WO2018228510A1 - 通信方法、网络节点和无线接入网系统 - Google Patents

通信方法、网络节点和无线接入网系统 Download PDF

Info

Publication number
WO2018228510A1
WO2018228510A1 PCT/CN2018/091391 CN2018091391W WO2018228510A1 WO 2018228510 A1 WO2018228510 A1 WO 2018228510A1 CN 2018091391 W CN2018091391 W CN 2018091391W WO 2018228510 A1 WO2018228510 A1 WO 2018228510A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
secondary cell
terminal device
layer
configuration information
Prior art date
Application number
PCT/CN2018/091391
Other languages
English (en)
French (fr)
Inventor
王瑞
戴明增
张宏卓
杨旭东
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019026671-2A priority Critical patent/BR112019026671A2/pt
Priority to KR1020207000922A priority patent/KR20200015750A/ko
Priority to EP18817571.5A priority patent/EP3629630B1/en
Priority to JP2019569367A priority patent/JP7026705B2/ja
Publication of WO2018228510A1 publication Critical patent/WO2018228510A1/zh
Priority to US16/716,112 priority patent/US11291064B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present application relates to the field of communications and, more particularly, to communication methods, network nodes, and radio access network systems.
  • Carrier Aggregation (CA) technology is introduced in the Advanced Long Term Evolution-Advanced (LTE-A).
  • Carrier aggregation mainly aggregates multiple carrier units (CCs, or component carriers, component carriers, etc.) into a carrier with a large bandwidth to support high-speed data transmission.
  • the base station can perform carrier aggregation configuration and determine the activation/deactivation status of the secondary cell, and notify the terminal device by means of signaling.
  • the network architecture has changed, for example, the introduction of a centralized unit (CU) and a distributed unit (DU) are separated.
  • the concept that is, the wireless access network equipment (for example, the base station) is divided into two parts, CU and DU.
  • Different protocol layers are deployed in the CU and the DU.
  • RRC radio resource control
  • MAC media access control
  • PHY physical
  • the relay node is only deployed with layer 2 (for example, including a resource link control (RLC) layer, a MAC layer, etc.) And the protocol stack architecture of layer 1 (for example, including the PHY layer), and the protocol stack above layer 2, such as the RRC layer, is not deployed. Therefore, the data or signaling generated by the host base station needs to be forwarded by the relay node to the terminal device.
  • layer 2 for example, including a resource link control (RLC) layer, a MAC layer, etc.
  • RLC resource link control
  • MAC media access control
  • the present application provides a communication method, a network node, and a radio access network system, which are capable of configuring carrier aggregation for a terminal device under a new network architecture.
  • a communication method is provided, the method being applied to a radio access network system including a first network node and a second network node, wherein the first network node and the second network node pass the first Communication interface communication, the method comprising:
  • first configuration information from the second network node, where the first configuration information includes a set of serving cells configured for a terminal device, the set of serving cells includes at least one secondary cell, The first configuration information further indicates a status of the secondary cell, where the status of the secondary cell is an activated state or a deactivated state, where the first configuration information is generated by the second network node in a first protocol layer;
  • the first network node sends first indication information to the terminal device, where the first indication information includes information about a status of at least one first secondary cell, and the at least one first secondary cell belongs to the set of serving cells.
  • the first indication information is generated by the first network node at a second protocol layer.
  • the at least one first secondary cell included in the first indication information may be a subset of the serving cell set in the first configuration information, or may be all secondary cells in the serving cell set. This application is not particularly limited.
  • the first indication information may include all the secondary cells in the set of serving cells, and indicate the status of each secondary cell.
  • the first indication information may include the serving cell. a part of the secondary cells in the set, and indicating the status of each secondary cell in the partial secondary cell; in another possible design, the first indication information may include a part of the secondary cells in the set of serving cells, where the partial secondary cells are A secondary cell determined to be in an active state determined by the first network node or the second network node, or a secondary cell set to a deactivated state.
  • the embodiment of the present application generates, by using the second network node, the first configuration information of the serving cell set to the terminal device by using the first network node, and generating, by the first network node, the second protocol layer.
  • the secondary cell performs data transmission. Therefore, the purpose of configuring carrier aggregation for the terminal device under the new network architecture is achieved, which is beneficial to improving the transmission bandwidth of the terminal device.
  • determining, by the set of serving cells, the action of the at least one first secondary cell may be performed by the first network node, or may be performed by the second network node.
  • the method further includes:
  • Second indication information that is sent by the second network node, where the second indication information includes: the at least one first secondary cell, or the at least one first secondary cell and a state thereof .
  • the first network node After the second network node determines the at least one first secondary cell, the first network node is notified by sending the second indication information, where the first network node generates the first indication information according to the second indication information, to notify The activation/deactivation state of the at least one first secondary cell of the terminal device.
  • the method further includes:
  • the first network node Determining, by the first network node, a state of the at least one first secondary cell from the set of serving cells according to the measurement result, where the measurement result includes at least one of the following:
  • the first network node measures a third measurement result of the uplink channel based on the signal sent by the terminal device.
  • Determining the state of the at least one first secondary cell according to the measurement result is a possible implementation manner, but it should be understood that this is only one possible implementation manner provided by the present application, and should not be construed as limiting the application.
  • different protocol layers may be deployed in the first network node and the second network node respectively.
  • One possible implementation manner is to deploy at least the first protocol layer in the second network node, in the first network. At least a second protocol layer and a third protocol layer are deployed in the node,
  • the first protocol layer may be a radio resource control (RRC) layer
  • the second protocol layer may be a media access control (MAC) layer
  • the third protocol layer may be a physical (physical, PHY) layer. )Floor.
  • first protocol layer the second protocol layer, and the third protocol layer is merely exemplary, and should not be construed as limiting the application.
  • the first protocol layer and the second protocol layer may also be existing protocols (for example, LTE protocol) or other protocol layers defined in future protocols, which is not specifically limited in this application.
  • the first measurement result may be obtained by performing the following steps:
  • the second network node generates the first measurement result according to the first measurement report
  • the first network node receives a first measurement result sent by the second network node.
  • the first network node may determine the state of the at least one first secondary cell according to the at least one measurement result, so that the accuracy of the decision may be improved.
  • the first indication information is generated by the first network node based on the second protocol layer.
  • the first indication information may be carried in a MAC control element (CE).
  • CE MAC control element
  • the first network node sends the first indication information to the terminal device by using the MAC layer message to indicate the activation/deactivation status of the secondary cell, which can enhance the real-time performance of the configuration effective.
  • the set of serving cells may be determined by the first network node, or may be determined by the second network node.
  • the method further includes:
  • the first network node receives second configuration information from the second network node, where the second configuration information includes secondary cell identity information of the set of serving cells configured by the second network node for the terminal device And secondary cell index.
  • the second configuration information further indicates a status of the secondary cell, and the status of the secondary cell is an activated state or a deactivated state.
  • the method further includes:
  • the first network node sends third configuration information to the second network node, where the third configuration information is used to indicate the set of serving cells configured by the second network node for the terminal device, where the third configuration information further indicates a status of the secondary cell, and the status of the secondary cell is an activated state or a deactivated state.
  • the method further includes:
  • the first network node determines the set of serving cells according to the measurement result.
  • the method further includes:
  • the first network node sends third indication information to the second network node, where the third indication information is used to notify the at least one first secondary cell in the first indication information of the second network node And its status.
  • the first network node may notify the second network node, so that the second network node maintains the activation/deactivation state of the secondary cell of the terminal device.
  • the second configuration information and the second indication information are carried in the same message.
  • the second configuration information, the second indication information, and the third indication information are all generated by the second network node based on a protocol supported by the first communications interface.
  • the first communication interface may be an F1 interface
  • the information listed above may be respectively carried in the F1 interface control plane (referred to as F1CP) message
  • the F1 interface control plane message is an F1AP message; or , can also be carried in the F1 interface user plane (recorded as F1UP) message.
  • the F1 interface control plane message is carried on the SCTP-based transport layer protocol
  • the F1 user plane message is carried on the GTP-U-based transport layer protocol.
  • the second network node may indicate the set of the serving cell to the terminal device by using the RRC message, where the first configuration information carried in the RRC message records the secondary cell identifier information, the secondary cell index, and the frequency information of the secondary cell. Mapping the relationship, so that the terminal device can save the one-to-one mapping relationship; the first network node can indicate, by the MAC CE, the status of the at least one first secondary cell in the set of serving cells, and the first indication information carried in the MAC CE Carrying the secondary cell index and the secondary cell state information, so that the terminal device finds the corresponding secondary cell at the corresponding frequency point according to the pre-stored secondary cell identity information, the one-to-one mapping relationship between the secondary cell index and the frequency information of the secondary cell. .
  • the second network node notifies the first-level mapping relationship between the secondary cell identifier information, the secondary cell index, and the frequency information of the secondary cell by using an RRC message, and then the first network node indicates, by using the secondary cell index, the MAC CE is set to
  • the secondary cell in the activated state can reduce the overhead of the first indication information in the MAC CE.
  • the MAC CE is used to notify the terminal device of the state of the at least one first secondary cell, which can increase the real-time performance of the configuration, in other words, The secondary cell can be configured for the terminal device according to the current network state in real time, and therefore, the transmission bandwidth of the terminal device is further improved.
  • a communication method in a radio access network system including a first network node and a second network node, where the first network node and the second network node communicate through a first communication interface, The method includes: the second network node sending, to the first network node, first configuration information, where the first configuration information includes a set of serving cells configured for a terminal device, where the set of serving cells includes at least one secondary cell, The first configuration information further indicates a status of the secondary cell, and the status of the secondary cell is an activated state or a deactivated state, where the first configuration information is generated by the second network node at a first protocol layer;
  • the second network node sends second configuration information to the first network node, where the second configuration information includes secondary cell identification information of the set of serving cells configured by the second network node for the terminal device Secondary cell index.
  • the at least one first secondary cell included in the first indication information may be a subset of the serving cell set in the first configuration information, or may be all secondary cells in the serving cell set. This application is not particularly limited.
  • the first indication information may include all the secondary cells in the set of serving cells, and indicate the status of each secondary cell.
  • the first indication information may include the serving cell. a part of the secondary cells in the set, and indicating the status of each secondary cell in the partial secondary cell; in another possible design, the first indication information may include a part of the secondary cells in the set of serving cells, where the partial secondary cells are A secondary cell determined to be in an active state determined by the first network node or the second network node, or a secondary cell set to a deactivated state.
  • the embodiment of the present application generates, by using the second network node, the first configuration information of the set of serving cells to the terminal device by using the first network node, and is generated and sent by the first network node at the second protocol layer.
  • the first indication information notifies the terminal device that the at least one first secondary cell is set to be activated/deactivated, so that after receiving the first indication information, the terminal device updates the state of the at least one first secondary cell, and then uses the activation.
  • the secondary cell performs data transmission. Therefore, the purpose of configuring the carrier aggregation for the terminal device in the new network architecture is to improve the transmission bandwidth of the terminal device.
  • the action of determining the at least one first secondary cell from the set of serving cells may be performed by A network node is executed, and can also be executed by the second network node.
  • the second configuration information further indicates a status of the secondary cell, and the status of the secondary cell is an activated state or a deactivated state.
  • the second network node determines the state of the at least one first secondary cell.
  • the method further includes:
  • the measurement result includes at least one of the following:
  • Determining the state of the at least one first secondary cell according to the measurement result is a possible implementation manner, but it should be understood that this is only one possible implementation manner provided by the present application, and should not be construed as limiting the application.
  • different protocol layers may be deployed in the first network node and the second network node respectively.
  • One possible implementation manner is to deploy at least the first protocol layer in the second network node, in the first network. At least a second protocol layer and a third protocol layer are deployed in the node,
  • the first protocol layer may be a radio resource control (RRC) layer
  • the second protocol layer may be a media access control (MAC) layer
  • the third protocol layer may be a physical (physical, PHY) layer. )Floor.
  • first protocol layer the second protocol layer, and the third protocol layer is merely exemplary, and should not be construed as limiting the application.
  • the first protocol layer and the second protocol layer may also be existing protocols (for example, LTE protocol) or other protocol layers defined in future protocols, which is not specifically limited in this application.
  • the second network node may obtain the second measurement result of the third protocol layer from the terminal device by performing the following steps:
  • the second network node receives the second measurement result sent by the first network node, where the second measurement result is determined by the first network node to the measurement report of the second protocol layer reported by the terminal device.
  • the second network node may determine the secondary cell that is set to be activated according to the at least one measurement result, so that the accuracy of the decision may be improved.
  • the set of serving cells may be determined by the first network node, or may be determined by the second network node.
  • the method further includes:
  • the second network node sends the second configuration information to the first network node, and learns, by using the second configuration information, the serving cell set configured by the second network node for the terminal device, where the second configuration information further indicates a status of the secondary cell, and the status of the secondary cell is an activated state or a deactivated state.
  • the method further includes:
  • the second network node determines the set of serving cells according to the measurement result.
  • the method further includes:
  • the third configuration information further indicates a status of the secondary cell, and the status of the secondary cell is an activated state or a deactivated state.
  • the method further includes:
  • the second network node receives the third indication information that is sent by the first network node, where the third indication information is used to notify the at least one of the first indication information of the second network node A secondary cell and its status.
  • the second network node may be notified, so that the second network node maintains the activation/deactivation state of the secondary cell of the terminal device.
  • the second configuration information and the second indication information are carried in the same message.
  • the second configuration information, the second indication information, and the third indication information are all generated by the CU based on a protocol supported by the first communications interface.
  • the first communication interface may be an F1 interface
  • the information listed above may be respectively carried in the F1 interface control plane (referred to as F1CP) message
  • the F1 interface control plane message is an F1AP message; or , can also be carried in the F1 interface user plane (recorded as F1UP) message.
  • the F1 interface control plane message is carried on the SCTP-based transport layer protocol
  • the F1 user plane message is carried on the GTP-U-based transport layer protocol.
  • the second network node may indicate the set of the serving cell to the terminal device by using the RRC message, where the first configuration information carried in the RRC message records the secondary cell identifier information, the secondary cell index, and the frequency information of the secondary cell. Mapping the relationship, so that the terminal device can save the one-to-one mapping relationship; the first network node can indicate, by the MAC CE, the status of the at least one first secondary cell in the set of serving cells, and the first indication information carried in the MAC CE The secondary cell index is carried, so that the terminal device finds the corresponding secondary cell at the corresponding frequency point according to the pre-stored secondary cell identity information, the one-to-one mapping relationship between the secondary cell index and the frequency information of the secondary cell.
  • the second network node notifies the first-level mapping relationship between the secondary cell identifier information, the secondary cell index, and the frequency information of the secondary cell by using an RRC message, and then the first network node indicates, by using the secondary cell index, the MAC CE is set to
  • the secondary cell in the activated state can reduce the overhead of the first indication information in the MAC CE.
  • the MAC CE is used to notify the terminal device of the state of the at least one first secondary cell, which can increase the real-time performance of the configuration, in other words, The secondary cell can be configured for the terminal device according to the current network state in real time, and therefore, the transmission bandwidth of the terminal device is further improved.
  • a network node comprising a receiving module and a transmitting module to perform the communication method in any of the possible implementations of the first aspect or the first aspect.
  • the transmitting unit is configured to perform a function related to transmission
  • the receiving unit is configured to perform a function related to receiving.
  • a network node comprising a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the network node performs the first aspect or any of the possible implementations of the first aspect The method in .
  • the network node is a communication chip
  • the sending unit may be an input circuit or an interface of the communication chip
  • the sending unit may be an output circuit or an interface of the communication chip
  • a network node comprising a receiving module and a sending module, for performing the communication method in any of the possible implementations of the second aspect or the second aspect.
  • the transmitting unit is configured to perform a function related to transmission
  • the receiving unit is configured to perform a function related to receiving.
  • a network node comprising a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the network node performs any of the second aspect or the second aspect. The method in .
  • the network node is a communication chip
  • the sending unit may be an input circuit or an interface of the communication chip
  • the sending unit may be an output circuit or an interface of the communication chip
  • the seventh aspect provides a radio access network system, comprising the network node according to the third aspect or the fourth aspect, and the network node according to the fifth aspect or the sixth aspect.
  • a computer program product comprising: computer program code, when the computer program code is executed by a network device, causing the network node to perform any of the first aspect or the first aspect described above A possible implementation.
  • a computer program product comprising: computer program code, when the computer program code is run by a network device, causing the network node to perform any of the second aspect or the second aspect A possible implementation.
  • a tenth aspect a computer readable medium storing program code, the program code comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect .
  • a computer readable medium storing program code, the program code comprising a method for performing the method of any of the possible implementations of the second aspect or the second aspect instruction.
  • At least a first protocol layer is deployed in the second network node, where at least a second protocol layer and a third protocol layer are deployed in the first network node;
  • the protocol layer can be used at least for radio resource management, and the second protocol layer can be used at least to control and manage transmission of data in the medium, and the third protocol layer can be used at least to provide physical resources for data transmission.
  • the RRC layer and the PDCP layer are deployed in the second network node, and the RLC layer, the MAC layer, and the PHY layer are deployed in the first network node.
  • protocol layers deployed for the first network node and the second network node are exemplary descriptions, and should not be construed as limiting the application.
  • the present application does not preclude the definition of other protocol layers in future protocols. Instead of the protocol layer in an existing protocol (eg, the LTE protocol) to achieve its same or similar functionality.
  • protocol stack structures in the first network node and the second network node are merely exemplary, and should not be construed as limiting the application.
  • the present application does not preclude the definition of other protocol layers in future protocols. It is possible to replace the protocol layer in the existing protocol (for example, the LTE protocol) to achieve the same or similar functions, and it is not excluded to define more or less protocol layers in the future protocol to replace the existing protocol. The possibility of a protocol layer in .
  • the measurement report includes at least one of the following:
  • Reference signal receiving power RSRP
  • reference signal receiving quality RSRQ
  • signal-to-noise ratio SNR
  • signal to interference plus noise ratio signal to interference plus noise Ratio
  • SINR channel state information
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • rank indication RI
  • the foregoing measurement report may be at a cell level or a beam level.
  • the second configuration information indicates a set of candidate secondary cells.
  • the second configuration information includes at least one of the following:
  • the identification information of the terminal device the primary cell identity information, the secondary cell identity information, the secondary cell index, and the frequency information of the secondary cell.
  • the identification information of the terminal device includes any one of the following: C-RNTI or UE ID; the primary cell identity information includes any one of the following: a radio access network cell global identifier and a physical cell identifier (physical). Cell identifier, PCI); the secondary cell identity information includes at least one of the following: a radio access network cell global identifier or a PCI.
  • the second configuration information further includes related configuration information of the protocol stack.
  • the first configuration information indicates a set of candidate secondary cells.
  • the first configuration information includes at least one of the following: secondary cell identity information, a secondary cell index, and frequency information of the secondary cell.
  • the secondary cell identity information includes at least one of the following: a radio access network cell global identifier or a PCI.
  • the application generates, by using the second network node, the first configuration information of the set of serving cells to the terminal device by using the first network node, and the first network node sends the first indication information to notify the terminal at the second protocol layer.
  • the device is placed in at least one first secondary cell in an activated/deactivated state to facilitate terminal device carrier aggregation. Therefore, it is possible to configure carrier aggregation for the terminal device under the new network architecture, which is advantageous for providing a larger transmission bandwidth for the terminal device.
  • 1 is a schematic diagram of a protocol stack structure in LTE
  • FIG. 2 is a schematic diagram of a communication system suitable for the communication method of the embodiment of the present application.
  • 3 is a schematic diagram of segmenting a protocol stack structure
  • FIG. 4 is a schematic structural diagram of a protocol stack of a possible network device provided by the present application.
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic block diagram of a network node provided by an embodiment of the present application.
  • FIG. 9 is another schematic block diagram of a network node according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a network node provided by an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of a network node according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a radio access network system according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a protocol stack in LTE.
  • the RRC layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer are respectively from top to bottom.
  • protocol layer A can be any one of the RRC layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer. All need to be processed by the protocol layer of the lower layer, and finally sent to the receiving end device through the physical channel.
  • the signaling received by the receiving device on the physical channel also needs to be processed by the protocol layer of the upper layer of the PHY layer, and until the protocol layer A, the information in the signaling can be obtained, as shown in the curve. Show.
  • the division of the protocol layer in the 5G network is still under discussion, and the protocol stack shown in Figure 1 may be improved, such as merging multiple protocol layers therein, or adding a new protocol layer;
  • the function of the base station in the network is split. Therefore, the configuration method of the existing carrier aggregation cannot be used to configure the secondary cell for the terminal device.
  • the present application provides a communication method capable of configuring carrier aggregation for a terminal device based on a novel network architecture in 5G.
  • FIG. 2 is a schematic diagram of a communication system 200 suitable for use in the communication method of the embodiment of the present application.
  • the communication system 200 includes an access network system 210 and a terminal device 220.
  • the access network system 210 can adopt the architecture of the CU-DU.
  • the access network system 210 can include at least one CU 211 and at least one DU 212, which can be connected to the same CU 211.
  • a communication interface is configured between the CU 211 and the DU 212 (can be referred to as a first communication interface for convenience of distinction and description), and the CU 211 and the DU 212 can communicate through the first communication interface; the DU 212 can pass through the air interface and the terminal device 220. Communication.
  • the CU can be deployed in a centralized manner, and the deployment can depend on the actual network environment.
  • the traffic density is high, the station spacing is small, and the equipment room resources are limited, such as colleges, large-scale performance venues, etc.
  • DU It can also be distributed in a centralized manner; while the traffic is sparse, and the station spacing is relatively large, such as suburban counties, mountainous areas, etc., the DU can adopt a distributed deployment mode. This application is not particularly limited.
  • the functionality of the access network system 210 in FIG. 2 may be similar to the functionality of a base station in LTE. Specifically, some functions of the base station in LTE may be deployed in the CU 211, and remaining functions may be deployed in the DU 212. However, the functions of the CU 211 and the DU 212 are not limited to the functions of the base station in the LTE. As the 5G network evolves, the functions of the base station may also change, for example, adding other network functions, or existing Some functions have been improved, and even some unnecessary functions have been removed, and the like is not particularly limited in this application.
  • the CU may also cover a high-level protocol stack of the radio access network and a part of functions of the core network, and the DU may cover some functions of the PHY layer and the MAC layer.
  • FIG. 2 is merely a simplified schematic diagram for ease of understanding.
  • Other communication devices and/or terminal devices may also be included in the communication system 200, which are not shown in FIG.
  • the CU can be used to perform centralized radio resource and connection management control, or more specifically, to handle functions of the radio high layer protocol stack, for example, RRC layer, PDCP layer, etc.
  • the DU can be mainly used to handle functions with higher PHY layer functions and real-time requirements, or more specifically, functions for processing lower layer protocol stacks, for example, an RLC layer, a MAC layer, a PHY layer, and the like.
  • each protocol layer can be segmented.
  • FIG. 3 is a schematic diagram of segmentation of a protocol stack structure.
  • the protocol layer of the CU-DU architecture may include: RRC, PDCP, RLC high-level part, RLC low-level part, MAC high-level part, MAC lower layer part, PHY layer high-level part, and PHY layer lower layer part, respectively, for RLC
  • the layer, the MAC layer, and the PHY layer are segmented, and the real-time requirements of the protocol layer are placed at a high level of the protocol layer, and the functions with high real-time requirements in the protocol layer are placed in the lower layer of the protocol layer.
  • segmentation of the CU-DU function There are many possibilities for segmentation of the CU-DU function. For example, the following seven methods can be included:
  • Splitting mode 1 splitting between the RRC layer and the PDCP layer, that is, deploying the RRC layer in the CU, and the PDCP layer and the protocol layers below the PDCP layer are deployed in the DU;
  • Splitting mode 2 splitting between the PDCP layer and the RLC layer, that is, deploying the RRC layer and the PDCP layer in the CU, and the protocol layers below the RLC high-level part and the RLC high-level part are deployed in the DU;
  • Splitting method 3 The RLC layer is divided into two parts, and the function with low real-time requirement is placed in the upper part of the RLC layer, and the function with high real-time requirement is placed in the lower part of the RLC layer, and the upper part of the RLC layer and the RLC layer. Splitting between the lower layer parts of the RLC layer, and the protocol layers above the RLC layer are deployed in the CU, and the lower layer part of the RLC layer and the protocol layers below the RLC layer are deployed in the DU;
  • Splitting method 4 splitting between the RLC layer and the MAC layer, that is, deploying the RLC layer and the protocol layers above the RLC layer in the CU, and deploying the MAC layer and the protocol layers below the MAC in the DU;
  • Splitting method 5 The MAC layer is divided into two parts, and the function with low real-time requirement is placed in the upper part of the MAC layer, and the function with high real-time requirement is placed in the lower part of the MAC layer, and the upper part of the MAC layer and the MAC layer. Splitting between the lower layer parts of the MAC layer, and the protocol layers above the MAC layer are deployed in the CU, and the lower layer part of the MAC layer and the protocol layers below the MAC layer are deployed in the DU;
  • Splitting method 6 splitting between the MAC layer and the PHY layer, that is, deploying the protocol layer above the MAC layer and the MAC layer in the CU, and deploying the PHY layer and the RF in the DU;
  • the PHY layer is divided into two parts, and the function with low real-time requirement is placed in the upper part of the PHY layer, and the function with high real-time requirement is placed in the lower part of the PHY layer, and the upper part of the PHY layer and the PHY layer.
  • the lower layer portions are split between the upper layer portion of the PHY layer and the protocol layers above the PHY layer in the CU, and the lower layer portion of the PHY layer and the PHY layer and RF are deployed in the DU.
  • the radio frequency (RF) may be further divided into the foregoing protocol layer, that is, the split mode 8 may be further included: splitting between the lower layer part of the PHY layer and the RF, that is, the PHY layer And each protocol layer above the PHY layer is deployed in the CU, and the RF is deployed in the DU. That is, only the transmitting antennas are deployed in the DU, and each protocol layer is deployed in the CU.
  • FIG. 4 is a schematic structural diagram of a protocol stack of a possible network device provided by the present application.
  • one possible protocol stack structure is: deploying an RRC layer and a PDCP layer in a CU, and deploying an RLC layer, a MAC layer, and a PHY layer in a DU.
  • the future mobile communication system may introduce a new protocol layer to perform new functions, such as QoS management or aggregation and identification of user data, taking the Service Data Adaptation Protocol (SDAP) layer as an example.
  • SDAP Service Data Adaptation Protocol
  • the new protocol layer can be deployed on the PDCP layer and deployed on the CU.
  • a new protocol layer may also be deployed on the DU, for example, a new protocol layer is deployed on the RLC layer, or a new protocol layer is deployed between the RLC layer and the MAC. It is not particularly limited.
  • the above new protocol layer can be a user plane protocol layer, that is, it is only used to process data.
  • the above new protocol layer may be a control plane protocol layer, that is, used to process signaling, such as an RRC message.
  • the above-mentioned new protocol layer is used for both the control plane and the data plane, that is, for signaling and data processing, which is not specifically limited in this application.
  • the CU For the downlink RRC message or data: the CU generates an RRC message or data, and processes through the PDCP layer to obtain a PDCP protocol data unit (PDU) (that is, an RLC service data unit (SDU)).
  • PDU PDCP protocol data unit
  • SDU RLC service data unit
  • the CU transmits the PDCP PDU to the DU through a communication interface between the CU and the DU (for example, an F1 communication interface, that is, an example of the first communication interface).
  • the DU is further processed by the corresponding processing of the RLC layer, the MAC layer, and the PHY layer, and finally transmitted to the wireless channel for transmission by RF.
  • the DU For the uplink RRC message or data: after the DU receives the data packet through the radio frequency device, it passes through the processing of the PHY layer, the MAC layer, and the RLC layer, and then passes the RLC SDU (that is, the PDCP PDU) through the F1 interface between the CU-DUs. Transmitted to the CU, the CU further obtains the RRC message or data through the processing of the PDCP layer, and sends it to the RRC layer (for the RRC message) or the application layer (for the data).
  • the RLC SDU that is, the PDCP PDU
  • the CU Transmitted to the CU, the CU further obtains the RRC message or data through the processing of the PDCP layer, and sends it to the RRC layer (for the RRC message) or the application layer (for the data).
  • the F1 communication interface includes a control plane (CP) and a user plane (UP).
  • the transport layer protocol of the control plane may be a stream control transmission protocol (SCTP)
  • SCTP stream control transmission protocol
  • the transport layer protocol of the user plane is a GPRS (General Packet Radio Service) tunnel protocol (GPRS Tunneling Protocol for The Userplane, GTP-U)
  • GTP-U General Packet Radio Service tunnel protocol
  • F1AP F1 application protocol
  • the functional partitioning of the CUs and DUs and the structure of the protocol layers listed above in connection with FIGS. 3 and 4 are merely illustrative and should not be construed as limiting the application.
  • the protocol layer functions, naming schemes, and message content and names of network devices may be different from those defined in the LTE protocol.
  • the RLC layer reordering function in LTE may be moved up to the PDCP layer, for example, The RRC message in the LTE may be replaced with another name.
  • the application layer does not limit the protocol layer, protocol layer function, protocol layer naming, and protocol layer message name deployed for the CU and the DU.
  • the present application only uses the CU-DU architecture as a possible example of a 5G new network architecture.
  • the technical solution of the present application is also applicable to a radio access network system using other network architectures, where the radio access network system includes a first network node and a second network node, wherein the first network node has at least a first protocol layer, the second network node is not deployed with a first protocol layer, and at least a second protocol layer is deployed.
  • the first protocol layer may be, for example, an RRC layer, a partial function of the RRC layer, a PDCP layer, a partial function of the PDCP, a SDAP layer, a partial function of the SDAP layer, an RLC layer, a partial function of the RLC layer, and an adaptive layer (eg, having QoS) Management, protocol layer of management functions such as aggregation and identification of user data), some functions of the adaptive layer, etc.
  • the second protocol layer may be, for example, a physical layer, a partial function of the physical layer, a MAC layer, a partial function of the MAC layer, an RLC layer, a partial function of the RLC layer, an adaptive layer, and some functions of the adaptive layer.
  • the F1 interface is only one example of the first interface.
  • the first interface may be a wired interface or a wireless interface, such as a wireless transmission interface between the host base station and the relay station or between the two relay stations.
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Accs
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 5G system can also be called a new radio access technology (NR) system.
  • NR new radio access technology
  • the present application describes a communication method of an embodiment of the present application in conjunction with a radio access network system and a terminal device.
  • the radio access network system may include a device in the access network that communicates with the wireless terminal over one or more sectors on the air interface.
  • the access network system can be used to convert the received air frame with an Internet Protocol (IP) packet as a router between the wireless terminal and the rest of the access network, wherein the rest of the access network can include IP network.
  • IP Internet Protocol
  • the radio access network system can also coordinate attribute management of the air interface.
  • the radio access network system in the present application may include a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, may also include a base station (NodeB) in a WCDMA system, and may also include an evolution in an LTE system.
  • BTS Base Transceiver Station
  • NodeB base station
  • LTE Long Term Evolution
  • a type of base station evolved Node B, eNodeB or eNB or e-NodeB
  • a relay station an access point or a Radio Radio Unit (RRU), or an in-vehicle device, a wearable device, and a 5G system and a future wireless communication system
  • RRU Radio Radio Unit
  • a radio access network (RAN) device for example, a base station, a gNB, an NR Node, an NR BS, a New RAN Node, or a New RAN BS, or may also be a transmission point (TP), transmitted A transmission reception point (TRP), a relay station, and the like are not particularly limited in this application.
  • TP transmission point
  • TRP transmitted A transmission reception point
  • terminal device in the present application may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, Terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, Terminal, wireless communication device, user agent or user device.
  • the terminal device may be a station (station, ST) in a wireless local area network (WLAN), and may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, or a wireless local loop (wireless local Loop, WLL) station, personal digital assistant (PDA) device, handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and next-generation communication system,
  • PDA personal digital assistant
  • the terminal device in the 5G network or the terminal device in the public land mobile network (PLMN) network in the future is not limited in this embodiment of the present invention.
  • FIG. 5 to FIG. 7 are schematic flowcharts showing the communication method of the embodiment of the present application from the perspective of device interaction. It should be understood that the method can be applied to a wireless communication system. The following is merely for ease of understanding. The embodiment of the present invention is described in detail by taking the communication system of the CU-DU architecture shown in FIG. 2 as an example.
  • the communication system may include a second network node (e.g., CU), at least one first network node (e.g., including the first DU, the second DU, and the third DU, exemplified below) and at least one terminal device (e.g., The first terminal device including the following example).
  • a second network node e.g., CU
  • at least one first network node e.g., including the first DU, the second DU, and the third DU, exemplified below
  • terminal device e.g., The first terminal device including the following example.
  • the first network node and the second network node may communicate through the first communication interface, and the first network node and the terminal device may communicate through the air interface.
  • the communication system may be, for example, the communication system 200 shown in FIG. 2, which may correspond to the DU 212 and the CU 211 shown in FIG. 2, respectively, which may correspond to FIG. Terminal device 220 shown in .
  • the first terminal device ie, an example of the terminal device in the communication system is taken as an example, and the carrier is configured for the first terminal device in the CU-DU architecture.
  • the first terminal device may be any one of the at least one terminal device in the communication system 200 shown in FIG. 2, where the DU of the primary cell (PCell) to which the first terminal device is connected is The first DU (ie, an example of a DU).
  • the CU and the first DU configure one or more secondary cells (SCells) for the first terminal device, that is, configure carrier aggregation for the first terminal device. .
  • SCells secondary cells
  • carrier aggregation is terminal device specific, and different terminal devices may be configured with different carrier units (CCs), and each carrier unit may correspond to one independent cell.
  • the primary cell corresponds to a primary carrier unit (or a primary carrier)
  • the secondary cell corresponds to a secondary carrier unit (or a secondary carrier)
  • the primary cell and the secondary cell form a set of serving cells of the terminal device.
  • the set of serving cells includes at least one primary cell and at least one secondary cell.
  • the definition in LTE can be used.
  • the terminal device When the terminal device is configured with carrier aggregation, the terminal device only has one RRC connection with the network, and provides non-access when the RRC connection is established/re-established/switched.
  • Layer (Non Access Stratum, NAS) mobile information eg, tracking area identification
  • the serving cell providing security input is the primary cell.
  • the primary cell provides security-related parameters and configures physical uplink control channel (PUCCH) resources by performing RRC message communication with the terminal device.
  • the secondary cell may be added during RRC reconfiguration to provide A cell with additional radio resources.
  • the primary cell may be determined at the time of connection establishment, or specified by the target base station through a handover command at the time of handover, and the secondary cell is added, modified, or deleted by an RRC Connection Reconfiguration message after the initial security activation procedure.
  • the CU and the DU where the primary cell is located (referred to as the first DU for convenience of distinction and description) may configure carrier aggregation for the first terminal device. The specific process of configuring carrier aggregation for the first terminal device in this scenario is described in detail below with reference to FIG. 5 and FIG.
  • the terminal device communicates with a plurality of base station systems via dual connectivity (DC) or multiple connectivity techniques.
  • DC dual connectivity
  • the terminal device establishes an RRC connection with the first DU, and determines a cell managed by the first DU as the primary cell.
  • the CU or the first DU may further add another DU (referred to as a second DU for convenience of distinction and description) as the secondary base station, and use one cell managed by the second DU as the primary secondary cell, and the second DU.
  • the other one or more cells managed are used as secondary cells.
  • the CU, the DU where the primary cell is located (ie, the first DU), and the DU where the primary and secondary cells are located (ie, the second DU) can simultaneously configure carrier aggregation for the first terminal device.
  • the specific process of configuring carrier aggregation for the first terminal device in this scenario is described in detail in FIG. 7 below.
  • the foregoing definitions of the primary cell, the secondary cell, and the primary secondary cell are merely exemplary.
  • the present application does not exclude the possibility of modifying the definitions of the primary cell, the secondary cell, and the primary secondary cell in future protocols.
  • it is not excluded to define a new protocol layer in the future protocol instead of the RRC layer to realize the same or similar function as the RRC layer in LTE.
  • carrier aggregation is terminal device specific, for a terminal device (for example, referred to as terminal device #A), its primary cell may be another terminal device (for example, recorded as a terminal device).
  • the secondary cell of #B), its secondary cell may also be the primary cell of another terminal device (for example, recorded as terminal device #C).
  • both the primary cell and the secondary cell are relative to a particular terminal device.
  • the deployment of the protocol stack structure in the CUs and DUs (including the first DU and the second DU) shown in Figs. 5 to 7 may be, for example, the protocol stack structure shown in Fig. 4.
  • the CU is configured with at least a first protocol layer, where the first protocol layer can be used to implement at least a radio resource management function, for example, an RRC layer; at least a second protocol layer is deployed in the DU, and the second protocol layer can be used at least. Control and management functions that enable data to be transferred across the medium, such as the MAC layer.
  • Other protocol layers may be configured between the first protocol layer and the second protocol layer.
  • the RLC layer, the PDCP layer, and the like may be sequentially from bottom to top.
  • Each protocol layer may have the same function as the protocol layer defined in the current protocol (for example, the LTE protocol), or may modify the functions of each protocol layer in the current protocol.
  • the RRC layer deployed in the CU may implement the function of the RRC layer in the current protocol, for example, an RRC function other than a signaling radio bearer (SRB) 0, and the SRB0 corresponds to The RRC function can be deployed in the DU.
  • SRB signaling radio bearer
  • the embodiments of the present application are only for convenience of description, and the protocol stack structure shown in FIG. 4 is taken as an example to illustrate that the deployment of the protocol stack structure in the CU and the DU is not limited to this, and the above has already been applied to the CU and the DU.
  • the deployment of the protocol stack structure has been enumerated and illustrated. For brevity, it will not be repeated here.
  • the communication method 500 provided by the embodiment of the present application is described in detail below with reference to FIG.
  • the method 500 includes:
  • the first terminal device establishes an RRC connection with the first cell in the first DU.
  • the initial access procedure may be initiated.
  • the terminal accesses the first cell through an RRC connection re-establishment process or a handover procedure.
  • the first cell is the primary cell of the first terminal device (it should be understood that the corresponding carrier of the primary cell is the primary carrier).
  • the system information of the first cell acquired by the terminal device is system information of the primary cell, and the terminal device sends a random access request by sending the DU (the first DU for convenience of distinguishing and description) to the first cell.
  • the RRC connection request requests access to the first cell.
  • the first terminal device can obtain an identifier that the first DU, the CU, and the core network device can respectively allocate for the terminal device.
  • the first DU allocates a cell radio network temporary identity (C-RNTI) to the first terminal device
  • the CU may allocate the user on the first communication interface to the first terminal device.
  • a user equipment (UE) identifier (identity, ID)
  • the core network device may allocate a temporary mobile subscriber identity (TMSI) or the like to the first terminal device. That is to say, each terminal device has different identifiers in different network devices, but the identifier of each terminal device in different network devices can uniquely indicate one terminal device.
  • Each network device has a one-to-one mapping relationship for each identifier allocated by the same terminal device, and the mapping relationship may be saved in each network device, so that other network devices determine the terminal device according to any identifier of the terminal device.
  • the specific process of the terminal device initially accessing the network may be similar to the access procedure in the existing protocol (for example, the LTE protocol), and a detailed description of the specific process is omitted here for brevity.
  • the first terminal device can complete registration and authentication on the core network, and activate the security of the core network and the air interface.
  • the CU configures a first set of serving cells for the first terminal device, and sends configuration information of the first set of serving cells to the first DU (for the purpose of distinguishing and interpreting, the second configuration information is recorded).
  • the CU may configure the first serving cell set for the first terminal device.
  • carrier aggregation may include co-station carrier aggregation and cross-station carrier aggregation without considering dual connectivity or multiple connectivity.
  • the first set of serving cells may include a set of secondary cells that may be configured as the first terminal device in the cell managed by the first DU; if it is a cross-station (or called an alien station)
  • the first set of serving cells may include: a set of secondary cells in the cell managed by the first DU and other DUs (eg, the third DU) that may be configured as the first terminal device.
  • the DU corresponding to the secondary cell in the first set of serving cells includes the first DU and the third DU, and in fact, the DU corresponding to the secondary cell in the first serving cell set. More DUs may be included, which is not specifically limited in this application.
  • the CU may configure the first serving cell set for the first terminal device by using at least one of the following methods:
  • Method 1 The CU configures a first set of serving cells for the first terminal device according to the measurement result.
  • Method 2 The CU blindly allocates the first serving cell set of the first terminal device.
  • the measurement result may include at least one of the following:
  • the first protocol layer is a protocol layer above the second protocol layer.
  • the first protocol layer may be an RRC layer, or a protocol layer having similar radio resource management functions.
  • the third protocol layer can be a PHY layer, or a protocol layer with similar functionality to provide physical resources for data transmission.
  • the first measurement result and the second measurement result are measurement results of the downlink channel, and the measurement result may be a measurement report generated by the first terminal device, or may be a measurement result obtained after the first DU process.
  • the measurement result of the downlink channel includes a measurement result of the RRC layer (or a radio resource management (RRM) measurement result, a measurement result of layer 3) and a measurement result of the PHY layer (or, layer 1) Measurement results).
  • the manner in which the CU obtains the measurement results of different protocol layers of the first terminal device may be different.
  • the measurement report of the RRC layer may be carried in the RRC message, so the measurement report of the RRC layer may be directly forwarded to the CU through the first DU, and the CU may be based on the measurement at the RRC layer.
  • the report interprets the first measurement.
  • the measurement report from the PHY layer of the first terminal device reports that the measurement report of the PHY layer can be carried in the PHY layer message or the MAC layer message, so the first DU can read the measurement report when receiving the measurement report of the PHY layer.
  • the second measurement result, the first DU then sends the second measurement result to the CU through the first communication interface.
  • the measurement signal (for example, the downlink reference)
  • the signal needs to be configured to be sent on a carrier corresponding to each secondary cell in the first set of serving cells, and the UE receives the measurement signal, so as to accurately obtain the first terminal device for the measurement of each secondary cell in the first set of serving cells.
  • the second measurement result of the three protocol layers is the measurement result of the three protocol layers.
  • the measurement report from the first terminal device may include at least one of the following:
  • Reference signal receiving power RSRP
  • reference signal receiving quality RSRQ
  • signal-to-noise ratio SNR
  • signal to interference plus noise ratio signal to interference plus noise Ratio
  • SINR channel state information
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • rank indication RI
  • the measurement reports listed above may be at the cell level or at the beam level. If the measurement report is at the cell level, the measurement report carries a cell ID. If the measurement report is a beam level, the measurement report carries a beam identifier.
  • the third measurement result is the measurement result of the uplink channel.
  • the measurement result of the uplink channel can be obtained by the first DU monitoring the uplink channel.
  • the measurement report may be generated according to a sounding reference signal (SRS) or a channel state information reference signal (CSI-RS) sent by the first terminal device, and sent through the first communication interface.
  • SRS sounding reference signal
  • CSI-RS channel state information reference signal
  • the measurement result sent by the first DU to the CU through the first communication interface may be carried in the F1 interface control plane message or the F1 interface user plane message.
  • the measurement report of the uplink channel may also include at least one of the following:
  • the measurement report may include one or more contents, and may include other contents than the above list. This application is not particularly limited.
  • the CU may determine the first set of serving cells for the first terminal device by using a blind matching method.
  • the method may refer to a specific process in which the base station blindly allocates the first serving cell set to the first terminal device in the prior art. For brevity, a detailed description of the specific process is omitted herein.
  • the CU may also determine the first set of serving cells for the first terminal device based on other information, for example, based on historical information reported by the UE, etc., which is not specifically limited in this application.
  • the second configuration information may be generated by the CU based on a first communication interface (eg, F1 interface) protocol.
  • the second configuration information may be carried in the F1 interface control plane (referred to as F1CP) message.
  • the F1 interface control plane message is an F1AP message.
  • the second configuration information may also be carried in the F1 interface user plane (referred to as F1UP) message.
  • the F1 interface control plane message is carried on the SCTP-based transport layer protocol
  • the F1 user plane message is carried on the GTP-U-based transport layer protocol.
  • the first DU may receive the second configuration information through the first communication interface. For example, the first DU acquires the second configuration information based on the F1AP.
  • the second configuration information includes at least one of the following:
  • the identification information of the terminal device the primary cell identity information, the secondary cell identity information, the secondary cell index, and the frequency information of the secondary cell.
  • the identification information of the terminal device includes at least one of the following: a C-RNTI and a UE ID.
  • the primary cell identity information includes at least one of the following: a radio access network cell global identifier and a physical cell identifier (PCI).
  • PCI physical cell identifier
  • the secondary cell identity information includes at least one of the following: a radio access network cell global identifier and a PCI.
  • the second configuration information further indicates a status of the secondary cell.
  • the status of the secondary cell includes an activated state or a deactivated state.
  • the second configuration information may include an identifier of each secondary cell and a state of each secondary cell, that is, a state of each secondary cell is indicated by an explicitly indicated method; or, in the protocol, only the second configuration information may be defined.
  • the second configuration information may include only the secondary cell in the activated state or the secondary cell in the deactivated state, that is, the method indicated by the implicit indication. The status of each secondary cell.
  • the second configuration information may be used to indicate that the CU is a first serving cell set configured by the first terminal device, where the first serving cell set includes at least one secondary cell.
  • the second configuration information may include a secondary cell (Scell) list, where the secondary cell list records one of the secondary cell identifier information, the secondary cell index, and the frequency information of the secondary cell. A mapping relationship.
  • the second configuration information may further include related configuration information of the protocol stack.
  • the configuration information of the protocol stack may include: RLC layer configuration related information, such as buffer configuration related information; and MAC layer configuration related information, for example, including: a hybrid automatic repeat request (hybrid automatic repeat request, HARQ) configuration related information of the entity (entity), configuration information of the buffer state report (BSR) size (BSR-Size).
  • RLC layer configuration related information such as buffer configuration related information
  • MAC layer configuration related information for example, including: a hybrid automatic repeat request (hybrid automatic repeat request, HARQ) configuration related information of the entity (entity), configuration information of the buffer state report (BSR) size (BSR-Size).
  • HARQ hybrid automatic repeat request
  • BSR-Size buffer state report
  • the related configuration information of the protocol stack may refer to the information used in the prior art for configuration of the protocol stack. .
  • the secondary cell configured by the CU for the first terminal device may not be on the first DU.
  • the CU may simultaneously send the second configuration information to the secondary device.
  • the DU (for example, the third DU) in which the cell is located, so that each DU obtains the secondary cell information in the first set of serving cells.
  • the first DU and the third DU perform, according to the second configuration information, a protocol layer related configuration for each secondary cell in the first serving cell set.
  • each DU After receiving the second configuration information, each DU can be configured according to the relevant configuration information of the protocol stack included therein. Specifically, each protocol layer (including, for example, an RLC layer, a MAC layer, and a PHY layer) may update configuration parameters or establish a corresponding entity for a carrier unit allocated to the first terminal device.
  • each protocol layer including, for example, an RLC layer, a MAC layer, and a PHY layer
  • a larger buffer may be allocated in the RLC layer, multiple HARQ entities are allocated to each secondary cell in the MAC layer, and configuration information of the physical channel is allocated to each secondary cell in the PHY layer, for example, whether cross-carrier scheduling needs to be activated, And in the case of cross-carrier scheduling, scheduling information of physical resources of other cells are carried on the PDCCH, so as to perform data transmission of the physical channel.
  • the S520 may be: the first DU configures the first serving cell set for the first terminal device, and sends configuration information of the first serving cell set to the CU (for the purpose of distinguishing and interpreting, the third configuration information is recorded) .
  • the first cell service set can be configured for the terminal device by the following two methods:
  • Method 1 The first DU determines the secondary cell in the secondary cell list, and sends the secondary cell identifier information to the CU, where the CU allocates the secondary cell index to the corresponding secondary cell, and sends the secondary cell index to the first DU.
  • Method 2 The first DU determines the secondary cell in the secondary cell list, and allocates the corresponding secondary cell index, and sends the secondary cell identification information and the secondary cell index to the CU.
  • the third configuration information may include at least: secondary cell identifier information.
  • the third configuration information may further include at least one of the following: frequency information of the secondary cell and status information of the secondary cell.
  • the CU After receiving the third configuration information, the CU sends a first acknowledgement message to the DU, where the first acknowledgement message includes at least a secondary cell index.
  • the first acknowledgement message may further include at least one of the following: the secondary cell identifier information, the frequency information of the secondary cell, and the state information of the secondary cell.
  • the third configuration information may include at least: secondary cell identifier information and a secondary cell index.
  • the third configuration information may further include at least one of the following: frequency information of the secondary cell and status information of the secondary cell.
  • the CU after receiving the third configuration information, the CU sends a first acknowledgement message to the DU.
  • the first acknowledgement message may include at least one of the following: the secondary cell identifier information, the secondary cell index, the frequency information of the secondary cell, and the state information of the secondary cell.
  • the first acknowledgment message may further include protocol stack configuration information corresponding to the secondary cell, and it is understood that the first DU is configured according to the first acknowledgment information in the first serving cell set.
  • the configuration of the protocol layer in the secondary cell is similar to the specific method in which the first DU performs the configuration of the protocol stack for the secondary cell according to the second configuration information. To avoid repetition, a detailed description of the step is omitted here.
  • the third configuration information may be generated by the DU based on a first communication interface (eg, F1 interface) protocol.
  • the third configuration information may be carried in the F1 interface control plane (referred to as F1CP) message.
  • the F1 interface control plane message is an F1AP message.
  • the third configuration information may also be carried in the F1 interface user plane (referred to as F1UP) message.
  • the F1 interface control plane message is carried on the SCTP-based transport layer protocol
  • the F1 user plane message is carried on the GTP-U-based transport layer protocol.
  • the CU can receive the third configuration information through the first communication interface. For example, the CU acquires the third configuration information based on the F1AP.
  • the method for generating and transmitting the first confirmation information is similar to the method for generating and transmitting the second configuration information. To avoid repetition, a detailed description of the step is omitted here.
  • the method 500 further includes:
  • the CU generates first configuration information, and forwards the first configuration information to the first terminal device via the first DU.
  • the CU may send configuration information of the candidate secondary cell list to the first terminal device (refer to the first configuration information for convenience of distinction and description).
  • the CU may generate first configuration information at the first protocol layer.
  • the first configuration information is information generated by the RRC layer, and the information is processed by the PDCP layer and then sent to the first DU through the first communication interface.
  • the first DU processes the received information in sequence by the RLC layer, the MAC layer, and the PHY layer, and then sends the RF through the air interface.
  • the first configuration information may be generated by the CU at the first protocol layer.
  • the first configuration information may be carried in an RRC message.
  • the first terminal device may receive the first configuration information after the first DU processing sent by the first DU by using an air interface, and interpret the first configuration information at the RRC layer.
  • the first configuration information indicates that the CU is the first serving cell set configured by the first terminal device, and the first serving cell set indicated in the first configuration information corresponds to the first serving cell set described in S520 above, including at least A secondary cell.
  • the second configuration information may include a Scell list, where the one-to-one mapping relationship between the secondary cell identifier information, the secondary cell index, and the frequency information of the secondary cell is recorded.
  • the secondary cell identifier information may include at least one of the following: ECGI or PCI.
  • the first configuration information is used to notify the first terminal device of the first serving cell set and the corresponding configuration information, so that the first terminal device receives the subsequent secondary cell configuration information.
  • the first configuration information may be the foregoing secondary cell list, and the one-to-one mapping relationship between the secondary cell identifier information, the secondary cell index, and the frequency information of the secondary cell is recorded in the secondary cell list.
  • the first terminal device may save the foregoing secondary cell list. Therefore, when the first terminal device subsequently receives the activation/deactivation indication (ie, the first indication information described in the following), the first terminal device may find the active and auxiliary at the corresponding frequency according to the configuration information.
  • the secondary cell corresponding to the cell index ie, the first indication information described in the following
  • the first configuration information further indicates a status of the secondary cell.
  • the status of the secondary cell includes an activated state or a deactivated state.
  • the first configuration information may include an identifier of each secondary cell and a state of each secondary cell, that is, a state of each secondary cell is indicated by an explicitly indicated method; or, in the protocol, only the first configuration information may be defined.
  • the first configuration information may include only the secondary cell in the activated state or the secondary cell in the deactivated state, that is, the method indicated by the implicit indication. The status of each secondary cell.
  • the first configuration information may be generated by the CU based on the first protocol layer.
  • the first configuration information may be carried in an RRC message.
  • the first DU determines, according to the first serving cell set, a state of the at least one first secondary cell in the first indication information.
  • the first DU is used as the DU in which the primary cell of the first terminal device is located, and the state of each secondary cell may be determined for the first terminal device, and the first indication information is generated based on the determination result.
  • the first DU may determine, in the current network condition, which secondary cells in the first set of serving cells can be set to an active state, that is, a secondary cell that can be configured to perform data transmission with the first terminal device, and which It can be set to the deactivated state, that is, the secondary cell that is not currently configured to perform data transmission with the first terminal device.
  • the secondary cell included in the first indication information is used as the first secondary cell, and the secondary cell included in the first indication information belongs to the first serving cell set.
  • the secondary cell included in the first indication information may be a subset of the first set of serving cells, or may be a complete set of the set of serving cells.
  • the first indication information may include all the secondary cells in the first set of serving cells, and indicate the status of each secondary cell.
  • the first indication information may include And a part of the secondary cells in the first set of serving cells, and indicating a status of each of the secondary cells in the part of the secondary cell; in another possible design, the first indication information may include some secondary cells in the first set of serving cells,
  • the partial secondary cell is a secondary cell determined to be in an active state determined by the first network node or the second network node, or a secondary cell set to a deactivated state.
  • S540 specifically includes:
  • the first DU determines a state of at least one first secondary cell in the first indication information according to the measurement result.
  • the measurement result may be the measurement result described in S520.
  • the specific content of the measurement result has been described in detail in S520, and for brevity, it will not be described again here.
  • the measurement manner of the first DU to the different protocol layers of the first terminal device may be obtained. different.
  • the measurement report of the RRC layer can be carried in the RRC message, so the measurement report of the RRC layer cannot be directly interpreted in the first DU, but can pass the first DU.
  • the CU interprets the first measurement result according to the measurement report at the RRC layer.
  • the CU sends the first measurement result to the DU through the first interface.
  • the first measurement result may be carried in the first interface control plane message or the first interface user plane message.
  • the measurement report of the PHY layer can be carried in the PHY layer message or the MAC layer message, so the first DU can directly interpret the measurement report of the PHY when receiving the measurement report of the PHY
  • the second measurement result is obtained.
  • the second protocol layer from the first terminal device includes the second protocol layer.
  • the measurement result the measurement signal (for example, the downlink reference signal) needs to be configured to be sent on a carrier corresponding to each secondary cell in the first serving cell set, so as to accurately acquire the first terminal device for each of the first serving cell set.
  • the second measurement result of the second protocol layer measured by the secondary cell.
  • the first DU determines the state of the at least one first secondary cell from the first set of serving cells according to the measurement result, and can be based on the uplink/downlink transmission of the first terminal device in each secondary cell in the first serving cell set. In the situation, a more suitable secondary cell is selected for carrier aggregation. Moreover, the judgment based on one or more of the above measurement results can improve the accuracy of the judgment.
  • the first DU may also determine an activation/deactivation state of the first secondary cell of the first serving cell set according to other information. And determining, by the first DU, an activation/deactivation state of the first secondary cell in the first serving cell set, and determining, by the base station in the prior art, an activation/deactivation state of the first secondary cell in the first serving cell set. The method is the same, for the sake of brevity, it will not be repeated here.
  • the step of determining, by the first DU in the first serving cell set, the first secondary cell set to the active/deactivated state in S540 is only one possibility for determining the activation/deactivation state of the first secondary cell.
  • the third DU may also determine the secondary cell managed by the third DU to determine the activation/deactivation status of each secondary cell in the secondary cell managed by the third DU.
  • the first DU may only decide on the secondary cell managed by itself to determine an activation/deactivation state of at least one first secondary cell in the secondary cell managed by the first DU.
  • the specific method and process for the third DU to make a decision are similar to the specific method and process for the first DU to make a decision. To avoid redundancy, a detailed description of the process is omitted herein.
  • the third DU may pass the determination result to the CU and be forwarded by the CU.
  • the first DU is given so that the first DU notifies the first terminal device in S550.
  • the first DU generates the first indication information, and sends the first indication information to the first terminal device, where the first indication information is used to indicate a status of the at least one first secondary cell.
  • the first secondary cell in the first indication information may be a secondary cell managed by the first DU, or may be a secondary cell managed by the third DU.
  • the first indication information includes any one of the following:
  • the first secondary cell that is placed in an active state
  • the first secondary cell that is set to the deactivated state or
  • the first secondary cell and its status.
  • the secondary cell may be indicated by a secondary cell index.
  • the first terminal device may save a one-to-one mapping relationship between the secondary cell identifier information, the secondary cell index, and the frequency information of the secondary cell based on the received first configuration information, and therefore, the first
  • the terminal device may determine the activated/deactivated first secondary cell according to the first secondary cell index that is set to the activated/deactivated state indicated in the first indication information.
  • the first terminal device may receive the physical downlink control channel on the corresponding carrier unit according to the first secondary cell that is set to be activated according to the first indication information.
  • the physical downlink control channel (PDCCH) performs data transmission according to resources scheduled for the first terminal device. At the same time, it is also possible to report the measurement report periodically or non-periodically.
  • PDCCH physical downlink control channel
  • the first terminal device may update at least one first secondary cell in the set of serving cells according to the state of the at least one first secondary cell indicated by the first indication information. status.
  • the update mentioned here refers to updating the state of each current first secondary cell according to the state of each first secondary cell indicated in the received first indication information, but does not necessarily change the first secondary cell.
  • the current state for example, in the case where the state indicated in the first indication information is the same as the current state, it is not necessary to change the current state; and in the case where the state indicated in the first indication information is different from the current state, it is required Change the current state.
  • secondary cell #A For example, if a secondary cell (for example, secondary cell #A, that is, an instance of the first secondary cell) is in an active state, and the first indication information indicates a deactivated state, the secondary cell #A is updated to Deactivated state; if a secondary cell (for example, secondary cell #B, that is, another instance of the first secondary cell) is in a deactivated state, and the first indication information indicates an active state, the secondary cell #B is updated.
  • secondary cell #A for example, secondary cell #A, that is, an instance of the first secondary cell
  • secondary cell #B that is, another instance of the first secondary cell
  • the first indication information indicates an active state, or a secondary cell (eg, The secondary cell #D, that is, another example of the first secondary cell is in a deactivated state, and the first indication information indicates a deactivated state, and the current state of the secondary cell #C and the secondary cell #D is not changed.
  • a secondary cell eg, The secondary cell #D, that is, another example of the first secondary cell is in a deactivated state, and the first indication information indicates a deactivated state, and the current state of the secondary cell #C and the secondary cell #D is not changed.
  • the first indication information may be generated by the first DU at the second protocol layer.
  • the first indication information may be carried in a MAC control element (CE).
  • CE MAC control element
  • the first indication information is sent by using the layer 2 message, so that the activated/deactivated secondary cell can be adjusted in real time according to the network condition, and the real-time performance of the configuration effective can be enhanced.
  • the first configuration information may be carried in an RRC message. That is, the CU may indicate the first serving cell set to the first terminal device by using the RRC message, so that the first terminal device acquires configuration information of each secondary cell in the first serving cell set. Then, the first DU may send the first indication information to the first terminal device by using the MAC CE, so as to indicate the secondary cell that is set to the activated/deactivated state in real time, so that the first terminal device can be configured according to the first indication information. The data is transmitted through the activated secondary cell to implement carrier aggregation.
  • the secondary cell in the first set of serving cells may be the same station as the primary cell of the first terminal device, or may be an alien station, and assume that the DU in which the secondary cell of the different station is located is The third DU, therefore, the secondary cell that can be set to the active state may be the cell in the first DU, or may be the cell in the third DU.
  • the method 500 further includes:
  • the first DU sends third indication information to the CU, where the third indication information is used to notify at least one first secondary cell in the first indication information of the CU and a status thereof.
  • the first DU may notify the CU after determining the first secondary cell in the activated/deactivated state for the first terminal device, so that the CU maintains the activation/deactivation of the secondary cell of the first terminal device. status.
  • the third indication information may be generated by a first DU based on a protocol supported by the first communication interface (eg, an F1 interface).
  • the third indication information may be carried in the F1 interface control plane (referred to as F1CP) message.
  • the F1 interface control plane message is an F1AP message.
  • the third indication information may also be carried in the F1 interface user plane (referred to as F1UP) message.
  • the F1 interface control plane message is carried on the SCTP-based transport layer protocol
  • the F1 user plane message is carried on the GTP-U-based transport layer protocol.
  • the third indication information may further include a secondary cell responsible for management of the third DU.
  • the method further includes: the CU sending the fourth indication information to the third DU, where the fourth indication information is used to notify the third DU that the secondary cell managed by the third terminal of the first terminal device is activated. / Deactivated at least one secondary cell.
  • the CU and the first DU complete the configuration of carrier aggregation for the first terminal device.
  • the embodiment of the present application generates, by the CU, the first configuration information of the set of serving cells to the terminal device by using the first DU, and generates and sends the first indication information by the first DU at the second protocol layer.
  • the first terminal device may update the activation/deactivation state of the secondary cell after receiving the first indication information, and use the activated secondary cell to perform the activation/deactivation state of the secondary cell. data transmission. Therefore, the purpose of configuring carrier aggregation for the terminal device under the CU-DU architecture is achieved, which is beneficial to improving the transmission bandwidth of the terminal device.
  • the activation/deactivation state of the at least one first secondary cell is determined by the first DU, and the first indication information may be directly generated according to the determined result, which is relatively simple and convenient.
  • the communication method 600 provided by another embodiment of the present application is described in detail below with reference to FIG.
  • the method 600 includes:
  • the first terminal device establishes an RRC connection with the first cell in the first DU.
  • the CU configures a first set of serving cells for the first terminal device, and sends configuration information of the first set of serving cells to the first DU (for the purpose of distinguishing and explaining, the second configuration information is recorded).
  • the S620 may be: the first DU configures the first serving cell set for the first terminal device, and sends configuration information of the first serving cell set to the CU (for the purpose of distinguishing and interpreting, the third configuration information is recorded. ). Further optionally, the CU sends a first acknowledgement message to the first DU.
  • the figure only shows the process of the CU transmitting the second configuration information to the first DU, and does not show that the first DU sends the third configuration information to the CU and the CU sends the first confirmation message to the first DU.
  • the process but this should not constitute any limitation to the application.
  • the CU generates first configuration information, and forwards the first configuration information to the first terminal device by using the first DU.
  • the first configuration information is carried in an RRC message.
  • the CU determines at least one first secondary cell in the second indication information and a status thereof.
  • the CU may be configured to determine an activation/deactivation state of the at least one first secondary cell from the first set of serving cells. Specifically, the CU may determine, in the current network condition, which secondary cells in the first set of serving cells can be set to an active state, that is, a secondary cell that can be configured to perform data transmission by the first terminal device; The deactivated state, that is, the secondary cell that is not currently configured for data transmission by the first terminal device.
  • the CU may determine, according to the measurement result, at least one first secondary cell in the second indication information and a status thereof.
  • the measurement result may be the measurement result described in S620.
  • the specific content of the measurement result has been described in detail in S520 of the method 500. For brevity, details are not described herein again.
  • the CU determines the activation/deactivation state of the at least one first secondary cell according to the measurement result, and can select a suitable one based on the uplink/downlink transmission status of the first terminal device in each secondary cell in the first serving cell set.
  • the secondary cell performs carrier aggregation.
  • the CU may perform the determination according to the first measurement result of the first protocol layer of the first terminal device, and may also be based on the second measurement result of the second protocol layer of the first terminal device reported by the first DU, and the uplink channel
  • the third measurement result is judged, which is beneficial to improve the validity of the judgment.
  • the CU may also determine the activation/deactivation status of each secondary cell of the first serving cell set according to other information. Determining, by the CU, the activation/deactivation status of each secondary cell in the first set of serving cells may be the same as the specific method of determining, by the base station in the prior art, the activation/deactivation status of each secondary cell in the first set of serving cells, for the sake of brevity, I won't go into details here.
  • the CU generates second indication information, and sends second indication information to the first DU, where the second indication information includes information about a status of the at least one first secondary cell.
  • the CU may generate information indicating an activation/deactivation status of at least one first secondary cell in the first set of serving cells. (For the sake of distinction, record as the second indication).
  • the CU may generate the second indication information based on a protocol supported by the first communication interface.
  • the second indication information may be carried in the F1 interface control plane (referred to as F1CP) message, or may also be carried in the F1 interface user plane (referred to as F1UP) message.
  • F1CP F1 interface control plane
  • F1UP F1 interface user plane
  • the CU sends the first DU through the first communication interface, and the first DU can interpret the second indication information based on the first communication interface protocol, thereby determining a state of the at least one first secondary cell.
  • the second indication information and the second configuration information may be carried in the same message.
  • the second indication information and the second configuration information may be carried in the same F1 interface control plane message.
  • the first DU generates first indication information according to the second indication information, and sends the first indication information to the first terminal device, where the first indication information includes information about a status of the at least one first secondary cell.
  • the first DU may generate first indication information according to the status of each first secondary cell indicated by the second indication information.
  • the first DU sends the first indication information to the first terminal device by using the air interface to notify the first terminal device of the state of the at least one first secondary cell, so that the first terminal device updates at least one of the first set of serving cells.
  • the state of the secondary cell thereby implementing carrier aggregation of the first terminal device.
  • the first indication information is carried in the MAC CE.
  • the method 600 further includes:
  • the first DU sends third indication information to the CU, where the third indication information is used to notify at least one first secondary cell in the first indication information of the CU and a status thereof.
  • the first DU may notify the CU after determining the activation/deactivation state of the at least one first secondary cell for the first terminal device, so that the CU maintains the secondary cell activation/deactivation of the first terminal device. Activation status.
  • the third indication information may be generated by the first DU based on a first communication interface (eg, an F1 interface) protocol.
  • the third indication information may be carried in the F1 interface control plane (referred to as F1CP) message.
  • the F1 interface control plane message is an F1AP message.
  • the third indication information may also be carried in the F1 interface user plane (referred to as F1UP) message.
  • the F1 interface control plane message is carried on the SCTP-based transport layer protocol
  • the F1 user plane message is carried on the GTP-U-based transport layer protocol.
  • the third indication information may further include a secondary cell responsible for management of the third DU.
  • the method further includes: the CU sending the fourth indication information to the third DU, where the fourth indication information is used to notify the third DU that the secondary cell managed by the third terminal of the first terminal device is activated. / Deactivated at least one secondary cell.
  • the CU and the first DU complete the configuration of carrier aggregation for the first terminal device.
  • the embodiment of the present application generates, by using the CU second network node, the first configuration information of the serving cell set to the terminal device by using the DU, and generates and sends the first indication by the first DU at the second protocol layer.
  • the information is used to notify the first terminal device of the activation/deactivation state of the at least one first secondary cell, so that after receiving the first indication information, the first terminal device may update the activation/deactivation state of the secondary cell, and use the activated auxiliary
  • the cell performs data transmission. Therefore, the purpose of configuring carrier aggregation for the terminal device under the CU-DU architecture is achieved, which is beneficial to improving the transmission bandwidth of the terminal device.
  • a communication method 700 according to still another embodiment of the present application is described in detail below with reference to FIG. It should be understood that the communication method 700 shown in FIG. 7 may be a subsequent process of the communication method 500 or 600 illustrated in FIG. 5 or FIG. 6, or may be performed simultaneously with the communication method 500 or 600 illustrated in FIG. 5 or FIG. The process is not specifically limited in this application. Thus, the method 700 can include some or all of the steps of the communication method 500 or the communication method 600 described above. In the present embodiment, in order to avoid redundancy, the description of the steps in the above-described communication method 500 or communication method 600 is omitted. In the communication method 700, it is assumed that the first terminal device has established an RRC connection with the first cell in the first DU.
  • the method 700 includes:
  • the first terminal device accesses the primary and secondary cells through a random access procedure to communicate with multiple base station systems by using dual connectivity or multiple connection technologies.
  • the first DU may add the primary secondary cell and the secondary cell to the first terminal device by using an RRC message.
  • the definition of the primary and secondary cells may refer to the definition in the existing protocol (for example, the LTE protocol), that is, the primary secondary cell may be used in the SCG when performing a secondary cell group (SCG) change process.
  • SCG secondary cell group
  • the first terminal device can access the primary and secondary cells through a non-contention random access procedure.
  • the first terminal device accesses the primary secondary cell, it is not required to establish an RRC connection with the second DU, that is, the first The terminal device may receive a message (eg, MAC CE) of the MAC layer sent by the second DU and a message of the PHY layer, but receive an RRC layer message (eg, an RRC message) from the first DU.
  • a message eg, MAC CE
  • RRC layer message eg, an RRC message
  • S720 The CU configures a second set of serving cells for the first terminal device, and sends configuration information of the second set of serving cells to the second DU (for the sake of distinction and description, the fourth configuration information is recorded).
  • the fourth configuration information includes a second set of serving cells configured by the CU for the first terminal device, where the second set of serving cells may be configured as the first terminal device in the cell managed by the second DU.
  • a collection of secondary cells That is, in the candidate secondary cell configured by the CU for the first terminal device, a part of the candidate secondary cell may be managed by the second DU. Therefore, the CU sends the fourth configuration information to the second DU, so that the second DU performs the second DU.
  • Configuration of the protocol stack It can be understood that the second DU is the DU where the primary and secondary cells of the first terminal device are located.
  • the second set of serving cells includes a primary secondary cell and other secondary cells.
  • the fourth configuration information is generated by the CU based on a protocol supported by the first communication interface (eg, the F1 interface).
  • the fourth configuration information may be carried in the F1 interface control plane (referred to as F1CP) message.
  • the F1 interface control plane message is an F1AP message.
  • the fourth configuration information may also be carried in the F1 interface user plane (referred to as F1UP) message.
  • the F1 interface control plane message is carried on the SCTP-based transport layer protocol
  • the F1 user plane message is carried on the GTP-U-based transport layer protocol.
  • the fourth configuration information is similar to the specific content and function included in the second configuration information described above, and the specific process of S720 is similar to the specific process of S520. To avoid repetition, a detailed description of the step is omitted here.
  • the S720 may be: the first DU configures a second set of serving cells for the first terminal device, and sends configuration information of the second set of serving cells to the CU (for the purpose of distinguishing and explaining, the fifth configuration information is recorded) . Further optionally, the CU sends the second acknowledgement information to the first DU.
  • the fifth configuration information is similar to the specific content and function included in the third configuration information described above, and the second confirmation information is similar to the specific content and function included in the first confirmation information described above, and the first The specific process for the DU to configure the second set of serving cells for the first terminal device is similar to the specific process of S520. To avoid repetition, a detailed description of the steps is omitted here.
  • the method 700 further includes:
  • the CU generates sixth configuration information, and forwards the sixth configuration information to the first terminal device by using the first DU.
  • the sixth configuration information includes a second serving cell set configured by the CU for the first terminal device, where the second serving cell set may be configured as the first terminal device in a cell managed by the second DU.
  • the sixth configuration information that is sent by the CU to the first terminal device is the information that is generated by the first protocol layer.
  • the sixth configuration information is carried in the RRC message, therefore, the The sixth configuration information may be forwarded to the first terminal device by using the first DU.
  • the first DU may forward the received sixth configuration information to the first terminal device after performing at least the processing of the second protocol layer.
  • the second set of serving cells indicated by the sixth configuration information corresponds to the second set of serving cells included in the fourth configuration information described in S720 above.
  • the sixth configuration information may be generated by the CU at the first protocol layer.
  • the sixth configuration information is carried in an RRC message.
  • the sixth configuration information is similar to the specific content and functions included in the first configuration information described above, and the specific process of S730 is similar to the specific process of S530. To avoid repetition, a detailed description of the steps is omitted herein.
  • the second DU generates fifth indication information, and sends the fifth indication information to the first terminal device.
  • the fifth indication information includes information about a status of at least one secondary cell.
  • the fifth indication information is used to notify the first terminal device to update the status of the at least one secondary cell.
  • the at least one first secondary cell in the fifth indication information is all or part of the secondary cell in the second serving cell set, and the relationship between the first secondary cell and the second serving cell set may refer to the foregoing method 500. The description of the relationship between the first secondary cell and the first serving cell set is not repeated here to avoid repetition.
  • each secondary cell and its status may be determined by the CU from the second set of serving cells (which may correspond to S640 in the foregoing method 600), or may be determined by the second DU from the second set of serving cells. (may correspond to S540 in the above method 500).
  • the CU or the second DU can determine the status of each secondary cell according to the measurement result.
  • the specific content of the measurement result may include at least one of the following:
  • the first protocol layer is a protocol layer above the second protocol layer.
  • the first protocol layer may be an RRC layer, or a protocol layer having similar radio resource management functions.
  • the third protocol layer can be a PHY layer, or a protocol layer with similar functionality to provide physical resources for data transmission.
  • the fifth indication information may be generated by the second DU at the second protocol layer.
  • the fifth indication information is carried in the MAC CE sent by the second DU to the first terminal device.
  • the fifth indication information is similar to the specific content and function of the first indication information described above, and the specific process of S740 may be similar to the specific process of S540 or S640. To avoid repetition, the details of the step are omitted here. Description.
  • the method 700 further includes:
  • the third DU sends a sixth indication information to the CU, where the sixth indication information is used to notify at least one first secondary cell of the CU fifth indication information and a status thereof.
  • the sixth indication information may be generated by a second DU based on a protocol supported by the first communication interface (eg, the F1 interface).
  • the sixth indication information may be carried in the F1 interface control plane (referred to as F1CP) message.
  • the F1 interface control plane message is an F1AP message.
  • the sixth indication information may also be carried in the F1 interface user plane (referred to as F1UP) message.
  • the F1 interface control plane message is carried on the SCTP-based transport layer protocol
  • the F1 user plane message is carried on the GTP-U-based transport layer protocol.
  • the sixth indication information is similar to the specific content and function of the third indication information described above, and the specific process of this step has been described in detail above, and a detailed description of the step is omitted here in order to avoid redundancy.
  • the CU, the first DU, and the second DU complete the configuration of carrier aggregation for the first terminal device in the dual connectivity or multi-connection scenario.
  • the embodiment of the present application generates, by the CU, the fourth configuration information of the second set of serving cells to be generated by the CU in the first protocol layer, and sends a fifth indication information to the second protocol layer by the second DU.
  • the activation/deactivation state of the at least one first secondary cell of the first terminal device enables the first terminal device to use the activated secondary cell for data transmission after receiving the fifth indication information. Therefore, the purpose of configuring carrier aggregation for the terminal device under the CU-DU architecture is achieved, which is beneficial to improving the transmission bandwidth of the terminal device.
  • the method is also applicable to a multi-connection or dual-connection scenario, thereby facilitating the improvement of the transmission bandwidth of the terminal device and the improvement of the mobile robustness.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 8 is a schematic block diagram of a network node 10 provided by an embodiment of the present application.
  • the network node 10 includes a receiver 11, a transmitter 12, and a processor 13.
  • the network node 10 also includes a memory 14.
  • the receiver 11, the transmitter 12, the processor 13 and the memory 14 communicate with each other through an internal connection path for transferring control and/or data signals, the memory 14 for storing a computer program for the processor 13
  • the computer program is called and executed in the memory 14 to control the receiver 11 to receive signals and to control the transmitter 12 to transmit signals.
  • the receiver 11 is configured to receive first configuration information from the second network node, the first configuration information including a set of serving cells configured for the terminal device,
  • the set of serving cells includes at least one secondary cell, the first configuration information further indicating a status of the secondary cell, and the state of the secondary cell is an activated state or a deactivated state, where the first configuration information is first by the second network node.
  • Protocol layer generation
  • the transmitter 12 is configured to send the first configuration information to the terminal device.
  • the transmitter 12 is further configured to send first indication information, where the first indication information includes information about a status of the at least one first secondary cell, where the first secondary cell belongs to the set of serving cells, and the first indication information is used by the first The network node is generated at the second protocol layer.
  • the processor 13 and the memory 14 described above can synthesize a processing device for executing the program code stored in the memory 14 to implement the above functions.
  • the memory 14 can also be integrated in the processor 13 or independent of the processor 13.
  • network node 10 may correspond to a first DU in communication method 500 or 600 in accordance with an embodiment of the present invention, which may include a method for performing communication method 500 of FIG. 5 or communication method 600 of FIG. A module of a method performed by a DU.
  • each module in the network node 10 and the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes of the communication method 500 in FIG. 5 or the communication method 600 in FIG. 6.
  • the description of the method embodiment of FIG. 5 and FIG. 6 is omitted here for brevity.
  • FIG. 9 is another schematic block diagram of a network node 20 provided by an embodiment of the present application.
  • the network node 10 includes a receiving module 21 and a transmitting module 22.
  • the receiving module 21 and the sending module 22 may be implemented in software or in hardware.
  • the receiving module 21 may be the receiver 11 of FIG. 8, which may be the transmitter 12 of FIG.
  • FIG. 11 is a schematic block diagram of a network node 30 in an embodiment of the present application.
  • the network node 30 includes a transceiver 31 and a processor 32.
  • the network node 30 also includes a memory 33.
  • the receiver 31, the transmitter 32, the processor 33 and the memory 34 communicate with each other through an internal connection path for transmitting control and/or data signals, the memory 34 for storing a computer program, the processor 33 for The computer program is called and executed in the memory 34 to control the receiver 31 to receive signals and control the transmitter 32 to transmit signals.
  • the transmitter 32 is configured to send first configuration information to the first network node, the first configuration information including a set of serving cells configured for the terminal device, the serving cell
  • the set includes at least one secondary cell, where the first configuration information further indicates a status of the secondary cell, and the status of the secondary cell includes an activated state or a deactivated state, where the first configuration information is generated by the second network node in the first protocol layer.
  • the transmitter 32 is further configured to send second configuration information to the first network node, where the second configuration information includes secondary cell identity information of the set of serving cells configured by the second network node for the terminal device. And secondary cell index.
  • the processor 33 and the memory 34 described above can be combined with a processing device for executing the program code stored in the memory 34 to implement the above functions.
  • the memory 34 can also be integrated in the processor 33 or independently of the processor 33.
  • network node 30 may correspond to a CU in communication method 500 or 600 in accordance with an embodiment of the present invention, which may include CU execution for performing communication method 500 of FIG. 5 or communication method 600 of FIG.
  • the module of the method may include CU execution for performing communication method 500 of FIG. 5 or communication method 600 of FIG.
  • each module in the network node 30 and the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes of the communication method 500 in FIG. 5 or the communication method 600 in FIG. 6.
  • the description of the method embodiment of FIG. 5 and FIG. 6 is omitted here for brevity.
  • FIG. 11 is another schematic block diagram of a network node 40 in the embodiment of the present application. As shown in FIG. 11, the network node 40 includes a transmitting module 41.
  • the sending module 41 can be a software implementation or a hardware implementation. In the case of a hardware implementation, the transmitting module 41 may be the transmitter 31 of FIG.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • FIG. 12 is a schematic block diagram of a radio access network system 50 according to an embodiment of the present application.
  • the radio access network system 50 includes a first network node and a second network node.
  • the first network node may be the network node 10 shown in FIG. 8, and the second network node may be the network node 30 shown in FIG. 10; or, the first network node may be as shown in FIG. Network node 20, which may be the network node 40 shown in FIG.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded or executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、网络节点和无线接入网系统。该方法应用于包括第一网络节点和第二网络节点的无线接入网系统中,该第一网络节点与第二网络节点通过第一通信接口通信,该方法包括:该第一网络节点接收来自于该第二网络节点的第一配置信息,该第一配置信息包含为终端设备配置的服务小区集合,该第一配置信息还指示该辅小区的状态,该第一配置信息由该第二网络节点在第一协议层生成;该第一网络节点向该终端设备发送该第一配置信息;该第一网络节点向该终端设备发送第一指示信息,该第一指示信息包含至少一个辅小区的状态的信息,该辅小区属于该服务小区集合,该第一指示信息由该第一网络节点在第二协议层生成。

Description

通信方法、网络节点和无线接入网系统
本申请要求于2017年6月16日提交中国专利局、申请号为201710459213.4、发明名称为“通信方法、网络节点和无线接入网系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信方法、网络节点和无线接入网系统。
背景技术
为了更大的提高传输带宽,先进的长期演进(Long Term Evolution-Advanced,LTE-A)中引入了载波汇聚(carrier aggregation,CA)技术。载波聚合主要是将多个载波单元(component carrier,CC,或者称,成员载波、组成载波等)汇聚成一个具有较大带宽的载波,以支持高速数据传输。当前技术中,基站可以进行载波聚合的配置并确定辅小区的激活/去激活状态,并通过信令的方式通知终端设备。
然而,随着第五代(fifth generation,5G)通信网络的发展,网络架构发生了变化,例如,引入了集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)相分离的概念,也就是将无线接入网设备(例如,基站)分为CU和DU两部分。在CU和DU部署不同的协议层,例如,在CU部署无线资源控制(radio resource control,RRC)层,在DU部署媒体接入控制(media access control,MAC)层、物理(physical,PHY)层等。又例如,在5G网络中,新型的中继节点也有新的技术进展,例如,中继节点仅部署有层2(例如,包括无线链路控制(resource link control,RLC)层、MAC层等)和层1(例如,包括PHY层)的协议栈架构,而未部署层2以上的协议栈,例如RRC层。因此,宿主基站产生的数据或信令,需要由中继节点转发给终端设备。
在新的网络架构下,原有的载波聚合配置方法不再适用,如何在这种新的网络架构下为终端设备配置载波聚合成为了亟待解决的技术问题。
发明内容
本申请提供一种通信方法、网络节点和无线接入网系统,能够在新的网络架构下为终端设备配置载波聚合。
第一方面,提供了一种通信方法,所述方法应用于包括第一网络节点、第二网络节点的无线接入网系统中,所述第一网络节点与所述第二网络节点通过第一通信接口通信,所述方法包括:
所述第一网络节点接收来自于所述第二网络节点的第一配置信息,所述第一配置信息包含为终端设备配置的服务小区集合,所述服务小区集合包含至少一个辅小区,所述第一配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态,所述第 一配置信息由所述第二网络节点在第一协议层生成;
所述第一网络节点向所述终端设备发送所述第一配置信息;
所述第一网络节点向所述终端设备发送第一指示信息,所述第一指示信息包含至少一个第一辅小区的状态的信息,所述至少一个第一辅小区属于所述服务小区集合,所述第一指示信息由所述第一网络节点在第二协议层生成。
其中,第一指示信息中包含的至少一个第一辅小区可以为第一配置信息中的服务小区集合的子集,也可以为服务小区集合中的全部辅小区。本申请对此并未特别限定。
一种可能的设计中,该第一指示信息中可以包含服务小区集合中的全部辅小区,并指示各辅小区的状态;另一种可能的设计中,该第一指示信息中可以包含服务小区集合中的部分辅小区,并指示该部分辅小区中各辅小区的状态;再一种可能的设计中,该第一指示信息可以包含服务小区集合中的部分辅小区,该部分辅小区是由第一网络节点或第二网络节点确定的被置为激活状态的辅小区,或者,被置为去激活状态的辅小区。
因此,本申请实施例通过第二网络节点在第一协议层生成并经由第一网络节点向终端设备指示服务小区集合的第一配置信息;并由第一网络节点在第二协议层生成发送第一指示信息通知终端设备被置为激活/去激活状态的至少一个第一辅小区,使终端设备在接收到该第一指示信息后,更新该至少一个第一辅小区的状态,进而使用激活的辅小区进行数据传输。从而实现了在新的网络架构下为终端设备配置载波聚合的目的,有利于提高终端设备的传输带宽。
在本申请实施例中,从服务小区集合中确定至少一个第一辅小区的动作可以由第一网络节点来执行,也可以由第二网络节点来执行。
若由第二网络节点来确定该至少一个第一辅小区的状态,则可选地,该方法还包括:
所述第一网络节点接收所述第二网络节点发送的第二指示信息,所述第二指示信息包含:所述至少一个第一辅小区,或者,所述至少一个第一辅小区及其状态。
也就是由第二网络节点确定了上述至少一个第一辅小区后,通过发送第二指示信息通知第一网络节点,该第一网络节点根据该第二指示信息生成上述第一指示信息,以通知终端设备该至少一个第一辅小区的激活/去激活状态。
若由第一网络节点来确定该至少一个第一辅小区的状态,则可选地,该方法还包括:
所述第一网络节点根据测量结果,从所述服务小区集合中确定所述至少一个第一辅小区的状态,其中,所述测量结果包括以下至少一项:
来自所述终端设备的第一协议层的第一测量结果;
来自所述终端设备的第三协议层的第二测量结果;以及
所述第一网络节点基于所述终端设备发送的信号测量得到的上行信道的第三测量结果。
由第一网络节点从服务小区集合中确定至少一个第一辅小区的状态,可以直接根据确定的结果生成第一指示信息,比较简单方便。
根据测量结果来确定至少一个第一辅小区的状态是一种可能的实现方式,但应理解,这仅为本申请提供的一种可能的实现方式,而不应对本申请构成任何限定。
还应理解,上述列举的测量结果仅为示例性说明,不应对本申请构成任何限定。
在本申请中,可以将不同的协议层分别部署在第一网络节点和第二网络节点中,一种 可能的实现方式是,在第二网络节点中至少部署第一协议层,在第一网络节点中至少部署第二协议层和第三协议层,
例如,第一协议层可以为无线资源控制(radio resource control,RRC)层,第二协议层可以为媒体接入控制(media access control,MAC)层,第三协议层可以为物理(physical,PHY)层。
应理解,上述对第一协议层、第二协议层和第三协议层的列举仅为示例性说明,不应对本申请构成任何限定。该第一协议层和第二协议层也可以为现有协议(例如,LTE协议)或者未来协议中定义的其他协议层,本申请对此并未特别限定。
可选地,当第一网络节点接收到来自终端设备的第一协议层的第一测量报告时,可以通过执行以下步骤来获取第一测量结果:
所述第一网络节点将所述终端设备上报的所述第一测量报告发送给所述第二网络节点;
所述第二网络节点根据所述第一测量报告,生成所述第一测量结果;
所述第一网络节点接收所述第二网络节点发送的第一测量结果。
第一网络节点可以根据上述至少一项测量结果确定至少一个第一辅小区的状态,从而可以提高判决的准确性。
并且,可选地,所述第一指示信息由所述第一网络节点基于第二协议层生成。
例如,该第一指示信息可以承载于MAC控制元素(control element,CE)中。
因此,第一网络节点通过MAC层消息向终端设备发送第一指示信息,以指示辅小区的激活/去激活状态,能够增强配置生效的实时性。
在本发明实施例中,服务小区集合可以由第一网络节点确定,也可以由第二网络节点确定。
若该服务小区集合由第二网络节点确定,则可选地,所述方法还包括:
所述第一网络节点接收来自所述第二网络节点的第二配置信息,所述第二配置信息包含所述第二网络节点为所述终端设备配置的所述服务小区集合的辅小区标识信息和辅小区索引。
可选地,所述第二配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态。
若该服务小区集合由第一网络节点确定,则可选地,所述方法还包括:
所述第一网络节点向所述第二网络节点发送第三配置信息,所述第三配置信息用于指示所述第二网络节点为所述终端设备配置的所述服务小区集合,所述第三配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态。
可选地,所述方法还包括:
所述第一网络节点根据测量结果,确定所述服务小区集合。
其中,测量结果的具体内容在上文中已经详细说明,为了避免重复,这里不再赘述。
可选地,所述方法还包括:
所述第一网络节点向所述第二网络节点发送第三指示信息,所述第三指示信息用于通知所述第二网络节点所述第一指示信息中的所述至少一个第一辅小区及其状态。
也就是说,第一网络节点在为终端设备确定了至少一个第一辅小区的状态后,可以通 知第二网络节点,以便于第二网络节点维护该终端设备的辅小区的激活/去激活状态。
可选地,所述第二配置信息和所述第二指示信息承载于同一消息中。
可选地,所述第二配置信息、所述第二指示信息和所述第三指示信息均由所述第二网络节点基于所述第一通信接口所支持的协议生成。
在本申请中,该第一通信接口可以为F1接口,上述列举的各信息可以分别承载于F1接口控制面(记作F1CP)消息中,进一步地,该F1接口控制面消息为F1AP消息;或者,也可以分别承载于F1接口用户面(记作F1UP)消息中。
其中,可选地,F1接口控制面消息承载在基于SCTP的传输层协议上,F1用户面消息承载在基于GTP-U的传输层协议上。
在本申请中,第二网络节点可以通过RRC消息向终端设备指示服务小区集合,该RRC消息中承载的第一配置信息记录了辅小区标识信息、辅小区索引与辅小区的频率信息的一一映射关系,以便于终端设备保存该一一映射关系;第一网络节点可以通过MAC CE向终端设备指示该服务小区集合中至少一个第一辅小区的状态,该MAC CE中承载的第一指示信息携带了辅小区索引和辅小区状态信息,以便于终端设备根据预先保存的辅小区标识信息、辅小区索引与辅小区的频率信息的一一映射关系,在对应的频点上找到对应的辅小区。一方面,第二网络节点通过RRC消息预先通知辅小区标识信息、辅小区索引与辅小区的频率信息的一一映射关系,然后第一网络节点在MAC CE中通过辅小区索引来指示被置为激活状态的辅小区,能够减小MAC CE中第一指示信息的开销;另一方面,通过MAC CE来通知终端设备至少一个第一辅小区的状态,能够增加配置生效的实时性,换句话说,可以实时地根据当前网络状态为终端设备配置辅小区,因此,进一步有利于提高终端设备的传输带宽。
第二方面,提供了一种通信方法,包括第一网络节点和第二网络节点的无线接入网系统中,所述第一网络节点与所述第二网络节点通过第一通信接口通信,所述方法包括:所述第二网络节点向所述第一网络节点发送第一配置信息,所述第一配置信息包含为终端设备配置的服务小区集合,所述服务小区集合包含至少一个辅小区,所述第一配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态,所述第一配置信息由所述第二网络节点在第一协议层生成;
所述第二网络节点向所述第一网络节点发送第二配置信息,所述第二配置信息包含所述第二网络节点为所述终端设备配置的所述服务小区集合的辅小区标识信息和辅小区索引。其中,第一指示信息中包含的至少一个第一辅小区可以为第一配置信息中的服务小区集合的子集,也可以为服务小区集合中的全部辅小区。本申请对此并未特别限定。
一种可能的设计中,该第一指示信息中可以包含服务小区集合中的全部辅小区,并指示各辅小区的状态;另一种可能的设计中,该第一指示信息中可以包含服务小区集合中的部分辅小区,并指示该部分辅小区中各辅小区的状态;再一种可能的设计中,该第一指示信息可以包含服务小区集合中的部分辅小区,该部分辅小区是由第一网络节点或第二网络节点确定的被置为激活状态的辅小区,或者,被置为去激活状态的辅小区。
因此,本申请实施例通过第二网络节点在第一协议层生成并经由第一网络节点向终端设备指示服务小区集合的第一配置信息;并由第一网络节点在第二协议层生成并发送第一指示信息通知终端设备被置为激活/去激活状态的至少一个第一辅小区,使终端设备在接 收到该第一指示信息后,更新该至少一个第一辅小区的状态,进而使用激活的辅小区进行数据传输。从而实现了在新的网络架构下为终端设备配置载波聚合的目的,有利于提高终端设备的传输带宽在本申请实施例中,从服务小区集合中确定至少一个第一辅小区的动作可以由第一网络节点来执行,也可以由第二网络节点来执行。
可选地,所述第二配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态。
在本实施例中,第二网络节点确定该至少一个第一辅小区的状态,可选地,所述方法还包括:
所述第二网络节点根据测量结果,从所述服务小区集合中确定所述至少一个第一辅小区的状态。
可选地,所述测量结果包括以下至少一项:
来自所述终端设备的第一协议层的第一测量结果;
来自所述终端设备的第三协议层的第二测量结果;以及
所述第一网络节点上报的、基于所述终端设备发送的信号测量得到的上行信道的第三测量结果。
根据测量结果来确定该至少一个第一辅小区的状态是一种可能的实现方式,但应理解,这仅为本申请提供的一种可能的实现方式,而不应对本申请构成任何限定。
还应理解,上述列举的测量结果仅为示例性说明,不应对本申请构成任何限定。
在本申请中,可以将不同的协议层分别部署在第一网络节点和第二网络节点中,一种可能的实现方式是,在第二网络节点中至少部署第一协议层,在第一网络节点中至少部署第二协议层和第三协议层,
例如,第一协议层可以为无线资源控制(radio resource control,RRC)层,第二协议层可以为媒体接入控制(media access control,MAC)层,第三协议层可以为物理(physical,PHY)层。
应理解,上述对第一协议层、第二协议层和第三协议层的列举仅为示例性说明,不应对本申请构成任何限定。该第一协议层和第二协议层也可以为现有协议(例如,LTE协议)或者未来协议中定义的其他协议层,本申请对此并未特别限定。
可选地,第二网络节点可以通过执行以下步骤来获取来自终端设备的第三协议层的第二测量结果:
所述第二网络节点接收所述第一网络节点发送的第二测量结果,所述第二测量结果由所述第一网络节点对所述终端设备上报的第二协议层的测量报告确定。
第二网络节点可以根据上述至少一项测量结果确定被置为激活状态的辅小区,从而可以提高判决的准确性。
在本发明实施例中,服务小区集合可以由第一网络节点确定,也可以由第二网络节点确定。
若该服务小区集合由第二网络节点确定,则可选地,所述方法还包括:
所述第二网络节点向所述第一网络节点发送第二配置信息,并通过所述第二配置信息获知所述第二网络节点为所述终端设备配置的所述服务小区集合,所述第二配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态。
可选地,所述方法还包括:
所述第二网络节点根据测量结果,确定所述服务小区集合。
其中,测量结果的具体内容在上文中已经详细说明,为了避免重复,这里不再赘述。
若该服务小区集合由第一网络节点确定,则可选地,所述方法还包括:
所述第二网络节点接收所述第一网络节点发送的第三配置信息,所述第三配置信息用于指示所述第二网络节点为所述终端设备配置的所述服务小区集合,所述第三配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态。
可选地,所述方法还包括:
所述第二网络节点接收所述第一网络节点发送的第三指示信息,所述第三指示信息用于通知所述第二网络节点所述所述第一指示信息中的所述至少一个第一辅小区及其状态。
也就是说,第一网络节点在向终端设备通知了至少一个第一辅小区的状态后,可以通知第二网络节点,以便于第二网络节点维护该终端设备的辅小区的激活/去激活状态。
可选地,所述第二配置信息和所述第二指示信息承载于同一消息中。
可选地,所述第二配置信息、所述第二指示信息和所述第三指示信息均由所述CU基于所述第一通信接口所支持的协议生成。
在本申请中,该第一通信接口可以为F1接口,上述列举的各信息可以分别承载于F1接口控制面(记作F1CP)消息中,进一步地,该F1接口控制面消息为F1AP消息;或者,也可以分别承载于F1接口用户面(记作F1UP)消息中。
其中,可选地,F1接口控制面消息承载在基于SCTP的传输层协议上,F1用户面消息承载在基于GTP-U的传输层协议上。
在本申请中,第二网络节点可以通过RRC消息向终端设备指示服务小区集合,该RRC消息中承载的第一配置信息记录了辅小区标识信息、辅小区索引与辅小区的频率信息的一一映射关系,以便于终端设备保存该一一映射关系;第一网络节点可以通过MAC CE向终端设备指示该服务小区集合中至少一个第一辅小区的状态,该MAC CE中承载的第一指示信息携带了辅小区索引,以便于终端设备根据预先保存的辅小区标识信息、辅小区索引与辅小区的频率信息的一一映射关系,在对应的频点上找到对应的辅小区。一方面,第二网络节点通过RRC消息预先通知辅小区标识信息、辅小区索引与辅小区的频率信息的一一映射关系,然后第一网络节点在MAC CE中通过辅小区索引来指示被置为激活状态的辅小区,能够减小MAC CE中第一指示信息的开销;另一方面,通过MAC CE来通知终端设备至少一个第一辅小区的状态,能够增加配置生效的实时性,换句话说,可以实时地根据当前网络状态为终端设备配置辅小区,因此,进一步有利于提高终端设备的传输带宽。
第三方面,提供了一种网络节点,所述网络节点包括接收模块和发送模块,以执行第一方面或第一方面任一种可能实现方式中的通信方法。所述发送单元用于执行与发送相关的功能,所述接收单元用于执行与接收相关的功能。
第四方面,提供了一种网络节点,所述网络节点包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络节点执行第一方面或第一方面任一种可能实现方式中的方法。
在一种设计中,所述网络节点为通信芯片,所述发送单元可以为所述通信芯片的输入电路或者接口,所述发送单元可以为所述通信芯片的输出电路或者接口。
第五方面,提供了一种网络节点,所述网络节点包括接收模块和发送模块,以用于执行第二方面或第二方面任一种可能实现方式中的通信方法。所述发送单元用于执行与发送相关的功能,所述接收单元用于执行与接收相关的功能。
第六方面,提供了一种网络节点,所述网络节点包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络节点执行第二方面或第二方面任一种可能实现方式中的方法。
在一种设计中,所述网络节点为通信芯片,所述发送单元可以为所述通信芯片的输入电路或者接口,所述发送单元可以为所述通信芯片的输出电路或者接口。
第七方面,提供了一种无线接入网系统,包括第三方面或第四方面所述的网络节点,以及第五方面或第六方面所述的网络节点。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,所述计算机程序代码被网络设备运行时,使得所述网络节点执行上述第一方面或第一方面任一种可能实现方式中的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,所述计算机程序代码被网络设备运行时,使得所述网络节点执行上述第二方面或第二方面任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,所述程序代码包括用于执行第一方面或第一方面任一种可能实现方式中的方法的指令。
第十一方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,所述程序代码包括用于执行第二方面或第二方面任一种可能实现方式中的方法的指令。
在某些可能的实现方式中,所述第二网络节点中至少部署有第一协议层,所述第一网络节点中至少部署有第二协议层和第三协议层;其中,所述第一协议层至少可以用于无线资源管理,所述第二协议层至少可以用于控制和管理数据在介质中的传输,所述第三协议层至少可以用于为数据传输提供物理资源。
在某些可能的实现方式中,第二网络节点中部署有RRC层和PDCP层,第一网络节点中部署有RLC层、MAC层和PHY层。
应理解,上述列举的为第一网络节点和第二网络节点部署的协议层均为示例性说明,而不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他的协议层来代替现有协议(例如,LTE协议)中的协议层,以实现其相同或相似功能的可能。
应理解,以上列举的对第一网络节点和第二网络节点中协议栈结构仅为示例性说明,而不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他的协议层来替代现有协议(例如,LTE协议)中的协议层,以实现其相同或相似的功能的可能,同时也不排除在未来的协议中定义更多或者更少的协议层来替代现有协议中的协议层的可能。
在某些可能的实现方式中,测量报告包括以下至少一种:
参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信噪比(signal-noise ratio,SNR)、信号与 干扰加噪声比(signal to interference plus noise ratio,SINR)、信道状态信息(channel state information,CSI)、信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)和秩指示(rank indication,RI)。
可选地,上述测量报告可以为小区(cell)级别的,也可以为波束(beam)级别的。
在某些可能的实现方式中,第二配置信息指示候选辅小区集合。
作为示例而非限定,第二配置信息包括以下至少一项:
终端设备的标识信息、主小区标识信息、辅小区标识信息、辅小区索引以及辅小区的频率信息。
其中,作为示例而非限定,终端设备的标识信息包括以下任意一种:C-RNTI或UE ID;主小区标识信息包括以下任意一种:无线接入网小区全局标识符和物理小区标识(physical cell identifier,PCI);辅小区标识信息包括以下至少一项:无线接入网小区全局标识符或PCI。
在某些可能的实现方式中,该第二配置信息还包括协议栈的相关配置信息。
在某些可能的实现方式中,第一配置信息指示候选辅小区集合。
作为示例而非限定,该第一配置信息包括以下至少一项:辅小区标识信息、辅小区索引以及辅小区的频率信息。其中,辅小区标识信息包括以下至少一项:无线接入网小区全局标识符或PCI。
本申请通过第二网络节点在第一协议层生成并经由第一网络节点向终端设备发送服务小区集合的第一配置信息,并有第一网络节点在第二协议层发送第一指示信息通知终端设备被置为激活/去激活状态的至少一个第一辅小区,以便于终端设备载波聚合。因此,能够实现在新的网络架构下为终端设备配置载波聚合,有利于为终端设备提供更大的传输带宽。
附图说明
图1是LTE中协议栈结构的示意图;
图2是适用于本申请实施例的通信方法的通信系统的示意图;
图3是对协议栈结构进行切分的示意图;
图4是本申请提供的一种可能的网络设备的协议栈的结构示意图;
图5是本申请一实施例提供的通信方法的示意性流程图;
图6是本申请另一实施例提供的通信方法的示意性流程图;
图7是本申请又一实施例提供的通信方法的示意性流程图
图8是本申请实施例提供的网络节点的示意性框图。
图9是本申请实施例提供的网络节点的另一示意性框图;
图10是本申请实施例提供的网络节点的示意性框图;
图11是本申请实施例提供的网络节点的另一示意性框图;
图12是本申请实施例提供的无线接入网系统的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于理解本申请,首先结合图1简单说明LTE中的协议栈结构。图1是LTE中协议栈的结构示意图。如图所示,在当前的LTE的协议栈结构中,可以包括5个协议层,自上而下分别为RRC层、PDCP层、RLC层、MAC层和PHY层。在发送端设备的任意一个协议层(例如,记作协议层A,可以理解,协议层A可以为RRC层、PDCP层、RLC层、MAC层和PHY层中任意一个协议层)生成的信令都需要经过其下层的协议层的处理,最终通过物理信道发送给接收端设备。相对应地,接收端设备在物理信道上接收到的信令也需要通过PHY层其上层的协议层的处理,一直到协议层A,才可以获取该信令中的信息,如图中曲线所示。
然而,在5G网络中协议层的划分仍然在讨论中,可能对图1所示的协议栈进行改进,例如合并其中的多个协议层,或者是增加新的协议层;并且,对原接入网中的基站的功能进行了拆分,因此,无法沿用现有的载波聚合的配置方法来为终端设备配置辅小区。
有鉴于此,本申请提供一种通信方法,能够基于5G中的新型的网络架构,为终端设备配置载波聚合。
为便于理解本申请的通信方法,下面结合图2详细说明适用于本申请实施例的通信方法的通信系统。图2是适用于本申请实施例的通信方法的通信系统200的示意图。
如图2所示,该通信系统200包括接入网系统210和终端设备220。其中,在5G系统中,该接入网系统210可以采用CU-DU的架构。具体地说,该接入网系统210可以包括至少一个CU 211和至少一个DU 212,该至少一个DU 212可以连接至同一个CU 211。CU 211和DU 212之间配置有通信接口(为便于区分和说明,可以记作第一通信接口),CU 211和DU 212可以通过该第一通信接口通信;DU 212可以通过空口与终端设备220通信。
其中,CU可以集中式地布放,布放可取决实际网络环境,在核心城区,话务密度较高,站间距较小,机房资源受限的区域,例如高校,大型演出场馆等区域,DU也可以集中式布放;而话务较稀疏,站间距较大等区域,例如郊县,山区等区域,DU可以采取分布式的布放方式。本申请对此并未特别限定。
图2中的接入网系统210的功能可以与LTE中的基站的功能相似。具体地,LTE中的基站的部分功能可以部署在CU 211,剩余功能可以部署在DU 212。然而,CU 211和DU 212的功能并不仅限于LTE中的基站所具有的功能,随着5G网络的演进,基站的功能也有可能发生变化,例如,新增其他的网络功能,或者对现有的某些功能进行了改进,甚至可能去除了一些不必要的功能等等,本申请对此并未特别限定。
应理解,上述列举的CU和DU的功能划分仅为示例性说明,而不应对本申请构成任何限定。例如,CU也可以涵盖无线接入网高层协议栈以及核心网的一部分功能,而DU可以涵盖PHY层以及MAC层的部分功能。
还应理解,图2仅为便于理解而示例的简化示意图,该通信系统200中还可以包括其他网络设备和/或终端设备,图2中未予以画出。再回到图1所示的协议栈结构中,CU可用于负责集中式无线资源和连接管理控制,或者更具体地说,用于处理无线高层协议栈的功能,例如,RRC层、PDCP层等;DU主要可用于处理PHY层功能和实时性需求较高的功能,或者更具体地说,用于处理较低层协议栈的功能,例如,RLC层、MAC层、PHY层等。
结合图1的协议栈结构,可以将各协议层进行切分。
图3是对协议栈结构进行切分的示意图。如图3所示,CU-DU架构的协议层可包括:RRC、PDCP、RLC高层部分、RLC低层部分、MAC高层部分、MAC低层部分、PHY层高层部分以及PHY层低层部分其中,分别对RLC层、MAC层、PHY层进行了切分,将协议层中实时性要求低的放在该协议层的高层部分,将该协议层中实时性要求高的功能放在该协议层的低层部分。
CU-DU功能的切分存在多种可能,例如,可以包括以下七种切分方式:
切分方式一:在RRC层和PDCP层之间进行切分,即,将RRC层部署在CU,PDCP层以及PDCP层以下的各协议层部署在DU;
切分方式二:在PDCP层与RLC层之间进行切分,即,将RRC层和PDCP层部署在CU,RLC高层部分以及RLC高层部分以下的各协议层部署在DU;
切分方式三:将RLC层分为两部分,实时性要求低的功能放在RLC层的高层部分,实时性要求高的功能放在RLC层的低层部分,在RLC层的高层部分和RLC层的低层部分之间进行切分,即,将RLC层的高层部分以及RLC层以上的各协议层部署在CU,将RLC层的低层部分以及RLC层以下的各协议层部署在DU;
切分方式四:在RLC层与MAC层之间进行切分,即,将RLC层以及RLC层以上的各协议层部署在CU,将MAC层以及MAC以下的各协议层部署在DU;
切分方式五:将MAC层分为两部分,实时性要求低的功能放在MAC层的高层部分,实时性要求高的功能放在MAC层的低层部分,在MAC层的高层部分和MAC层的低层部分之间进行切分,即,将MAC层的高层部分以及MAC层以上的各协议层部署在CU,将MAC层的低层部分以及MAC层以下的各协议层部署在DU;
切分方式六:在MAC层和PHY层之间进行切分,即,将MAC层以及MAC层以上的各协议层部署在CU,将PHY层和RF部署在DU;
切分方式七:将PHY层分为两部分,实时性要求低的功能放在PHY层的高层部分,实时性要求高的功能放在PHY层的低层部分,在PHY层的高层部分和PHY层的低层部分之间进行切分,即,将PHY层的高层部分以及PHY层以上的各协议层部署在CU,将PHY层的低层部分以及PHY层和RF部署在DU。
另外,进一步可以将射频(Radio Frequency,RF)与上述协议层之间进行切分,即,还可以包括切分方式八:在PHY层的低层部分和RF之间切分,即,将PHY层以及PHY层以上的各协议层部署在CU,将RF部署在DU。也就是在DU中仅部署了发射天线,各协议层均部署在CU。
图4是本申请提供的一种可能的网络设备的协议栈的结构示意图。如图4所示,一种可能的协议栈结构是:将RRC层和PDCP层部署在CU,将RLC层、MAC层和PHY层部署在DU。同时,未来移动通信系统可能引入新的协议层用以执行新的功能,例如QoS管理或用户数据的汇聚和标识等功能,以SDAP(Service Data Adaptation Protocol,业务数据自适应协议)层为例,新的协议层可以部署在PDCP层之上,部署在CU上。需要说明的是,在该协议栈结构中,DU上也可以部署新增协议层,例如在RLC层之上部署新协议层,或者在RLC层与MAC之间部署新协议层,本申请对此并未特别限定。上述新增协议层可以为用户面协议层,即仅用于处理数据。或者,上述新增协议层可以为控制面协议层,即 用于处理信令,例如RRC消息。或者,上述新增协议层既用于控制面也用于数据面,即用于信令和数据的处理,本申请对此并未特别限定。
以图4所示的协议栈结构为例,分别说明CU和DU对上行和下行的RRC消息或者数据的处理过程。
对于下行的RRC消息或数据:CU生成RRC消息或数据,并通过PDCP层处理,得到PDCP协议数据单元(protocol data unit,PDU)(也就是RLC服务数据单元(service data unit,SDU))。CU将PDCP PDU通过CU和DU之间的通信接口(例如,F1通信接口,即,第一通信接口的一例)传输到DU。DU进一步通过RLC层、MAC层和PHY层的相应处理,最后通过RF发送到无线信道中传输。
对于上行的RRC消息或数据:DU通过射频装置接收到数据包后,依次经过PHY层、MAC层、RLC层的处理后,将RLC SDU(也就是PDCP PDU)通过CU-DU之间的F1接口传输到CU,CU进一步通过PDCP层的处理得到RRC消息或数据,并发送给RRC层(对于RRC消息)或应用层(对于数据)。
需要说明的是,F1通信接口上包含控制面(control plane,CP)和用户面(user plane,UP)。控制面的传输层协议可以为流控制传输协议(streaming control transmission protocol,SCTP),用户面的传输层协议为用户层面的GPRS(General Packet Radio Service,通用分组无线业务)隧道协议(GPRS Tunneling Protocol for the Userplane,GTP-U),传输层的上层(即,应用层)的信令协议可以为F1应用层协议(F1application protocol,F1AP)。
在后文中的实施例中,为便于说明,将结合图4所示例的CU-DU的协议栈结构详细说明本申请实施例,但应理解,该协议栈结构仅为示例性说明,不应对本申请构成任何限定。
还应理解,上文中结合图3和图4所列举的CU和DU的功能划分以及协议层的结构仅为示例性说明,而不应对本申请构成任何限定。随着通信技术的演进,网络设备的协议层功能、命名方式以及消息内容和名称可能会与LTE协议中的定义不同,例如,LTE中的RLC层重排序功能可能上移到PDCP层,又例如,LTE中的RRC消息可能会更换为其它名称,本申请对为CU、DU所部署的协议层、协议层功能、协议层命名、协议层消息名称不作限定。
还应理解,本申请仅以CU-DU架构作为5G新型网络架构的一种可能的示例,本申请的技术方案同样适用于采用其它网络架构的无线接入网系统,该无线接入网系统包括第一网络节点和第二网络节点,其中,第一网络节点至少具备第一协议层,第二网络节点未部署第一协议层,且至少部署有第二协议层。第一协议层可以为:例如RRC层,RRC层的部分功能,PDCP层,PDCP的部分功能,SDAP层,SDAP层的部分功能,RLC层,RLC层的部分功能,自适应层(例如具有QoS管理,用户数据的汇聚和识别等管理功能的协议层),自适应层的部分功能等。第二协议层可以为:例如物理层,物理层的部分功能,MAC层,MAC层的部分功能,RLC层,RLC层的部分功能,自适应层,自适应层的部分功能等。还应理解,F1接口仅为第一接口的一个示例。第一接口可以为有线接口,也可以为无线接口,例如宿主基站与中继站之间或者两个中继站之间的无线传输接口等。
还应理解,本申请的技术方案可以应用于各种通信系统,例如:全球移动通信(Global System for Mobile communications,GSM)系统、码分多址(Code Division Multiple Acces, CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(LTE)系统、先进的长期演进(LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或下一代通信系统(例如,5G系统)等。其中,5G系统也可以称为新一代无线接入技术(new radio access technology,NR)系统。
另外,本申请结合无线接入网系统和终端设备来描述了本申请实施例的通信方法。
其中,无线接入网系统(即,节点(Node))可以包括接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。接入网系统可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。无线接入网系统还可协调对空中接口的属性管理。
应理解,本申请中的无线接入网系统可以包括GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以包括WCDMA系统中的基站(NodeB),还可以包括LTE系统中的演进型基站(evolved Node B,eNodeB或eNB或e-NodeB),或者中继站、接入点或射频拉远单元(Remote Radio Unit,RRU),或者车载设备、可穿戴设备以及5G系统和未来无线通信系统中的无线接入网(radio access network,RAN)设备,例如,基站、gNB、NR Node、NR BS、New RAN Node或者New RAN BS,或者,还可以为传输点(transmission point,TP)、发送接收点(transmission reception point,TRP)、中继站等,本申请对此并未特别限定。
应理解,本申请中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(wireless local area networks,WLAN)中的站点(station,ST),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等,本发明实施例对此并未特别限定。
上文中结合附图详细说明了本申请实施例的通信方法所适用的通信系统的架构,下面将结合附图详细说明本申请实施例的通信方法。
图5至图7分别从设备交互的角度示出了本申请实施例的通信方法的示意性流程图。应理解,该方法可以应用于无线通信系统,以下仅为便于理解,以图2示出的CU-DU架构的通信系统为例详细说明本发明实施例。该通信系统可以包括一个第二网络节点(例如,CU)、至少一个第一网络节点(例如,包括后文示例的第一DU、第二DU和第三DU)和至少一个终端设备(例如,包括后文示例的第一终端设备)。第一网络节点与第二网络节点可以通过第一通信接口通信,第一网络节点与终端设备可以通过空口通信。该通信系统可以为例如图2中所示的通信系统200,该第一网络节点和第二网络节点可以分别对应于图2中所示的DU 212和CU 211,该终端设备可以对应于图2中所示的终端设备220。
在下面所描述的实施例中,不失一般性,以该通信系统中的第一终端设备(即,终端 设备的一例)为例,详细说明CU-DU架构下为该第一终端设备配置载波聚合的具体过程。其中,该第一终端设备可以为图2中所示的通信系统200中至少一个终端设备中的任意一个终端设备,该第一终端设备所连接的主小区(primary cell,PCell)所在的DU为第一DU(即,DU的一例)。为了为该第一终端设备提供更大的传输带宽,CU和第一DU为该第一终端设备配置一个或多个辅小区(secondary cell,SCell),即,为该第一终端设备配置载波聚合。
应理解,载波聚合是终端设备特定的,不同终端设备可以配置不同的载波单元(CC),每个载波单元可以对应于一个独立的小区。例如,主小区对应主载波单元(或者称,主载波),辅小区对应辅载波单元(或者称,辅载波),主小区和辅小区组成了该终端设备的服务小区(serving cell)集合。换句话说,服务小区集合包括至少一个主小区和至少一个辅小区。
在本申请中,为便于理解,可以沿用LTE中的定义,当终端设备被配置载波聚合时,终端设备只与网络有一个RRC连接,在RRC连接建立/重建立/切换时,提供非接入层(Non Access Stratum,NAS)移动信息(例如跟踪区标识),以及在RRC连接重建立/切换时,提供安全输入的服务小区为主小区。主小区通过与终端设备之间进行RRC消息的通信,提供安全相关的参数并配置物理上行控制信道(physical uplink control channel,PUCCH)资源;辅小区可以是在RRC重配置时添加的,用于提供额外的无线资源的小区。因此,主小区可以在连接建立时确定,或在切换时由目标基站通过切换命令指定,辅小区在初始安全激活流程之后,通过RRC连接重配置(RRC Connection Reconfiguration)消息添加、修改或删除。这种场景下,CU和主小区所在的DU(为便于区分和说明,记作第一DU)可以为第一终端设备配置载波聚合。下文中结合图5和图6详细说明了这种场景下为该第一终端设备配置载波聚合的具体过程。
在另一种可能的场景中,终端设备通过双连接(dual connectivity,DC)或多连接技术与多个基站系统通信。初始接入后或切换后,终端设备与第一DU建立RRC连接,确定第一DU管理的一个小区作为主小区。此后,CU或第一DU可以进一步为终端设备添加另一个DU(为便于区分和说明,记作第二DU)作为辅基站,并将第二DU管理的一个小区作为主辅小区,第二DU管理的其它一个或多个小区作为辅小区。在这种场景下,CU、主小区所在的DU(即,第一DU)和主辅小区所在的DU(即,第二DU)可以同时为第一终端设备配置载波聚合。下文中图7详细说明了这种场景下为该第一终端设备配置载波聚合的具体过程。
但应理解,上述对主小区、辅小区以及主辅小区的定义仅为示例性说明,本申请并不排除在未来的协议中对主小区、辅小区以及主辅小区的定义进行修改的可能,同时也不排除在未来协议中定义新的协议层来替代RRC层,以实现与LTE中的RRC层相同或相似的功能的可能。
还需要说明的是,由于载波聚合是终端设备特定的,对于一个终端设备(例如,记作终端设备#A)来说,它的主小区有可能是另一个终端设备(例如,记作终端设备#B)的辅小区,它的辅小区也有可能是另一个终端设备(例如,记作终端设备#C)的主小区。换句话说,主小区和辅小区都是相对于某个特定的终端设备而言的。
另外,图5至图7中所示的CU和DU(包括第一DU和第二DU)中协议栈结构的部 署可以为例如图4中所示的协议栈结构。其中,CU中至少部署有第一协议层,该第一协议层可以至少用于实现无线资源管理功能,例如,RRC层;DU中至少部署有第二协议层,该第二协议层可以至少用于实现数据在介质中传输的控制和管理功能,例如,MAC层。该第一协议层和第二协议层之间还可以配置其他协议层,例如,由下往上依次可以为RLC层、PDCP层等。其中,各协议层可以与当前协议(例如,LTE协议)中定义的协议层具有相同的功能,也可以对当前协议中各协议层的功能进行修改。例如,在本申请实施例中,CU中部署的RRC层可以实现当前协议中RRC层的功能,如,除信令无线承载(signal radio bearer,SRB)0之外的RRC功能,而SRB0对应的RRC功能可以部署在DU中。
应理解,本申请实施例仅为方便说明,以图4中所示的协议栈结构为例来说明,CU与DU中的协议栈结构的部署并不仅限于此,上文中已经对CU和DU的协议栈结构的部署作了更多的列举和说明,为了简洁,这里不再赘述。
下面首先结合图5,详细说明本申请实施例提供的通信方法500。
如图5所示,该方法500包括:
S510,第一终端设备与第一DU中的第一小区建立RRC连接。
第一终端设备在经过小区搜索取得了与小区(为便于区分和说明,记作第一小区)间的同步、并获取了该第一小区的系统信息之后,便可以发起初始接入的流程。或者,终端通过RRC连接重建立过程或切换过程接入第一小区。可以理解,该第一小区为该第一终端设备的主小区(应理解,主小区相应的载波为主载波)。该终端设备所获取的第一小区的系统信息为主小区的系统信息,该终端设备通过向该第一小区所在的DU(为便于区分和说明,记作第一DU)发送随机接入请求和RRC连接请求,请求接入该第一小区。
第一终端设备在该第一小区建立RRC连接之后,便可以获得第一DU、CU以及核心网设备可以分别为该终端设备分配的标识。作为示例而非限定,该第一DU为该第一终端设备分配小区无线网络临时标识(cell radio network temporary identity,C-RNTI),CU可以为该第一终端设备分配第一通信接口上的用户设备(user equipment,UE)标识(identity,ID),核心网设备可以为该第一终端设备分配临时移动用户标识(temporary mobile subscriber identity,TMSI)等等。也就是说,每个终端设备在不同的网络设备中具有不同的标识,但每个终端设备在不同的网络设备中的标识都可以唯一地指示一个终端设备。各网络设备为同一个终端设备分配的各标识具有一一映射关系,各网络设备中可以保存该映射关系,以便于其他网络设备根据终端设备的任意一个标识来确定终端设备。
应理解,终端设备初始接入网络的具体流程可以与现有协议(例如,LTE协议)中的接入流程相似,为了简洁,这里省略对该具体流程的详细说明。
对于初始接入流程,第一终端设备在与第一小区建立起RRC连接之后,便可以在核心网完成注册和认证,激活核心网以及空口的安全。
S520,CU为该第一终端设备配置第一服务小区集合,并向第一DU发送第一服务小区集合的配置信息(为便于区分和说明,记作第二配置信息)。
具体地,第一终端设备在与第一DU中的第一小区建立起RRC连接之后,CU可以为该第一终端设备配置第一服务小区集合。
由上文描述可知,在不考虑双连接或多连接的情况下,载波聚合可以包括同站载波聚合和跨站载波聚合。若为同站载波聚合,该第一服务小区集合可以包括该第一DU所管理 的小区中可能被配置为该第一终端设备的辅小区的集合;若为跨站(或者称,异站)载波聚合,该第一服务小区集合可以包括:该第一DU和其他DU(例如,第三DU)所管理的小区中可能被配置为该第一终端设备的辅小区的集合。
应理解,这里仅为便于区分和说明,假设第一服务小区集合中的辅小区所对应的DU包括第一DU和第三DU,事实上,第一服务小区集合中的辅小区所对应的DU可以包括更多个DU,本申请对此并未特别限定。
在本申请实施例中,CU可以通过以下至少一种方法来为第一终端设备配置第一服务小区集合:
方法一:CU根据测量结果为该第一终端设备配置第一服务小区集合。
方法二:CU盲配该第一终端设备的第一服务小区集合。
具体地,在方法一中,测量结果可以包括以下至少一种:
来自该第一终端设备的第一协议层的第一测量结果;
来自该第一终端设备的第三协议层的第二测量结果;以及
第一DU上报的、基于第一终端设备的信号测量得到的上行信道的第三测量结果。
其中,第一协议层为第二协议层以上的协议层。在本申请实施例中,作为示例而非限定,该第一协议层可以为RRC层,或具有类似的无线资源管理功能的协议层。该第三协议层可以为PHY层,或具有类似的为数据传输提供物理资源的功能的协议层。
在上述列举的测量结果中,第一测量结果和第二测量结果为下行信道的测量结果,该测量结果可以为第一终端设备生成的测量报告,也可以为第一DU处理后得到的测量结果。具体来说,下行信道的测量结果包括RRC层的测量结果(或者称,无线资源管理(radio resource management,RRM)测量结果,层3的测量结果)以及PHY层的测量结果(或者称,层1的测量结果)。
可以理解的是,当RRC层和PDCP层被部署在CU,RLC层、MAC层、PHY层被部署在DU时,CU对第一终端设备不同的协议层的测量结果的获取方式可能是不同的。
对于来自第一终端设备的RRC层的测量报告该RRC层的测量报告可以承载于RRC消息中,因此该RRC层的测量报告可以通过第一DU直接转发给CU,CU在RRC层可以根据该测量报告解读出第一测量结果。
对于来自第一终端设备的PHY层的测量报告该PHY层的测量报告可以承载于PHY层消息或者MAC层消息中,因此第一DU在接收到该PHY层的测量报告时,便可以解读出第二测量结果,第一DU随后将该第二测量结果通过第一通信接口发送给CU。
这里需要说明的是,若CU为第一终端设备配置第一服务小区集合所基于的测量结果包括来自该第一终端设备的第三协议层的第二测量结果,该测量信号(例如,下行参考信号)需要被配置在第一服务小区集合中的各辅小区对应的载波上发送,UE接收该测量信号,从而才能准确获取第一终端设备针对第一服务小区集合中的各辅小区测量的第三协议层的第二测量结果。
作为示例而非限定,来自第一终端设备的测量报告可以包括以下至少一项:
参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信噪比(signal-noise ratio,SNR)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、信道状态信息(channel state  information,CSI)、信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)和秩指示(rank indication,RI)。
上述列举的测量报告可以是小区(cell)级别的,也可以是波束(beam)级别的。若上述测量报告为小区级别的,则该测量报告携带小区标识(cell ID),若上述测量报告为波束级别,则该测量报告携带波束标识(beam ID)。
第三测量结果为上行信道的测量结果。该上行信道的测量结果可以由第一DU监测上行信道得到。具体地,可根据该第一终端设备发送的探测参考信号(sounding reference signal,SRS)或者信道状态信息参考信号(channel state information reference signal,CSI-RS)生成测量报告,并通过第一通信接口发送给CU。
需要说明的是,上述第一DU通过第一通信接口向CU发送的测量结果可以承载于F1接口控制面消息中,或者F1接口用户面消息中。
作为示例而非限定,该上行信道的测量报告也可以包括以下至少一项:
RSRP、RSRQ、SNR、SINR、CSI、CQI、PMI和RI。
应理解,上述列举的测量报告的具体内容仅为示例性说明,不应对本申请构成任何限定,测量报告可以包括其中的一项或者多项内容,也可以包括除上述列举之外的其他内容,本申请对此并未特别限定。
在方法二中,CU可以通过盲配的方法为第一终端设备确定第一服务小区集合。该方法可以参考现有技术中基站为第一终端设备盲配第一服务小区集合的具体过程,为了简洁,这里省略对其具体过程的详细说明。
应理解,CU还可以基于其它信息为第一终端设备确定第一服务小区集合,例如基于UE上报的历史信息等,本申请对此并未特别限定。
可选地,该第二配置信息可以由CU基于第一通信接口(例如,F1接口)协议生成。例如,该第二配置信息可以承载于F1接口控制面(记作F1CP)消息中,进一步地,该F1接口控制面消息为F1AP消息。或者,该第二配置信息也可以承载于F1接口用户面(记作F1UP)消息中。其中,可选地,F1接口控制面消息承载在基于SCTP的传输层协议上,F1用户面消息承载在基于GTP-U的传输层协议上。
该第一DU可以通过第一通信接口接收该第二配置信息。例如,第一DU基于F1AP获取该第二配置信息。
其中,该第二配置信息包括以下至少一项:
终端设备的标识信息、主小区标识信息、辅小区标识信息、辅小区索引、辅小区的频率信息。
作为示例而非限定,终端设备的标识信息包括以下至少一项:C-RNTI和UE ID。
作为示例而非限定,主小区标识信息包括以下至少一项:无线接入网小区全局标识符和物理小区标识(physical cell identifier,PCI)。
作为示例而非限定,辅小区标识信息包括以下至少一项:无线接入网小区全局标识符和PCI。
可选地,第二配置信息还指示辅小区的状态。
其中,辅小区的状态包括激活状态或去激活状态。
具体地,第二配置信息中可以包括各辅小区的标识以及各辅小区的状态,即,通过显 式指示的方法指示各辅小区的状态;或者,协议中也可以定义第二配置信息中仅包含激活状态的辅小区或去激活状态的辅小区,则相对应地,该第二配置信息中可以仅包含激活状态的辅小区或去激活状态的辅小区,即,通过隐式指示的方法指示各辅小区的状态。
在本申请实施例中,该第二配置信息可用于指示CU为第一终端设备配置的第一服务小区集合,该第一服务小区集合中包括至少一个辅小区。可选地,该第二配置信息可以包括辅小区(secondary cell,Scell)列表(Scell list),该辅小区列表中记录了辅小区标识信息、辅小区索引与辅小区的频率信息之间的一一映射关系。
可选地,该第二配置信息还可以包括协议栈的相关配置信息。
作为示例而非限定,协议栈的相关配置信息可以包括:RLC层配置相关信息,例如缓冲(buffer)配置相关信息;MAC层配置相关信息,例如包括:混合自动重传请求(hybrid automatic repeat request,HARQ)实体(entity)的配置相关信息、缓冲区状态报告(buffer state report,BSR)大小(BSR-Size)的配置相关信息。PHY层配置相关信息,例如,指示是否可以配置跨载波调度以及跨载波调度的配置相关信息。
应理解,上述列举仅为示例性说明,而不应对本申请构成任何限定,协议栈的相关配置信息可以参考现有技术中用于进行协议栈配置的信息,为了简洁,这里不再一一列举。
需要说明的是,在异站载波聚合的情况下,CU为该第一终端设备配置的辅小区可能不在该第一DU上,此情况下,该CU可以同时将该第二配置信息发送给辅小区所在的DU(例如,第三DU),以便于各DU获得第一服务小区集合中的辅小区信息。
可选地,该第一DU和第三DU根据该第二配置信息,针对该第一服务小区集合中的各辅小区进行协议层的相关配置。
上文中已经列举第二配置信息中所包含的协议栈的相关配置信息的具体内容。各DU在接收到第二配置信息后,便可以根据其中所包含的协议栈的相关配置信息进行配置。具体来说,各协议层(例如包括:RLC层、MAC层、PHY层)可以为分配给该第一终端设备的载波单元更新配置参数或建立对应的实体。例如,可以在RLC层分更大的buffer,在MAC层为每个辅小区分配多个HARQ实体,在PHY层为每个辅小区分配物理信道的配置信息,例如,是否需要激活跨载波调度,并在跨载波调度的情况下,在PDCCH上携带其他小区的物理资源的调度信息,以便于进行物理信道的数据传输。
应理解,各DU针对所对应的辅小区进行协议层的相关配置的具体过程和方法可以与现有技术中基站针对各辅小区进行协议层的相关配置的具体过程和方法相同,为了简洁,这里不再赘述。
可选地,S520也可以为:第一DU为第一终端设备配置第一服务小区集合,并向CU发送第一服务小区集合的配置信息(为便于区分和说明,记作第三配置信息)。具体地,可以通过以下两种方法为终端设备配置第一小区服务集合:
方法一:第一DU决定辅小区列表中的辅小区,将辅小区标识信息发送给CU,CU为对应的辅小区分配辅小区索引,并将辅小区索引发送给第一DU。
方法二:第一DU决定辅小区列表中的辅小区,并分配对应辅小区索引,将辅小区标识信息和辅小区索引发送给CU。
具体地,与方法一对应,该第三配置信息至少可以包括:辅小区标识信息。可选地,该第三配置信息还可以包括以下至少一项:辅小区的频率信息和辅小区的状态信息。CU 收到第三配置信息后向DU发送第一确认消息,该第一确认消息中至少包括辅小区索引。可选的,第一确认消息还可以包括以下至少一项:辅小区标识信息、辅小区的频率信息和辅小区的状态信息。
具体地,与方法二对应,该第三配置信息至少可以包括:辅小区标识信息和辅小区索引。可选地,该第三配置信息还可以包括以下至少一项:辅小区的频率信息和辅小区的状态信息。进一步可选的,CU收到第三配置信息后向DU发送第一确认消息。可选的,第一确认消息可以包括以下至少一项:辅小区标识信息、辅小区索引、辅小区的频率信息和辅小区的状态信息。
可选的,上述两种方法中,第一确认消息中还可以包含与辅小区对应的协议栈配置信息,应理解,第一DU根据该第一确认信息,针对该第一服务小区集合中的各辅小区进行协议层的相关配置与第一DU根据第二配置信息为辅小区进行协议栈的相关配置的具体方法相似,为了避免重复,这里省略对该步骤的详细说明。
可选地,该第三配置信息可以由DU基于第一通信接口(例如,F1接口)协议生成。例如,该第三配置信息可以承载于F1接口控制面(记作F1CP)消息中,进一步地,该F1接口控制面消息为F1AP消息。或者,该第三配置信息也可以承载于F1接口用户面(记作F1UP)消息中。其中,可选地,F1接口控制面消息承载在基于SCTP的传输层协议上,F1用户面消息承载在基于GTP-U的传输层协议上。
该CU可以通过第一通信接口接收该第三配置信息。例如,CU基于F1AP获取该第三配置信息。
应理解,该第一确认信息的生成和发送方法与第二配置信息的生成和发送方法相似,为了避免重复,这里省略对该步骤的详细说明。
另外,需要说明的是,图中仅为便于理解,示出了CU向第一DU发送第二配置信息的过程,而并未示出第一DU向CU发送第三配置信息以及CU向第一DU发送第一确认信息的过程,但这不应对本申请构成任何限定。
可选地,该方法500还包括:
S530,该CU生成第一配置信息,并经由第一DU向第一终端设备转发第一配置信息。
具体地,该CU可以向第一终端设备发送候选辅小区列表的配置信息(为便于区分和说明,记作第一配置信息)。具体地,该CU可以在第一协议层生成第一配置信息。以图4所示的协议栈结构为例,该第一配置信息为RRC层生成的信息,该信息经由PDCP层处理后通过第一通信接口被发送至第一DU。第一DU对接收到的信息依次进行RLC层、MAC层以及PHY层的处理后,由RF通过空口发送出去。
可选地,该第一配置信息可以由CU在第一协议层生成。例如,该第一配置信息可以承载于RRC消息中。
在S530中,该第一终端设备可以通过空口接收到第一DU发送的经第一DU处理后的第一配置信息,并在RRC层将该第一配置信息解读出来。
其中,该第一配置信息指示CU为第一终端设备配置的第一服务小区集合,该第一配置信息中指示的第一服务小区集合与上文中S520描述的第一服务小区集合对应,包括至少一个辅小区。可选地,该第二配置信息可以包括辅小区列表(Scell list),该辅小区列表中记录了辅小区标识信息、辅小区索引以及辅小区的频率信息之间的一一映射关系。
可选地,该辅小区标识信息可以包括以下至少一项:ECGI或PCI。
该第一配置信息用于通知该第一终端设备第一服务小区集合以及相应的配置信息,以便于第一终端设备接收后续的辅小区配置信息。例如,该第一配置信息可以为上述辅小区列表,该辅小区列表中记录由辅小区标识信息、辅小区索引以及辅小区的频率信息之间的的一一映射关系。该第一终端设备在接收到该第一配置信息后,可以保存上述辅小区列表。因此,该第一终端设备在后续接收到激活/去激活指示(即,后文中所描述的第一指示信息)的时候,便可以根据该配置信息,在相应的频点上找激活的与辅小区索引对应的辅小区。
可选地,第一配置信息还指示辅小区的状态。
其中,辅小区的状态包括激活状态或去激活状态。
具体地,第一配置信息中可以包括各辅小区的标识以及各辅小区的状态,即,通过显式指示的方法指示各辅小区的状态;或者,协议中也可以定义第一配置信息中仅包含激活状态的辅小区或去激活状态的辅小区,则相对应地,该第一配置信息中可以仅包含激活状态的辅小区或去激活状态的辅小区,即,通过隐式指示的方法指示各辅小区的状态。
可选地,该第一配置信息可以由CU基于第一协议层生成。例如,该第一配置信息可以承载于RRC消息中。
S540,第一DU从第一服务小区集合中确定第一指示信息中的至少一个第一辅小区的状态。
在本申请实施例中,第一DU作为该第一终端设备的主小区所在的DU,可以为该第一终端设备确定各辅小区的状态,并基于判决结果,生成第一指示信息。具体地,该第一DU可以确定第一服务小区集合中的各辅小区在当前网络状况下哪些可置为激活状态,也就是可配置为与该第一终端设备进行数据传输的辅小区;哪些可置为去激活状态,也就是当前不配置为与该第一终端设备进行数据传输的辅小区。
为便于区分和说明,在本申请实施例中,将第一指示信息中包含的辅小区记作第一辅小区,可以理解,该第一指示信息中包含的辅小区属于第一服务小区集合。换句话说,该第一指示信息中包含的辅小区可以为第一服务小区集合的子集,也可以为服务小区集合的全集。
一种可能的设计中,该第一指示信息中可以包含第一服务小区集合中的全部辅小区,并指示各辅小区的状态;另一种可能的设计中,该第一指示信息中可以包含第一服务小区集合中的部分辅小区,并指示该部分辅小区中各辅小区的状态;再一种可能的设计中,该第一指示信息可以包含第一服务小区集合中的部分辅小区,该部分辅小区是由第一网络节点或第二网络节点确定的被置为激活状态的辅小区,或者,被置为去激活状态的辅小区。
可选地,S540具体包括:
该第一DU根据测量结果,确定第一指示信息中的至少一个第一辅小区的状态。
其中,该测量结果可以为S520中所描述的测量结果。该测量结果具体内容在S520中已经详细说明,为了简洁,这里不再赘述。
可以理解的是,当RRC层和PDCP层被部署在CU,RLC层、MAC层、PHY层被部署在DU时,第一DU对第一终端设备的不同协议层的测量结果的获取方式可能是不同的。
对于来自第一终端设备的RRC层的测量报告:该RRC层的测量报告可以承载于RRC 消息中,因此该RRC层的测量报告在第一DU中无法被直接解读出来,但可以通过第一DU转发给CU,由CU在RRC层根据该测量报告解读出第一测量结果。CU通过第一接口将第一测量结果发送给DU。可选地,该第一测量结果可以承载于第一接口控制面消息或第一接口用户面消息中。
对于来自第一终端设备的PHY层的测量报告:该PHY层的测量报告可以承载于PHY层消息或者MAC层消息中,因此该第一DU在接收到该PHY的测量报告时,便可以直接解读出第二测量结果。
这里,需要说明的是,若第一DU确定第一服务小区集合中的各第一辅小区的激活/去激活状态所基于的测量结果包括来自该第一终端设备的第二协议层的第二测量结果,该测量信号(例如,下行参考信号)需要被配置在第一服务小区集合中的各辅小区对应的载波上发送,从而才能准确获取第一终端设备针对第一服务小区集合中的各辅小区测量的第二协议层的第二测量结果。
对于第一DU基于第一终端设备的信号测量得到的上行信道的测量报告:由于该测量报告是由该第一DU测量得到,该第一DU可以直接获取到第三测量结果。
因此,第一DU根据测量结果,从第一服务小区集合中确定至少一个第一辅小区的状态,能够基于该第一终端设备在第一服务小区集合中的各辅小区中的上行/下行传输状况,选择较为合适的辅小区进行载波聚合。并且,基于上述一项或更多项测量结果进行判决,能够提高判决的准确性。
应理解,第一DU也可以根据其他信息,确定第一服务小区集合的第一辅小区的激活/去激活状态。并且,第一DU确定第一服务小区集合中的第一辅小区的激活/去激活状态可以与现有技术中基站确定第一服务小区集合中的第一辅小区的激活/去激活状态的具体方法相同,为了简洁,这里不再赘述。
还应理解,S540中第一DU从第一服务小区集合中确定被置为激活/去激活状态的第一辅小区的步骤仅为确定第一辅小区的激活/去激活状态的一种可能的实现方式,事实上,在跨站载波聚合时,第三DU也可以对自身所管理的辅小区进行判决,以确定第三DU所管理的辅小区中各辅小区的激活/去激活状态。在此情况下,第一DU可以仅对自身所管理的辅小区进行判决,以确定第一DU所管理的辅小区中至少一个第一辅小区的激活/去激活状态。还应理解,第三DU进行判决的具体方法和过程与第一DU进行判决的具体方法和过程相似,为了避免赘述,这里省略对该过程的详细说明。
还需要注意的是,在第一DU和第三DU分别确定各自所管理的辅小区中各辅小区的激活/去激活状态的情况下,第三DU可以将判决结果通过CU,并由CU转发给第一DU,以便于第一DU在S550中通知第一终端设备。
S550,该第一DU生成第一指示信息,并向该第一终端设备发送该第一指示信息,该第一指示信息用于指示至少一个第一辅小区的状态。
需要说明的是,在跨站载波聚合的情况下,该第一指示信息中的第一辅小区可以为第一DU管理的辅小区,也可以为第三DU管理的辅小区。
作为示例而非限定,该第一指示信息包括以下任意一项:
被置为激活状态的第一辅小区,
被置为去激活状态的第一辅小区;或者
第一辅小区及其状态。
其中,可选地,辅小区可以通过辅小区索引来指示。
由于在S520中已经说明,该第一终端设备可以基于接收到的第一配置信息,保存辅小区标识信息、辅小区索引与辅小区的频率信息之间的一一映射关系,因此,该第一终端设备在接收到该第一指示信息后,便可以根据该第一指示信息中所指示的被置为激活/去激活状态的第一辅小区索引确定激活/去激活的第一辅小区。该第一终端设备在接收到该第一指示信息后,便可以根据该第一指示信息中所指示的被置为激活状态的第一辅小区,在对应的载波单元上接收物理下行控制信道(physical downlink control channel,PDCCH),根据为该第一终端设备调度的资源进行数据传输。同时,还可以进行周期性或非周期性地上报测量报告。
在本发明实施例中,第一终端设备在接收到第一指示信息之后,便可以根据该第一指示信息指示的至少一个第一辅小区的状态,更新服务小区集合中至少一个第一辅小区的状态。
这里所说的更新是指,根据接收到的第一指示信息中所指示的各第一辅小区的状态,对当前各第一辅小区的状态进行更新,但并不一定会改变第一辅小区的当前状态,例如,在第一指示信息中指示的状态与当前状态相同的情况下,就不需要改变当前状态;而在第一指示信息中指示的状态与当前状态不同的情况下,就需要改变当前状态。举例来说,若某个辅小区(例如,辅小区#A,即,第一辅小区的一例)为激活状态,而第一指示信息指示为去激活状态,则将该辅小区#A更新为去激活状态;若某个辅小区(例如,辅小区#B,即,第一辅小区的又一例)为去激活状态,而第一指示信息指示为激活状态,则将该辅小区#B更新为激活状态;而若某个辅小区(例如,辅小区#C,即,第一辅小区的又一例)为激活状态,而第一指示信息指示为激活状态,或者,某个辅小区(例如,辅小区#D,即,第一辅小区的又一例)为去激活状态,而第一指示信息指示为去激活状态,则不改变辅小区#C和辅小区#D的当前状态。后文中为了简洁,省略对相同或相似情况的说明。
应理解,第一终端设备在确定了被置为激活状态的辅小区之后的处理动作与现有技术中终端设备的处理动作相同,为了简洁,这里不再赘述。
可选地,该第一指示信息可以由第一DU在第二协议层生成。例如,该第一指示信息可以承载于MAC控制元素(control element,CE)中。
即,通过层2消息来发送该第一指示信息,便于根据网络状况实时地调整激活/去激活的辅小区,可以增强配置生效的实时性。
再看S530中的第一配置信息,该第一配置信息可以承载于RRC消息中。也就是说,CU可以通过RRC消息向第一终端设备指示第一服务小区集合,以便于第一终端设备获取到该第一服务小区集合中的各辅小区的配置信息。随后,第一DU可以通过MAC CE向该第一终端设备发送第一指示信息,从而实时地指示被置为激活/去激活状态的辅小区,使得该第一终端设备可以根据该第一指示信息,通过激活的辅小区进行数据传输,实现载波聚合。
另外,在上文中已经说明,第一服务小区集合中的辅小区可能与该第一终端设备的主小区为同站的,也可能为异站的,并且假设异站的辅小区所在的DU为第三DU,因此,可置为激活状态的辅小区可能为第一DU中的小区,也可能为第三DU中的小区。
可选地,该方法500还包括:
S570,该第一DU向CU发送第三指示信息,该第三指示信息用于通知该CU第一指示信息中的至少一个第一辅小区及其状态。
也就是说,该第一DU在为该第一终端设备确定了激活/去激活状态的第一辅小区后,可以通知CU,以便于CU维护该第一终端设备的辅小区的激活/去激活状态。
可选地,该第三指示信息可以由第一DU基于第一通信接口(例如,F1接口)所支持的协议生成。例如,该第三指示信息可以承载于F1接口控制面(记作F1CP)消息中,进一步地,该F1接口控制面消息为F1AP消息。或者,该第三指示信息也可以承载于F1接口用户面(记作F1UP)消息中。其中,可选地,F1接口控制面消息承载在基于SCTP的传输层协议上,F1用户面消息承载在基于GTP-U的传输层协议上。
需要特别说明的是,在跨站载波聚合的情况下,第三指示信息中还可以包含第三DU的负责管理的辅小区。则可选地,该方法还包括:CU向第三DU发送第四指示信息,该第四指示信息用于通知第三DU为该第一终端设备第三DU管理的辅小区中被置被激活/去激活状态的至少一个辅小区。
通过上述步骤,CU和第一DU完成了对第一终端设备的载波聚合的配置。
因此,本申请实施例通过CU在第一协议层生成并经由第一DU向终端设备指示服务小区集合的第一配置信息;并由第一DU在第二协议层生成并发送第一指示信息通知第一终端设备至少一个第一辅小区的激活/去激活状态的,使第一终端设备在接收到该第一指示信息后,可以更新辅小区的激活/去激活状态,使用激活的辅小区进行数据传输。从而实现了在CU-DU架构下为终端设备配置载波聚合的目的,有利于提高终端设备的传输带宽。另外,在本申请实施例中,由第一DU确定至少一个第一辅小区的激活/去激活状态,可以直接根据确定的结果生成第一指示信息,比较简单方便。
下面结合图6,详细说明本申请另一实施例提供的通信方法600。
如图6所示,该方法600包括:
S610,第一终端设备与第一DU中的第一小区建立RRC连接。
S620,CU为该第一终端设备配置第一服务小区集合,并向第一DU发送第一服务小区集合的配置信息(为便于区分和说明,记作第二配置信息)。
可选地,S620也可以为:第一DU为该第一终端设备配置第一服务小区集合,并向CU发送第一服务小区集合的配置信息(为便于区分和说明,记作第三配置信息)。进一步可选的,CU向第一DU发送第一确认消息。
图中仅为便于理解,示出了CU向第一DU发送第二配置信息的过程,而并未示出第一DU向CU发送第三配置信息以及CU向第一DU发送第一确认消息的过程,但这不应对本申请构成任何限定。
S630,该CU生成第一配置信息,并经由第一DU向第一终端设备转发第一配置信息。
可选地,该第一配置信息承载于RRC消息中。
应理解,上述S610~S630的处理过程与方法500中的S510~S530的处理过程相同,为了简洁,这里不再赘述。
S640,该CU确定第二指示信息中的至少一个第一辅小区及其状态。
在本申请实施例中,CU可以用于从第一服务小区集合中确定至少一个第一辅小区的 激活/去激活状态。具体地说,CU可以确定第一服务小区集合中的各辅小区在当前网络状况下哪些可置为激活状态,也就是可配置为该第一终端设备进行数据传输的辅小区;哪些可置为去激活状态,也就是当前不配置为该第一终端设备进行数据传输的辅小区。
可选地,CU可以根据测量结果,确定第二指示信息中的至少一个第一辅小区及其状态。
其中,该测量结果可以为S620中所描述的测量结果。该测量结果具体内容在方法500中的S520中已经详细说明,为了简洁,这里不再赘述。
因此,CU根据测量结果确定至少一个第一辅小区的激活/去激活状态,能够基于该第一终端设备在第一服务小区集合中的各辅小区中的上行/下行传输状况,选择较为合适的辅小区进行载波聚合。并且,CU可以基于来自第一终端设备的第一协议层的第一测量结果进行判决,还可以根据第一DU上报的第一终端设备的第二协议层的第二测量结果,以及上行信道的第三测量结果进行判决,有利于提高判决的有效性。
应理解,CU也可以根据其他信息,确定第一服务小区集合的各辅小区的激活/去激活状态。CU确定第一服务小区集合中的各辅小区的激活/去激活状态可以与现有技术中基站确定第一服务小区集合中的各辅小区的激活/去激活状态的具体方法相同,为了简洁,这里不再赘述。
S650,该CU生成第二指示信息,并向第一DU发送第二指示信息,该第二指示信息包含至少一个第一辅小区的状态的信息。
该CU在确定了第一服务小区集合中至少一个第一辅小区的激活/去激活状态,便可以生成用于指示第一服务小区集合中至少一个第一辅小区的激活/去激活状态的信息(为便于区分,记作第二指示信息)。
可选地,该CU可以基于第一通信接口所支持的协议生成该第二指示信息。例如,该第二指示信息可以承载于F1接口控制面(记作F1CP)消息中,或者也可以承载于F1接口用户面(记作F1UP)消息中。
CU通过该第一通信接口发送给该第一DU,第一DU可以基于该第一通信接口协议解读该第二指示信息,从而确定至少一个第一辅小区的状态。
可选地,该第二指示信息和第二配置信息可以承载于同一消息中。例如,该第二指示信息和第二配置信息可以承载于同一F1接口控制面消息中。
S660,该第一DU根据第二指示信息,生成第一指示信息,并向该第一终端设备发送该第一指示信息,该第一指示信息包含至少一个第一辅小区的状态的信息。
该第一DU可以根据第二指示信息中所指示的各第一辅小区的状态,生成第一指示信息。
该第一DU通过空口向第一终端设备发送给第一指示信息,以通知该第一终端设备至少一个第一辅小区的状态,以便于该第一终端设备更新服务小区集合中至少一个第一辅小区的状态,从而实现第一终端设备的载波聚合。
可选地,该第一指示信息承载于MAC CE中。
应理解,上述S660的处理过程与方法500中的S550的处理过程相同,为了简洁,这里不再赘述。
可选地,该方法600还包括:
S680,该第一DU向CU发送第三指示信息,该第三指示信息用于通知该CU第一指示信息中的至少一个第一辅小区及其状态。
也就是说,该第一DU在为该第一终端设备确定了至少一个第一辅小区的激活/去激活状态后,可以通知CU,以便于CU维护该第一终端设备的辅小区激活/去激活状态。
可选地,该第三指示信息可以由第一DU基于第一通信接口(例如,F1接口)协议生成。例如,该第三指示信息可以承载于F1接口控制面(记作F1CP)消息中,进一步地,该F1接口控制面消息为F1AP消息。或者,该第三指示信息也可以承载于F1接口用户面(记作F1UP)消息中。其中,可选地,F1接口控制面消息承载在基于SCTP的传输层协议上,F1用户面消息承载在基于GTP-U的传输层协议上。
需要特别说明的是,在跨站载波聚合的情况下,第三指示信息中还可以包含第三DU的负责管理的辅小区。则可选地,该方法还包括:CU向第三DU发送第四指示信息,该第四指示信息用于通知第三DU为该第一终端设备第三DU管理的辅小区中被置被激活/去激活状态的至少一个辅小区。
通过上述步骤,CU和第一DU完成了对第一终端设备的载波聚合的配置。
因此,本申请实施例通过CU第二网络节点在第一协议层生成并经由DU向终端设备指示服务小区集合的第一配置信息;并由第一DU在第二协议层生成并发送第一指示信息通知第一终端设备至少一个第一辅小区的激活/去激活状态的,使第一终端设备在接收到该第一指示信息后,可以更新辅小区的激活/去激活状态,使用激活的辅小区进行数据传输。从而实现了在CU-DU架构下为终端设备配置载波聚合的目的,有利于提高终端设备的传输带宽。
下面结合图7,详细说明本申请又一实施例提供的通信方法700。应理解,图7中示出的通信方法700可以为图5或图6示出的通信方法500或600的后续流程,也可以为与图5或图6示出的通信方法500或600同时进行的流程,本申请对此并未特别限定。因此,该方法700可以包括上述通信方法500或通信方法600中的部分或全部步骤。在本实施例中,为了避免重复,省略对上述通信方法500或通信方法600中的步骤的说明。在通信方法700中,假设,该第一终端设备已与第一DU中的第一小区建立起RRC连接。
如图7所示,该方法700包括:
S710,第一终端设备通过随机接入过程,接入主辅小区,以通过双连接或多连接技术与多个基站系统通信。
具体地,第一终端设备在与第一DU中的第一小区建立起RRC连接之后,第一DU可以通过RRC消息为该第一终端设备添加主辅小区和辅小区。其中,主辅小区的定义可以参考现有协议(例如,LTE协议)中的定义,即,主辅小区可以是:在执行辅小区组(secondary cell group,SCG)变化流程时,SCG中用于与终端设备进行随机接入流程,或者,在随机接入流程被跳过的情况下用于进行初始物理上行共享信道(physical uplink share channel,PUSCH)传输的小区。第一终端设备可以通过非竞争的随机接入过程,接入主辅小区。
需要注意的是,与上述方法500和方法600中的描述所不同的是,该第一终端设备接入主辅小区之后,并不需要与第二DU建立RRC连接,也就是说,该第一终端设备可以接收该第二DU发送的MAC层的消息(例如,MAC CE)和PHY层的消息,但从第一 DU接收RRC层的消息(例如,RRC消息)。
S720,CU为第一终端设备配置第二服务小区集合,向第二DU发送第二服务小区集合的配置信息(为便于区分和说明,记作第四配置信息)。
具体地,该第四配置信息包括CU为该第一终端设备配置的第二服务小区集合,该第二服务小区集合可以为第二DU所管理的小区中的可能被配置为该第一终端设备的辅小区的集合。也就是说,CU为第一终端设备配置的候选辅小区中,可能有一部分候选辅小区是第二DU管理的,因此,CU向该第二DU发送第四配置信息,以便于第二DU进行协议栈的配置。可以理解,该第二DU是该第一终端设备的主辅小区所在的DU。可选地,第二服务小区集合包含主辅小区和其他辅小区。
可选地,该第四配置信息由CU基于第一通信接口(例如,F1接口)所支持的协议生成。例如,该第四配置信息可以承载于F1接口控制面(记作F1CP)消息中,进一步地,该F1接口控制面消息为F1AP消息。或者,该第四配置信息也可以承载于F1接口用户面(记作F1UP)消息中。其中,可选地,F1接口控制面消息承载在基于SCTP的传输层协议上,F1用户面消息承载在基于GTP-U的传输层协议上。
应理解,第四配置信息与上文中描述的第二配置信息所包含的具体内容和功能相似,并且S720的具体过程与S520的具体过程相似,为了避免重复,这里省略对该步骤的详细说明。
可选地,S720也可以为:第一DU为第一终端设备配置第二服务小区集合,并向CU发送第二服务小区集合的配置信息(为便于区分和说明,记作第五配置信息)。进一步可选的,CU向第一DU发送第二确认信息。
应理解,第五配置信息与上文中描述的第三配置信息所包含的具体内容和功能相似,第二确认信息与上文中描述的第一确认信息所包含的具体内容和功能相似,并且第一DU为第一终端设备配置第二服务小区集合的具体过程与S520的具体过程相似,为了避免重复,这里省略对该步骤的详细说明。
另外,需要说明的是,图中仅为便于理解,示出了CU向第一DU发送第四配置信息的过程,而并未示出第一DU向CU发送第五配置信息的过程,但这不应对本申请构成任何限定。
可选地,该方法700还包括:
S730,该CU生成第六配置信息,并经由第一DU向第一终端设备转发该第六配置信息。
具体地,该第六配置信息包括该CU为该第一终端设备配置的第二服务小区集合,该第二服务小区集合可以为第二DU所管理的小区中的被配置为该第一终端设备的辅小区的集合。
由上文中的描述可知,CU向第一终端设备发送的第六配置信息是在第一协议层生成的信息,在本申请实施例中,该第六配置信息承载于RRC消息中,因此,该第六配置信息可以通过第一DU转发给第一终端设备。具体地,该第一DU可以对接收到的第六配置信息至少进行第二协议层的处理后转发给第一终端设备。
其中,第六配置信息指示的第二服务小区集合与上文中S720中描述的第四配置信息包含的第二服务小区集合对应。
可选地,该第六配置信息可以由CU在第一协议层生成。例如,该第六配置信息承载于RRC消息中。
应理解,第六配置信息与上文中描述的第一配置信息所包含的具体内容和功能相似,并且S730的具体过程与S530的具体过程相似,为了避免重复,这里省略对该步骤的详细说明。
S740,第二DU生成第五指示信息,并向该第一终端设备发送该第五指示信息。
具体地,该第五指示信息包含至少一个辅小区的状态的信息。该第五指示信息用于通知第一终端设备更新至少一个辅小区的状态。可以理解,该第五指示信息中的至少一个第一辅小区是第二服务小区集合中的辅小区的全部或者部分,第一辅小区与第二服务小区集合的关系可以参考上文中结合方法500说明的第一辅小区与第一服务小区集合的关系的描述,为了避免重复,这里不再赘述。
在本申请实施例中,各辅小区及其状态可以由CU从第二服务小区集合中确定(可对应于上述方法600中的S640),也可以由第二DU从第二服务小区集合中确定(可对应于上述方法500中的S540)。
并且,CU或者第二DU可以根据测量结果确定各辅小区的状态。
可选地,该测量结果的具体内容可以包括以下至少一项:
来自该第一终端设备的第一协议层的第一测量结果;
来自该第一终端设备的第三协议层的第二测量结果;以及
第二DU上报的、基于第一终端设备的信号测量得到的上行信道的第三测量结果。
其中,第一协议层为第二协议层以上的协议层。在本申请实施例中,作为示例而非限定,该第一协议层可以为RRC层,或具有类似的无线资源管理功能的协议层。该第三协议层可以为PHY层,或具有类似的为数据传输提供物理资源的功能的协议层。
可选地,该第五指示信息可以由第二DU在第二协议层生成。例如,该第五指示信息承载于第二DU向第一终端设备发送的MAC CE中。
应理解,第五指示信息与上文中描述的第一指示信息的具体内容和功能相似,并且,S740的具体过程可以与S540或S640的具体过程相似,为了避免重复,这里省略对该步骤的详细说明。
可选地,该方法700还包括:
S750,该第三DU向CU发送第六指示信息,该第六指示信息用于通知该CU第五指示信息中的至少一个第一辅小区及其状态。
可选地,第六指示信息可以由第二DU基于第一通信接口(例如,F1接口)所支持的协议生成。例如,该第六指示信息可以承载于F1接口控制面(记作F1CP)消息中,进一步地,该F1接口控制面消息为F1AP消息。或者,该第六指示信息也可以承载于F1接口用户面(记作F1UP)消息中。其中,可选地,F1接口控制面消息承载在基于SCTP的传输层协议上,F1用户面消息承载在基于GTP-U的传输层协议上。
应理解,第六指示信息与上文中描述的第三指示信息的具体内容和功能相似,并且该步骤的具体过程在上文中也已经详细说明,为了避免重复,这里省略对该步骤的详细说明。
通过上述步骤,CU、第一DU和第二DU完成了双连接或多连接场景下对第一终端设备的载波聚合的配置。
因此,本申请实施例通过CU在第一协议层生成并经由DU向终端设备指示第二服务小区集合的第四配置信息;并由第二DU在第二协议层生成并发发送第五指示信息通知第一终端设备至少一个第一辅小区的激活/去激活状态,使第一终端设备在接收到该第五指示信息后,可以使用激活的辅小区进行数据传输。从而实现了在CU-DU架构下为终端设备配置载波聚合的目的,有利于提高终端设备的传输带宽。并且该方法同样适用于多连接或者双连接的场景,从而有利于提高终端设备的传输带宽和提升移动鲁棒性。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图5至图7详细说明了本申请实施例的通信方法,以下,结合图8至图12详细说明本申请实施例的装置。
本申请实施例提供了一种网络节点。下面结合图8对该网络节点的结构和功能进行描述。图8是本申请实施例提供的网络节点10的示意性框图。如图8所示,该网络节点10包括接收器11、发送器12和处理器13。可选地,该网络节点10还包括存储器14。其中,接收器11、发送器12、处理器13和存储器14之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器14用于存储计算机程序,该处理器13用于从该存储器14中调用并运行该计算机程序,以控制该接收器11接收信号,控制该发送器12发送信号。当存储器14中存储的程序指令被处理器13执行时,该接收器11用于接收来自于该第二网络节点的第一配置信息,该第一配置信息包含为终端设备配置的服务小区集合,该服务小区集合包含至少一个辅小区,该第一配置信息还指示该辅小区的状态,该辅小区的状态为激活状态或去激活状态,该第一配置信息由该第二网络节点在第一协议层生成;
该发送器12用于向该终端设备发送该第一配置信息;
该发送器12还用于发送第一指示信息,该第一指示信息包含至少一个第一辅小区的状态的信息,该第一辅小区属于该服务小区集合,该第一指示信息由该第一网络节点在第二协议层生成。
上述处理器13和存储器14可以合成一个处理装置,处理器13用于执行存储器14中存储的程序代码来实现上述功能。具体实现时,该存储器14也可以集成在处理器13中,或者独立于处理器13。
应理解,网络节点10可以对应于根据本发明实施例的通信方法500或600中的第一DU,该网络节点10可以包括用于执行图5中通信方法500或图6中通信方法600的第一DU执行的方法的模块。并且,该网络节点10中的各模块和上述其他操作和/或功能分别为了实现图5中通信方法500或图6中通信方法600的相应流程,各模块执行上述相应步骤的具体过程请参照前文中结合图5和图6的方法实施例的描述,为了简洁,在此不再赘述。
本申请实施例还提供了一种网络节点。下面结合图9对该网络节点的结构和功能进行描述。图9是本申请实施例提供的网络节点20的另一示意性框图。如图9所示,该网络节点10包括接收模块21和发送模块22。
该接收模块21和发送模块22可以是软件实现也可以是硬件实现。在硬件实现的情况下,该接收模块21可以是图8中的接收器11,该发送模块22可以是图8中的发送器12。
本申请实施例还提供了一种网络节点。下面结合图10对该网络节点的结构和功能进行描述。图11是本申请实施例的网络节点30的示意性框图。如图10所示,该网络节点30包括收发器31和处理器32。可选地,该网络节点30还包括存储器33。其中,接收器31、发送器32、处理器33和存储器34之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器34用于存储计算机程序,该处理器33用于从该存储器34中调用并运行该计算机程序,以控制该接收器31接收信号,控制发送器32发送信号。当存储器34中存储的程序指令被处理器33执行时,该发送器32用于向第一网络节点发送第一配置信息,该第一配置信息包含为终端设备配置的服务小区集合,该服务小区集合包含至少一个辅小区,该第一配置信息还指示该辅小区的状态,该辅小区的状态包括激活状态或去激活状态,该第一配置信息由该第二网络节点在第一协议层生成;该发送器32还用于向该第一网络节点发送第二配置信息,所述第二配置信息包含所述第二网络节点为所述终端设备配置的所述服务小区集合的辅小区标识信息和辅小区索引。
上述处理器33和存储器34可以合成一个处理装置,处理器33用于执行存储器34中存储的程序代码来实现上述功能。具体实现时,该存储器34也可以集成在处理器33中,或者独立于处理器33。
应理解,网络节点30可以对应于根据本发明实施例的通信方法500或600中的CU,该网络节点30可以包括用于执行图5中通信方法500或图6中通信方法600的CU执行的方法的模块。并且,该网络节点30中的各模块和上述其他操作和/或功能分别为了实现图5中通信方法500或图6中通信方法600的相应流程,各模块执行上述相应步骤的具体过程请参照前文中结合图5和图6的方法实施例的描述,为了简洁,在此不再赘述。
本申请实施例还提供了一种网络节点。下面结合图11对该网络节点的结构和功能进行描述。图11是本申请实施例的网络节点40的另一示意性框图。如图11所示,该网络节点40包括发送模块41。
该发送模块41可以是软件实现也可以是硬件实现。在硬件实现的情况下,该发送模块41可以是图10中的发送器31。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、 双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请实施例还提供一种无线接入网系统。图12是本申请实施例的无线接入网系统50的示意性框图。如图12所示,该无线接入网系统50包括第一网络节点和第二网络节点。其中,该第一网络节点可以为图8中所示的网络节点10,该第二网络节点可以为图10中所示的网络节点30;或者,该第一网络节点可以为图9中所示的网络节点20,该第二网络节点可以为图11中所示的网络节点40。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种通信方法,其特征在于,所述方法应用于包括第一网络节点、第二网络节点的无线接入网系统中,所述第一网络节点与所述第二网络节点通过第一通信接口通信,所述方法包括:
    所述第一网络节点接收来自于所述第二网络节点的第一配置信息,所述第一配置信息包含为终端设备配置的服务小区集合,所述服务小区集合包含至少一个辅小区,所述第一配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态,所述第一配置信息由所述第二网络节点在第一协议层生成;
    所述第一网络节点向所述终端设备发送所述第一配置信息;
    所述第一网络节点向所述终端设备发送第一指示信息,所述第一指示信息包含至少一个第一辅小区的状态的信息,所述至少一个第一辅小区属于所述服务小区集合,所述第一指示信息由所述第一网络节点在第二协议层生成。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点接收所述第二网络节点发送的第二指示信息,所述第二指示信息包含:所述至少一个第一辅小区,或者,所述至少一个第一辅小区及其状态。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点确定所述第一指示信息中的所述至少一个第一辅小区的状态。
  4. 根据权利要求3所述的方法,其特征在于,所述第一网络节点确定所述第一指示信息中的所述第一至少一个第一辅小区的状态,包括:
    所述第一网络节点根据测量结果确定所述第一指示信息中的所述至少一个第一辅小区的状态,其中,所述测量结果包括以下至少一项:
    来自所述终端设备的第一协议层的第一测量结果;
    来自所述终端设备的第三协议层的第二测量结果;以及
    所述第一网络节点基于所述终端设备发送的信号测量得到的上行信道的第三测量结果。
  5. 根据权利要求4所述的方法,其特征在于,若所述测量报告包括来自所述终端设备的第一协议层的第一测量结果,所述方法还包括:
    所述第一网络节点将所述终端设备上报的所述第一测量报告发送给所述第二网络节点;
    所述第一网络节点接收所述第二网络节点发送的第一测量结果,所述第一测量结果为所述第二网络节点基于所述第一测量报告确定。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点接收来自所述第二网络节点的第二配置信息,所述第二配置信息包含所述第二网络节点为所述终端设备配置的所述服务小区集合的辅小区标识信息和辅小区索引。
  7. 如权利要求6所述的方法,其特征在于,所述第二配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态。
  8. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点向所述第二网络节点发送第三配置信息,所述第三配置信息用于指示所述第二网络节点为所述终端设备配置的所述服务小区集合,所述第三配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点向所述第二网络节点发送第三指示信息,所述第三指示信息用于通知所述第二网络节点所述第一指示信息中的所述至少一个第一辅小区及其状态。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第二网络节点中至少部署有所述第一协议层,所述第一网络节点中至少部署有所述第二协议层和第三协议层;
    其中,所述第一协议层为无线资源控制RRC层,所述第二协议层为媒体接入控制MAC层,所述第三协议层为物理PHY层。
  11. 一种通信方法,其特征在于,所述方法应用于包括第一网络节点和第二网络节点的无线接入网系统中,所述第一网络节点与所述第二网络节点通过第一通信接口通信,所述方法包括:
    所述第二网络节点向所述第一网络节点发送第一配置信息,所述第一配置信息包含为终端设备配置的服务小区集合,所述服务小区集合包含至少一个辅小区,所述第一配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态,所述第一配置信息由所述第二网络节点在第一协议层生成;
    所述第二网络节点向所述第一网络节点发送第二配置信息,所述第二配置信息包含所述第二网络节点为所述终端设备配置的所述服务小区集合的辅小区标识信息和辅小区索引。
  12. 根据权利要求11所述的方法,其特征在于,所述第二配置信息还指示所述辅小区的状态,所述辅小区的状态为激活状态或去激活状态。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述第二网络节点根据测量结果,确定所述服务小区集合。
  14. 根据权利要求13所述的方法,其特征在于,所述测量结果包括以下至少一项:
    来自所述终端设备的第一协议层的第一测量结果;
    来自所述终端设备的第三协议层的第二测量结果;以及
    所述第一网络节点上报的、基于所述终端设备发送的信号测量得到的上行信道的第三测量结果。
  15. 根据权利要求14所述的方法,其特征在于,若所述测量结果包括来自所述终端设备上报的第三协议层的第二测量结果,所述方法还包括:
    所述第二网络节点接收所述第一网络节点发送的第二测量结果,所述第二测量结果由所述第一网络节点对所述终端设备上报的第三协议层的测量报告确定。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述第二网络节点中至少部署有所述第一协议层,所述第一网络节点中至少部署有第二协议层和第三协议层;
    其中,所述第一协议层为无线资源控制RRC层,所述第二协议层为媒体接入控制MAC层,所述第三协议层为物理PHY层。
  17. 一种网络节点,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至10中任一项所述的方法。
  18. 一种网络节点,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求11至16中任一项所述的方法。
  19. 一种无线接入网系统,其特征在于,包括:
    至少一个根据权利要求17所述的网络节点;和
    至少一个根据权利要求18所述的网络节点。
PCT/CN2018/091391 2017-06-16 2018-06-15 通信方法、网络节点和无线接入网系统 WO2018228510A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112019026671-2A BR112019026671A2 (pt) 2017-06-16 2018-06-15 método de comunicação, aparelhos de comunicação, meio de armazenamento de programa de computador e sistema de comunicação
KR1020207000922A KR20200015750A (ko) 2017-06-16 2018-06-15 통신 방법, 네트워크 노드, 및 무선 액세스 네트워크 시스템
EP18817571.5A EP3629630B1 (en) 2017-06-16 2018-06-15 Communication method, network node, and radio access network system
JP2019569367A JP7026705B2 (ja) 2017-06-16 2018-06-15 通信方法、ネットワークノード、無線アクセスネットワークシステム
US16/716,112 US11291064B2 (en) 2017-06-16 2019-12-16 Communication method, network node, and radio access network system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459213.4A CN109150451B (zh) 2017-06-16 2017-06-16 通信方法、网络节点和无线接入网系统
CN201710459213.4 2017-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/716,112 Continuation US11291064B2 (en) 2017-06-16 2019-12-16 Communication method, network node, and radio access network system

Publications (1)

Publication Number Publication Date
WO2018228510A1 true WO2018228510A1 (zh) 2018-12-20

Family

ID=64660627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091391 WO2018228510A1 (zh) 2017-06-16 2018-06-15 通信方法、网络节点和无线接入网系统

Country Status (7)

Country Link
US (1) US11291064B2 (zh)
EP (1) EP3629630B1 (zh)
JP (1) JP7026705B2 (zh)
KR (1) KR20200015750A (zh)
CN (1) CN109150451B (zh)
BR (1) BR112019026671A2 (zh)
WO (1) WO2018228510A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565464A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 传输信息的方法和装置
EP3927109A4 (en) * 2019-02-14 2022-09-14 Ntt Docomo, Inc. NETWORK NODE

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530068A2 (en) * 2017-06-16 2019-08-28 Ofinno, LLC Distributed unit configuration update
US11197258B2 (en) * 2017-08-10 2021-12-07 Beijing Xiaomi Mobile Software Co., Ltd. Timing advance group configuration
EP3711373B1 (en) * 2017-11-17 2021-03-31 Telefonaktiebolaget LM Ericsson (Publ) Methods, apparatus and systems relating to ue inactivity
US11228475B2 (en) * 2019-01-03 2022-01-18 Parallel Wireless, Inc. 2G/3G signals over 4G/5G virtual RAN architecture
CN111416694B (zh) * 2019-01-07 2023-01-13 中国移动通信有限公司研究院 一种上行数据传输的方法和设备
CN111479257A (zh) * 2019-01-23 2020-07-31 电信科学技术研究院有限公司 辅小区状态的配置方法、装置及设备
WO2020154871A1 (zh) * 2019-01-28 2020-08-06 Oppo广东移动通信有限公司 一种测量控制方法、终端设备及网络设备
KR102666360B1 (ko) * 2019-01-28 2024-05-14 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법, 단말 장치 및 네트워크 장치
CN111526560B (zh) * 2019-02-01 2022-03-29 华为技术有限公司 服务小区信息的更新方法及装置
EP3925396A1 (en) * 2019-02-13 2021-12-22 Telefonaktiebolaget Lm Ericsson (Publ) User equipment and method in a wireless communications network
US20220078868A1 (en) * 2019-02-14 2022-03-10 Ntt Docomo, Inc. Network node
US11877333B2 (en) * 2019-02-14 2024-01-16 Lg Electronics Inc. Fast cell setup for dual connectivity
CN111586842B (zh) * 2019-02-15 2023-09-05 华为技术有限公司 通信方法和通信装置
WO2020186532A1 (zh) * 2019-03-21 2020-09-24 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
WO2020199034A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 用于中继通信的方法和装置
CN111866963B (zh) * 2019-04-28 2021-12-31 华为技术有限公司 通信方法、通信装置、计算机存储介质及通信系统
CN110098912A (zh) * 2019-05-23 2019-08-06 武汉恒泰通技术有限公司 一种实现载波聚合的方法
CN112003667B (zh) * 2019-05-27 2021-12-31 华为技术有限公司 时序管理方法、设备及系统
CN112637906B (zh) * 2019-08-16 2022-05-24 华为技术有限公司 寻呼的方法和装置
CN112399440B (zh) * 2019-08-16 2022-09-16 华为技术有限公司 一种小区配置的确定方法及装置
WO2021056577A1 (zh) * 2019-09-29 2021-04-01 华为技术有限公司 信息更新方法、设备及系统
CN113826337B (zh) * 2019-09-30 2023-12-08 华为技术有限公司 一种时刻信息的通知方法和装置
CN112752276B (zh) * 2019-10-31 2022-11-25 成都华为技术有限公司 接入网络设备的方法和装置
WO2021092861A1 (zh) * 2019-11-14 2021-05-20 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN113840341A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 通信的方法、通信装置
WO2022031980A1 (en) * 2020-08-06 2022-02-10 Kyungmin Park Uplink resource release
KR102545466B1 (ko) 2020-11-11 2023-06-20 재단법인대구경북과학기술원 산업 사물 인터넷에 기반한 네트워크 시스템
CN114666781A (zh) * 2020-12-23 2022-06-24 中国移动通信有限公司研究院 信息处理方法、装置、设备及存储介质
US11304253B1 (en) * 2021-01-16 2022-04-12 Skylo Technologies, Inc. Coordinated transmissions over a transient roving wireless communication channel
WO2022236835A1 (zh) * 2021-05-14 2022-11-17 Oppo广东移动通信有限公司 确定终端设备行为的方法及装置、终端设备、网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291837A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 一种周期性srs的处理方法和设备
WO2016079905A1 (en) * 2014-11-20 2016-05-26 Panasonic Intellectual Property Corporation Of America Improved channel state information reporting on lincensed and unlicensed carriers
US20170127362A1 (en) * 2015-11-02 2017-05-04 Qualcomm Incorporated Methods and apparatuses for an access procedure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283063C (zh) * 2003-05-20 2006-11-01 华为技术有限公司 通信设备中配置数据的方法及装置
US9351201B2 (en) * 2012-03-08 2016-05-24 Qualcomm Incorporated System and method for reducing data loss during a serving cell change in a multi-flow HSDPA communication network
US9806873B2 (en) * 2012-05-09 2017-10-31 Samsung Electronics Co., Ltd. Method and apparatus for controlling discontinuous reception in mobile communication system
CN107708215B (zh) * 2012-06-12 2023-11-21 华为技术有限公司 载波资源配置方法、上行信息传输方法、基站及用户设备
WO2014182229A1 (en) * 2013-05-10 2014-11-13 Telefonaktiebolaget L M Ericsson (Publ) Bearer configuration signaling
WO2015000113A1 (zh) * 2013-07-01 2015-01-08 华为技术有限公司 一种载波状态指示方法及设备
KR102287928B1 (ko) * 2013-09-27 2021-08-10 삼성전자 주식회사 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
ES2766374T3 (es) * 2014-09-29 2020-06-12 Huawei Tech Co Ltd Método de programación de red inalámbrica y dispositivo de acceso
CN112672343B (zh) * 2016-08-09 2022-04-26 三星电子株式会社 无线通信系统中管理用户平面操作的方法和装置
US10925107B2 (en) * 2016-10-14 2021-02-16 Nokia Technologies Oy Fast activation of multi-connectivity utilizing uplink signals
BR112020022170A2 (pt) * 2018-05-10 2021-02-02 Telefonaktiebolaget Lm Ericsson (Publ) método para configurar um equipamento de usuário, primeira unidade centralizada, e, mídia legível por computador não transitória

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291837A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 一种周期性srs的处理方法和设备
WO2016079905A1 (en) * 2014-11-20 2016-05-26 Panasonic Intellectual Property Corporation Of America Improved channel state information reporting on lincensed and unlicensed carriers
US20170127362A1 (en) * 2015-11-02 2017-05-04 Qualcomm Incorporated Methods and apparatuses for an access procedure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "NR RAN functional description", 3GPP TSG-RAN WG3 MEETING #92, no. R3-161267, 14 May 2016 (2016-05-14), Nanjing, China, XP051094637 *
See also references of EP3629630A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565464A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 传输信息的方法和装置
EP3927109A4 (en) * 2019-02-14 2022-09-14 Ntt Docomo, Inc. NETWORK NODE
CN111565464B (zh) * 2019-02-14 2024-02-02 华为技术有限公司 传输信息的方法和装置

Also Published As

Publication number Publication date
EP3629630A1 (en) 2020-04-01
KR20200015750A (ko) 2020-02-12
EP3629630A4 (en) 2020-07-08
US20200120735A1 (en) 2020-04-16
EP3629630B1 (en) 2021-09-22
US11291064B2 (en) 2022-03-29
JP7026705B2 (ja) 2022-02-28
CN109150451B (zh) 2023-06-20
CN109150451A (zh) 2019-01-04
BR112019026671A2 (pt) 2020-06-30
JP2020523895A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2018228510A1 (zh) 通信方法、网络节点和无线接入网系统
JP6597946B2 (ja) gNB−DU、gNB−CU、及びこれらの方法
JP6741138B2 (ja) 無線アクセスネットワークノード及び無線端末並びにこれらの方法
JP6904419B2 (ja) 無線アクセスネットワークノード、コアネットワークノード、及び無線端末並びにこれらの方法
JP6575680B2 (ja) 無線端末、基地局、及びこれらの方法
US9247555B2 (en) Data transmission method, apparatus, and communications system
JP2018530242A (ja) 端末機及び端末機の通信方法
WO2013075602A1 (zh) 实现载波聚合的方法、基站和用户设备
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230040079A1 (en) Data transmission method and apparatus
JPWO2018128021A1 (ja) 無線端末及び基地局並びにこれらの方法
WO2021062839A1 (zh) 通信方法和通信装置
WO2021121113A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230180338A1 (en) Communication control method
WO2021204022A1 (zh) 一种测量方法和装置
WO2022040873A1 (zh) 一种通信方法、设备和装置
WO2022083411A1 (zh) 辅小区变换的错误类型的判定方法及设备
WO2019028922A1 (zh) 一种发送小区配置信息的方法及装置
CN114451063B (zh) 通信方法和通信装置
WO2021072629A1 (zh) 建立无线资源控制连接的方法和装置
WO2023092448A1 (en) 5g new radio mobility enhancements
JP7416201B2 (ja) 無線アクセスネットワークノード、User Equipment、及びこれらの方法
WO2024024460A1 (ja) 中央ユニット、分散ユニット、無線アクセスネットワークノード、ue、及びこれらの方法
WO2023201746A1 (en) Method, device, and system for resource status report in wireless networks
WO2023130368A1 (zh) 收发信息的方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569367

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019026671

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207000922

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018817571

Country of ref document: EP

Effective date: 20191220

ENP Entry into the national phase

Ref document number: 112019026671

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191213