WO2009086725A1 - 在通信系统中传送数据的方法、通信装置及通信系统 - Google Patents

在通信系统中传送数据的方法、通信装置及通信系统 Download PDF

Info

Publication number
WO2009086725A1
WO2009086725A1 PCT/CN2008/001904 CN2008001904W WO2009086725A1 WO 2009086725 A1 WO2009086725 A1 WO 2009086725A1 CN 2008001904 W CN2008001904 W CN 2008001904W WO 2009086725 A1 WO2009086725 A1 WO 2009086725A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel quality
overlapping
coding
data
communication system
Prior art date
Application number
PCT/CN2008/001904
Other languages
English (en)
French (fr)
Inventor
Guangyi Liu
Lu Han
Qixing Wang
Yuhong Huang
Original Assignee
China Mobile Communications Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Mobile Communications Corporation filed Critical China Mobile Communications Corporation
Priority to US12/810,836 priority Critical patent/US20100284427A1/en
Priority to JP2010539994A priority patent/JP2011509013A/ja
Publication of WO2009086725A1 publication Critical patent/WO2009086725A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/23Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using convolutional codes, e.g. unit memory codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors

Definitions

  • the present invention relates to data transmission technologies in the field of communications, and more particularly to a method, communication device and communication system for transmitting data in a communication system. Background technique
  • OTDDM Overlapped Code Division Multiplexing
  • FIG. 1 A specific process of implementing OVCDM encoding of data symbols to realize broadband wireless transmission is shown in FIG. 1.
  • There are 15 data symbols in the serial data input, and the number of overlapping encodings is K 3, that is, three times each time.
  • the data symbols are serially operated, including the following steps:
  • Step 1 Select the three data symbols in the serial data for serial-to-parallel conversion to become three parallel data.
  • the operation of serial-to-parallel conversion of every three data symbols can be selected in the order of serial arrangement.
  • the second step convolutional coding of the three parallel data separately.
  • convolutional coding is performed by using ⁇ b , b ... ! ⁇ - 1 ⁇ as a weighting coefficient to weight-emphasize the first input data currently input and the data stored in each of the first registers, ⁇ b ⁇ , b ... ⁇ as a weighting coefficient for weighting the K-th input data and the data in the K-th register, where: is the element of the L-th coding tap coefficient vector in the K-th parallel coding branch , L is the constraint length of each convolutional code.
  • the third step save the three parallel input data symbols in the register 1 of each channel, the data in the original register 1 is saved in the register 2, and the data in the register 2 is saved in the register 3, And so on.
  • the data is stored in a register, and the number of data stored in one way must not exceed the total number of registers.
  • One data is stored in each register. If data is already stored in each register in the first way at time t, the data in the L-1th register will be discarded at time t+1. At the initial moment, the data stored in the register is zero.
  • the fourth step superimposes the three-channel convolutionally encoded data symbols into one data symbol, and outputs it after F function transformation.
  • the OVCDM process with high overlap coding number K can be implemented in a cascade manner.
  • the principle of cascaded OVCDM is shown in FIG. 2, wherein the first level OVCDM1 coding can use nonlinear OVCDM coding.
  • the second level OVCDM2 code can use linear OVCDM code; the output of level 1 OVCDM1 is used as the input of level 2 OVCDM2.
  • the link performance is related to the number of overlapping coding times K and the constraint length L of the overlapping coding.
  • the same number of overlapping codes the longer the constraint length, the better the link performance.
  • the same constraint length the greater the number of overlapping codes, the higher the transmission efficiency, but under the same signal noise ratio (SNR), the bit error ratio (Bit Error Ratio, BER) or Block Error Ratio (BLER) performance is worse.
  • SNR signal noise ratio
  • BER bit error ratio
  • BLER Block Error Ratio
  • the OVCDM coded detection can use the Maximum Likelihood Sequence Detection (MLSD) based on the Viterbi algorithm, and the Euclidean distance is used as the path metric.
  • MLSD Maximum Likelihood Sequence Detection
  • the decoding process of OVCDM is to decode each data symbol in the serial data into K parallel data symbols, and perform parallel-to-serial conversion on the parallel data symbols.
  • the number of data symbols obtained after the decoding process is K of the previous number of decoding. Times.
  • the decoding method may use a maximum likelihood sequence detection method or a tree-based sub-optimal sequence detection method; specifically, a semi-definite programming algorithm in a tree-based suboptimal sequence detection method may be used for decoding.
  • the signal strength of communication with the base station may also be different.
  • terminal A located indoors, in a stairwell or in an elevator compared with terminal B located outside the open space, even if the distance from the base station is the same, the signal strength of terminal B is higher than the signal strength of terminal A; if terminal A and terminal B Both are located outside the open space, and the signal strength of the terminal A having a shorter distance from the base station is higher than the signal strength of the terminal B farther away.
  • a fixed number of overlapping codes K is generally used, but when the terminal is located at different positions of the communication system, the quality of the communication channel between the terminal and the base station is uncertain. If the channel quality is poor, but the value of K is large, it may cause data transmission errors and reduce the reliability of data transmission. If the channel quality is good, but the value of K is small, it will reduce the transmission efficiency and cause communication. Waste of resources. Summary of the invention
  • Embodiments of the present invention provide a method, a communication device, and a communication system for transmitting data in a communication system, so as to solve the problem that the data transmission reliability is low or the transmission efficiency is low due to the inability to select an appropriate number of overlapping codes in the prior art. , causing waste of communication resources.
  • An embodiment of the present invention provides a method for transmitting data in a communication system, where the method includes: detecting a current channel quality;
  • Overlapping coding multiplexing technology for data to be transmitted by using the determined number of overlapping codes Encoding operation, and sending the encoded data.
  • the embodiment of the invention provides a communication device, the device comprising:
  • a detecting module configured to detect a current channel quality
  • the number determining module is configured to determine, according to the correspondence between the channel quality and the number of times of overlapping coding, the number of times of overlapping coding corresponding to the detected channel quality, where: the number of times of overlapping coding is used for overlapping code multiplexing technology of data to be sent Encoding operation.
  • the embodiment of the invention provides a communication system, and the system includes:
  • a first device configured to perform an encoding operation of the overlapping code multiplexing technology by using the received overlapping encoding times, and send the encoded data
  • a second device configured to detect a current channel quality, determine a corresponding number of overlapping codes according to a correspondence between the channel quality and the number of times of overlapping coding, and send the corresponding number of times of overlapping coding to the first device, and use the overlap coding number to receive the received
  • the encoded data is subjected to a decoding operation of an overlap coding multiplexing technique.
  • the embodiment of the invention provides a communication system, and the system includes:
  • a first device configured to determine, according to a correspondence between the channel quality and the number of times of overlapping coding, an overlap coding number corresponding to the received channel quality, and perform an encoding operation of the overlap coding multiplexing technology by using the data to be transmitted by using the overlap coding number, and Send the encoded data;
  • a second device configured to detect a current channel quality, and send the same to the first device, and perform overlapping code multiplexing on the received encoded data by using the number of overlapping codes determined by the first device The decoding operation of the technology.
  • the embodiment of the present invention provides a communication system, where uplink and downlink transmissions of the communication system are on the same carrier frequency, including:
  • a first device configured to determine a current channel quality according to the detected current channel parameter and the received interference information, determine an overlapping coding number corresponding to the channel quality from a correspondence between a channel quality and an overlapping coding number, and use the overlapping Encoding times
  • the data to be transmitted is subjected to an encoding operation of an overlap coding multiplexing technique, and the encoded data is transmitted;
  • a second device configured to detect interference information, and send the information to the first device, using the first The number of times of overlapping coding determined by the device performs a decoding operation of the received coded data on the received coded data.
  • the method for transmitting data in a communication system selects an optimal number of overlapping codes according to a current channel quality in the communication system, and performs an OVDCM encoding/decoding operation according to the number of times of overlapping coding, in which channel quality is compared. In the case of poor conditions, the reliability of data transmission is improved; and, in the case where the channel quality is good, the transmission efficiency is high, and waste of resources is avoided.
  • FIG. 2 is a schematic diagram of a cascaded overlapping code multiplexing technique in the background art
  • FIG. 3 is a schematic flowchart of a method for transmitting data in a communication system according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of performing concatenated coding according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of performing cascade decoding in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of an iterative decoding process according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of a communication device according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of a communication system according to Embodiment 3 of the present invention. detailed description
  • FIG. 3 it is a schematic flowchart of a method for transmitting data in a communication system according to Embodiment 1 of the present invention. As can be seen from the figure, the method includes the following steps:
  • Step 301 Detect the current channel quality.
  • the detecting operation in this step may be performed by the receiving side.
  • the specific execution manner is as follows: Before sending the data, the sending side sends a fixed message to the receiving side, and the receiving side can also obtain each of the channels while receiving the fixed information. Parameters, and determining the channel quality between the current transmitting side and the receiving side according to the parameters.
  • the transmitting side In the uplink data transmission process, the transmitting side is the terminal, and the receiving side is the base station; in the downlink data transmission process, the transmitting side is the base station, and the receiving side is the terminal.
  • Step 302 Determine, according to the correspondence between the channel quality and the number of times of overlapping coding, the number of times of overlapping coding corresponding to the detected channel quality.
  • the number of overlapping encodings corresponds to the channel quality in one interval.
  • the channel quality is the signal-to-noise ratio
  • K. 3
  • Corresponding SNR interval is (9, 13dB)sky
  • the signal-to-noise ratio of the current channel is detected to be 5dB, the current channel can be determined according to the corresponding relationship between the preset SNR interval and the K value.
  • the signal-to-noise ratio of 5dB belongs to the signal-to-noise ratio interval (4dB, 9dB), and the K value of the current channel's signal-to-noise ratio corresponds to 2; if the cascading OVCDM code is performed, a combination of overlapping coding times of each level— - Corresponding to the channel quality in an interval.
  • the correspondence relationship may be stored in the form of a list on the transmitting side and the receiving side. Further, the information in the list may be automatically or manually modified according to actual needs.
  • Step 303 Perform OVCDM encoding by using the determined number of times of overlapping coding, and send the encoded data.
  • OVCDM encoding is performed once; if cascading encoding is performed, OVCDM encoding is performed multiple times, as shown in FIG.
  • the transmitting side performs OVCDM encoding according to the determined number of times of overlapping coding, and transmits the encoded data to the receiving side.
  • Step 304 The receiving side performs OVCDM decoding on the received data according to the number of times of overlapping coding. If a single encoding is performed, OVCDM decoding is performed once; if cascading encoding is performed, multiple OVCDM decoding is performed, as shown in FIG. In this embodiment, in order to improve the performance of decoding, iterative decoding of cascaded OVCDM may be performed.
  • Iterative decoding is to decode the soft-in and soft-out of each level of OVCDM, and improve the decoding performance through the external information exchange between the two-level OVCDM decoders.
  • the specific process is as follows: First, the input The data symbols are subjected to OVCDM2 decoding, the decoded data symbols are deinterleaved, and the deinterleaved data symbols are OVCDM1 decoded. After decoding, the OVCDM1 determines the output data symbols to determine whether the performance of the output data symbol accuracy meets the requirements. If it is satisfied, it completes an iteration; otherwise, it needs to perform the next iteration.
  • OVCDM1 feeds back the external information to OVCDM2, and the external information output by OVCDM1 is symbol interleaved as an input of OVCDM2.
  • the OVCDM2 decodes the input data symbols again according to the feedback external information, and then the data symbols output by the OVCDM2 are deinterleaved as the input of the OVCDM1 for decoding, and the OVCDM1 outputs the data symbols for decoding, and the second iteration is completed.
  • multiple iterations can be performed.
  • the number of overlapping codes used by the receiving side for decoding may be obtained in a variety of ways, including but not limited to the following two types:
  • the first type When the receiving side receives the data sent by the sending side, the receiving side simultaneously receives the number of times of overlapping coding sent by the sending side.
  • the second type After detecting the current channel quality, the receiving side determines the number of times of overlapping coding corresponding to the detected channel quality according to the correspondence between the channel quality and the number of overlapping codes.
  • the receiving side may directly feed back the detected channel quality parameters to the transmitting side, and the transmitting side performs this step according to the corresponding relationship between the preset channel quality and the number of overlapping encodings. , the determined number of overlapping codes is fed back to the transmitting side.
  • the channel quality involved in this embodiment includes channel parameters and interference information.
  • the receiving side detects both channel parameters and interference information.
  • the channel quality can be determined by the transmitting side, for example, in TDD.
  • the terminal detects the interference information and returns to the base station, and the base station detects the channel parameter information, and simultaneously determines the current channel quality according to the received interference information and the detected channel parameter information.
  • OVCDM encoding using the determined number of overlapping encodings includes, but is not limited to, the following two cases:
  • an encoding matrix is configured for each overlapping coding number, and OVCDM coding is performed by using the determined overlapping coding sub-values, that is, OVCDM coding is performed in the coding matrix corresponding to the number of times of the overlapping coding.
  • the value selects the corresponding coding matrix for OVCDM operation.
  • a coding matrix of L columns and K rows is determined in advance, and K can select a maximum value that may appear according to the empirical value; and after determining the number of overlapping coding times currently required according to steps 301 and 302, the row K from the L column
  • the data is OVCDM encoded.
  • the second embodiment of the present invention further describes a communication device.
  • the device includes a detection module 11 and a number determining module 12, wherein the detecting module 11 is configured to detect the current
  • the channel quality determination module 12 is configured to determine, according to the correspondence between the channel quality and the number of times of overlapping coding, the number of times of overlapping coding corresponding to the detected channel quality, where: the number of times of overlapping coding is used for overlapping coding of data to be transmitted. Encoding operation of multiplexing technology.
  • the apparatus further includes a frequency transmission module 13 for transmitting the code number of overlapping codes determined by the number determining module 12 to the opposite end of the data transmission in the communication system.
  • the device further includes a channel quality sending module 14 for transmitting the detected channel quality to the number determining module 12 when the detecting module 11 is located at the receiving side of the communication system.
  • the third embodiment of the present invention further provides a communication system. As shown in FIG. 8, the system includes a first device 21 and a second device 22, wherein the first device 21 And an encoding operation for performing overlapping code multiplexing multiplexing on the data to be transmitted by using the received overlapping encoding times, and transmitting the encoded data; the second device 22 is configured to detect the current channel quality, according to the channel quality and the number of overlapping encodings.
  • Corresponding relationship determines a corresponding number of times of overlapping coding, and sends the same to the first device, and performs a decoding operation of the received coded data by using an overlapped coding multiplexing technique by using the number of times of overlapping coding.
  • the first device 21 is configured to determine, according to a correspondence between the channel quality and the number of times of overlapping coding, an overlap coding number corresponding to the received channel quality, and perform an encoding operation of the overlap coding multiplexing technology by using the data to be transmitted by using the overlap coding number, and Transmitting the encoded data;
  • the second device 22 is configured to detect the current channel quality, and send the same to the first device, and use the overlap coding number determined by the first device to receive the encoded
  • the data is subjected to a decoding operation of the overlap coding multiplexing technique.
  • the uplink and downlink transmissions of the communication system described in this embodiment are in the same carrier frequency, and the first device 21 and the second device 22 in the communication system are respectively used to perform the following operations:
  • the first device 21 is configured to use the detected current channel.
  • the parameter and the received interference information determine a current channel quality, determine an overlapping coding number corresponding to the channel quality from a correspondence between a channel quality and an overlapping coding number, and perform overlapping coding multiplexing on the data to be transmitted by using the overlapping coding times.
  • the second device 22 is configured to detect the interference information, and send the interference information to the first device, and use the overlap coding number determined by the first device to receive the coded
  • the latter data is subjected to a decoding operation of the overlap coding multiplexing technique.
  • the method, the device and the communication system according to the embodiments of the present invention improve the reliability of data transmission in the case of poor channel quality; and, in the case of good channel quality, the transmission efficiency is high and avoids The waste of resources; further, one of the operations of determining the number of overlapping codes can be selected according to the capabilities of the transmitting side and the receiving side, and resources of one end of the data processing capability can be saved.
  • the spirit and scope of the invention Thus, it is intended that the present invention cover the modifications and the modifications of the invention

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

在通信系统中传送数据的方法、 通信装置及通信系统 技术领域
本发明涉及通信领域的数据传输技术, 尤其涉及一种在通信系统中传送 数据的方法、 通信装置及通信系统。 背景技术
重叠编码复用技术 ( Overlapped Code Division Multiplexing, OVCDM ) 是一种高频谱效率编码的复用技术, 利用码率高于 1 的并行卷积编码来大幅 度提高通信系统容量与频谱效率, 利用 OVCDM技术编、 解码的方案可以称 之为对数据进行 OVCDM的编、 解码操作。
一个具体的利用对数据符号进行 OVCDM编码来实现宽带无线传输的过 程如图 1所示, 设定输入的串行数据中有 15个数据符号, 并且重叠编码次数 K=3 , 即每次选择三个数据符号进行串并操作, 包括以下步骤:
第一步: 选择串行数据中的三个数据符号进行串并变换的操作, 成为三 路并行的数据。
在本实施例中可以按照串行排列的顺序选择每 3 个的数据符号进行串并 转换的操作。
第二步: 将三路并行的数据分别进行卷积编码。
在本步骤中, 进行卷积编码就是将 { b 、 b ... !^-1 }作为加权系数分别对当 前输入的第一路数据和第一路各寄存器中存储的数据进行加权叠加, { b^、 b ... ^^作为加权系数对第 K路输入数据和第 K路寄存器里的数据进行加 权叠加,其中: 是第 K路并行编码支路中第 L个编码抽头系数矢量的元素, L是每路卷积编码的约束长度。
第三步: 将三路并行输入数据符号分别保存在各路的寄存器 1 中, 原来 寄存器 1中的数据保存到寄存器 2中, 寄存器 2中的数据保存到寄存器 3中, 以此类推。
将数据存储到寄存器中, 一路中存储的数据个数不得超过总的寄存器个 数。每个寄存器中存储一个数据, 若在 t时刻第一路中的每一寄存器都已经存 储了数据, 则在 t+1时刻, 第 L-1个寄存器中的数据将被丟弃。 在初始时刻, 寄存器中存储的数据为 0。
第四步: 将三路卷积编码后的数据符号叠加成为一路数据符号, 并经过 F 函数变换后输出。
其中: F函数与其输入之间存在——对应关系。
具体地, F 函数的定义是对数据符号进行变换或映射。 比如: F(x)= exp(j ^x) , 即: 对三路(假设 k=3 )数据符号求和得到 X后, 将 X代入 F函数 进行计算, 然后输出。 F(x)=x, 表示 F函数是线性函数, 对三路数据符号求和 得到 X后, 直接输出, F函数并不对数据进行变换。
通过以上的编码过程可以看出, K个数据符号通过 OVCDM编码后, 只 有一个数据符号输出 (相当于编码和调制一块进行)。 因此, 系统的频谱效率 提高了 K倍。 即通过人为制造数据符号之间的重叠干扰, 可以实现高效率的 数据传输, 同时获得编码增益。
由于重叠编码次数 K越大, 重叠编码的约束长度 L越长, 检测的复杂度 越大。 为了降低检测的复杂度, 可以釆用级联的方式实现高重叠编码次数 K 的 OVCDM过程,级联的 OVCDM的原理如图 2所示,其中,第 1级 OVCDM1 编码可以釆用非线性 OVCDM编码, 而第 2级 OVCDM2编码则可以釆用线 性 OVCDM编码; 第 1级 OVCDM1的输出作为第 2级 OVCDM2的输入。
对于 OVCDM技术, 其链路性能与釆用的重叠编码次数 K和重叠编码的 约束长度 L有关, 同样的重叠编码次数, 约束长度越长, 其链路性能越好。 而对于不同的重叠编码次数, 相同的约束长度, 重叠编码次数越大, 传输效 率越高,但同样的信噪比( Signal Noise Ratio, SNR )的条件下,其误码率( Bit Error Ratio, BER )或者误块率( Block Error Ratio , BLER )性能越差。 OVCDM 编码的检测可以釆用基于 Viterbi 算法的最大似然序列检测 ( MLSD ), 并且釆用欧式距离作为路径度量。
OVCDM的解码过程是将串行数据中的每一数据符号解码为 K个并行数 据符号, 将所述并行数据符号进行并串转换, 解码过程后得到的数据符号个 数为解码之前个数的 K倍。 解码方法可以釆用最大似然序列检测方法或基于 树图的次优序列检测方法; 具体地, 可以利用基于树图的次优序列检测方法 中的半正定规划算法进行解码。
在实际的蜂窝移动通信系统中, 终端处于不同的位置时, 与基站之间通 信的信号强度也会有所不同。 例如, 位于室内、 楼梯间或电梯内的终端 A与 位于空旷室外的终端 B相比, 即使与基站之间的距离相同, 终端 B的信号强 度高于终端 A的信号强度; 若终端 A和终端 B都位于空旷的室外, 则与基站 距离较短的终端 A的信号强度高于距离较远的终端 B的信号强度。
在 OVCDM的传输系统中, 一般都釆用固定的重叠编码次数 K, 但是终 端位于通信系统的不同位置时, 终端与基站之间通信信道的质量不确定。 若 信道质量较差, 但 K值取值较大, 很可能造成数据传输错误, 降低数据传输 的可靠性; 若信道质量较好, 但 K值取值较小, 又会降低传输效率, 造成通 信资源的浪费。 发明内容
本发明实施例提供一种在通信系统中传送数据的方法、 通信装置及通信 系统, 以解决现有技术中存在的由于无法选择恰当的重叠编码次数, 造成数 据传输可靠性较低或降低传输效率, 造成通信资源的浪费的问题。
本发明实施例提出一种在通信系统中传送数据的方法, 该方法包括: 检测当前的信道质量;
根据信道质量与重叠编码次数的对应关系, 确定检测出的所述信道质量 对应的重叠编码次数;
利用确定出的所述重叠编码次数对待发送的数据进行重叠编码复用技术 的编码操作, 并发送编码后的数据。
本发明实施例提出一种通信装置, 该装置包括:
检测模块, 用于检测当前的信道质量;
次数确定模块, 用于根据信道质量与重叠编码次数的对应关系, 确定检 测出的所述信道质量对应的重叠编码次数, 其中: 所述重叠编码次数用于对 待发送的数据进行重叠编码复用技术的编码操作。
本发明实施例提出一种通信系统, 该系统包括:
第一装置, 用于利用接收到的重叠编码次数对待发送的数据进行重叠编 码复用技术的编码操作, 并发送编码后的数据;
第二装置, 用于检测当前的信道质量, 根据信道质量与重叠编码次数的 对应关系确定出对应的重叠编码次数, 并发送给所述第一装置, 以及利用所 述重叠编码次数对接收到的所述编码后的数据进行重叠编码复用技术的解码 操作。
本发明实施例提出一种通信系统, 该系统包括:
第一装置, 用于从信道质量与重叠编码次数的对应关系中确定出接收到 的信道质量对应的重叠编码次数, 利用该重叠编码次数对待发送的数据进行 重叠编码复用技术的编码操作, 并发送编码后的数据;
第二装置, 用于检测当前的信道质量, 并发送给所述第一装置, 以及利 用所述第一装置确定的所述重叠编码次数对接收到的所述编码后的数据进行 重叠编码复用技术的解码操作。
本发明实施例提出一种通信系统, 所述通信系统的上下行传输在同一载 频, 包括:
第一装置, 用于根据检测的当前信道参数和接收到的干扰信息确定当前 的信道质量, 从信道质量与重叠编码次数的对应关系中确定所述信道质量对 应的重叠编码次数, 并利用该重叠编码次数对待发送的数据进行重叠编码复 用技术的编码操作, 发送编码后的数据;
第二装置, 用于检测干扰信息, 并发送给所述第一装置, 利用所述第一 装置确定的所述重叠编码次数对接收到的所述编码后的数据进行重叠编码复 用技术的解码操作。
本发明实施例提出的在通信系统中传送数据的方法, 根据通信系统中当 前的信道质量选择最优的重叠编码次数,并根据该重叠编码次数进行 OVDCM 编 /解码操作的方案, 在信道质量较差的情况下, 提高了数据传输的可靠性; 并且, 在信道质量较好的情况下, 使传输效率较高, 避免资源的浪费。 附图说明
图 1为背景技术中进行重叠编码复用技术编码的过程;
图 2为背景技术中级联重叠编码复用技术的原理图;
图 3为本发明实施例一中在通信系统中传送数据的方法步骤流程示意图; 图 4为本发明实施例一中进行级联编码的示意图;
图 5为本发明实施例一中进行级联解码的示意图;
图 6为本发明实施例一中迭代解码流程示意图;
图 7为本发明实施例二中通信装置结构示意图;
图 8为本发明实施例三中通信系统的结构示意图。 具体实施方式
下面结合说明书附图详细描述本发明。
本发明各实施例所描述的方案都是基于 OVCDM技术的。
如图 3 所示, 为本发明实施例一中在通信系统中传送数据的方法步骤流 程示意图, 从图中可以看出, 该方法包括以下步骤:
步骤 301: 对当前的信道质量进行检测。
本步骤中的检测操作可以是接收侧执行的, 具体执行方式为: 发送侧在 下发数据之前, 发送一固定信息至接收侧, 接收侧接收到所述固定信息的同 时也可以获知信道中的各种参数, 并根据参数确定当前发送侧与接收侧之间 的信道质量。 在上行数据传输过程中, 发送侧是终端, 接收侧是基站; 在下行数据传 输过程中, 发送侧是基站, 接收侧是终端。
步骤 302: 根据信道质量与重叠编码次数的对应关系, 确定检测出的信道 质量对应的重叠编码次数。
在本实施例中, 若进行的是单次 OVCDM编 /解码, 则一个重叠编码次数 对应一个区间内的信道质量。 例如, 如果信道质量为信噪比的大小, 则可以 设置 K=l对应的信噪比的区间为( 0 , 4dB] , K=2对应的信噪比的区间为( 4dB , 9dB] , K=3 对应的信噪比区间为 (9, 13dB]„ 当检测出当前信道的信噪比为 5dB时, 根据该预设的信噪比区间与 K值的对应关系, 即可确定出当前信道 的信噪比 5dB属于信噪比区间 (4dB, 9dB] , 当前信道的信噪比对应的 K值 为 2; 若进行的是级联 OVCDM编码, 则各级重叠编码次数的一种组合方式 ——对应一个区间内的信道质量。 例如, (Kl=l , Κ2=2 )——对应的信噪比 的区间为( 0 , 4dB] , ( Κ1=2 , Κ2=2 )——对应的信噪比的区间为( 4dB , 9dB] , ( Kl=3 , Κ2=1 )——对应的信噪比区间为 (9, 13dB]。 当检测出当前信道的 信噪比为 5dB时, 根据该预设的信噪比区间与 K值的对应关系, 即可确定出 当前信道的信噪比 5dB属于信噪比区间(4dB, 9dB] , 当前信道的信噪比对应 的 K值为: Kl=2, Κ2=2。
对应关系可以以列表的形式存储在发送侧和接收侧, 进一步地, 列表中 的信息可以根据实际需要自动或手动修改。
步骤 303: 利用确定出的所述重叠编码次数进行 OVCDM编码, 并发送 编码后的数据。
若进行的是单次编码, 则执行一次 OVCDM编码; 若进行的是级联编码, 则执行多次 OVCDM编码, 如图 4所示。
发送侧根据确定出的所述重叠编码次数进行 OVCDM编码, 将编码后的 数据发送给接收侧。
步骤 304: 接收侧按照所述重叠编码次数, 对接收到的数据进行 OVCDM 解码。 若进行的是单次编码, 则执行一次 OVCDM解码; 若进行的是级联编码, 则执行多次 OVCDM解码, 如图 5所示。 在本实施例中, 为了提高解码的性 能, 可以进行级联 OVCDM的迭代解码。
迭代解码就是对每一级 OVCDM釆用软入软出的译码,通过两级 OVCDM 解码器之间的外信息交换来提高解码的性能, 如图 6所示, 具体流程如下: 首先, 对输入的数据符号进行 OVCDM2解码, 对解码后输出的数据符号 进行解交织, 并将解交织后的数据符号进行 OVCDMl解码。 OVCDMl解码 后对输出数据符号进行判决, 判断输出的数据符号精度等性能是否满足要求, 若满足, 则完成一次迭代; 否则, 还需要进行下一次迭代。 OVCDMl 向 OVCDM2反馈外信息, OVCDMl输出的外信息经过符号交织,作为 OVCDM2 的一个输入。 OVCDM2根据反馈的外信息再次对输入数据符号进行解码, 然 后 OVCDM2 输出的数据符号进行解交织作为 OVCDMl 的输入进行解码, OVCDMl解码后输出数据符号进行判决, 完成第二次迭代。 为了提高解码性 能, 可以进行多次迭代。
接收侧进行解码时使用的重叠编码次数可以是通过多种方式获得的, 包 括但不限于以下两种:
第一种: 接收侧接收发送侧下发的数据时, 同时接收发送侧下发的所述 重叠编码次数。
第二种: 接收侧检测当前的信道质量后, 根据信道质量与重叠编码次数 的对应关系, 确定检测出的所述信道质量对应的重叠编码次数。
在步骤 302 中, 接收侧可以直接将检测出的信道质量的参数反馈给发送 侧, 由发送侧根据预先设置的信道质量与重叠编码次数的对应关系执行本步 骤; 也可以是接收侧执行步骤 302, 将确定出的重叠编码次数反馈给发送侧。
在本实施例中涉及的信道质量包括了信道参数和干扰信息, 由接收侧检 测信道质量时, 接收侧既检测信道参数又检测干扰信息。
当通信系统的上下行传输在同一载频时, 如通信系统为时分双工 ( Time Division Duplex , TDD )系统, 可以由发送侧来确定信道质量, 例如, 在 TDD 系统的下行数据传输过程中, 由终端检测干扰信息并返回给基站, 基站检测 信道参数信息, 并同时根据接收到的干扰信息和检测出的信道参数信息确定 当前的信道质量。
在步骤 303中, 利用确定出的重叠编码次数进行 OVCDM编码包括但不 限于以下两种情况:
第一种, 为每一重叠编码次数配置编码矩阵, 利用确定出的重叠编码次 数值进行 OVCDM编码即利用该重叠编码次数对应的编码矩阵中的 ... ... 进行 OVCDM编码。
,Γ, , T, ^ j- -,- - ^ ΛΛ Λώ ττ7 , r 0.5649 + 0.2366Ϊ 0.5202 - 0.327Π , T, 例如, K=2时对 的编码矩阵可以为 f 1 , K=3
0.0461+ 0.2945Ϊ - 0.5486 - 0.9260Ϊ
0.5649 + 0.2366Ϊ 0.5202 - 0.327Η
时对应的编码矩阵可以为 [ 0.0461 + 0.2945i - 0.5486 - 0.9260Ϊ ],则才艮据确定出的 K
0.7452 + 0.8658Ϊ 0.4758 + 0.6538Ϊ
值选择对应的编码矩阵进行 OVCDM操作。
第二种, 预先确定一个 L列 K行的编码矩阵, 此时 K可以根据经验值选择 可能出现的最大值; 再根据步骤 301和步骤 302确定当前需要的重叠编码次 数 后, 从 L列 K行的编码矩阵选择 行数据进行 OVCDM编码, 例如, 选择 K=5, 得到一个 L列 5行的编码矩阵; 确定当前的 1^=3时, 从 L歹 ^ 5行的编码 矩阵中选择 3行的数据进行 OVCDM编码。
通过本发明实施例描述的方法, 本发明实施例二还描述了一种通信装置, 如图 7所示, 该装置包括检测模块 11 和次数确定模块 12, 其中, 检测模块 11用于检测当前的信道质量;次数确定模块 12用于根据信道质量与重叠编码 次数的对应关系, 确定检测出的所述信道质量对应的重叠编码次数, 其中: 所述重叠编码次数用于对待发送的数据进行重叠编码复用技术的编码操作。
所述装置还包括次数发送模块 13 ,用于将所述次数确定模块 12确定出的 重叠编码次数编码发送给通信系统中数据传输的对端。
所述装置还包括信道质量发送模块 14,用于当所述检测模块 11位于通信 系统中的接收侧时, 将检测出的所述信道质量发送给所述次数确定模块 12。 在实施例一和实施例二的基础上, 本发明实施例三还提供了一种通信系 统, 如图 8所示, 该系统包括第一装置 21和第二装置 22 , 其中, 第一装置 21 用于利用接收到的重叠编码次数对待发送的数据进行重叠编码复用技术的 编码操作, 并发送编码后的数据; 第二装置 22用于检测当前的信道质量, 根 据信道质量与重叠编码次数的对应关系确定出对应的重叠编码次数, 并发送 给所述第一装置, 以及利用所述重叠编码次数对接收到的所述编码后的数据 进行重叠编码复用技术的解码操作。
本实施例还有一种并列方案:
第一装置 21用于从信道质量与重叠编码次数的对应关系中确定出接收到 的信道质量对应的重叠编码次数, 利用该重叠编码次数对待发送的数据进行 重叠编码复用技术的编码操作, 并发送编码后的数据; 第二装置 22用于检测 当前的信道质量, 并发送给所述第一装置, 以及利用所述第一装置确定的所 述重叠编码次数对接收到的所述编码后的数据进行重叠编码复用技术的解码 操作。
本实施例所描述的通信系统的上下行传输在同一载频, 所述通信系统中 的第一装置 21和第二装置 22分别用于执行以下操作: 第一装置 21用于根据 检测的当前信道参数和接收到的干扰信息确定当前的信道质量, 从信道质量 与重叠编码次数的对应关系中确定所述信道质量对应的重叠编码次数, 并利 用该重叠编码次数对待发送的数据进行重叠编码复用技术的编码操作, 发送 编码后的数据; 第二装置 22用于检测干扰信息, 并发送给所述第一装置, 利 用所述第一装置确定的所述重叠编码次数对接收到的所述编码后的数据进行 重叠编码复用技术的解码操作。
通过本发明实施例所记载的方法、 装置及通信系统, 在信道质量较差的 情况下, 提高了数据传输的可靠性; 并且, 在信道质量较好的情况下, 使传 输效率较高, 避免资源的浪费; 进一步地, 可以根据发送侧和接收侧的能力 选择其中一个执行确定重叠编码次数的操作, 可以节约数据处理能力较差的 一端的资源。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种在通信系统中传送数据的方法, 其特征在于, 该方法包括: 检测当前的信道质量;
根据信道质量与重叠编码次数的对应关系, 确定检测出的所述信道质量 对应的重叠编码次数;
利用确定出的所述重叠编码次数对待发送的数据进行重叠编码复用技术 的编码操作, 并发送编码后的数据。
2、 如权利要求 1所述的方法, 其特征在于, 所述方法还包括: 接收侧接收所述编码后的数据, 并利用所述重叠编码次数对该数据进行 重叠编码复用技术的解码操作。
3、 如权利要求 1所述的方法, 其特征在于, 所述信道质量包括信道参数 和干扰信息。
4、 如权利要求 1所述的方法, 其特征在于, 由通信系统的接收侧检测信 道质量。
5、 如权利要求 3所述的方法, 其特征在于, 当所述通信系统的上下行传 输在同一载频时, 由通信系统的接收侧检测干扰信息并返回给发送侧, 所述 发送侧根据检测的信道参数和接收到的干扰信息确定当前的信道质量。
6、 如权利要求 4所述的方法, 其特征在于, 所述接收侧检测信道质量之 后, 且对待发送的所述数据进行编码之前, 包括:
所述接收侧根据检测出的所述信道质量确定对应的重叠编码次数, 并返 回给发送侧; 或者,
所述接收侧向发送侧返回检测出的信道质量, 由发送侧确定当前信道质 量对应的重叠编码次数。
7、 一种通信装置, 其特征在于, 该装置包括:
检测模块, 用于检测当前的信道质量;
次数确定模块, 用于根据信道质量与重叠编码次数的对应关系, 确定检 测出的所述信道质量对应的重叠编码次数, 其中: 所述重叠编码次数用于对 待发送的数据进行重叠编码复用技术的编码操作。
8、 如权利要求 7所述的装置, 其特征在于, 所述装置还包括: 次数发送模块, 用于将所述次数确定模块确定出的重叠编码次数编码发 送给通信对端。
9、 如权利要求 8所述的装置, 其特征在于, 所述装置还包括: 信道质量发送模块, 用于当所述检测模块位于通信系统中的接收侧时, 将检测出的所述信道质量发送给所述次数确定模块。
10、 一种通信系统, 其特征在于, 该系统包括:
第一装置, 用于利用接收到的重叠编码次数对待发送的数据进行重叠编 码复用技术的编码操作, 并发送编码后的数据;
第二装置, 用于检测当前的信道质量, 根据信道质量与重叠编码次数的 对应关系确定出对应的重叠编码次数, 并发送给所述第一装置, 以及利用所 述重叠编码次数对接收到的所述编码后的数据进行重叠编码复用技术的解码 操作。
11、 一种通信系统, 其特征在于, 该系统包括:
第一装置, 用于从信道质量与重叠编码次数的对应关系中确定出接收到 的信道质量对应的重叠编码次数, 利用该重叠编码次数对待发送的数据进行 重叠编码复用技术的编码操作, 并发送编码后的数据;
第二装置, 用于检测当前的信道质量, 并发送给所述第一装置, 以及利 用所述第一装置确定的所述重叠编码次数对接收到的所述编码后的数据进行 重叠编码复用技术的解码操作。
12、 一种通信系统, 其特征在于, 所述通信系统的上下行传输在同一载 频, 包括:
第一装置, 用于根据检测的当前信道参数和接收到的干扰信息确定当前 的信道质量, 从信道质量与重叠编码次数的对应关系中确定所述信道质量对 应的重叠编码次数, 并利用该重叠编码次数对待发送的数据进行重叠编码复 用技术的编码操作, 发送编码后的数据;
第二装置, 用于检测干扰信息, 并发送给所述第一装置, 利用所述第一 装置确定的所述重叠编码次数对接收到的所述编码后的数据进行重叠编码复 用技术的解码操作。
PCT/CN2008/001904 2007-12-29 2008-11-21 在通信系统中传送数据的方法、通信装置及通信系统 WO2009086725A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/810,836 US20100284427A1 (en) 2007-12-29 2008-11-21 Method, communication apparatus for transmitting data in a communication system and the communication system
JP2010539994A JP2011509013A (ja) 2007-12-29 2008-11-21 通信システムにおけるデータ伝送の方法、通信装置及び通信システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710304758.4 2007-12-29
CN200710304758.4A CN101471689B (zh) 2007-12-29 2007-12-29 在通信系统中传送数据的方法、通信装置及通信系统

Publications (1)

Publication Number Publication Date
WO2009086725A1 true WO2009086725A1 (zh) 2009-07-16

Family

ID=40828848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001904 WO2009086725A1 (zh) 2007-12-29 2008-11-21 在通信系统中传送数据的方法、通信装置及通信系统

Country Status (4)

Country Link
US (1) US20100284427A1 (zh)
JP (1) JP2011509013A (zh)
CN (1) CN101471689B (zh)
WO (1) WO2009086725A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645360B (zh) * 2016-07-22 2022-02-18 深圳汇思诺科技有限公司 一种适用于OvXDM系统译码方法、装置及OvXDM系统
CN107659377A (zh) * 2016-07-25 2018-02-02 深圳超级数据链技术有限公司 基于OvXDM系统的均衡译码方法、装置和系统
CN107872295B (zh) * 2016-09-28 2021-09-03 深圳光启合众科技有限公司 一种适用于OvXDM系统的软值提取方法、装置及OvXDM系统
CN107919937B (zh) 2016-10-10 2020-10-27 深圳光启合众科技有限公司 基于重叠复用的译码方法、装置及调制解调方法和系统
CN107968695B (zh) * 2016-10-19 2021-05-14 南通海嘉智能科技有限公司 重叠复用系统的处理方法、装置及系统
CN109327277A (zh) * 2017-07-31 2019-02-12 深圳超级数据链技术有限公司 重叠复用系统以及重叠复用系统的信号处理方法和装置
CN109951263B (zh) * 2017-12-21 2022-09-13 山东协力合智通信科技有限公司 重叠复用系统及其处理方法和系统、存储介质、处理器
CN109962752A (zh) * 2017-12-22 2019-07-02 深圳超级数据链技术有限公司 重叠复用编码方法、装置和系统
CN109962749A (zh) * 2017-12-22 2019-07-02 深圳超级数据链技术有限公司 重叠复用系统及其处理方法和装置、存储介质、处理器
CN109962748A (zh) * 2017-12-22 2019-07-02 深圳超级数据链技术有限公司 数据处理方法和装置
WO2019134627A1 (zh) * 2018-01-03 2019-07-11 深圳超级数据链技术有限公司 接收端信号处理方法和装置
CN112491494B (zh) * 2019-09-11 2023-05-09 中国移动通信有限公司研究院 一种编码确定方法、装置、设备及存储介质
CN115250222B (zh) * 2021-04-26 2024-04-02 中国移动通信有限公司研究院 一种信号处理方法、装置、设备和可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770677A (zh) * 2004-11-04 2006-05-10 三星电子株式会社 用于空时频率分组编码的装置和方法
CN101047473A (zh) * 2006-06-16 2007-10-03 华为技术有限公司 一种数据发送方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110539A (ja) * 1991-10-17 1993-04-30 Fujitsu Ltd デイジタル伝送方式
US6351499B1 (en) * 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
JP2002261726A (ja) * 2001-03-01 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> Ofdm信号送受信装置
JP3929388B2 (ja) * 2002-11-11 2007-06-13 松下電器産業株式会社 基地局装置及び通信端末装置
US20040100911A1 (en) * 2002-11-25 2004-05-27 Raymond Kwan Method for link adaptation
US8566676B2 (en) * 2007-01-05 2013-10-22 Qualcomm Incorporated FEC code and code rate selection based on packet size

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770677A (zh) * 2004-11-04 2006-05-10 三星电子株式会社 用于空时频率分组编码的装置和方法
CN101047473A (zh) * 2006-06-16 2007-10-03 华为技术有限公司 一种数据发送方法

Also Published As

Publication number Publication date
CN101471689B (zh) 2013-03-20
CN101471689A (zh) 2009-07-01
JP2011509013A (ja) 2011-03-17
US20100284427A1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
WO2009086725A1 (zh) 在通信系统中传送数据的方法、通信装置及通信系统
US7765453B2 (en) Early termination controller for iterative FEC decoders and method therefor
US8230296B2 (en) Iterative decoding of concatenated low-density parity-check codes
JP5123301B2 (ja) 無線通信システムにおいて使用される符号化および復号の方法および装置
US7792205B2 (en) Encoding and decoding of frame control header in downlink subframes in wireless communication systems
US8924830B2 (en) Method and system for decoding control data in GSM-based systems using inherent redundancy
US10476998B2 (en) Reinforced list decoding
JP2009516485A (ja) デコーディングのための方法およびシステム
EP2304909B1 (en) Methods and systems for improving frame decoding performance using known information
US8259867B2 (en) Methods and systems for turbo decoding in a wireless communication system
US20100015970A1 (en) Method and system for decoding control channels using repetition redundancy
CN109417440B (zh) 用于连续解码过程的提早终止技术
US8726138B2 (en) Methods and systems for modified maximum-likelihood based TBCC decoding
US8259866B2 (en) Decoding scheme using A-priori information about transmitted messages
US10075194B2 (en) Tail biting convolutional code (TBCC) enhancement with state propagation and list decoding
US20020044612A1 (en) Interleaving method and system
US10581464B2 (en) Encoder device, decoder device, and methods thereof
JP2002152056A (ja) ターボコード復号化装置、復号化方法および記録媒体
US20120028684A1 (en) Radio communication device and error correction/encoding method
US11128313B2 (en) Apparatus and method for decoding signal in wireless communication system
US8132085B2 (en) Method and apparatus for frame control header decoding using cyclic shifting of bits
Kulhare et al. A Review of Digital Data Encoding and Decoding Techniques for EDAC in Wireless MIMO Systems
CN118318397A (zh) 用于在通信和广播系统中解码数据的方法和设备
Xu et al. Iterative decoding for geran mbms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010539994

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12810836

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869381

Country of ref document: EP

Kind code of ref document: A1