam equal to the random number, wherein a successful CCA detection on the beam reduces the value of the CCA counter by 1.
  • determining that a first threshold number of successful CCA detections has been completed includes determining that the value of the CCA counter of the first beam is 0;
  • determining that the corresponding threshold number of successful CCA detections has not been completed includes determining that the value of the CCA counter of the at least one other beam is not 0;
  • determining to continue to perform at least one additional CCA detection on the first beam includes increasing the value of the CCA counter of the first beam by N, where N ⁇ 1.
  • the ratio of the number of beams for which the CCA counter takes a value of 0 to the total number of the plurality of beams is less than 1;
  • the sum of the values of the CCA counters of the multiple beams is greater than 0.
  • the first subset includes at least two beams with similar channel conditions
  • the first subset includes at least two beams with similar CCA counter values; or
  • the first subset includes at least two beams with various CCA counter values.
  • the value of the CCA counter of the third beam in the second subset is set to the common CCA counter of the first group.
  • processing circuit is further configured to:
  • a method for wireless communication comprising:
  • initiating the plurality of LBT procedures includes: generating a corresponding random number for each of the plurality of beams, wherein the random number defines a threshold number of successful CCA detections to be included in the LBT procedure of the corresponding beam, and
  • the method further includes: setting the value of the CCA counter of the corresponding beam equal to the random number, wherein a successful CCA detection on the beam reduces the value of the CCA counter by 1.
  • determining that a first threshold number of successful CCA detections has been completed includes determining that the value of the CCA counter of the first beam is 0;
  • determining that the corresponding threshold number of successful CCA detections has not been completed includes determining that the value of the CCA counter of the at least one other beam is not 0;
  • determining to continue to perform at least one additional CCA detection on the first beam includes increasing the value of the CCA counter of the first beam by N, where N ⁇ 1.
  • the ratio of the number of beams for which the CCA counter takes a value of 0 to the total number of the plurality of beams is less than 1;
  • the sum of the values of the CCA counters of the multiple beams is greater than 0.
  • the value of the CCA counter of the third beam in the second subset is set to the common CCA counter of the first group.
  • a computer readable storage medium having stored thereon executable instructions which, when executed by one or more processors, carry out the operations of the method according to any one of clauses 12 to 18 .
  • a computer program product comprising instructions which, when executed by a computer, cause the computer to perform the method according to any one of clauses 12-18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及用于无线通信的设备、方法和存储介质。描述了关于多波束感测和接入的各种实施例。在实施例中,用于无线通信的电子设备包括处理电路,该处理电路被配置为在多个波束上发起多个先听后说LBT过程;对于所述多个波束中第一波束的LBT过程,确定已完成第一阈值数量的成功空闲信道评估CCA检测;对于所述多个波束中至少一个其他波束的LBT过程,确定尚未完成相应阈值数量的成功CCA检测;以及确定是否在第一波束上继续执行至少一次附加CCA检测。

Description

用于无线通信的设备、方法和存储介质 技术领域
本公开一般地涉及无线通信技术,并且具体地涉及用于多波束感测和接入的技术。
背景技术
无线通信技术的发展从多个方面不断地满足人们对于无线通信业务的使用需求。频段选择是其中一个重要方面。为了提供高数据速率和局部的高流量需求,会研究并部署例如24GHz甚至60GHz的频率应用。由于这些频率所对应的波长,它们可以称为毫米波频段。以5G NR(New Radio)为例,频段包括频率范围1(FR1)和频率范围2(FR2)。FR1包括6GHz以下的频段,FR2包括24.25GHz至52.6GHz范围内的频段。在NR等正在研究以及后续演进的技术中,所使用的频率范围会扩展到60GHz(例如52.6GHz至71GHz)的更高频率范围。
为了适应毫米波频段的特性,网络设备(例如基站)以及终端(例如接入节点)需要使用新技术。这些新技术包括例如大规模MIMO(Multiple-Input-Multiple-Output)、波束成形、多波束感测等,以及对它们的持续改进。先听后说(Listen Before Talk,LBT)是用于信道感测的典型机制,该机制也可以应用于多波束场景。
发明内容
本公开的第一方面涉及用于无线通信的电子设备。根据一些实施例,该电子设备可以包括处理电路。该处理电路可以被配置为在多个波束上发起多个先听后说LBT过程;对于所述多个波束中第一波束的LBT过程,确定已完成第一阈值数量的成功空闲信道评估CCA检测;对于所述多个波束中至少一个其他波束的LBT过程,确定尚未完成相应阈值数量的成功CCA检测;以及确定是否在第一波束上继续执行至少一次附加CCA检测。
本公开的第二方面涉及用于无线通信的方法。根据一些实施例,该方法包括在多个波束上发起多个先听后说LBT过程;对于所述多个波束中第一波束的LBT过程,确定已完成第一阈值数量的成功空闲信道评估CCA检测;对于所述多个波束中至少一个其他波束的LBT过程,确定尚未完成相应阈值数量的成功CCA检测;以及确定是否在第一波束上继续执行至少一次附加CCA检测。
本公开的第三方面涉及一种计算机可读存储介质,其上存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,实现根据本公开的各种实施例的方法的操作。
本公开的第四方面涉及一种计算机程序产品,所述计算机程序产品包括指令,所述指令在由计算机执行时使所述计算机执行根据本公开的各种实施例的方法。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各方面的基本理解。因此,上述特征仅仅是示例并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。其中:
图1示出了根据本公开实施例的示例无线通信系统。
图2示出了根据本公开实施例的单个波束的LBT过程的示例时序图。
图3示出了根据本公开实施例的用于无线通信的示例电子设备。
图4示出了根据本公开实施例的多波束并行LBT过程的示例时序图。
图5示出了根据本公开实施例的用于协调多波束并行LBT的示例处理。
图6示出了根据本公开实施例的用于确定是否满足多波束SDM传输条件的示例处理。
图7示出了根据本公开实施例的多波束并行LBT操作的示例时序图。
图8A和图8B示出了根据本公开实施例的多波束并行LBT操作的示例时序图。
图9示出了根据本公开实施例的用于基于波束分组执行并行LBT的示例处理。
图10示出了根据本公开实施例的用于无线通信的示例方法。
图11示出了根据本公开实施例的可实现为终端设备或网络设备的计算机的示例框图。
图12是示出可以应用本公开的技术的gNB的示意性配置的第一示例的框图。
图13是示出可以应用本公开的技术的gNB的示意性配置的第二示例的框图。
图14是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图。
图15是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
本公开中描述的实施例仅为示例,它们可以有各种变型和另选形式。应理解,附图及其详细描述不是要将方案限定为所公开的特定形式,而是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
以下描述根据本公开的设备和方法等各方面的代表性应用。这些例子的描述仅是为了增加上下文并帮助理解所描述的实施例。因此,对本领域技术人员而言明晰的是,以下所描述的实施例可以在没有具体细节当中的一些或全部的情况下被实施。在其他情况下,众所周知的过程步骤没有详细描述,以避免不必要地模糊所描述的实施例。其他应用也是可能的,本公开的方案并不限制于这些示例。
图1示出了根据本公开实施例的示例无线通信系统100。应理解,图1仅示出无线通信系统的多种类型和可能布置中的一种;本公开的特征可根据需要在各种系统中的任一者中实现。
如图1所示,无线通信系统100包括基站120A以及一个或多个终端110A、110B至110N。基站120A和各终端可以通过传输介质进行通信。基站120A可以与网络130(例如,蜂窝服务提供方的核心网、诸如公共交换电话网(PSTN)的电信网络和/或互联网)进行通信。这样,基站120A可以便于终端110A至110N之间和/或终端110A至110N与网络130之间的通信。
在图1中,基站120A的覆盖区域可以被称为小区。根据一种或多种蜂窝通信技术进行操作的基站120A和其他类似基站(未示出)可以在广阔的地理区域上向终端110A至110N以及类似设备提供连续或近似连续的通信信号覆盖。
在本公开的实施例中,基站和终端可以通过授权频段(licensed spectrum)和/或非授权频段(unlicensed spectrum)进行通信。授权频段和非授权频段可以遵循行业标准的定义或者遵循地域的频率管理规定。对于授权频段和非授权频段,基站都可以分配上下行链路的时域和频域资源。一般地,频域资源可以是连续或分开的子载波。时域资源可以对应一定的时间段,例如可以是一定数量的符号、时隙或者子帧。
在本公开的实施例中,基站与终端之间的通信可以使用毫米波频段,例如FR2以及60GHz以上的频率范围。在下行链路中,基站可以使用多用户MIMO(MU-MIMO) 通过多波束与多个终端进行通信,从而获得空分复用(Space Division Multiplexing,SDM)增益。虽然在图1中仅示出单个基站120A,但是可以理解,在上行链路中,例如终端110A可以类似地使用MU-MIMO通过多波束与多个基站进行通信,从而获得SDM增益。
在本公开的实施例中,基站和终端之间可以通过高层信令(例如无线电资源控制(RRC)信令)和物理层信令(例如NR系统中的下行链路控制信息DCI、上行链路控制信息UCI)中的至少一者进行信令交互。
在本公开中,基站可以是5G NR基站,例如gNB和ng-eNB。gNB可以提供与终端设备终接的NR用户平面和控制平面协议;ng-eNB是为了与4G LTE通信系统兼容而定义的节点,其可以是LTE无线接入网的演进型节点B(eNB)的升级,提供与UE终接的演进通用陆地无线接入(E-UTRA)用户平面和控制平面协议。此外,基站的示例可以包括但不限于以下:GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的至少一者;WCDMA系统中的无线电网络控制器(RNC)和Node B中的至少一者;WLAN、WiMAX系统中的接入点(AP);以及将要或正在开发的通信系统中对应的网络节点。本文中基站的部分功能也可以实现为在D2D、M2M以及V2X通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
在本公开中,终端设备可以具有其通常含义的全部广度,例如终端设备可以为移动站(Mobile Station,MS)、用户设备(User Equipment,UE)、接入节点等。终端设备可以实现为诸如移动电话、手持式设备、媒体播放器、计算机、膝上型电脑、平板电脑、车载单元或车辆或者几乎任何类型的无线设备。在一些情况下,终端设备可以使用多种无线通信技术进行通信。例如,终端设备可以被配置为使用GSM、UMTS、CDMA2000、WiMAX、LTE、LTE-A、WLAN、NR、蓝牙等中的一者或多者进行通信。应理解,本公开描述的实施例对于任何类型的终端设备均适用。
示例LBT过程
在本公开的实施例中,就频率使用而言,通信设备(包括基站、终端)之间可能存在竞争。在一些情况下,基站和终端可以仅基于自身通信需求来使用多个波束以及相应的工作信道。在一些情况下,为了使大部分通信设备能够以公平的方式使用工作信道,基站和终端可以在接入工作信道之前对波束/信道进行感测(例如通过LBT机制),并且在确定信道可能空闲的情况下接入工作信道。由于波束和信道具有对应性,在以下描述中,波束和相应的信道可以互换的使用。例如,波束感测意味着对相应的信道进行感测;反之亦然。
在LBT机制中,先向对方发送消息的设备可以称为发起设备,相应的对方可以称 为响应设备。例如,如果基站首先发送下行链路消息,则该基站为发起设备,相应的终端为响应设备;可以类似地理解相反的情况。对于基站/终端作为发起设备或响应设备的情况,本公开中描述的LBT过程均可以适用。
在本公开的实施例中,发起设备为了接入多个波束进行SDM传输,可以在多个波束上发起多个LBT过程。每个LBT过程可以包括对相应波束的一系列空闲信道评估(Clear Channel Assessment,CCA)检测,用于确定信道是否可能空闲或被占用。CCA检测可以基于在工作信道上监听到的信号能量或功率情况。例如,在监听到的信号能量或功率低于特定阈值的情况下,可以认为工作信道未被占用(或称是空闲的,此时CCA检测成功)。应理解,基于信道占用情况,该一系列CCA检测可以包括成功和不成功的CCA检测。在本公开中,LBT过程需要至少包括阈值数量的成功CCA检测甚至包括附加的成功CCA检测,才可以使用该信道或波束进行传输。
图2示出了根据本公开实施例的单个波束的LBT过程的示例时序图200。在图2中,一系列的时隙被标记为201至207,包括信道占用时隙、空时隙以及用于传输的时隙。在图2中,第一窗口和第二窗口用于表示不同长度的信道感测时间段,并通过不同图例来表示各窗口内信道感测结果是空闲还是被占用。以下类似附图中均采用相同的图例。在发起设备期望进行下行链路或上行链路传输时,会引起时序图200。
如图2所示,在201处,在信道占用时隙末尾处的第一窗口内感测到信道空闲。作为示例,第一窗口可以具有8微秒的时隙长度。此时,发起LBT过程的一系列CCA检测以进行传输退避。传输退避至少需要持续D个空时隙(也称竞争窗口),也就是说该LBT过程至少包括D次CCA检测。在一些实施例中,D为0至特定最大数之间的随机取值,并且该最大数不小于3。在该示例中,D取值为2。在一些实施例中,可以将D设置给用于对成功CCA检测进行计数的计数器(以下称CCA计数器)。一次成功CCA检测可以使得该CCA计数器的取值减1;CCA计数器取值为0表明已完成该波束的LBT过程和相应的传输退避。
为了便于理解,下表一示出了图2中单个波束的CCA计数器C1的取值情况。
时隙 201 202 203 204 205 206
C1 2 1 1 1 1 0
在202处,在空时隙末尾处的第二窗口内感测到信道空闲,即此次CCA检测成功。相应地,CCA计数器取值减1(即等于1)。在该示例中,第二窗口可以具有5微秒的时隙长度。在203处,在空时隙末尾处的第二窗口内感测到信道被占用。相应地,此次CCA检测不成功。
在204处,在信道占用时隙末尾处的第一窗口内感测到信道被占用。在205处, 在下一信道占用时隙末尾处的第一窗口内感测到信道空闲。此时,继续CCA检测以进行传输退避。
在206处,在空时隙末尾处的第二窗口内感测到信道空闲,即此次CCA检测成功。相应地,CCA计数器取值减1(即等于0)。至此,已完成LBT过程和相应的传输退避,可以使用该波束进行传输,如207所示。该传输的最大信道占用时间(Maximum Channel Occupancy Time,MCOT)可能具有限制,例如为5毫秒。
应理解,图2中描述的时隙窗口大小仅为示例,所描述的数量取值也为示例。可以根据需要,对这些参数中的一个或多个进行修改。
在图2中仅示出对应于单个波束或信道的单个LBT过程。应理解,在多波束场景下可以对多个波束进行并行LBT感知,并使用多个波束进行传输。例如,在存在至少两个波束可用于传输的情况下,通过MU-MIMO可以获得SDM传输增益。
在毫米波频段的空间区域中信道可用性差异很大,使得多个定向波束的并行LBT过程可能差距较大。即使这些波束使用相同的时频资源,该现象依然明显。因此,当在多个波束上发起如图2所示的LBT过程的情况下,每个波束上LBT过程的结束时间差距可能较大。为了多波束同时传输以获得SDM增益,早结束LBT过程的波束需要等待其他波束完成LBT过程。这样,过早结束LBT过程的波束在等待过程中其信道状况会发生变化,使得无法可靠进行后续的传输并获得SDM增益。在本公开的实施例中,通过协调多个波束的并行LBT过程,使得多个并行LBT过程的结束时间能够尽量对齐。这样,可以基本同时开始多个波束上的SDM传输以获得SDM增益,如以下详细描述的。
图3示出了根据本公开实施例的用于无线通信的示例电子设备。图3所示的电子设备300可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备300可以包括LBT控制单元302、LBT执行单元304和可选的收发单元306。
根据一些实施例,电子设备300可被实现为图1中的基站120A(或其一部分),或者可被实现为用于控制基站120A或与基站120A相关的设备(例如控制器,或其一部分)。以下结合基站描述的各种操作可以由电子设备300的单元302至306或者其他可能的单元实现。
根据一些实施例,电子设备300可被实现为图1中的终端设备110A至110N中任一个(或其一部分)。以下结合终端描述的各种操作可以由电子设备300的单元302至306或者其他可能的单元实现。
在一些实施例中,LBT控制单元302可以在多个波束上发起多个LBT过程。LBT控制单元302还可以确定多个波束中的特定波束(例如第一波束)是否已完成阈值数量的成功CCA检测。对于多个波束中至少一个其他波束的LBT过程,LBT控制单元302 可以确定其尚未完成相应阈值数量的成功CCA检测。相应地,控制单元302还可以确定是否在第一波束上继续执行至少一次附加CCA检测。在一些实施例中,LBT执行单元304可以经控制单元302的控制而执行多波束的并行LBT过程,以及在特定波束上执行至少一次附加CCA检测。在一些实施例中,可选地,收发单元306可以通过多个波束进行SDM传输。
在本公开的实施例中,电子设备300可以以芯片级来实现,或者也可以通过包括其他外部部件(例如无线电链路、天线等)而以设备级来实现。电子设备300可以作为整机而工作为通信设备,诸如网络设备、车载单元或配置有通信能力的车辆等。
上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。其中,处理电路可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
可以结合以下描述的示例处理或操作来理解基站、终端或者电子设备300的配置或功能。可以由基站、终端或者电子设备300中的至少一者来执行这些处理或操作。
多波束并行LBT的协调
图4示出了根据本公开实施例的多波束并行LBT过程的示例时序图。作为示例,在波束1、波束2和波束3上发起3个LBT过程。发起这多个LBT过程包括对于多个波束中的每个波束生成相应随机数,其中该随机数限定相应波束的LBT过程要包括的成功CCA检测的阈值数量。
为了便于理解,下表二示出了该示例中CCA计数器取值的变化情况。
  401 402 403 404 405 406
C1 1 1 1 1 1 0
C2 2 2 2 1 0->1 0
C3 3 2 1 0->1 0->1 0
如图4所示,在401处,对于每个波束,在信道占用时隙末尾处的第一窗口内感测到信道空闲。接着,在每个波束上将执行CCA检测以进行传输退避。对于每个波束, 通过生成随机数来确定竞争窗口。作为示例,对于波束1,LBT过程至少包括D1=1次CCA检测;对于波束2,LBT过程至少包括D2=2次CCA检测;对于波束3,LBT过程至少包括D3=3次CCA检测。将每个波束的Di取值设置给每个波束的CCA计数器Ci(其中i=1,2,3)。
可以参考图2的描述来理解波束1上的LBT过程,简单描述如下。对于波束1,在402处,在空时隙末尾处的第二窗口内感测到信道被占用。此次CCA检测不成功,未完成传输退避过程。在403和404处,在信道占用时隙末尾处的第一窗口内均感测到信道被占用。相应地,不进行传输退避。在405处,在信道占用时隙末尾处的第一窗口内感测到信道空闲。接着,可以继续进行传输退避。在406处,在空时隙末尾处的第二窗口内感测到信道空闲,即此次CCA检测成功。相应地,CCA计数器取值减1(即等于0)。至此,已完成波束1的LBT过程和相应的传输退避,表明可以使用该信道进行传输。
可以参考图2的描述来类似地理解波束2和波束3上的LBT过程,除了一些变化之处。对于波束2,在402处不成功的CCA检测使得退避过程结束。在403处,在信道占用时隙末尾处的第一窗口内感测到信道空闲。接着,可以继续进行传输退避。在404和405处的成功CCA检测使得CCA计数器取值归零,这原本可以结束本次LBT过程。然而,由于存在至少一个波束(例如波束1)上的LBT过程(即CCA检测)尚未完成,为了使得波束2与这样的波束完成LBT过程的时间尽量对齐,可以在波束2上继续执行至少一次附加的CCA检测。与图2不同,在该示例中,调整C2取值以增加1(如表二中与波束2和时隙405对应的“0->1”所示)。相应地,要在波束2上执行1次附加的CCA检测。该调整中增加1仅为示例。根据需求,C2可以增加其他数值N,例如其他波束计数器值中的最小值、平均值或最大值等。在406处,CCA检测成功,C2取值归零。
对于波束3,在402至404处的成功CCA检测使得CCA计数器C3取值归零,这原本可以结束本次LBT过程。然而,由于存在至少一个波束(例如波束1和波束2)上的LBT过程(即CCA检测)尚未完成,为了使得波束3与这样的波束完成LBT过程的时间尽量对齐,可以在波束3上继续执行至少一次附加的CCA检测。在该示例中,调整C3取值以增加1(如表二中与波束3和时隙404对应的“0->1”所示)。相应地,要在波束3上执行1次附加的CCA检测。在405处的成功CCA检测使得CCA计数器C3取值再次归零。由于存在至少一个波束(例如波束1和波束2)上的LBT过程(即CCA检测)尚未完成,为了使得波束3与这样的波束完成LBT过程的时间尽量对齐,可以在波束3上继续执行至少一次附加的CCA检测。在该示例中,同样调整C3取值以增加1(如表二中与波束3和时隙405对应的“0->1”所示)。相应地,要在波束3上执行 1次附加的CCA检测。在406处,CCA检测成功,C3取值归零。
在406处,由于三个波束上的LBT过程均已完成,因此可以使用这三个波束一起进行SDM传输。例如,通过MU-MIMO可以获得SDM传输增益。
在图4的示例中,在3个波束均完成LBT过程后,可以使用这3个波束进行SDM传输,从而获得SDM增益。而且,在波束2和波束3已完成原本的LBT过程之后,通过增加相应CCA计数器的取值(例如增加1)使得在波束2和波束3上继续执行至少一次附加的CCA检测,使得可以在SDM传输之前获得相应信道的准确状态。这可以减少使用被占用的信道进行SDM传输的可能性,有助于进行可靠的SDM传输。
图5示出了根据本公开实施例的用于协调多波束并行LBT的示例处理500。可以由要进行下行链路或上行链路传输的基站120A或终端设备110来执行该示例处理500。接下来,以下行链路传输为例来描述该示例处理;该处理对于上行链路传输同样适用。
在基站120A进行下行链路SDM传输之前,需要在下行链路信道进行多波束并行LBT感测。处理500可以对应于任一波束i或信道i上的LBT过程。对于多个波束,可以有单独的处理500与其LBT过程对应。
如图5所示,响应于确定要在波束i上进行LBT感测,在502处,基站120A可以生成CCA计数器取值Ci。在504处,基站120A可以在信道占用时隙末尾的第一窗口内进行信道感测。该第一窗口例如可以具有8微秒的时隙长度。
在506处,基站120A可以基于504处的信道感测结果确定信道i是否空闲。如果信道i被占用,则退回到504处进行下一次信道感测。如果信道i空闲,则可以前进到508处,以在后续的空时隙内进行信道退避(即CCA检测)。在508处,基站120A可以在下一空时隙末尾的第二窗口内进行信道感测。该第二窗口例如可以具有5微秒的时隙长度。
在510处,基站120A可以基于508处的信道感测结果确定信道i是否空闲。如果信道i被占用,即第二窗口内的CCA检测不成功,则退回到504处进行第一窗口内的信道感测。如果信道i空闲,则前进到512处,使得CCA计数器取值减1。接下来,从512处前进到514处,基于并行LBT过程确定多个波束是否满足SDM传输条件。满足SDM传输条件是指待使用的多个波束均已完成LBT过程并且信道空闲。将在以下具体描述如何确定满足SDM传输条件的示例。如果满足SDM传输条件,则从514前进到516处以使用多个波束进行SDM传输。否则,从514前进到518处,以确定波束i的CCA计数器取值Ci是否为0。
在518处,Ci不等于0可以表明仍需进行Ci次成功CCA检测以确定波束i空闲可用。相应地,从518前进到508处,在下一空时隙末尾的第二窗口内进行信道感测。 该过程与以上参考508至518描述的处理相同,不再重复描述。
在518处,Ci等于0可以表明在波束i上已经完成成功CCA检测。相应地,从518前进到520处,以将Ci设置为非0数值(例如将Ci加1)。接着,从520前进到508处,在下一空时隙末尾的第二窗口内进行信道感测。该过程与以上参考508至518描述的处理相同,不再重复描述。
就波束i而言,Ci在518处归零可以表明波束i空闲并可被用于传输。然而,在处理500中,在514处确定多个波束尚不满足SDM传输条件的情况下,通过将归零的Ci设置为非0数值,可以使得在满足SDM传输条件之前在波束i上进一步感测信道状态。通过514至520中的操作,在波束i上会执行附加的CCA检测,使得可以在SDM传输之前获得相应信道的准确状态。
图6示出了根据本公开实施例的用于确定是否满足多波束SDM传输条件的示例处理600。如上所述,满足SDM传输条件是指待使用的多个波束均已完成LBT过程并且信道空闲。在一些实施例中,可以对于多个波束定义LBT过程的成功率SR,例如SR可以定义为CCA计数器取值为0的波束数量与多个波束总数量的比值。
如图6所示,在602处,计算成功率SR。例如,可以在存在取值为0的CCA计数器(对应已完成LBT过程的波束)时计算成功率SR。在604处,确定0<SR<1是否成立。如果成立,则表明存在尚未完成LBT过程的波束。相应地,从604前进到608处,将已完成LBT过程的波束的CCA计数器设置为非0数值(例如增加1),以使得在这些波束上可以继续进行CCA检测。如果在604处确定不成立,则前进到606处进一步确定SR=1是否成立。如果成立,则表明已完成多个波束的LBT过程并且信道均空闲可用。相应地,从606前进到610处开始进行SDM传输。
应理解,图6中基于成功率的处理仅为示例。在另一些实施例中,可以根据需要通过不同方式来确定是否满足SDM传输条件。例如,可以对多个波束的CCA计数器取值求和。如果求和结果大于0,则表明仍有波束尚未完成LBT过程,不满足SDM传输条件;如果求和结果等于0,则表明已满足SDM传输条件。又例如,可以遍历多个波束的CCA计数器取值以确定是否存在取值非0的CCA计数器。如果存在取值非0的CCA计数器,则表明仍有波束尚未完成LBT过程,不满足SDM传输条件;如果不存在取值非0的CCA计数器,则表明已满足SDM传输条件。本领域技术人员可以构想其他方式来确定是否满足SDM传输条件,这些方式均落入本公开的范围内。
基于并行LBT的多波束选择
在本公开中,一方面,有利地,通过尽量多的波束进行SDM传输可以有助于获得更高的SDM增益。另一方面,等待完成多个波束的LBT过程可能需要较长时间,这是 不利的。如果某个波束的信道状况较差(例如信道频繁被争用),则这种不利的方面会更突出。相应地,在本公开的实施例中,可以基于并行LBT过程从多个波束中仅选择一部分波束用于SDM传输,如以下具体描述的。
在一些实施例中,可以记录使得多个波束中的任一波束的计数器取值增加的调整次数。在该次数达第二阈值的情况下,可以结束多波束的并行LBT过程,并且在不使用尚未完成LBT过程的波束的情况下执行多波束传输。
图7示出了根据本公开实施例的多波束并行LBT操作的示例时序图。在图7中,可以基于多波束并行LBT从多个波束中选择用于SDM传输的波束。
为了便于理解,下表三示出了图7中CCA计数器取值的变化情况。与图4中的示例类似,“0->1”表示对相应波束的CCA计数器的一次调整(即增加1)。
  701 702 703 704 705 706
C1 1 1 1 1 1 1
C2 2 1 0->1 0->1 0->1 0
C3 3 2 1 0->1 0->1 0
如图7所示,波束1的信道状况不佳(例如由于信道被频繁争用),直到时隙706仍然没有完成C1=1次的成功CCA检测。在该示例中,设置了用于调整多个波束的CCA计数器的阈值次数,该阈值次数例如为5。如表三所示,由于波束2和波束3的信道状况良好,波束2分别在时隙703至705完成LBT过程,并将CCA计数器取值C2调整3次;波束3分别在时隙704和705完成LBT过程,并将CCA计数器取值C3调整2次。因此,在705处,对波束2和波束3的CCA计数器取值已经合计调整了5次,达到设置的阈值次数。相应地,确定在后续SDM传输中放弃使用未完成LBT过程的波束1。在706处,波束2和波束3的CCA检测均成功。相应地,C2和C3取值归零。此时,可以仅使用波束2和波束3进行SDM传输(即不使用波束1)。
在图7的示例中,尽管2个波束所取得的SDM增益小于3个波束的,但是由于不需要等待波束1完成LBT过程,使得可以尽早进行SDM传输(即减小了与并行LBT过程相关的等待时间)。根据实际场景,可以适当地设置上述用于调整多个波束的CCA计数器的阈值次数,以在SDM增益和等待时间之间平衡或选择。例如,在终端或接入节点分布密集的区域,该阈值次数可以较大以提高传输增益,减少干扰;在终端或接入节点分布稀疏的区域,该阈值次数可以较小。对于紧急的传输任务,该阈值次数可以设定得较小以减小LBT过程时延;对于时延容忍的业务或对可靠性要求较高的任务,该阈值次数可以较大。
基于波束分组的并行LBT过程
在并行LBT的协调处理中,可以基于多个波束的信道状态对波束进行分组。例如,可以基于周期性感测窗口内的感测结果(其反映信道状态),对波束进行分组。可以设置每个分组的公共CCA计数器,并通过该公共CCA计数器控制相应分组的波束成员的LBT过程。
图8A示出了根据本公开实施例的多波束并行LBT操作的示例时序图。在图8A中,在波束1、波束2、波束3和波束4上发起4个LBT过程。发起这多个LBT过程包括对于多个波束中的每个波束生成相应随机数,其中该随机数限定相应波束的LBT过程要包括的成功CCA检测的阈值数量。
为了便于理解,下表四中示出了CCA计数器取值的变化情况。
Figure PCTCN2022108257-appb-000001
如图8A所示,在801处,对于每个波束,在信道占用时隙末尾处的第一窗口内感测到信道空闲。接着,在每个波束上将执行CCA检测以进行传输退避。对于每个波束,通过生成随机数来确定竞争窗口。具体地,对于波束1,LBT过程至少包括D1=1次CCA检测;对于波束2,LBT过程至少包括D2=2次CCA检测;对于波束3,LBT过程至少包括D3=3次CCA检测;对于波束4,LBT过程至少包括D4=2次CCA检测。如图8A所示,将Di取值分别配置给每个波束的CCA计数器Ci(其中i=1,2,3,4)。
可以参考图4的描述来理解时隙801至804中多个波束上的LBT过程。例如,对于波束1,在802处,在空时隙末尾处的第二窗口内感测到信道空闲,即此次CCA检测成功。相应地,C1取值减1(即等于0)。此时,由于至少一个其他波束的LBT过程尚未完成相应阈值数量的成功CCA检测,因此C1取值增加1(即等于1)。
在一些实施例中,基于周期性窗口内的感测,可以将多个波束中的第一子集划分为第一组。将第一子集中的特定波束的CCA计数器取值设置给第一组的公共CCA计数器,其中该公共CCA计数器优先于第一子集成员的单独CCA计数器,并且第一子集成 员上的同时成功CCA检测才能使得该公共CCA计数器的取值减1。在一些实施例中,该特定波束是第一子集中CCA计数器取值最大的成员。
如图8A所示,时隙802至804以及时隙805至807分别限定了周期性感测窗口。在每个周期性感测窗口内,可以对多个波束的信道状况进行跟踪。在一些实施例中,信道状况可以包括多个波束的信道被占用情况的统计结果,例如在感测窗口内多个波束的信道占用的数量或信道占用在感测窗口内的分布位置。以时隙802至804为例,对于波束1和3而言,均跟踪到1次成功CCA检测。因此,在804处,可以将波束1和波束3划分为组1,整体控制两个波束以执行LBT过程。对于波束1和3而言,均在802处跟踪到成功CCA检测,即二者具有相同或相近的信道占用的分布。在一些实施例中,这可以作为划分组1的另选或附加的考虑因素。
在表四中,通过804’示出了在804处划分组1之后各波束的Ci情况。在该示例中,将组1中Ci取值较大的波束3的C3(C3=2)设置给组1的公共CCA计数器,Cg1=2。在接下来的LBT过程中,Cg1的取值将优先于波束1和波束3的C1和C3取值。可以认为,在波束1和波束3上将继续进行单独的CCA检测,但是二者的CCA检测将与公共CCA计数器Cg1关联。对于波束1而言,Cg1=2将优先于C1=1。在后续CCA检测中,仅在波束1和波束3上同时出现成功CCA检测(被认为是组1的成功CCA检测)时,该公共CCA计数器的取值才减1,如806和807处所示。
类似地,在时隙805至807的感测窗口内,对于波束2和4而言,均在807处跟踪到1次成功CCA检测。因此,在807处,可以将波束2和波束4划分为组2,整体控制两个波束以执行LBT过程。在表四中,通过807’示出了在807处划分组2之后各波束的Ci情况。在该示例中,C2=C4=1,因此将组2的公共CCA计数器Cg2设置为1。在接下来的LBT过程中,Cg2的取值将优先于波束2和波束4的CCA计数器取值。可以认为,在波束2和波束4上将继续进行单独的CCA检测,但是二者的CCA检测将与公共CCA计数器Cg2关联。在后续CCA检测中,仅在波束2和波束4上同时出现成功CCA检测(被认为是组2的成功CCA检测)时,该公共CCA计数器的取值才减1,如807处所示。
应理解,在一些情况下,可以基于第二窗口内的感测,更新组1的波束成员(例如包括成员增加和替换)。可以基于波束成员的最大CCA计数器取值更新组1的公共CCA计数器。
在图8A的示例中将信道状况相近的至少两个波束划分为同一组。应理解,这种分组方式仅为示例。附加或另选地,可以基于CCA计数器取值来对多个波束分组。例如,可以将CCA计数器取值相近的至少两个波束划分为一组,或者将CCA计数器取值多样(即相差较大)的至少两个波束划分为一组。应理解,在波束分组中,公共CCA计数 器替代各波束单独的CCA计数器,可以降低与CCA计数器的维护和调整相关的复杂度。这有助于降低并行LBT过程的复杂度。
图9示出了根据本公开实施例的用于基于波束分组执行并行LBT的示例处理900。可以由要进行下行链路或上行链路传输的基站120A或终端设备110来执行该示例处理900。接下来以下行链路传输为例来描述该示例处理;该处理对于上行链路传输同样适用。
假设已经将k个波束划分为第i组,该组的公共CCA计数器表示为Cgi。应理解,响应于该分组操作,取决于k个波束上的LBT具体情况,可以从操作908开始该示例处理900。
在908处,基站120A可以在下一空时隙末尾的第二窗口内对k个波束进行信道感测。该第二窗口例如可以具有5微秒的时隙长度。
在910处,基站120A可以基于908处的信道感测结果确定k个信道是否均空闲。如果存在至少一个信道i被占用,即第二窗口内的CCA检测不成功,则处理900前进到901处,在k个信道上分别执行LBT过程。应理解,在901处,每个信道上的LBT过程可以基于上述处理500的逻辑独立进行。在910处,如果k个信道均空闲,则前进到912处,使得公共CCA计数器Cgi取值减1。接下来,从912处前进到914处,基于包括这k个波束在内的多个波束全体的并行LBT过程确定这多个波束是否满足SDM传输条件。如果满足SDM传输条件,则从914前进到916处以使用多个波束进行SDM传输。否则,从914前进到918处,以确定第i组波束的公共CCA计数器取值Cgi是否为0。
在918处,Cgi不等于0可以表明仍需在k个波束上进行Cgi次成功CCA检测以确定这k个波束空闲可用。相应地,从918前进到908处,在下一空时隙末尾的第二窗口内进行信道感测。应理解,接下来的操作可以是以上操作的又一次循环,不再重复描述。
在918处,Cgi等于0可以表明在k个波束上已经完成成功CCA检测。相应地,从918前进到920处,以将Cgi设置为非0数值(例如将Cgi加1)。接着,从920前进到908处,进行以上操作的又一次循环。
就第i组波束而言,Cgi在918处归零可以表明k个波束空闲并可被用于传输。然而,在处理900中,在914处基于并行LBT过程确定多个波束尚不满足SDM传输条件。因此,通过将归零的Ci设置为非0数值,可以使得在满足SDM传输条件之前在k个波束上进一步感测信道状态。
在基于波束分组的并行LBT处理中,也可以通过并行LBT过程从多个波束中选择信道空闲的波束,以进行SDM传输。图8B示出了根据本公开实施例的多波束并行 LBT操作的示例时序图。在该示例中,在1007之前已经执行3次CCA计数器取值调整,如下表五中1002、1005和1006处的“0->1”所示。波束2的信道状况不佳(例如由于信道被频繁争用),直到时隙1007仍然没有完成C2=2次的成功CCA检测。由于调整次数达到阈值次数,在后续SDM传输中可以放弃使用未完成LBT过程的波束2。在1007处,波束1、波束3和波束4的CCA检测均成功。相应地,C1、C3和C4取值归零。此时,可以仅使用波束1、波束3和波束4进行SDM传输(而不使用波束2)。
  1001 1002 1003 1004 1004’ 1005 1006 1007
C1 1 0->1 1 1 2(组1) 2(组1) 1(组1) 0(组1)
C2 2 2 2 2 2 1 1 1
C3 3 2 2 2 2(组1) 2(组1) 1(组1) 0(组1)
C4 2 2 2 1 1 0->1 0->1 0
示例方法
图10示出了根据本公开实施例的用于无线通信的示例方法。该方法可以由电子设备300、基站或终端中的任一者执行。如图10所示,该方法1000可以包括在多个波束上发起多个先听后说LBT过程(框1012)。该方法还可以包括对于多个波束中第一波束的LBT过程,确定已完成第一阈值数量的成功CCA检测(框1014)。该方法还可以包括对于多个波束中至少一个其他波束的LBT过程,确定是否尚未完成相应阈值数量的成功CCA检测(框1016)。该方法还可以包括确定是否在第一波束上继续执行至少一次附加CCA检测(框1018)。可以参考上文描述来理解该方法的进一步细节。在一些实施例中,响应于确定至少一个其他波束的LBT过程尚未完成相应阈值数量的成功CCA检测,则确定要在第一波束上继续执行至少一次附加CCA检测。
在一个实施例中,发起所述多个LBT过程包括:对于所述多个波束中的每个波束生成相应随机数,其中所述随机数限定相应波束的LBT过程要包括的成功CCA检测的阈值数量。方法1000可以包括将相应波束的CCA计数器的取值设置为等于所述随机数,其中波束上的一次成功CCA检测使得CCA计数器的取值减1。
在一个实施例中,确定已完成第一阈值数量的成功CCA检测包括确定第一波束的CCA计数器的取值为0。对于所述至少一个其他波束的LBT过程确定尚未完成相应阈值数量的成功CCA检测包括确定所述至少一个其他波束的CCA计数器的取值不为0。确定在第一波束上继续执行至少一次附加CCA检测包括使得第一波束的CCA计数器取值增加N,其中N≥1。
在一个实施例中,对于所述至少一个其他波束的LBT过程,基于以下之一确定尚 未完成相应阈值数量的成功CCA检测:CCA计数器取值为0的波束数量与所述多个波束总数量的比值小于1;或者所述多个波束的CCA计数器取值之和大于0。
在一个实施例中,方法1000可以包括基于第一窗口内的感测,将所述多个波束中的第一子集划分为第一组;以及将第一子集中的第二波束的CCA计数器取值设置给第一组的公共CCA计数器,其中所述公共CCA计数器优先于第一子集成员的单独CCA计数器,并且第一子集成员上的同时成功CCA检测使得所述公共CCA计数器的取值减1。
在一个实施例中,第一子集包括信道状况相近的至少两个波束;第一子集包括CCA计数器取值相近的至少两个波束;或者第一子集包括CCA计数器取值多样的至少两个波束。
在一个实施例中,第二波束是第一子集中CCA计数器取值最大的成员。
在一个实施例中,方法1000可以包括基于第二窗口内的感测,将第一组更新为包括所述多个波束中的第二子集;以及将第二子集中的第三波束的CCA计数器取值设置给第一组的公共CCA计数器。
在一个实施例中,方法1000可以包括记录使得所述多个波束中的任一波束的计数器取值增加的次数;在所述次数达第二阈值的情况下,结束所述多个LBT过程;以及执行多波束传输,而不使用尚未完成LBT过程的波束。
在一个实施例中,所述多个波束包括多个下行链路波束,并且所述电子设备能够被实现为基站的至少一部分。
在一个实施例中,所述多个波束包括多个上行链路波束,并且所述电子设备能够被实现为终端设备的至少一部分。
以上分别描述了根据本公开实施例的各示例电子设备和方法。应当理解,这些电子设备的操作或功能可以相互组合,从而实现比所描述的更多或更少的操作或功能。各方法的操作步骤也可以以任何适当的顺序相互组合,从而类似地实现比所描述的更多或更少的操作。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图11所示的通用个人计算机1300安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图11是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例终端设备。
在图11中,中央处理单元(CPU)1301根据只读存储器(ROM)1302中存储的程序或从存储部分1308加载到随机存取存储器(RAM)1303的程序执行各种处理。在RAM 1303中,也根据需要存储当CPU 1301执行各种处理等时所需的数据。
CPU 1301、ROM 1302和RAM 1303经由总线1304彼此连接。输入/输出接口1305也连接到总线1304。
下述部件连接到输入/输出接口1305:输入部分1306,包括键盘、鼠标等;输出部分1307,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1308,包括硬盘等;和通信部分1309,包括网络接口卡比如LAN卡、调制解调器等。通信部分1309经由网络比如因特网执行通信处理。
根据需要,驱动器1310也连接到输入/输出接口1305。可拆卸介质1311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1310上,使得从中读出的计算机程序根据需要被安装到存储部分1308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1311安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图11所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1311。可拆卸介质1311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1302、存储部分1308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(gNB),诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下 面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备在一些示例中也称为用户设备,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照图12至图15描述根据本公开的应用示例。
关于基站的应用示例
第一应用示例
图12是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备300A、1300A和/或1500B。
天线1410中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1420发送和接收无线信号。如图12所示,gNB 1400可以包括多个天线1410。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1400与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼 此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图12示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图12所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图12所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图12示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
第二应用示例
图13是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1530包括多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1530(或基站设备1550)可以对应于上述电子设备300A、1300A和/或1500B。
天线1540中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1560发送和接收无线信号。如图13所示,gNB 1530可以包括多个天线1540。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图12描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图12描述的BB处理器1426相同。如图13所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图13示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图13示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图13所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图13示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
关于用户设备(终端)的应用示例
第一应用示例
图14是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。在一种实现方式中,此处的智能电话1600(或处理器1601)可以对应于上述终端设备300B和/或1500A。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。存储器1602包括RAM和ROM,并且存储数据和由处理器1601 执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图14所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图14示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1612传送和接收无线信号。如图14所示,智能电话1600可以包括多个天线1616。虽然图14示出其中智能电话1600包括多个天线1616的示例,但是智能电话1600也可以包括单个天线1616。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图14所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
第二应用示例
图15是示出可以应用本公开内容的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。在一种实现方式中,此处的汽车导航设备1720(或处理器1721)可以对应于上述终端设备300B和/或1500A。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图15所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图15示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也 可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1733传送和接收无线信号。如图15所示,汽车导航设备1720可以包括多个天线1737。虽然图15示出其中汽车导航设备1720包括多个天线1737的示例,但是汽车导航设备1720也可以包括单个天线1737。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图15所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
可以通过以下条款中描述的方式实现本公开的各种示例实施例:
1、一种电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
在多个波束上发起多个先听后说LBT过程;
对于所述多个波束中第一波束的LBT过程,确定已完成第一阈值数量的成功空闲信道评估CCA检测;
对于所述多个波束中至少一个其他波束的LBT过程,确定尚未完成相应阈值数量的成功CCA检测;以及
确定是否在第一波束上继续执行至少一次附加CCA检测。
2、根据条款1所述的电子设备,
其中,发起所述多个LBT过程包括:对于所述多个波束中的每个波束生成相应随机数,其中所述随机数限定相应波束的LBT过程要包括的成功CCA检测的阈值数量,以及
其中,所述处理电路还被配置为:将相应波束的CCA计数器的取值设置为等于所述随机数,其中波束上的一次成功CCA检测使得CCA计数器的取值减1。
3、根据条款2所述的电子设备,
其中,确定已完成第一阈值数量的成功CCA检测包括确定第一波束的CCA计数器的取值为0;以及/或者
其中,对于所述至少一个其他波束的LBT过程确定尚未完成相应阈值数量的成功CCA检测包括确定所述至少一个其他波束的CCA计数器的取值不为0;以及/或者
其中,确定在第一波束上继续执行至少一次附加CCA检测包括使得第一波束的CCA计数器取值增加N,其中N≥1。
4、根据条款2所述的电子设备,
其中,对于所述至少一个其他波束的LBT过程,基于以下之一确定尚未完成相应阈值数量的成功CCA检测:
CCA计数器取值为0的波束数量与所述多个波束总数量的比值小于1;或者
所述多个波束的CCA计数器取值之和大于0。
5、根据条款2所述的电子设备,其中,所述处理电路还被配置为:
基于第一窗口内的感测,将所述多个波束中的第一子集划分为第一组;以及
将第一子集中的第二波束的CCA计数器取值设置给第一组的公共CCA计数器,其中所述公共CCA计数器优先于第一子集成员的单独CCA计数器,并且第一子集成员上的同时成功CCA检测使得所述公共CCA计数器的取值减1。
6、根据条款5所述的电子设备,其中:
第一子集包括信道状况相近的至少两个波束;
第一子集包括CCA计数器取值相近的至少两个波束;或者
第一子集包括CCA计数器取值多样的至少两个波束。
7、根据条款5所述的电子设备,其中,第二波束是第一子集中CCA计数器取值最大的成员。
8、根据条款5所述的电子设备,其中,所述处理电路还被配置为:
基于第二窗口内的感测,将第一组更新为包括所述多个波束中的第二子集;以及
将第二子集中的第三波束的CCA计数器取值设置给第一组的公共CCA计数器。
9、根据条款3所述的电子设备,其中,所述处理电路还被配置为:
记录使得所述多个波束中的任一波束的计数器取值增加的次数;
在所述次数达第二阈值的情况下,结束所述多个LBT过程;以及
执行多波束传输,而不使用尚未完成LBT过程的波束。
10、根据条款1所述的电子设备,其中,所述多个波束包括多个下行链路波束,并且所述电子设备能够被实现为基站的至少一部分。
11、根据条款1所述的电子设备,其中,所述多个波束包括多个上行链路波束,并且所述电子设备能够被实现为终端设备的至少一部分。
12、一种用于无线通信的方法,包括:
在多个波束上发起多个先听后说LBT过程;
对于所述多个波束中第一波束的LBT过程,确定已完成第一阈值数量的成功空闲信道评估CCA检测;
对于所述多个波束中至少一个其他波束的LBT过程,确定尚未完成相应阈值数量的成功CCA检测;以及
确定是否在第一波束上继续执行至少一次附加CCA检测。
13、根据条款12所述的方法,
其中,发起所述多个LBT过程包括:对于所述多个波束中的每个波束生成相应随机数,其中所述随机数限定相应波束的LBT过程要包括的成功CCA检测的阈值数量,以及
其中,所述方法还包括:将相应波束的CCA计数器的取值设置为等于所述随机数,其中波束上的一次成功CCA检测使得CCA计数器的取值减1。
14、根据条款13所述的方法,
其中,确定已完成第一阈值数量的成功CCA检测包括确定第一波束的CCA计数器的取值为0;以及/或者
其中,对于所述至少一个其他波束的LBT过程确定尚未完成相应阈值数量的成功CCA检测包括确定所述至少一个其他波束的CCA计数器的取值不为0;以及/或者
其中,确定在第一波束上继续执行至少一次附加CCA检测包括使得第一波束的CCA计数器取值增加N,其中N≥1。
15、根据条款13所述的方法,
其中,对于所述至少一个其他波束的LBT过程,基于以下之一确定尚未完成相应阈值数量的成功CCA检测:
CCA计数器取值为0的波束数量与所述多个波束总数量的比值小于1;或者
所述多个波束的CCA计数器取值之和大于0。
16、根据条款13所述的方法,还包括:
基于第一窗口内的感测,将所述多个波束中的第一子集划分为第一组;以及
将第一子集中的第二波束的CCA计数器取值设置给第一组的公共CCA计数器,其中所述公共CCA计数器优先于第一子集成员的单独CCA计数器,并且第一子集成员上的同时成功CCA检测使得所述公共CCA计数器的取值减1。
17、根据条款16所述的方法,还包括:
基于第二窗口内的感测,将第一组更新为包括所述多个波束中的第二子集;以及
将第二子集中的第三波束的CCA计数器取值设置给第一组的公共CCA计数器。
18、根据条款12所述的方法,还包括:
记录使得所述多个波束中的任一波束的计数器取值增加的次数;
在所述次数达第二阈值的情况下,结束所述多个LBT过程;以及
执行多波束传输,而不使用尚未完成LBT过程的波束。
19、一种计算机可读存储介质,其上存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,实现根据条款12至18中任一项所述的方法的操作。
20、一种计算机程序产品,所述计算机程序产品包括指令,所述指令在由计算机执行时使所述计算机执行根据条款12至18中任一项所述的方法。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开 实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (20)

  1. 一种电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
    在多个波束上发起多个先听后说LBT过程;
    对于所述多个波束中第一波束的LBT过程,确定已完成第一阈值数量的成功空闲信道评估CCA检测;
    对于所述多个波束中至少一个其他波束的LBT过程,确定尚未完成相应阈值数量的成功CCA检测;以及
    确定是否在第一波束上继续执行至少一次附加CCA检测。
  2. 根据权利要求1所述的电子设备,
    其中,发起所述多个LBT过程包括:对于所述多个波束中的每个波束生成相应随机数,其中所述随机数限定相应波束的LBT过程要包括的成功CCA检测的阈值数量,以及
    其中,所述处理电路还被配置为:将相应波束的CCA计数器的取值设置为等于所述随机数,其中波束上的一次成功CCA检测使得CCA计数器的取值减1。
  3. 根据权利要求2所述的电子设备,
    其中,确定已完成第一阈值数量的成功CCA检测包括确定第一波束的CCA计数器的取值为0;以及/或者
    其中,对于所述至少一个其他波束的LBT过程确定尚未完成相应阈值数量的成功CCA检测包括确定所述至少一个其他波束的CCA计数器的取值不为0;以及/或者
    其中,确定在第一波束上继续执行至少一次附加CCA检测包括使得第一波束的CCA计数器取值增加N,其中N≥1。
  4. 根据权利要求2所述的电子设备,
    其中,对于所述至少一个其他波束的LBT过程,基于以下之一确定尚未完成相应阈值数量的成功CCA检测:
    CCA计数器取值为0的波束数量与所述多个波束总数量的比值小于1;或者
    所述多个波束的CCA计数器取值之和大于0。
  5. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    基于第一窗口内的感测,将所述多个波束中的第一子集划分为第一组;以及
    将第一子集中的第二波束的CCA计数器取值设置给第一组的公共CCA计数器,其中所述公共CCA计数器优先于第一子集成员的单独CCA计数器,并且第一子集成员上的同时成功CCA检测使得所述公共CCA计数器的取值减1。
  6. 根据权利要求5所述的电子设备,其中:
    第一子集包括信道状况相近的至少两个波束;
    第一子集包括CCA计数器取值相近的至少两个波束;或者
    第一子集包括CCA计数器取值多样的至少两个波束。
  7. 根据权利要求5所述的电子设备,其中,第二波束是第一子集中CCA计数器取值最大的成员。
  8. 根据权利要求5所述的电子设备,其中,所述处理电路还被配置为:
    基于第二窗口内的感测,将第一组更新为包括所述多个波束中的第二子集;以及
    将第二子集中的第三波束的CCA计数器取值设置给第一组的公共CCA计数器。
  9. 根据权利要求3所述的电子设备,其中,所述处理电路还被配置为:
    记录使得所述多个波束中的任一波束的计数器取值增加的次数;
    在所述次数达第二阈值的情况下,结束所述多个LBT过程;以及
    执行多波束传输,而不使用尚未完成LBT过程的波束。
  10. 根据权利要求1所述的电子设备,其中,所述多个波束包括多个下行链路波束,并且所述电子设备能够被实现为基站的至少一部分。
  11. 根据权利要求1所述的电子设备,其中,所述多个波束包括多个上行链路波束,并且所述电子设备能够被实现为终端设备的至少一部分。
  12. 一种用于无线通信的方法,包括:
    在多个波束上发起多个先听后说LBT过程;
    对于所述多个波束中第一波束的LBT过程,确定已完成第一阈值数量的成功空闲信道评估CCA检测;
    对于所述多个波束中至少一个其他波束的LBT过程,确定尚未完成相应阈值数量的成功CCA检测;以及
    确定是否在第一波束上继续执行至少一次附加CCA检测。
  13. 根据权利要求12所述的方法,
    其中,发起所述多个LBT过程包括:对于所述多个波束中的每个波束生成相应随机数,其中所述随机数限定相应波束的LBT过程要包括的成功CCA检测的阈值数量,以及
    其中,所述方法还包括:将相应波束的CCA计数器的取值设置为等于所述随机数,其中波束上的一次成功CCA检测使得CCA计数器的取值减1。
  14. 根据权利要求13所述的方法,
    其中,确定已完成第一阈值数量的成功CCA检测包括确定第一波束的CCA计数器的取值为0;以及/或者
    其中,对于所述至少一个其他波束的LBT过程确定尚未完成相应阈值数量的成功CCA检测包括确定所述至少一个其他波束的CCA计数器的取值不为0;以及/或者
    其中,确定在第一波束上继续执行至少一次附加CCA检测包括使得第一波束的CCA计数器取值增加N,其中N≥1。
  15. 根据权利要求13所述的方法,
    其中,对于所述至少一个其他波束的LBT过程,基于以下之一确定尚未完成相应阈值数量的成功CCA检测:
    CCA计数器取值为0的波束数量与所述多个波束总数量的比值小于1;或者
    所述多个波束的CCA计数器取值之和大于0。
  16. 根据权利要求13所述的方法,还包括:
    基于第一窗口内的感测,将所述多个波束中的第一子集划分为第一组;以及
    将第一子集中的第二波束的CCA计数器取值设置给第一组的公共CCA计数器,其中所述公共CCA计数器优先于第一子集成员的单独CCA计数器,并且第一子集成员上的同时成功CCA检测使得所述公共CCA计数器的取值减1。
  17. 根据权利要求16所述的方法,还包括:
    基于第二窗口内的感测,将第一组更新为包括所述多个波束中的第二子集;以及
    将第二子集中的第三波束的CCA计数器取值设置给第一组的公共CCA计数器。
  18. 根据权利要求12所述的方法,还包括:
    记录使得所述多个波束中的任一波束的计数器取值增加的次数;
    在所述次数达第二阈值的情况下,结束所述多个LBT过程;以及
    执行多波束传输,而不使用尚未完成LBT过程的波束。
  19. 一种计算机可读存储介质,其上存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,实现根据权利要求12至18中任一项所述的方法的操作。
  20. 一种计算机程序产品,所述计算机程序产品包括指令,所述指令在由计算机执行时使所述计算机执行根据权利要求12至18中任一项所述的方法。
PCT/CN2022/108257 2021-08-02 2022-07-27 用于无线通信的设备、方法和存储介质 WO2023011285A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/292,876 US20240340947A1 (en) 2021-08-02 2022-07-27 Device, method, and storage medium for wireless communication
EP22851999.7A EP4376536A1 (en) 2021-08-02 2022-07-27 Device and method for wireless communication, and storage medium
CN202280052416.0A CN117751675A (zh) 2021-08-02 2022-07-27 用于无线通信的设备、方法和存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110880688.7 2021-08-02
CN202110880688.7A CN115701745A (zh) 2021-08-02 2021-08-02 用于无线通信的设备、方法和存储介质

Publications (1)

Publication Number Publication Date
WO2023011285A1 true WO2023011285A1 (zh) 2023-02-09

Family

ID=85142413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108257 WO2023011285A1 (zh) 2021-08-02 2022-07-27 用于无线通信的设备、方法和存储介质

Country Status (4)

Country Link
US (1) US20240340947A1 (zh)
EP (1) EP4376536A1 (zh)
CN (2) CN115701745A (zh)
WO (1) WO2023011285A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202310A1 (en) * 2017-05-05 2018-11-08 Nokia Technologies Oy Radio link monitoring for multi-beam communications
CN109413757A (zh) * 2017-08-18 2019-03-01 华为技术有限公司 一种应用于非授权频段的信道侦听方法及装置
WO2019214626A1 (zh) * 2018-05-11 2019-11-14 电信科学技术研究院有限公司 一种数据传输、信号反馈方法及设备
CN111630789A (zh) * 2018-01-22 2020-09-04 诺基亚技术有限公司 较高层波束管理
CN111758287A (zh) * 2020-05-28 2020-10-09 北京小米移动软件有限公司 非授权信道的检测方法、装置、通信设备及存储介质
CN112566276A (zh) * 2015-08-06 2021-03-26 瑞典爱立信有限公司 基于监听的传输的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566276A (zh) * 2015-08-06 2021-03-26 瑞典爱立信有限公司 基于监听的传输的方法和装置
WO2018202310A1 (en) * 2017-05-05 2018-11-08 Nokia Technologies Oy Radio link monitoring for multi-beam communications
CN109413757A (zh) * 2017-08-18 2019-03-01 华为技术有限公司 一种应用于非授权频段的信道侦听方法及装置
CN111630789A (zh) * 2018-01-22 2020-09-04 诺基亚技术有限公司 较高层波束管理
WO2019214626A1 (zh) * 2018-05-11 2019-11-14 电信科学技术研究院有限公司 一种数据传输、信号反馈方法及设备
CN111758287A (zh) * 2020-05-28 2020-10-09 北京小米移动软件有限公司 非授权信道的检测方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN117751675A (zh) 2024-03-22
CN115701745A (zh) 2023-02-10
EP4376536A1 (en) 2024-05-29
US20240340947A1 (en) 2024-10-10

Similar Documents

Publication Publication Date Title
US20230300809A1 (en) Terminal device, base station device, and method
EP3149993B1 (en) Devices and method for retrieving and utilizing neighboring wlan information for lte laa operation
US11729777B2 (en) Channel detection apparatus and method, user equipment, and base station
CN104604322B (zh) 使用许可频带内窄带Wi-Fi的无线广域网(WWAN)管理的设备到设备通信
US10917915B2 (en) Device and method for wireless communication system, and spectrum management device
CN112534923B (zh) 用于无线通信系统的电子设备、方法和存储介质
US11979896B2 (en) Electronic device and method for wireless communication, and computer-readable storage medium for guard band based on interference caused by overlapping of different radio access technologies
CN112956273B (zh) 基站、终端设备、方法和记录介质
WO2013022293A2 (en) Method and apparatus for dynamic frequency selection in wireless local area network system
WO2017167165A1 (zh) 电子装置、信息处理设备和信息处理方法
EP3739926A1 (en) Base station device, terminal device, and method
WO2022028327A1 (zh) 用于无线通信的电子设备、方法和存储介质
WO2020125635A1 (zh) 一种通信方法及装置
WO2023011285A1 (zh) 用于无线通信的设备、方法和存储介质
CN107888356B (zh) 设置符号的方法和装置
US20220417918A1 (en) Electronic device, method, and storage medium for wireless communication system
US9301272B2 (en) Wireless transmit/receive unit for providing services or activities in a wireless local area network
WO2024208041A1 (zh) 一种参考信号的指示方法、装置和系统
WO2023169459A1 (zh) 用于定位中的上行参考信号传输配置的设备和方法
CN113228746B (zh) 无线接入建立

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280052416.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022851999

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022851999

Country of ref document: EP

Effective date: 20240221

NENP Non-entry into the national phase

Ref country code: DE