WO2009089937A2 - Current calculation unit, current calculation system, and current calculation method - Google Patents

Current calculation unit, current calculation system, and current calculation method Download PDF

Info

Publication number
WO2009089937A2
WO2009089937A2 PCT/EP2008/065272 EP2008065272W WO2009089937A2 WO 2009089937 A2 WO2009089937 A2 WO 2009089937A2 EP 2008065272 W EP2008065272 W EP 2008065272W WO 2009089937 A2 WO2009089937 A2 WO 2009089937A2
Authority
WO
WIPO (PCT)
Prior art keywords
coil
temperature
fuel
current calculation
current
Prior art date
Application number
PCT/EP2008/065272
Other languages
German (de)
French (fr)
Other versions
WO2009089937A3 (en
Inventor
Michael Raff
Guenter Veit
Stefan Keller
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2009089937A2 publication Critical patent/WO2009089937A2/en
Publication of WO2009089937A3 publication Critical patent/WO2009089937A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2065Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control being related to the coil temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature

Definitions

  • the present invention relates to a current calculation unit, a current calculation system and a current calculation method for calculating a current through a common rail pump metering unit of an injection system for injecting fuel in a motor vehicle.
  • a common high-pressure fuel line in particular in diesel injection systems, a common high-pressure fuel line, the so-called “common rail” (hereinafter also referred to as “rail”), with corresponding outlets to the individual cylinders is used to supply the cylinders with fuel.
  • the pressure in the rail is kept constant via a control loop.
  • the pressure is detected by a pressure sensor and regulated to a predetermined value. This predetermined value is calculated with the help of comparators and maps.
  • a current setpoint with which the metering unit of a fuel delivery pump is driven.
  • This metering unit has a solenoid valve which, in the opened state, allows fuel to flow from a fuel reservoir to the rail and, in the closed state, separates the connection between the fuel reservoir and the rail. Resistance and inductance of the solenoid valve are dependent on the temperature, so that a current control must be provided, which regulates the current through the solenoid valve to a predetermined value.
  • FIG. 1 shows a schematic block diagram of a conventional current control circuit 10 for the current I through the solenoid valve (shown here as impedance 21) of the measuring unit of a common rail pump 20.
  • the current control circuit 10 in Fig. 1 comprises a shunt resistor 11 and a MOSFET transistor 12 which is connected in series with the solenoid valve 21 of the metering unit are.
  • the transistor 12 is connected to the source and drain between the shunt resistor 11 and ground potential V gnd.
  • An analog operational amplifier 13 compares the potentials at both ends of the shunt resistor 11 with each other and outputs a comparison signal to an analog / digital converter 14 of a control unit 15. Between the drain of the transistor 12 and the supply potential V bat also a freewheeling diode 16 is provided.
  • the control unit 15 compares the digitized comparison signal with a reference signal and thus determines whether the current flowing through the solenoid valve 21 current I corresponds to a predetermined value. When the controller 15 detects that the current I flowing through the solenoid valve 21 does not correspond to the predetermined value, the controller 15 controls the current to the predetermined value. For this purpose, an output of the control unit 15 is connected to the gate of the transistor 12. The control unit 15 activates the gate by means of pulse width modulation (PWM) by means of a PWM signal PWM, wherein the control unit 15 controls the duty cycle of the PWM signal.
  • PWM pulse width modulation
  • Signal PWM adapts to correct any deviations between the setpoint and the actual value of the current I through the solenoid valve 21.
  • Disadvantages of the conventional method according to FIG. 1 are the costs for providing the shunt resistor 11 and the operational amplifier 13 for the detection of the current through the metering unit.
  • the current calculation unit according to the invention with the features of claim 1 the current calculation system according to the invention with the features of claim 7 and the method according to the invention with the features of claim 10 each have the advantage that the shunt resistor and the operational amplifier for the detection of the current through the coil Metering unit can be omitted without replacement. Thus, according to the present invention, costs are saved.
  • the idea underlying the present invention is to detect the current through the coil not by a measurement, but rather, in particular, by an offset between the fuel temperature inherently provided in the system by the fuel sensor and by a fuel pressure to calculate a predetermined offset between the fuel temperature and the coil temperature. It is sufficient to determine this offset or offset value in advance by means of a validation process, so that the invention Current calculation unit can be installed in the field in a variety of vehicles, which can then calculate the current through the metering unit in particular depending on the currently measured fuel temperature and the predetermined offset value.
  • a current calculation unit for calculating a current through a metering unit for a common rail pump of an injection system for injecting fuel with a calculation means, which is adapted to a coil temperature-dependent actual resistance of a coil of the metering unit in dependence on a temperature To calculate coefficients of a coil wire of the coil, a predetermined reference resistance of the coil at a reference temperature, a measured fuel temperature of the fuel and a certain offset value between the fuel temperature and the coil temperature.
  • a current calculating system for calculating a current through a common rail pump metering unit of a fuel injection injection system, comprising: a current calculating unit as explained above; and a further calculation unit, which is adapted to the current through the metering unit in
  • a method for calculating a current through a metering unit for a common rail pump of an injection system for injecting fuel comprising the following steps: - providing a temperature coefficient of a coil wire of a coil of the metering unit;
  • the offset value is determined by means of a validation process at least as a function of the coil temperature and the fuel temperature for at least one motor vehicle.
  • the calculation unit has at least one first interface unit which is set up to receive the measured fuel temperature from a fuel temperature sensor arranged in an inlet of the injection system.
  • the calculation unit has at least one second interface device, which is set up to receive the temperature coefficient and / or the predetermined reference resistance and / or the determined offset value.
  • the current calculation unit and / or the calculation unit are / is designed as a computer program product.
  • this has a memory device which is set up to store the temperature coefficient of the coil wire and / or the predetermined reference resistance of the coil and / or the determined offset value.
  • this can be coupled to a communication bus which is suitable for transmitting the fuel temperature measured by the fuel temperature sensor to the current calculation unit.
  • a computer program product which causes the execution of a method according to claim 10 on a program-controlled device.
  • Fig. 1 is a schematic block diagram of a conventional current control circuit
  • Fig. 2 is a schematic block diagram of an embodiment of the invention
  • Fig. 3 is a schematic block diagram of an embodiment of the invention
  • FIG. 4 shows a schematic flow diagram of an exemplary embodiment of the method according to the invention for calculating the current through the metering unit.
  • FIG. 2 shows a schematic block diagram of an embodiment of the current calculation unit 30 according to the invention for calculating a current I through a metering unit for a common rail pump 20 of an injection system for injecting fuel.
  • the current calculation unit 30 has a first calculation means 31.
  • the first calculating means 31 is adapted to a coil temperature-dependent actual resistance R (Ts) of a coil 21 of the metering unit depending on a material-specific temperature coefficient ⁇ of a coil wire of the coil 21, a predetermined reference resistance R (Tref), the coil 21 at a reference temperature (Tref), a measured fuel temperature (Tk) of the fuel, in particular in an inlet of the injection system, and a specific offset value OS between the fuel temperature Tk and the coil temperature Ts to calculate.
  • the offset value OS is determined in particular by means of a validation process at least as a function of the coil temperature Ts and the fuel temperature Tk in at least one motor vehicle.
  • the validation process is carried out in advance of the standard installation of the current calculation unit. Is this validation process done and thus determines the offset value OS, the current calculation unit 30 can be installed in series, and this current calculation unit 30 can then calculate the current I through the metering unit, in particular as a function of the determined offset value OS.
  • the calculation unit 31 has, in particular, a first interface unit 32 and a second interface unit 33.
  • the first interface unit 32 is in particular configured to receive the measured fuel temperature Tk from a fuel temperature sensor arranged in an inlet of the injection system.
  • the second interface unit 33 is configured to receive the temperature coefficient ⁇ , the predetermined reference resistance R (Tref) and the determined offset value OS.
  • each of the current calculation unit 30 and the calculation unit 31 is designed as a computer program product.
  • FIG. 3 shows a schematic block diagram of an embodiment of the inventive current calculation system 40 for calculating a current I through a metering unit for a common rail pump 20 of an injection system for injecting fuel.
  • the current calculation system 40 has a current calculation unit 30 as shown in FIG. 2 and at least one further, second calculation unit 34.
  • the second calculation unit 34 is preferably configured to calculate the current I through the metering unit as a function of the actual resistance R (Ts) of the coil 21 and a supply voltage V bat supplying the coil 21 with voltage.
  • the current calculation system 40 may include a control unit 41.
  • the control unit 41 is configured to compare the current I calculated by the second calculation unit 34 with a reference current value Iref and to determine whether the current I flowing through the metering unit corresponds to a predetermined value. If the control unit 41 recognizes that the current I flowing through the metering unit does not correspond to the predetermined value Iref, then the control unit 41 can set the current I to the predetermined value by means of a PWM signal PWM
  • control unit 41 is coupled to the gate of the transistor 12. At this time, the control unit 41 controls the gate by means of the PWM (Pulse Width Modulation) signal PWM, wherein the control unit 41 adjusts the duty cycle by means of the PWM signal PWM to correct any deviations between the target value and the actual value of the current I by the metering unit.
  • PWM Pulse Width Modulation
  • the current calculation system 40 may have a memory device 35, which is set up for the temperature coefficient ⁇ of the coil wire of the coil 21 and / or the predetermined reference resistance R (Tref) of the coil 21 and / or the determined offset value OS to save.
  • the current calculation system 40 can be coupled to a communication bus 50 of the motor vehicle, which is suitable for transmitting the fuel temperature Tk measured by the fuel temperature sensor to the current calculation unit 30.
  • the communication bus is designed, for example, as a LIN bus, CAN bus or FlexRay bus.
  • FIG. 4 shows a schematic flow diagram of an exemplary embodiment of the method according to the invention for calculating the current I through the metering unit for the common rail pump 20 of the injection system for injecting fuel.
  • the method according to the invention will be described below with reference to the block diagram in FIG. 4 with reference to the schematic block diagram in FIG.
  • the embodiment of the inventive method according to FIG. 4 has the following method steps S1 to S5:
  • the material-specific temperature coefficient ⁇ of the coil wire used of the coil 21 of the metering unit of the injection system is provided.
  • a reference temperature Tref is provided. Tref for example 20 0 C.
  • the resulting reference resistance R (Tref) of the coil 21 is measured at the predetermined reference temperature Tref. In particular, this measurement is carried out in advance in a validation process.
  • the measured reference resistance R (Tref) is then provided as a parameter for the calculation of the current I through the coil 21.
  • the fuel temperature Tk of the fuel is measured in an inlet of the injection system by means of a temperature sensor, in particular during operation of the motor vehicle.
  • the coil temperature-dependent actual resistance R (Ts) of the coil 21 is determined in particular in the field in a plurality of motor vehicles as a function of the temperature coefficient ⁇ , the reference resistance R (Tref), the respectively measured fuel temperature Tk and the determined offset Value OS calculated.

Abstract

The invention relates to a current calculation unit, a current calculation system, and a current calculation method. The current calculation unit for calculating a current flowing through a dosing unit for a common rail pump of an injection system for injecting fuel comprises a calculating means which is designed to calculate a coil temperature-related actual resistance of a coil of the dosing unit in accordance with a temperature coefficient of a coil wire, a predetermined reference resistance of the coil at a reference temperature, a measured fuel temperature, and a specific offset value between the fuel temperature and the coil temperature.

Description

Beschreibung description
Titeltitle
Stromberechnungseinheit Stromberechnungssystem und StromberechnungsverfahrenCurrent calculation unit Current calculation system and current calculation method
Stand der TechnikState of the art
Die vorliegende Erfindung betrifft eine Stromberechnungseinheit, ein Stromberechnungssystem und ein Stromberechnungsverfahren zum Berechnen eines Stromes durch eine Zumesseinheit für eine Common-Rail-Pumpe eines Einspritzsystems zum Einspritzen von Kraftstoff in einem Kraftfahrzeug.The present invention relates to a current calculation unit, a current calculation system and a current calculation method for calculating a current through a common rail pump metering unit of an injection system for injecting fuel in a motor vehicle.
In modernen Einspritzsystemen, insbesondere in Dieseleinspritzsystemen, wird zur Versorgung der Zylinder mit Kraftstoff eine gemeinsame Kraftstoff-Hochdruckleitung, der so genannte „Common Rail" (im Folgenden auch „Rail" genannt), mit entsprechenden Abgängen zu den einzelnen Zylindern verwendet. Der Druck im Rail wird über einen Regelkreis konstant gehalten. Dabei wird der Druck über einen Drucksensor erfasst und auf einen vorgegebenen Wert geregelt. Dieser vorgegebene Wert wird unter Zuhilfenahme von Komparatoren und Kennfeldern berechnet.In modern injection systems, in particular in diesel injection systems, a common high-pressure fuel line, the so-called "common rail" (hereinafter also referred to as "rail"), with corresponding outlets to the individual cylinders is used to supply the cylinders with fuel. The pressure in the rail is kept constant via a control loop. In this case, the pressure is detected by a pressure sensor and regulated to a predetermined value. This predetermined value is calculated with the help of comparators and maps.
Bei einem solchen Kennfeld ergibt sich aus einer berechneten Menge des zu fördernden Kraftstoffs ein Stromsollwert, mit dem die Zumesseinheit einer Kraftstoffförderpumpe angesteuert wird. Diese Zumesseinheit weist ein Magnetventil auf, welches im geöffneten Zustand Kraftstoff aus einem Kraftstoffreservoir zum Rail fließen lässt und im geschlossenen Zustand die Verbindung zwischen Kraftstoffreservoir und Rail trennt. Widerstand und Induktivität des Magnetventils sind von der Temperatur abhängig, so dass eine Stromregelung vorgesehen werden muss, welche den Strom durch das Magnetventil auf einen vorgegebenen Wert regelt.In such a map results from a calculated amount of the fuel to be delivered, a current setpoint, with which the metering unit of a fuel delivery pump is driven. This metering unit has a solenoid valve which, in the opened state, allows fuel to flow from a fuel reservoir to the rail and, in the closed state, separates the connection between the fuel reservoir and the rail. Resistance and inductance of the solenoid valve are dependent on the temperature, so that a current control must be provided, which regulates the current through the solenoid valve to a predetermined value.
Dazu zeigt Fig. 1 eine schematisches Blockschaltbild einer herkömmlichen Stromregelungsschaltung 10 für den Strom I durch das Magnetventil (hier dargestellt als Impedanz 21) der Zu- messeinheit einer Common-Rail-Pumpe 20.1 shows a schematic block diagram of a conventional current control circuit 10 for the current I through the solenoid valve (shown here as impedance 21) of the measuring unit of a common rail pump 20.
Die Stromregelungsschaltung 10 in Fig. 1 weist einen Shuntwiderstand 11 sowie einen MOS- FET-Transistor 12 auf, welche in Serie mit dem Magnetventil 21 der Zumesseinheit geschaltet sind. Der Transistor 12 ist mit Source und Drain zwischen den Shuntwiderstand 11 und Massepotential V gnd geschaltet. Ein analoger Operationsverstärker 13 vergleicht die Potentiale an beiden Enden des Shuntwiderstands 11 miteinander und gibt ein Vergleichssignal an einen Analog/Digital- Wandler 14 eines Steuergerätes 15 aus. Zwischen dem Drain des Transistors 12 und dem Versorgungspotential V bat ist ferner eine Freilaufdiode 16 vorgesehen.The current control circuit 10 in Fig. 1 comprises a shunt resistor 11 and a MOSFET transistor 12 which is connected in series with the solenoid valve 21 of the metering unit are. The transistor 12 is connected to the source and drain between the shunt resistor 11 and ground potential V gnd. An analog operational amplifier 13 compares the potentials at both ends of the shunt resistor 11 with each other and outputs a comparison signal to an analog / digital converter 14 of a control unit 15. Between the drain of the transistor 12 and the supply potential V bat also a freewheeling diode 16 is provided.
Der Potentialunterschied zwischen den beiden Enden des Shuntwiderstands 11 , und somit auch die Größe des Vergleichssignals, hängt vom Strom durch den Shuntwiderstand 11 ab. Das Steuergerät 15 vergleicht das digitalisierte Vergleichssignal mit einem Referenzsignal und bestimmt somit, ob der durch das Magnetventil 21 fließende Strom I einem vorgegebenen Wert entspricht. Wenn das Steuergerät 15 erkennt, dass der durch das Magnetventil 21 fließende Strom I nicht dem vorgegebenen Wert entspricht, dann regelt das Steuergerät 15 den Strom auf den vorgegebenen Wert. Zu diesem Zwecke ist ein Ausgang des Steuergerätes 15 mit dem Gate des Transistors 12 verbunden. Das Steuergerät 15 steuert das Gate per Pulsweitenmodulation (PWM) mit- tels eines PWM-Signals PWM an, wobei das Steuergerät 15 das Tastverhältnis des PWM-The potential difference between the two ends of the shunt resistor 11, and thus also the size of the comparison signal, depends on the current through the shunt resistor 11. The control unit 15 compares the digitized comparison signal with a reference signal and thus determines whether the current flowing through the solenoid valve 21 current I corresponds to a predetermined value. When the controller 15 detects that the current I flowing through the solenoid valve 21 does not correspond to the predetermined value, the controller 15 controls the current to the predetermined value. For this purpose, an output of the control unit 15 is connected to the gate of the transistor 12. The control unit 15 activates the gate by means of pulse width modulation (PWM) by means of a PWM signal PWM, wherein the control unit 15 controls the duty cycle of the PWM signal.
Signals PWM anpasst, um etwaige Abweichungen zwischen dem Sollwert und dem Istwert des Stroms I durch das Magnetventil 21 auszuregeln.Signal PWM adapts to correct any deviations between the setpoint and the actual value of the current I through the solenoid valve 21.
Nachteilig an dem herkömmlichen Verfahren nach Fig. 1 sind die Kosten für die Bereitstellung des Shuntwiderstandes 11 und des Operationsverstärkers 13 für die Erfassung des Stromes durch die Zumesseinheit.Disadvantages of the conventional method according to FIG. 1 are the costs for providing the shunt resistor 11 and the operational amplifier 13 for the detection of the current through the metering unit.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Stromberechnungseinheit mit den Merkmalen des Anspruchs 1 , das erfindungsgemäße Stromberechnungssystem mit den Merkmalen des Anspruchs 7 und das erfindungsgemäße Verfahren mit den Merkmalen des Anspruchs 10 weisen jeweils den Vorteil auf, dass der Shuntwiderstand und der Operationsverstärker für die Erfassung des Stromes durch die Spule der Zumesseinheit ersatzlos entfallen können. Somit werden gemäß der vorliegenden Erfindung Kos- ten eingespart.The current calculation unit according to the invention with the features of claim 1, the current calculation system according to the invention with the features of claim 7 and the method according to the invention with the features of claim 10 each have the advantage that the shunt resistor and the operational amplifier for the detection of the current through the coil Metering unit can be omitted without replacement. Thus, according to the present invention, costs are saved.
Die der vorliegenden Erfindung zugrunde liegende Idee besteht im Wesentlichen darin, den Strom durch die Spule nicht durch eine Messung zu erfassen, sondern diesen insbesondere aus einem Offset zwischen der Kraftstofftemperatur, welche inhärent in dem System durch den Kraftstoff- sensor bereitgestellt ist, und durch einen vorab bestimmten Offset zwischen der Kraftstofftemperatur und der Spulentemperatur zu berechnen. Dabei ist es ausreichend, diesen Offset oder Offset- Wert vorab mittels eines Validierungsprozesses zu bestimmen, so dass die erfindungsgemäße Stromberechnungseinheit im Feld bei einer Vielzahl von Kraftfahrzeugen eingebaut werden kann, welche dann insbesondere in Abhängigkeit der aktuell gemessenen Kraftstofftemperatur und des vorab bestimmten Offset- Wertes den Strom durch die Zumesseinheit berechnen kann.Essentially, the idea underlying the present invention is to detect the current through the coil not by a measurement, but rather, in particular, by an offset between the fuel temperature inherently provided in the system by the fuel sensor and by a fuel pressure to calculate a predetermined offset between the fuel temperature and the coil temperature. It is sufficient to determine this offset or offset value in advance by means of a validation process, so that the invention Current calculation unit can be installed in the field in a variety of vehicles, which can then calculate the current through the metering unit in particular depending on the currently measured fuel temperature and the predetermined offset value.
Demgemäß wird eine Stromberechnungseinheit zum Berechnen eines Stromes durch eine Zumesseinheit für eine Common- Rail-Pumpe eines Einspritzsystems zum Einspritzen von Kraftstoff mit einem Berechnungsmittel vorgeschlagen, welches dazu eingerichtet ist, einen spulen- temperaturabhängigen Ist- Widerstand einer Spule der Zumesseinheit in Abhängigkeit eines Temperatur-Koeffizienten eines Spulendrahtes der Spule, eines vorbestimmten Referenz- Widerstandes der Spule bei einer Referenz-Temperatur, einer gemessenen Kraftstofftemperatur des Kraftstoffes und eines bestimmten Offset- Wertes zwischen der Kraftstofftemperatur und der Spulentemperatur zu berechnen.Accordingly, a current calculation unit for calculating a current through a metering unit for a common rail pump of an injection system for injecting fuel with a calculation means is proposed, which is adapted to a coil temperature-dependent actual resistance of a coil of the metering unit in dependence on a temperature To calculate coefficients of a coil wire of the coil, a predetermined reference resistance of the coil at a reference temperature, a measured fuel temperature of the fuel and a certain offset value between the fuel temperature and the coil temperature.
Weiter wird ein Stromberechnungssystem zum Berechnen eines Stromes durch eine Zumesseinheit für eine Common-Rail-Pumpe eines Einspritzsystems zum Einspritzen von Kraftstoff vorgeschlagen, welches aufweist: eine wie oben erläuterte Stromberechnungseinheit; und eine weitere Berechnungseinheit, welche dazu eingerichtet ist, den Strom durch die Zumesseinheit inFurther, there is proposed a current calculating system for calculating a current through a common rail pump metering unit of a fuel injection injection system, comprising: a current calculating unit as explained above; and a further calculation unit, which is adapted to the current through the metering unit in
Abhängigkeit des berechneten Ist- Widerstandes der Spule und einer die Spule mit Spannung versor- genden Versorgungs-Spannung zu berechnen.To calculate the dependence of the calculated actual resistance of the coil and a supply voltage supplying the coil with voltage.
Des Weiteren wird ein Verfahren zum Berechnen eines Stromes durch eine Zumesseinheit für eine Common-Rail-Pumpe eines Einspritzsystems zum Einspritzen von Kraftstoff vorgeschlagen, welches folgende Schritte aufweist: - Bereitstellen eines Temperatur-Koeffizienten eines Spulendrahtes einer Spule der Zumesseinheit;Furthermore, a method is proposed for calculating a current through a metering unit for a common rail pump of an injection system for injecting fuel, comprising the following steps: - providing a temperature coefficient of a coil wire of a coil of the metering unit;
- Vorbestimmen einer Referenz-Temperatur und Messen eines Referenz- Widerstandes der Spule bei der vorbestimmten Referenz-Temperatur;- Predetermining a reference temperature and measuring a reference resistance of the coil at the predetermined reference temperature;
- Messen einer Kraftstofftemperatur des Kraftstoffes;- measuring a fuel temperature of the fuel;
- Bestimmen eines Offset- Wertes zwischen der Kraftstofftemperatur und der Spulentemperatur; und - Berechnen eines spulentemperaturabhängigen Ist- Widerstandes der Spule in Abhängigkeit des Temperatur-Koeffizienten, des Referenz- Widerstandes, der Kraftstofftemperatur und des Offset- Wertes.Determining an offset value between the fuel temperature and the coil temperature; and - calculating a coil temperature-dependent actual resistance of the coil as a function of the temperature coefficient, the reference resistance, the fuel temperature and the offset value.
In den Unteransprüchen finden sich vorteilhafte Weiterbildungen und Ausgestaltungen der in Anspruch 1 angegebenen Stromberechnungseinheit, des in Anspruch 7 angegebenen Stromberechnungs- Systems und des in Anspruch 10 angegebenen Verfahrens. Gemäß einer bevorzugten Weiterbildung der Stromberechnungseinheit wird der Offset- Wert mittels eines Validierungsprozesses zumindest in Abhängigkeit der Spulentemperatur und der Kraftstofftemperatur für zumindest ein Kraftfahrzeug bestimmt.In the dependent claims are advantageous developments and refinements of the specified in claim 1 current calculation unit, the specified in claim 7 current calculation system and the method specified in claim 10. According to a preferred development of the current calculation unit, the offset value is determined by means of a validation process at least as a function of the coil temperature and the fuel temperature for at least one motor vehicle.
Gemäß einer bevorzugten Ausgestaltung der Stromberechnungseinheit weist die Berechnungseinheit zumindest eine erste Schnittstelleneinheit auf, welche dazu eingerichtet ist, die gemessene Kraftstofftemperatur von einem in einem Zulauf des Einspritzsystems angeordneten Kraftstofftemperatursensor zu empfangen.According to a preferred embodiment of the current calculation unit, the calculation unit has at least one first interface unit which is set up to receive the measured fuel temperature from a fuel temperature sensor arranged in an inlet of the injection system.
Gemäß einer weiteren bevorzugten Ausgestaltung der Stromberechnungseinheit weist die Berechnungseinheit zumindest eine zweite Schnittstelleneinrichtung auf, welche dazu eingerichtet ist, den Temperatur-Koeffizienten und/oder den vorbestimmten Referenz- Widerstand und/oder den bestimmten Offset-Wert zu empfangen.According to a further preferred embodiment of the current calculation unit, the calculation unit has at least one second interface device, which is set up to receive the temperature coefficient and / or the predetermined reference resistance and / or the determined offset value.
Gemäß einer weiteren bevorzugten Ausgestaltung der Stromberechnungseinheit berechnet die Berechnungseinheit den spulentemperaturabhängigen Ist- Widerstand der Spule nach der Formel R(Ts) = R(Tref) (1 + α (Tk + OS - 20 K)), wobei R(Tref) den vorbestimmten Referenz- Widerstand bei der Referenz-Temperatur, Tref, α den Temperatur-Koeffizienten der Spulendrahtes, Tk die aktuell gemessene Kraftstofftemperatur und OS den bestimmten Offset-Wert bezeichnen.According to a further preferred embodiment of the current calculation unit, the calculation unit calculates the coil temperature-dependent actual resistance of the coil according to the formula R (Ts) = R (Tref) (1 + α (Tk + OS - 20 K)), where R (Tref) the predetermined reference resistance at the reference temperature, Tref, α the temperature coefficient of the coil wire, Tk the currently measured fuel temperature and OS denote the determined offset value.
Gemäß einer weiteren bevorzugten Ausgestaltung sind/ist die Stromberechnungseinheit und/oder die Berechnungseinheit als ein Computerprogrammprodukt ausgestaltet.According to a further preferred embodiment, the current calculation unit and / or the calculation unit are / is designed as a computer program product.
Gemäß einer bevorzugten Weiterbildung des Stromberechnungssystems weist diese eine Speicherein- richtung auf, welche dazu eingerichtet ist, den Temperatur-Koeffizienten des Spulendrahtes und/oder den vorbestimmten Referenz- Widerstand der Spule und/oder den bestimmten Offset-Wert zu speichern.According to a preferred embodiment of the current calculation system, this has a memory device which is set up to store the temperature coefficient of the coil wire and / or the predetermined reference resistance of the coil and / or the determined offset value.
Gemäß einer weiteren bevorzugten Weiterbildung des Stromberechnungssystems ist diese mit einem Kommunikationsbus koppelbar, welcher dazu geeignet ist, die durch den Kraftstofftemperatursensor gemessene Kraftstofftemperatur an die Stromberechnungseinheit zu übertragen.According to a further preferred development of the current calculation system, this can be coupled to a communication bus which is suitable for transmitting the fuel temperature measured by the fuel temperature sensor to the current calculation unit.
Gemäß einer bevorzugten Weiterbildung des Verfahrens wird ein Computerprogrammprodukt vorge- schlagen, welches auf einer programmgesteuerten Einrichtung die Durchführung eines Verfahrens nach Anspruch 10 veranlasst. ZeichnungenAccording to a preferred embodiment of the method, a computer program product is proposed, which causes the execution of a method according to claim 10 on a program-controlled device. drawings
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:Embodiments of the invention are illustrated in the drawings and explained in more detail in the following description. Show it:
Fig. 1 ein schematisches Blockschaltbild einer herkömmlichen Stromregelungsschaltung ;Fig. 1 is a schematic block diagram of a conventional current control circuit;
Fig. 2 ein schematisches Blockschaltbild eines Ausführungsbeispiels der erfindungsgemäßenFig. 2 is a schematic block diagram of an embodiment of the invention
Stromberechnungseinheit;Current calculation unit;
Fig. 3 ein schematisches Blockschaltbild eines Ausführungsbeispiels des erfindungsgemäßenFig. 3 is a schematic block diagram of an embodiment of the invention
Stromberechnungssystems; undCurrent calculation system; and
Fig. 4 ein schematisches Ablaufdiagramm eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens zum Berechnen des Stromes durch die Zumesseinheit.4 shows a schematic flow diagram of an exemplary embodiment of the method according to the invention for calculating the current through the metering unit.
Beschreibung der AusführungsbeispieleDescription of the embodiments
In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Bestandteile.In the figures, the same reference numerals designate the same or functionally identical components.
Fig. 2 zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels der erfindungsgemäßen Stromberechnungseinheit 30 zum Berechnen eines Stromes I durch eine Zumesseinheit für eine Common-Rail-Pumpe 20 eines Einspritzsystems zum Einspritzen von Kraftstoff.2 shows a schematic block diagram of an embodiment of the current calculation unit 30 according to the invention for calculating a current I through a metering unit for a common rail pump 20 of an injection system for injecting fuel.
Die Stromberechnungseinheit 30 gemäß Fig. 1 weist ein erstes Berechnungsmittel 31 auf. Das erste Berechnungsmittel 31 ist dazu eingerichtet, einen spulentemperaturabhängigen Ist- Widerstand R(Ts) einer Spule 21 der Zumesseinheit in Abhängigkeit eines materialspezifischen Temperatur-Koeffizienten α eines Spulendrahtes der Spule 21, eines vorbestimmten Referenz- Widerstands R(Tref), der Spule 21 bei einer Referenz-Temperatur (Tref), einer gemessenen Kraftstofftemperatur (Tk) des Kraftstoffes, insbesondere in einem Zulauf des Einspritzsystems, und eines bestimmten Offset- Wertes OS zwischen der Kraftstofftemperatur Tk und der Spulentemperatur Ts zu berechnen.The current calculation unit 30 according to FIG. 1 has a first calculation means 31. The first calculating means 31 is adapted to a coil temperature-dependent actual resistance R (Ts) of a coil 21 of the metering unit depending on a material-specific temperature coefficient α of a coil wire of the coil 21, a predetermined reference resistance R (Tref), the coil 21 at a reference temperature (Tref), a measured fuel temperature (Tk) of the fuel, in particular in an inlet of the injection system, and a specific offset value OS between the fuel temperature Tk and the coil temperature Ts to calculate.
Der Offset- Wert OS wird insbesondere mittels eines Validierungsprozesses zumindest in Abhän- gigkeit der Spulentemperatur Ts und der Kraftstofftemperatur Tk bei zumindest einem Kraftfahrzeug bestimmt. Dabei wird der Validierungsprozess insbesondere vorab vor dem serienmäßigen Verbau der Stromberechnungseinheit durchgeführt. Ist dieser Validierungsprozess durchgeführt und somit der Offset- Wert OS bestimmt, kann die Stromberechnungseinheit 30 serienmäßig verbaut werden, wobei diese Stromberechnungseinheit 30 dann den Strom I durch die Zumesseinheit insbesondere in Abhängigkeit des bestimmten Offset- Wertes OS berechnen kann.The offset value OS is determined in particular by means of a validation process at least as a function of the coil temperature Ts and the fuel temperature Tk in at least one motor vehicle. In particular, the validation process is carried out in advance of the standard installation of the current calculation unit. Is this validation process done and thus determines the offset value OS, the current calculation unit 30 can be installed in series, and this current calculation unit 30 can then calculate the current I through the metering unit, in particular as a function of the determined offset value OS.
Zur Bereitstellung der notwendigen Parameter für diese Berechnung weist die Berechnungseinheit 31 insbesondere eine erste Schnittstelleneinheit 32 und eine zweite Schnittstelleneinheit 33 auf. Die erste Schnittstelleneinheit 32 ist insbesondere dazu eingerichtet, die gemessene Kraftstofftemperatur Tk von einem in einem Zulauf des Einspritzsystem angeordneten Kraftstofftemperatursensors zu empfangen.In order to provide the necessary parameters for this calculation, the calculation unit 31 has, in particular, a first interface unit 32 and a second interface unit 33. The first interface unit 32 is in particular configured to receive the measured fuel temperature Tk from a fuel temperature sensor arranged in an inlet of the injection system.
Ferner ist die zweite Schnittstelleneinheit 33 dazu eingerichtet, den Temperatur-Koeffizienten α, den vorbestimmten Referenz- Widerstand R (Tref) und den bestimmten Offset- Wert OS zu empfangen.Further, the second interface unit 33 is configured to receive the temperature coefficient α, the predetermined reference resistance R (Tref) and the determined offset value OS.
Die Berechnungseinheit 31 berechnet den spulentemperaturabhängigen Ist- Widerstand R(Ts) der Spule 21 nach der Formel R(Ts) = R(Tref) (1 + α (Tk + OS - 20K)).The calculation unit 31 calculates the coil temperature-dependent actual resistance R (Ts) of the coil 21 according to the formula R (Ts) = R (Tref) (1 + α (Tk + OS-20K)).
Des Weiteren ist es möglich, sowohl die Stromberechnungseinheit 30 als auch die Berechnungseinheit 31 jeweils als ein Computerprogrammprodukt auszubilden.Furthermore, it is possible to design each of the current calculation unit 30 and the calculation unit 31 as a computer program product.
Fig. 3 zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels des erfmdungsgemä- ßen Stromberechnungssystems 40 zum Berechnen eines Stromes I durch eine Zumesseinheit für eine Common-Rail-Pumpe 20 eines Einspritzsystems zum Einspritzen von Kraftstoff. Das Stromberechnungssystem 40 weist eine wie in Fig. 2 dargestellte Stromberechnungseinheit 30 und zu- mindest eine weitere, zweite Berechnungseinheit 34 auf. Die zweite Berechnungseinheit 34 ist vorzugsweise dazu eingerichtet, den Strom I durch die Zumesseinheit in Abhängigkeit des Ist- Widerstands R(Ts) der Spule 21 und einer die Spule 21 mit Spannung versorgenden Versorgungsspannung V bat zu berechnen.3 shows a schematic block diagram of an embodiment of the inventive current calculation system 40 for calculating a current I through a metering unit for a common rail pump 20 of an injection system for injecting fuel. The current calculation system 40 has a current calculation unit 30 as shown in FIG. 2 and at least one further, second calculation unit 34. The second calculation unit 34 is preferably configured to calculate the current I through the metering unit as a function of the actual resistance R (Ts) of the coil 21 and a supply voltage V bat supplying the coil 21 with voltage.
Ferner kann das Stromberechnungssystem 40 eine Steuereinheit 41 aufweisen. Die Steuereinheit 41 ist dazu eingerichtet, den durch die zweite Berechnungseinheit 34 berechneten Strom I mit einem Referenzstromwert Iref zu vergleichen und zu bestimmen, ob der durch die Zumesseinheit fließende Strom I einem vorgegebenen Wert entspricht. Wenn die Steuereinheit 41 erkennt, dass der durch die Zumesseinheit fließende Strom I nicht dem vorgegebenen Wert Iref entspricht, dann kann die Steuereinheit 41 den Strom I mittels eines PWM-Signals PWM auf den vorgegebenenFurthermore, the current calculation system 40 may include a control unit 41. The control unit 41 is configured to compare the current I calculated by the second calculation unit 34 with a reference current value Iref and to determine whether the current I flowing through the metering unit corresponds to a predetermined value. If the control unit 41 recognizes that the current I flowing through the metering unit does not correspond to the predetermined value Iref, then the control unit 41 can set the current I to the predetermined value by means of a PWM signal PWM
Wert regeln. Zu diesem Zweck ist die Steuereinheit 41 mit dem Gate des Transistors 12 gekoppelt. Dabei steuert die Steuereinheit 41 das Gate mittels des PWM-(Pulsweitenmodulation-)Signals PWM an, wobei die Steuereinheit 41 das Tastverhältnis mittels des PWM-Signals PWM anpasst, um etwaige Abweichungen zwischen dem Soll- Wert und dem Ist-Wert des Stromes I durch die Zumesseinheit auszuregeln.Regulate value. For this purpose, the control unit 41 is coupled to the gate of the transistor 12. At this time, the control unit 41 controls the gate by means of the PWM (Pulse Width Modulation) signal PWM, wherein the control unit 41 adjusts the duty cycle by means of the PWM signal PWM to correct any deviations between the target value and the actual value of the current I by the metering unit.
Ferner kann das Stromberechnungssystem 40 eine Speichereinrichtung 35 aufweisen, welche dazu eingerichtet ist, den Temperatur-Koeffizienten α des Spulendrahtes der Spule 21 und/oder den vorbestimmten Referenz- Widerstand R(Tref) der Spule 21 und/oder den bestimmten Offset- Wert OS zu speichern.Furthermore, the current calculation system 40 may have a memory device 35, which is set up for the temperature coefficient α of the coil wire of the coil 21 and / or the predetermined reference resistance R (Tref) of the coil 21 and / or the determined offset value OS to save.
Vorzugsweise ist das Stromberechnungssystem 40 mit einem Kommunikationsbus 50 des Kraftfahrzeuges koppelbar, welcher dazu geeignet ist, die durch den Kraftstofftemperatursensor gemessene Kraftstofftemperatur Tk an die Stromberechnungseinheit 30 zu übertragen. Der Kommunikationsbus ist beispielsweise als LIN-Bus, CAN-Bus oder FlexRay-Bus ausgebildet.Preferably, the current calculation system 40 can be coupled to a communication bus 50 of the motor vehicle, which is suitable for transmitting the fuel temperature Tk measured by the fuel temperature sensor to the current calculation unit 30. The communication bus is designed, for example, as a LIN bus, CAN bus or FlexRay bus.
In Fig. 4 ist ein schematisches Ablaufdiagramm eines Ausfuhrungsbeispiels des erfindungsgemäßen Verfahrens zum Berechnen des Stromes I durch die Zumesseinheit für die Common-Rail- Pumpe 20 des Einspritzsystems zum Einspritzen von Kraftstoff dargestellt. Nachfolgend wird das erfindungsgemäße Verfahren anhand des Blockschaltbildes in Fig. 4 unter Verweis auf das schematische Blockschaltbild in Fig. 3 beschrieben. Das Ausführungsbeispiel des erfϊndungsgemäßen Verfahrens gemäß Fig. 4 weist folgende Verfahrensschritte Sl bis S5 auf:4 shows a schematic flow diagram of an exemplary embodiment of the method according to the invention for calculating the current I through the metering unit for the common rail pump 20 of the injection system for injecting fuel. The method according to the invention will be described below with reference to the block diagram in FIG. 4 with reference to the schematic block diagram in FIG. The embodiment of the inventive method according to FIG. 4 has the following method steps S1 to S5:
Verfahrensschritt Sl :Step S1:
Der materialspezifische Temperatur-Koeffizient α des verwendeten Spulendrahtes der Spule 21 der Zumesseinheit des Einspritzsystems wird bereitgestellt.The material-specific temperature coefficient α of the coil wire used of the coil 21 of the metering unit of the injection system is provided.
Verfahrensschritt S2:Step S2:
Eine Referenz-Temperatur Tref wird bereitgestellt. Tref ist beispielsweise 200C. Weiter wird der sich ergebende Referenz- Widerstand R(Tref) der Spule 21 bei der vorbestimmten Referenz- Temperatur Tref gemessen. Diese Messung wird insbesondere vorab in einem Validierungspro- zess durchgeführt. Der gemessene Referenz- Widerstand R(Tref) wird dann als Parameter für die Berechnung des Stromes I durch die Spule 21 bereitgestellt. Verfahrensschritt S3 :A reference temperature Tref is provided. Tref for example 20 0 C. Next, the resulting reference resistance R (Tref) of the coil 21 is measured at the predetermined reference temperature Tref. In particular, this measurement is carried out in advance in a validation process. The measured reference resistance R (Tref) is then provided as a parameter for the calculation of the current I through the coil 21. Step S3:
Die Kraftstofftemperatur Tk des Kraftstoffes wird in einem Zulauf des Einspritzsystems mittels eines Temperatursensors insbesondere während des Betriebes des Kraftfahrzeuges gemessen.The fuel temperature Tk of the fuel is measured in an inlet of the injection system by means of a temperature sensor, in particular during operation of the motor vehicle.
Verfahrensschritt S4:Process step S4:
Der Offset-Wert OS zwischen der Kraftstofftemperatur Tk und der Spulentemperatur Ts wird mittels eines Validierungsprozesses vorab bestimmt (OS = Ts - Tk).The offset value OS between the fuel temperature Tk and the coil temperature Ts is determined in advance by means of a validation process (OS = Ts - Tk).
Verfahrensschritt S5:Step S5:
Der spulentemperaturabhängige Ist- Widerstand R(Ts) der Spule 21 wird insbesondere im Feld bei einer Mehrzahl von Kraftfahrzeugen in Abhängigkeit des Temperatur-Koeffizienten α, des Refe- renz- Widerstandes R(Tref), der jeweils gemessenen Kraftstofftemperatur Tk und des bestimmten Offset- Wertes OS berechnet.The coil temperature-dependent actual resistance R (Ts) of the coil 21 is determined in particular in the field in a plurality of motor vehicles as a function of the temperature coefficient α, the reference resistance R (Tref), the respectively measured fuel temperature Tk and the determined offset Value OS calculated.
Obwohl die vorliegende Erfindung vorstehend anhand der bevorzugten Ausführungsbeispiele beschrieben wurde, ist sie hierauf nicht beschränkt, sondern auf vielfältige Art und Weise modifizierbar. Although the present invention has been described above with reference to the preferred embodiments, it is not limited thereto, but modifiable in a variety of ways.

Claims

Ansprüche claims
1. Stromberechnungseinheit (30) zum Berechnen eines Stromes (I) durch eine Zumesseinheit für eine Common- Rail-Pumpe (20) eines Einspritzsystems zum Einspritzen von Kraftstoff mit einem Berechnungsmittel (31), welches dazu eingerichtet ist, einen spulentemperaturabhängigen Ist- Widerstand (R(Ts)) einer Spule (21) der Zumesseinheit in Abhängigkeit eines Temperatur- Koeffizienten (α) eines Spulendrahtes der Spule (21), eines vorbestimmten Referenz- Widerstandes (R(Tref)) der Spule (21) bei einer Referenz-Temperatur (Tref), einer gemessenen Kraftstofftemperatur (Tk) des Kraftstoffes und eines bestimmten Offset- Wertes (OS) zwischen der Kraftstofftemperatur (Tk) und der Spulentemperatur (Ts) zu berechnen.A current calculation unit (30) for calculating a current (I) by a metering unit for a common rail pump (20) of an injection system for injecting fuel with a calculation means (31) which is adapted to a coil temperature-dependent actual resistance ( R (Ts)) of a coil (21) of the metering unit in response to a temperature coefficient (α) of a coil wire of the coil (21), a predetermined reference resistance (R (Tref)) of the coil (21) at a reference temperature (Tref), a measured fuel temperature (Tk) of the fuel and a certain offset value (OS) between the fuel temperature (Tk) and the coil temperature (Ts) to calculate.
2. Stromberechnungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass der Offset- Wert (OS) mittels eines Validierungsprozesses zumindest in Abhängigkeit der Spulentemperatur (Ts) und der Kraftstofftemperatur (Tk) für zumindest ein Kraftfahrzeug bestimmt wird.2. Current calculation unit according to claim 1, characterized in that the offset value (OS) is determined by means of a validation process at least as a function of the coil temperature (Ts) and the fuel temperature (Tk) for at least one motor vehicle.
3. Stromberechnungseinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Berechnungseinheit (31) zumindest eine erste Schnittstelleneinheit (32) aufweist, welche dazu eingerichtet ist, die gemessene Kraftstofftemperatur (Tk) von einem in einem Zulauf des Einspritzsys- tems angeordneten Kraftstofftemperatursensor zu empfangen.3. Current calculation unit according to claim 1 or 2, characterized in that the calculation unit (31) has at least one first interface unit (32), which is adapted to the measured fuel temperature (Tk) from a tems arranged in an inlet of the fuel injection system fuel temperature sensor receive.
4. Stromberechnungseinheit nach Anspruch 1 oder einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die Berechnungseinheit (31) zumindest eine zweite Schnittstelleneinheit (33) aufweist, welche dazu eingerichtet ist, den Temperatur-Koeffizienten (α) und/oder den vorbestimmten Referenz- Widerstand (R(Tref)) und/oder den bestimmten Offset- Wert (OS) zu empfangen.4. Current calculation unit according to claim 1 or one of claims 2 or 3, characterized in that the calculation unit (31) has at least one second interface unit (33) which is adapted to the temperature coefficient (α) and / or the predetermined reference - Receive resistance (R (Tref)) and / or the determined offset value (OS).
5. Stromberechnungseinheit nach Anspruch 1 oder einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Berechnungseinheit (31) den spulentemperaturabhängigen Ist- Widerstand (R(Ts)) der Spule (21) nach der Formel R(Ts) = R(Tref) (1 + α (Tk + OS - 20 K)) berechnet, wobei R(Tref) den vorbestimmten Referenz- Widerstand bei der Referenz-Temperatur, Tref, α den Temperatur-Koeffizienten der Spulendrahtes, Tk die aktuell gemessene Kraftstofftemperatur und OS den bestimmten Offset-Wert bezeichnen.5. current calculation unit according to claim 1 or one of claims 2 to 4, characterized in that the calculation unit (31) the coil temperature-dependent actual resistance (R (Ts)) of the coil (21) according to the formula R (Ts) = R (Tref ) (1 + α (Tk + OS - 20 K)), where R (Tref) denotes the predetermined reference resistance at the reference temperature, Tref, α the temperature coefficient of the coil wire, Tk the currently measured fuel temperature, and OS the determined offset value.
6. Stromberechnungseinheit nach Anspruch 1 oder einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die Stromberechnungseinheit (30) und/oder die Berechnungseinheit (31) als ein Computerprogrammprodukt ausgestaltet sind/ist.6. current calculation unit according to claim 1 or one of claims 2 to 6, characterized in that the current calculation unit (30) and / or the calculation unit (31) are configured as a computer program product / is.
7. Stromberechnungssystem (40) zum Berechnen eines Stromes (I) durch eine Zumesseinheit für einen Common- Rail-Pumpe (20) eines Einspritzsystems zum Einspritzen von Kraftstoff, mit7. A current calculation system (40) for calculating a current (I) by a metering unit for a common rail pump (20) of an injection system for injecting fuel, with
- einer Stromberechnungseinheit (30) nach Anspruch 1 oder einem der Ansprüche 2 bis 6; und- A current calculation unit (30) according to claim 1 or one of claims 2 to 6; and
- einer weiteren Berechnungseinheit (34), welche dazu eingerichtet ist, den Strom (I) durch die Zumesseinheit in Abhängigkeit des Ist- Widerstandes (R(Ts)) der Spule (21) und einer die Spule (21) mit Spannung versorgenden Versorgungs-Spannung (V bat) zu berechnen.- A further calculation unit (34) which is adapted to the current (I) by the metering unit in dependence of the actual resistance (R (Ts)) of the coil (21) and the coil (21) supplying voltage supply Voltage (V bat) to calculate.
8. Stromberechnungssystem nach Anspruch 7, dadurch gekennzeichnet, dass eine Speichereinrichtung (35) vorgesehen ist, welche dazu eingerichtet ist, den Temperatur- Koeffizienten (α) des Spulendrahtes und/oder den vorbestimmten Referenz- Widerstand (R(Tref)) der Spule (21) und/oder den bestimmten Offset-Wert (OS) zu speichern.8. current calculation system according to claim 7, characterized in that a memory device (35) is provided which is adapted to the temperature coefficient (α) of the coil wire and / or the predetermined reference resistance (R (Tref)) of the coil ( 21) and / or the determined offset value (OS).
9. Stromberechnungssystem nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Stromberechnungssystem (40) mit einem Kommunikationsbus (50) koppelbar ist, welcher dazu geeignet ist, die durch den Kraftstofftemperatursensor gemessene Kraftstofftemperatur (Tk) an die Stromberechnungseinheit (30) zu übertragen.9. A current calculation system according to claim 8 or 9, characterized in that the current calculation system (40) with a communication bus (50) is coupled, which is adapted to transmit the fuel temperature measured by the fuel temperature sensor (Tk) to the current calculation unit (30).
10. Verfahren zum Berechnen eines Stromes (I) durch eine Zumesseinheit für eine Common- Rail- Pumpe (20) eines Einspritzsystems zum Einspritzen von Kraftstoff, mit den Schritten:10. A method of calculating a current (I) by a metering unit for a common rail pump (20) of an injection system for injecting fuel, comprising the steps of:
- Bereitstellen eines Temperatur-Koeffizienten (α) eines Spulendrahtes einer Spule (21) der Zumesseinheit;- Providing a temperature coefficient (α) of a coil wire of a coil (21) of the metering unit;
- Vorbestimmen einer Referenz-Temperatur (Tref) und Messen eines Referenz- Widerstandes (R(Tref)) der Spule (21) bei der vorbestimmten Referenz-Temperatur (Tref); - Messen einer Kraftstofftemperatur (Tk) des Kraftstoffes in einem Zulauf des Einspritzsystems;- Predetermining a reference temperature (Tref) and measuring a reference resistance (R (Tref)) of the coil (21) at the predetermined reference temperature (Tref); - measuring a fuel temperature (Tk) of the fuel in an inlet of the injection system;
- Bestimmen eines Offset- Wertes (OS) zwischen der Kraftstofftemperatur (Tk) und der Spulentemperatur (Ts); und - Berechnen eines spulentemperaturabhängigen Ist- Widerstandes (R(Ts)) der Spule (21) in Abhängigkeit des Temperatur-Koeffizienten (α), des Referenz- Widerstandes (R(Tref)), der Kraftstofftemperatur (Tk) und des Offset- Wertes (OS).- determining an offset value (OS) between the fuel temperature (Tk) and the coil temperature (Ts); and Calculating a coil temperature-dependent actual resistance (R (Ts)) of the coil (21) as a function of the temperature coefficient (α), the reference resistance (R (Tref)), the fuel temperature (Tk) and the offset value ( OS).
11. Computerprogrammprodukt, welches auf einer programmgesteuerten Einrichtung die Durchführung eines Verfahrens nach Anspruch 10 veranlasst. 11. Computer program product, which causes the execution of a method according to claim 10 on a program-controlled device.
PCT/EP2008/065272 2008-01-17 2008-11-11 Current calculation unit, current calculation system, and current calculation method WO2009089937A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810004877 DE102008004877A1 (en) 2008-01-17 2008-01-17 Current calculation unit, current calculation system and current calculation method
DE102008004877.1 2008-01-17

Publications (2)

Publication Number Publication Date
WO2009089937A2 true WO2009089937A2 (en) 2009-07-23
WO2009089937A3 WO2009089937A3 (en) 2010-01-14

Family

ID=40785820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/065272 WO2009089937A2 (en) 2008-01-17 2008-11-11 Current calculation unit, current calculation system, and current calculation method

Country Status (2)

Country Link
DE (1) DE102008004877A1 (en)
WO (1) WO2009089937A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140046619A1 (en) * 2011-03-03 2014-02-13 Andreas Heinrich Method for determining a temperature of fuel
US20180328304A1 (en) * 2017-05-10 2018-11-15 Ford Global Technologies, Llc Method and system for characterizing a port fuel injector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015204096A1 (en) * 2015-03-06 2016-09-08 Robert Bosch Gmbh Method for detecting damage in a fuel pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19729101A1 (en) * 1997-07-08 1999-01-14 Bosch Gmbh Robert System for operating an internal combustion engine, in particular a motor vehicle
DE19913477A1 (en) * 1999-03-25 2000-10-05 Bosch Gmbh Robert Operating fuel delivery device for internal combustion engine, especially for motor vehicle, involves influencing quantity control valve by battery voltage and/or depending on coil resistance
DE10016900A1 (en) * 2000-04-05 2001-11-08 Bosch Gmbh Robert Method for regulating the accumulator pressure prevailing in a pressure accumulator of a fuel metering system
DE102006000357A1 (en) * 2005-07-21 2007-02-01 Denso Corp., Kariya Fuel injection controller of diesel engine, calculates correction value corresponding to detected fuel temperature, based on difference of target fuel pressure and detected fuel pressure
DE102006029633A1 (en) * 2006-06-28 2008-01-03 Robert Bosch Gmbh Internal combustion engine`s fuel system operating method for motor vehicle, involves directly controlling fuel pump corresponding to increased target pressure during one phase when or after starting internal-combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19729101A1 (en) * 1997-07-08 1999-01-14 Bosch Gmbh Robert System for operating an internal combustion engine, in particular a motor vehicle
DE19913477A1 (en) * 1999-03-25 2000-10-05 Bosch Gmbh Robert Operating fuel delivery device for internal combustion engine, especially for motor vehicle, involves influencing quantity control valve by battery voltage and/or depending on coil resistance
DE10016900A1 (en) * 2000-04-05 2001-11-08 Bosch Gmbh Robert Method for regulating the accumulator pressure prevailing in a pressure accumulator of a fuel metering system
DE102006000357A1 (en) * 2005-07-21 2007-02-01 Denso Corp., Kariya Fuel injection controller of diesel engine, calculates correction value corresponding to detected fuel temperature, based on difference of target fuel pressure and detected fuel pressure
DE102006029633A1 (en) * 2006-06-28 2008-01-03 Robert Bosch Gmbh Internal combustion engine`s fuel system operating method for motor vehicle, involves directly controlling fuel pump corresponding to increased target pressure during one phase when or after starting internal-combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140046619A1 (en) * 2011-03-03 2014-02-13 Andreas Heinrich Method for determining a temperature of fuel
US20180328304A1 (en) * 2017-05-10 2018-11-15 Ford Global Technologies, Llc Method and system for characterizing a port fuel injector
US10760518B2 (en) * 2017-05-10 2020-09-01 Ford Global Technologies, Llc Method and system for characterizing a port fuel injector

Also Published As

Publication number Publication date
DE102008004877A1 (en) 2009-07-23
WO2009089937A3 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
EP1809884B1 (en) Device and method for correction of the injection behaviour of an injector
DE102010017367B4 (en) Fuel temperature sensing device
DE102007061252A1 (en) Device and method for self-calibration of current feedback
EP1711704A1 (en) Method for monitoring the operability of a fuel injection system
DE102018103653B4 (en) CONTROL CIRCUIT WITH CURRENT FEEDBACK
DE10157641C2 (en) Method for controlling an internal combustion engine
WO2019011857A1 (en) Washing system having controllable metering
WO2008009563A1 (en) Method for operating a fuel system of an internal combustion engine
DE102008014085A1 (en) Computation unit for use with system for calculating fuel temperature of fuel in inlet of injection system for injecting fuel, has coil of metering unit and offset-value is provided by validation process
EP2180168A2 (en) Method and control device for controlling a fuel injector
WO1999002837A1 (en) System for operating an internal combustion engine, in particular of a motor vehicle
DE19742993C2 (en) Method of controlling fuel pressure in a fuel rail
WO2009089937A2 (en) Current calculation unit, current calculation system, and current calculation method
EP3215744B1 (en) Method for producing a set of characteristic curves of a fluid pump, use of a limited valve, use of a staging valve, and control device for a fluid conveying system
DE102011053459B4 (en) Fuel injection condition detector
WO2014166690A1 (en) Method for operating a common rail system of a motor vehicle having a redundant rail pressure sensor
DE102007015876A1 (en) Drift and malfunctioning recognition method for rail pressure sensor, involves determining pressure of rail pressure sensor as function of control duration difference between pressure multiplication and non-pressure multiplication injection
DE102008017160B3 (en) Method for determining the effective compressibility module of an injection system
DE102006040127A1 (en) Electronic motor vehicle brake control system`s hydraulic pump calibrating method, involves predetermining generator voltage, and determining correction values, while reaction of engine is evaluated based on controlled electrical signal
EP2006534B1 (en) Glow system and method for adjusting the output of a glow plug
DE102010033317B4 (en) Method for sprinkling a fuel injection system and injection system
DE102005035092A1 (en) Pressure sensor signal evaluating method for fuel injection system, involves correcting measurement value depending up on estimated value, if pressure sensor is evaluated as functional
DE19726773A1 (en) Method of balancing current regulator
DE102008054994A1 (en) Method for supplying power to pressure sensor used in gear of motor vehicle, involves supplying supply voltage to sensor, where supply voltage lies in predetermined voltage range and is smaller than tolerance threshold of analog reference
DE3433368A1 (en) METHOD AND DEVICE FOR CARRYING OUT THE METHOD FOR MEASURING THE FLOW RATE OF A FLOWING MEDIUM, ESPECIALLY IN CONNECTION WITH COMBUSTION ENGINES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870868

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08870868

Country of ref document: EP

Kind code of ref document: A2