WO2009086714A1 - 一种内窥镜仿真装置及系统和仿真方法 - Google Patents

一种内窥镜仿真装置及系统和仿真方法 Download PDF

Info

Publication number
WO2009086714A1
WO2009086714A1 PCT/CN2008/000880 CN2008000880W WO2009086714A1 WO 2009086714 A1 WO2009086714 A1 WO 2009086714A1 CN 2008000880 W CN2008000880 W CN 2008000880W WO 2009086714 A1 WO2009086714 A1 WO 2009086714A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
endoscope
sphere
control rod
virtual
Prior art date
Application number
PCT/CN2008/000880
Other languages
English (en)
French (fr)
Inventor
Weijian Chen
Original Assignee
Weijian Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weijian Chen filed Critical Weijian Chen
Publication of WO2009086714A1 publication Critical patent/WO2009086714A1/zh
Priority to US12/829,944 priority Critical patent/US8157567B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/285Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for injections, endoscopy, bronchoscopy, sigmoidscopy, insertion of contraceptive devices or enemas

Definitions

  • the invention relates to a surgical instrument simulation and practice device, and more particularly to an endoscope simulation device with high simulation degree and simple structure.
  • Endoscopes are commonly used as minimally invasive surgical instruments and are used in many types of surgery.
  • the flexible use of the endoscope by the surgeon requires a lengthy training process. Since the familiar process needs to be performed on a living body or on a cadaver sample, there is usually less opportunity for medical students and physicians who are just working to practice. Less, so it usually takes a long time to learn to use it.
  • many simulation systems have emerged. With the development of computer technology, the simulation system has been able to be combined with the simulation image software to achieve a good simulation effect. However, the existing simulation equipment can not achieve the real simulation effect on the endoscope operating device.
  • the defect is mainly the structure with gear matching, the rotation angle is limited by the gear, and the angle of free rotation is small. Moreover, the gear fit structure is very complicated, the failure rate and maintenance cost are high, and the price is also extremely expensive.
  • the existing structure is only the rotation of the analog endoscope and the thrusting and sliding, and it is impossible to simulate the damping and obstruction of the endoscope inside the human body. Therefore, the existing simulation device can only perform the operation practice, and the most important touch, or touch, of the doctor during the operation cannot be practiced, even after using the simulation device to practice. It takes a long time to get familiar with the operation during the actual operation.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide an endoscope simulation device with high simulation degree, simple structure and low cost.
  • the design is an endoscope simulation device, which comprises a bracket, a ball and a control rod.
  • the ball is freely rotated and mounted in the bracket, and the control rod is slidably mounted on the passage through the center of the sphere to control the rotation of the sphere;
  • the control lever is a simulated endoscope, which can control the rotation of the sphere and perform the thrusting action, the present invention
  • the structure using the rotating sphere has a large angle of rotation, and the simulation degree is high.
  • the angle of the rotation of the simulated endoscope and the depth of insertion can be measured by the orientation sensor and the depth sensor connected to the computer.
  • the design structure is very simple, the components are few, and the cost is very low.
  • the device is provided with at least two rotating support tables between the inner side of the bracket and the ball body, and the top of the rotating support table is provided with a sliding fit of the ball and the ball body.
  • three rotating support platforms are arranged between the inner side of the bracket and the sphere, and the planes of the three rotating support platforms pass through the center of the sphere and are evenly distributed with respect to the center of the sphere.
  • four rotating support tables are disposed between the inner side of the bracket and the sphere, and the four rotating support tables are distributed in a regular tetrahedron in the space, and the center of gravity of the regular tetrahedron overlaps the center of the sphere.
  • the structure of the evenly distributed rotating support platform can ensure the structural stability of the device on the one hand, and provide sufficient movement space for the control rod on the other hand, so that the angle of free rotation is not blocked, thereby affecting the simulation effect.
  • a rotation angle sensor for measuring the rotation angle of the control rod with respect to the sphere is provided between the passage and the control rod.
  • the rotation angle sensor can measure the rotation angle of the control rod during the simulation, and is suitable for some special types of internal frog mirrors.
  • the above sensors may use optical sensors or mechanical sensors, and the ball passages may be of a non-closed or closed structure.
  • the deep sensor can be installed inside the sphere, between the channel and the control rod, so that the structure is stable, the sensor has high accuracy, and an optical sensor or a mechanical sensor can be selected.
  • the deep sensor can be mounted at the end of the channel, facing the end of the lever, which is compact, but the deep sensor can only be used with a non-contact optical sensor.
  • the orientation sensor can select an optical sensor or a mechanical sensor according to actual needs. In order not to hinder the rotation of the control rod, the rotation angle or range is limited.
  • the orientation sensor is generally installed at a position adjacent to the rotation support table, preferably at the top of the rotation support table. on.
  • the damper device can realistically simulate the resistance of the endoscope to the inside of the human body or be blocked by the tissue and cannot be inserted or rotated.
  • the damping device is provided with a manual regulator or a feedback automatic regulator or both manual and feedback automatic regulators. Manual adjusters allow practitioners to be honest It is necessary to adjust the resistance of rotation and insertion.
  • the feedback automatic regulator is a feedback device connected to the computer. According to the human body structure in the simulation software, the resistance is automatically adjusted and the position of rotation or insertion is restricted to achieve high quality simulation.
  • the device with the damper device can simulate the real touch of the endoscope operation, achieve the real simulation effect, and even further input the patient information to be operated into the computer to realize the pre-work of the simulated surgery.
  • the damper is typically mounted adjacent the rotating support table, preferably on the top of the rotating support table.
  • the control rod section and the passage adopt a non-circular structure, so that the control rod can be used to control the sphere to control the rod to rotate the shaft, and the rotation simulation of the endoscope can be realized, and only the orientation sensor can be realized.
  • the control rod section and passage generally adopt a regular polygon, especially a regular hexagonal structure.
  • the end of the joystick is equipped with a simulated endoscope handle and control buttons to enable the true grip or operation of the endoscope. It is also possible to implement different types of endoscopic or similar endoscopic surgical instruments by replacing different endoscope handles, such as minimally invasive electrosurgical electrosurgical instruments, electroplier simulation exercises, especially the angle sensor can detect these The angle at which the instrument is rotated is transmitted to the computer for simulation.
  • the signal of the data line of the above sensor and damper can be integrated and analyzed by the serial port, and the control and operation of the surgical simulation software can be realized by using the standard interface to the computer, which is convenient to use.
  • the present invention further creates an endoscope emulation system including a computer, an emulation software installed in the computer, and an endoscope emulation device, wherein the computer and the endoscope emulation device are connected by a data line.
  • the structure of the endoscope simulation device includes a bracket, a ball and a control rod.
  • the ball is rotatably mounted in the bracket, and the control rod is slidably mounted on the passage through the center of the sphere to control the rotation of the sphere; the inside of the bracket and the sphere At least two orientation sensors are arranged between the two, and a depth sensor is arranged on the control rod; the simulation software establishes a human internal space database and a human internal image database in the computer.
  • the spatial database and the human internal image database are used to create a virtual internal structure of the human body on the computer.
  • the damping database is built into the spatial database when a damping device is provided between the bracket and the sphere or between the sphere and the control rod or both.
  • the damping database records the resistance coefficient of the endoscope's internal structural motion and the position that is not traversable.
  • the computer establishes a virtual model of the internal human body according to the human internal space database of the simulation software, and combines the internal image database of the human body to establish a virtual scene of the human body, which is displayed through the display of the computer;
  • the simulation software superimposes the rotated spatial angle and the extracted depth data with the position of the virtual endoscope, and displays the position of the virtual endoscope after moving in the virtual scene through the display;
  • the 5-azimuth sensor, depth sensor, simulation software, and computer repeat steps 3 and 4 at a certain frequency.
  • the display continuously displays the virtual endoscopes at different locations in the virtual scene to form a continuous dynamic image.
  • the orientation sensor or the angle sensor transmits the angle data of the sphere rotation to the computer through the data line;
  • the simulation software superimposes the angle data with the angle of the virtual endoscope, and displays the position of the virtual endoscope after being rotated in the virtual scene through the display;
  • the display continuously displays the different angles of the virtual endoscope in the virtual scene to form a continuous dynamic image.
  • simulation software obtains the rotation and extraction damping coefficient of the virtual endoscope from the damping database according to the position of the virtual endoscope in the virtual scene, and transmits to the feedback automatic regulator damping device;
  • the auto adjuster damper automatically adjusts the rotation of the ball and lever and the resistance to the thrust according to the damping factor.
  • the feedback automatic adjuster damping device can simulate the resistance received by the endoscope in the human body to walk and rotate, and can truly reflect the hand touch using the endoscope.
  • the invention has high simulation degree, simple structure, reasonable design, high stability, convenient use, low cost, high-volume production, and is suitable for teaching and practice. Achieving a realistic simulation of the surgical touch, It can even be applied to pre-exercise of surgery.
  • the device can also be used in endoscope-like devices with a wide range of surfaces. Compared with the prior art, the device has a higher authenticity simulation, is easier to promote and use, and plays an important role in cultivating a familiar surgeon, and has substantial features and progress.
  • Embodiment 1 is a schematic structural view of Embodiment 1;
  • Figure 2 is a longitudinal cross-sectional view of the main structure of Figure 1;
  • Figure 3 is a transverse cross-sectional view of the main structure of Figure 1;
  • Figure 4 is an enlarged view of A in Figure 3;
  • Figure 5 is an enlarged view of B in Figure 3;
  • Figure 6 is an enlarged view of the portion C in Figure 3;
  • Figure 7 is a schematic diagram of the working principle of the sensor
  • Figure 8 is a perspective view of the main structure of Figure 1;
  • Figure 9 is a view showing the state of use of Figure 8.
  • Figure 10 is another use state diagram of Figure 8.
  • Figure 11 is a longitudinal cross-sectional view of the main structure of Embodiment 2;
  • Figure 12 is a schematic view showing the positional relationship between the rotating support table and the ball in the embodiment 2;
  • Figure 13 is an enlarged view of D in Figure 11;
  • Figure 14 is a longitudinal cross-sectional view showing the main structure of Embodiment 3.
  • Figure 15 is an enlarged view of E in Figure 14;
  • Figure 16 is a schematic structural view of Embodiment 4.
  • Figure 17 is a schematic structural view of Embodiment 5.
  • Figure 18 is a schematic structural view of a simulated endoscope system
  • 19 is a flow chart of a simulation endoscope movement simulation method
  • 20 is a flow chart of a simulation method for simulating endoscope rotation
  • 21 is a flow chart of a simulated endoscope damping simulation method.
  • Example 1 An endoscope simulation device, as shown in FIG. 1, includes a bracket 1, a ball 2 and a control rod 3, the ball 2 can be freely rotated in the bracket 1, and the control rod 3 is slidably mounted on the center of the sphere 2 with respect to the sphere 2 In the channel, as indicated by the arrow in the figure.
  • the bracket 1 is an open bracket
  • the control rod 3 is used for controlling the rotation of the ball 2 in the bracket 1
  • the other end is mounted with a handle 4 for the user to grasp.
  • the handle 4 is an artificial handle of the endoscope, and the button 41 is provided. .
  • the handle 4 and the control rod 3 adopt an easy-to-assemble structure, and the different types of endoscopes can be simulated by replacing different handles 4, and can also be replaced with handles of other surgical instruments for other similarities.
  • Endoscopic surgical instruments such as minimally invasive scissors, electric scalpels, etc.
  • the device is connected to the computer via a cable 51 and a universal interface 52 at its end, such as a USB.
  • the corresponding simulation software is installed on the computer to display the internal structure of the virtual human body, and the simulation practice of the endoscope can be realized.
  • FIG. 2 and FIG. 3 there are three rotating support tables 6 between the inner side of the bracket 1 and the ball 2.
  • the planes of the three rotating support tables 6 pass through the center of the sphere 2, and the angles of 270 degrees are evenly distributed in the bracket 1 Inside.
  • the top of the rotating support table 6 is provided with a ball 61 and a spherical body 2, and as shown in Fig. 4, the structure of the ball can improve the flexibility of the sliding of the ball 2.
  • Two azimuth sensors 71 are disposed between the inner side of the bracket 1 and the sphere 2
  • a depth sensor 72 is disposed between the inside of the sphere 2 and the passage and the control rod 3, as shown in Figs. 5 and 6.
  • Two orientation sensors 71 are used to measure the change in the rotational orientation of the sphere 2 relative to the stent 1, and the depth sensor 72 is used to measure the depth of the control rod 3 being inserted into the channel of the sphere 2, and the data is input into a computer for use as a simulation.
  • the parameter input of the software can show the movement of the endoscope in the virtual internal structure of the human body.
  • the working principle of the sensor is as shown in FIG. 7. This embodiment adopts an optical sensor, which is similar to the working principle of the optical mouse.
  • the orientation sensor 71 emits light to the surface of the sphere 2, and receives light reflected from the surface of the sphere 2 through the optical sensor. The image data is recorded and compared to obtain the angle and distance at which the sphere 2 is rotated.
  • the use process of the present invention controls the rotation of the ball 2 in the holder 1 by grasping the handle 4 (not shown) at the end of the control lever. Due to the structure of the sphere 2 and the reasonable arrangement of the rotating support table, a sufficient angle is provided for the rotation of the simulated endoscope, which is sufficient to simulate a real surgical device, as shown in FIG. The depth of the lever 3 in the sphere 2 is also sufficient to meet the insertion depth of the actual surgical endoscope, as shown in FIG. If it is a hexagonal or polygonal lever, when rotating, it can be rotated with a rotating ball.
  • the device has high simulation degree, simple structure, reasonable design, high stability, and user. It is cheap, can be mass-produced, and is suitable for teaching and practice.
  • an endoscope emulation device as shown in FIG. 1, includes a bracket 1, a ball 2 that can be freely rotated in the bracket 1, a control rod 3 inserted into the intermediate passage of the ball 2, and a cross section of the passage and the control rod 3.
  • the section is a regular hexagon.
  • the bracket 1 of the embodiment has a semi-closed structure, and four rotating support tables 6 are disposed between the inner side of the bracket 1 and the sphere 2, and the four rotating support tables 6 are distributed in a regular tetrahedron in the space. The center of gravity of the regular tetrahedron overlaps the center of the sphere 2, as shown in the schematic view of FIG.
  • the passage of the ball 2 must be closed at the front end.
  • the depth sensor 72 is mounted on the front end of the passage, opposite the front end of the control rod 3, using an optical distance measuring sensor.
  • the orientation sensor 71 of the present embodiment is mounted on the top of the rotary support table 6, as shown in FIG.
  • the structure of this embodiment is further improved on the basis of Embodiment 2, and a manual damper 81 is added to the position adjacent to the rotation support table 6, as shown in Fig. 14. Since the resistance between the endoscopes is different between different parts of the human tissue, the practitioner can adjust the rotational resistance of the sphere 2 through the usual experience or an experienced physician to practice the strength control when using the endoscope.
  • the manual damper device 81 used in this embodiment includes a handle, a screw and a damping block, and the damping force is adjusted by the rotation cooperation of the screw and the bracket 1, as shown in Fig. 15.
  • the structure of the present embodiment is further improved in combination with the respective advantages of the above embodiments, using the semi-closed bracket 1 structure as in Embodiment 1 and the support structure of three rotating support tables 6, and the depth sensor 72 is disposed inside the sphere 2 Between the passage and the control rod 3, and as in Embodiment 2, two orientation sensors 71 are mounted on the top of the rotary support table 6, and the cross section of the passage and the control rod 3 is a regular hexagon.
  • This structure provides sufficient simulated angular space for the rotation of the simulated endoscope and ensures structural stability.
  • a feedback automatic adjusting damping device 82 is mounted on the third rotating support table 6.
  • the feedback automatic adjusting device for feeding back the automatic adjusting damping device 82 is generally driven by a motor, receives control information sent from the computer, and performs rotational damping adjustment.
  • a feedback automatic adjustment damping device 82 is further installed between the control lever 3 and the sphere 1 for receiving the control sent from the computer. Information, push-pull damping adjustment.
  • the data lines of the above-described orientation sensor 71, depth sensor 72, feedback automatic adjustment damping devices 82 and 83 are integrated with a computer via a USB interface 52.
  • the advantage of using the feedback automatic adjustment damping device is that it can limit the rotation and extraction of the simulated endoscope according to the driving of the computer simulation software, thereby realizing the travel of the real mode endoscope in the internal mechanism of the human body and the resistance received.
  • the training of the physician's surgical touch has a great initial effect.
  • Embodiment 4 is further improved on the basis of the above-mentioned Embodiment 4, in particular, the manual damping device 81 as in Embodiment 3 is added, and a rotation angle sensor 73 is installed between the control rod 3 and the ball 1, and the passage and the control are provided.
  • the rod 3 has a circular cross section.
  • the data line integration of the orientation sensor 71, the depth sensor 72, the corner sensor 73, the feedback automatic adjustment damping devices 82 and 83 is connected to the computer via a USB interface 52.
  • the angle sensor 73 can feed back to the computer the angle of rotation of the joystick 3 during simulated use, for simulation exercises of some special types of endoscopes, or other surgical instruments, particularly asymmetric electrosurgical scalpels and scissors.
  • the structure of the present invention is not limited to the specific shape in the embodiment, and the device is mainly but not limited to the simulation of the single-surgical device of the endoscope, and in the actual application, two identical simulators can also be passed.
  • the serial port integrates the signals and drives the software to run after being connected to the computer. In this process, the user grasps the two simulators by both hands to perform the matching operation, and exercises the ability of the hands to cooperate with each other.
  • Other similar structures are claimed in the present invention.
  • the present invention also designs an endoscope simulation system, which includes a computer 9, a simulation software 10 and an endoscope simulation device installed in the computer 9, a computer and an endoscope simulation device, as shown in FIG. Connected by the data line 51, the simulation software 10 establishes a body internal space database 101 internal image database 102 in the computer 9, and a damping database 103 is built in the human body internal space database 101.
  • ⁇ computer establishes the internal virtual model of the human body according to the internal space database of the simulation software, and establishes the internal virtual scene of the human body in combination with the internal image database of the human body, which is displayed through the display of the computer;
  • the simulation software superimposes the rotated spatial angle and the extracted depth data with the position of the virtual endoscope, and displays the position of the virtual endoscope after moving in the virtual scene through the display;
  • the 5-azimuth sensor, depth sensor, simulation software, and computer repeat steps 3 and 4 at a certain frequency.
  • the display continuously displays the virtual endoscopes at different locations in the virtual scene to form a continuous dynamic image.
  • the rotation of the virtual endoscope is similar to the simulation method of the above movement, as shown in Fig. 20, including the following steps:
  • the simulation software superimposes the angle data with the angle of the virtual endoscope, and displays the position of the virtual endoscope after being rotated in the virtual scene through the display;
  • the display continuously displays the different angles of the virtual endoscope in the virtual scene to form a continuous dynamic image.
  • Damping simulation can be implemented when the endoscope simulation device is equipped with a feedback automatic regulator damping device.
  • the damping simulation includes the following steps:
  • simulation software obtains the rotation and extraction damping coefficient of the virtual endoscope from the damping database according to the position of the virtual endoscope in the virtual scene, and transmits to the feedback automatic regulator damping device;
  • the auto adjuster damper automatically adjusts the rotation of the ball and lever and the resistance to the thrust according to the damping factor.
  • the damping coefficient is infinite, and the feedback automatic adjuster damping device brakes the dead sphere or the control rod, so that it cannot continue to move.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Pulmonology (AREA)
  • Computational Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Algebra (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Endoscopes (AREA)
  • Instructional Devices (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Position Input By Displaying (AREA)

Description

一种内窥镜仿真装置及系统和仿真方法 技术领域
本发明涉及手术器械模拟仿真练习设备, 更具体的说是一种具有高仿真度, 结构简单的内窥镜仿真装置。
背景技术
内窥镜作为一种常用的微创手术器械, 在很多中类型的手术中应用。 而手 术医师灵活的使用内窥镜需要一个漫长的训练过程, 由于熟悉的过程需要在活 体或在尸体样本上进行, 一般在医学院的学生和刚刚参加工作的医师能够进行 练习的机会少之又少, 所以一般需要学习一段很长的时间, 才能做到使用自如。 为克服这种实际操作进行练习的缺陷, 出现了许多模拟仿真系统, 随着计算机 技术的发展, 仿真系统已经能够实现与仿真图像软件相结合, 达到很好的仿真 效果。 不过现有的仿真设备在内窥镜操作装置上还不能达到真正的仿真效果, 其缺陷主要是采用齿轮配合的结构, 转动角度受到齿轮的限制, 能够自由转动 的角度小。 而且采用齿轮配合结构十分复杂, 故障率和维护成本高, 价格也十 分昂贵。 另一方面现有的结构仅仅是模拟内窥镜的转动和抽插滑动, 对于内窥 镜在人体内部受到的阻尼和阻碍无法进行模拟。 所以现有的模拟仿真装置只能 实现操作上的练习, 而对于医师在手术过程中最重要的触感, 或称为手感, 是 无法进行练习的, 即使是使用这种仿真装置进行练习后, 在实际操作过程中也 需要很长的一段时间去熟悉操作。
发明内容
本发明的目的在于克服现有技术的不足, 提供一种仿真度高、 结构简单、 成本低廉的内窥镜仿真装置。
本发明的进一步目的是提供一种能够实现可控仿真或反馈仿真的高质量仿 真装置。 ,
本设计为一种内窥镜仿真装置, 包括支架, 球体和控制杆, 球体自由转动 的安装在支架内, 控制杆相对球体滑动安装在穿过球体中心的通道中, 控制球 体转动; 支架内侧与球体之间至少设有两个方位传感器, 控制杆上设有深度传 感器。 控制杆为仿真的内窥镜, 可以控制球体的转动并进行抽插活动, 本发明
确认本 采用转动球体的结构相对于现有的齿轮结构, 可转动的角度大,;仿真度高, 通 过与电脑连接的方位传感器和深度传感器能够测量出仿真内窥镜转动的角度和 插入的深度。 而且本设计结构十分简单, 构件少, 成本十分低廉。 采用通用的 接口, 能够与现有的计算机进行连接, 只需安装相应的仿真软件, 即可自行组 建仿真系统。 学生或医师只需一部安装了模拟软件的计算机, 即可进行练习, 甚至是在家中, 本发明十分适用于教学和训练活动。
为了保证球体滑动的灵敏和自由度, 本装置在支架内側与球体之间设有至 少两个转动支撑台, 转动支撑台顶部设有滚珠与球体滑动配合。 一般是在支架 内側与球体之间设有三个转动支撑台, 三个转动支撑台所在平面穿过球体的球 心, 且相对球心均匀分布。 或者是在支架内侧与球体之间设有四个转动支撑台, 四个转动支撑台在空间成正四面体分布, 所述正四面体的重心与球体的球心重 叠。 这种均匀分布的转动支撑台的结构, 一方面能够保证装置的结构稳定性, 另一方面给控制杆提供足够的运动空间, 使其自由转动的角度不会受到阻止, 从而影响仿真的效果。
通道与控制杆之间设有测量控制杆相对于球体旋转角度的转角传感器, 转 角传感器可以测出控制杆在模拟使用过程中的转角, 适用于一些特别类型的内 寇镜。
上述的传感器可以采用光学传感器或机械传感器, 球体通道可以釆用非封 闭式或封闭式结构。 针对非封闭式结构, 所述深处传感器可以安装在球体内部、 通道与控制杆之间, 这样结构稳定, 传感器准确度高, 可以选用光学传感器或 机械传感器。 对于封闭式结构, 深处传感器可以安装在通道端部、 正对控制杆 末端, 这种结构紧凑, 不过深处传感器只能采用非接触式的光学传感器。
方位传感器可以根据实际需要选用光学传感器或机械传感器, 为了不阻碍 控制杆的转动, 限制其转动角度或范围, 方位传感器一般安装在比邻转动支撑 台的位置上, 最好是安装在转动支撑台顶部上。
本发明的另一个重要的改进是在支架与球体之间或球体与控制杆之间或上 述两个位置均设有阻尼装置。 阻尼装置能够真实模拟内窥镜在人体内部所受到 的阻力或被组织阻挡而不能插入或转动。 阻尼装置设有手动调节器或反馈自动 调节器或同时设有手动和反馈自动调节器。 手动调节器允许练习者可以才艮据实 际需要调整转动和插入的阻力, 反馈自动调节器是与计算机相连的反馈装置, 根据模拟软件中人体结构, 自动调整阻力和限制转动或插入的位置, 达到高质 量仿真。 加装了阻尼装置的装置能够实现对内窥镜操作的真实触感的仿真, 达 到真实的仿真效果, 甚至能够进一步的将要进行手术的病人信息输入计算机中, 实现模拟手术的预练习。
为了不阻碍控制杆的转动, 限制其转动角度或范围, 与方位传感器一样, 阻尼装置一般安装在比邻转动支撑台的位置上, 最好是安装在转动支撑台顶部 上。
控制杆截面及通道采用非圓形的结构, 这样可以通过控制杆控制球体以控 制杆为转轴旋转, 实现内窥镜的转动仿真, 而且只需方位传感器即可实现。 控 制杆截面及通道一般采用正多边形, 特别是正六边形结构。
控制杆末端安装有仿真内窥镜手柄及控制按钮, 能够实现内窥镜真实的握 感或操作。 也可以通过更换不同的内窥镜手柄, 来实现对不同种类的内窥镜或 类似内窥镜的手术器械, 如微创手术电刀, 电钳的仿真练习, 特别是转角传感 器可以测出这些器械转动的角度, 传送给计算机进行模拟。
上述传感器和阻尼器的数据线的信号可由串口器整合分析, 通过标准接口 传入计算机实现对手术仿真软件的控制和操作, 方便使用。
基于上述内窥镜仿真装置, 本发明进一步创作了一种内窥镜仿真系统, 包 括计算机、 安装在计算机内的仿真软件和内窥镜仿真装置, 计算机与内窥镜仿 真装置通过数据线连接, 与上述的内窺镜仿真装置结构一样包括支架, 球体和 控制杆, 球体自由转动的安装在支架内, 控制杆相对球体滑动安装在穿过球体 中心的通道中, 控制球体转动; 支架内侧与球体之间至少设有两个方位传感器, 控制杆上设有深度传感器; 所述仿真软件在计算机中建立人体内部空间数据库 及人体内部图像数据库。 空间数据库及人体内部图像数据库用于在计算机上建 立虚拟的人体内部结构。
当在支架与球体之间或球体与控制杆之间或上述两个位置均设有阻尼装置 时, 空间数据库内建阻尼数据库。 阻尼数据库记录了内窥镜在人体内部结构运 动的阻力系数及不可穿越的位置。
基于上述系统的仿真方法, 包括以下步骤: ①计算机根据仿真软件的人体内部空间数据库建立人体内部虚拟模型, 并 结合人体内部图像数据库建立人体内部虚拟场景, 通过计算机的显示器显示出 来;
©初始化虚拟内窥镜的位置, 并通过显示器显示出虚拟内窥镜在虚拟场景 中的位置;
③通过控制杆转动球体或抽插控制杆, 方位传感器或深度传感器以将转动 的空间角度和抽插的深度数据通过数据线传送至计算机;
④仿真软件将转动的空间角度和抽插的深度数据与虚拟内窥镜的位置叠 加, 并通过显示器显示出虚拟内窥镜在虚拟场景中移动后的位置;
⑤方位传感器、 深度传感器、 仿真软件和计算机以一定频率重复步骤③和 ④, 显示器连续显示出虚拟内窥镜在虚拟场景中的不同位置, 形成连续的动态 图像。
进一步的还包括以下步骤:
®以控制杆为转轴转动球体, 方位传感器或转角传感器将球体转动的角度 数据通过数据线传送至计算机; '
⑦仿真软件将角度数据与虚拟内窥镜的角度叠加, 并通过显示器显示出虚 拟内窥镜在虚拟场景中转动后的位置;
®方位传感器、 角度传感器、 仿真软件和计算机以一定频率重复步骤⑦和 ® , 显示器连续显示出虚拟内窥镜在虛拟场景中的不同角度, 形成连续的动态 图像。
当内窥镜仿真装置安装有反馈自动调节器阻尼装置还包括以下步骤:
⑨仿真软件根据虚拟内窺镜在虚拟场景中的位置从阻尼数据库中获取虚拟 内窥镜的转动和抽插阻尼系数, 并传送至反馈自动调节器阻尼装置;
©反馈自动调节器阻尼装置根据阻尼系数自动调节球体和控制杆的转动和 抽插的阻力。
反馈自动调节器阻尼装置可以仿真内窥镜在人体内穿行和转动所收到的阻 力, 能够真实的体现出使用内窥镜的手感。
本发明具有高仿真度, 结构筒单, 设计合理, 稳定性高, 使用方便, 成本 低廉, 能够大批量生产, 适用于教学和练习。 能够实现手术触感的真实模拟, 甚至能够应用于手术的预练习中。 本设备还可以应用于类似内窥镜的设备中, 具有广泛的使用面。 相对于现有技术, 本装置具有更高的真实性模拟, 更易于 推广和使用, 对培养熟悉的手术医师起到重要的推动作用, 具有实质性特点和 进步。
附图说明
图 1为实施例 1的结构示意图;
图 2为图 1中主体结构的纵向剖视图;
图 3为图 1中主体结构的横向剖视图;
图 4为图 3中 A处放大图;
图 5为图 3中 B处放大图;
图 6为图 3中 C处放大图;
图 7为传感器工作原理图;
图 8为图 1中主体结构的立体图;
图 9为图 8的使用状态图;
图 10为图 8的另一使用状态图;
图 11为实施例 2中主体结构的纵向剖视图;
图 12为实施例 2中转动支撑台与球体的位置关系示意图;
图 13为图 11中 D处放大图;
图 14为实施例 3中主体结构的纵向剖视图;
图 15为图 14中 E处放大图;
图 16为实施例 4的结构示意图;
图 17为实施例 5的结构示意图;
图 18 —种仿真内窥镜系统的结构示意图;
图 19为仿真内窥镜移动仿真方法的流程图;
图 20为仿真内窥镜转动仿真方法的流程图;
图 21为仿真内窺镜阻尼仿真方法的流程图。
具体实施方式
以下结合附图对本发明做进一步的说明。
实施例 1 一种内窥镜仿真装置, 如图 1所示, 包括支架 1, 球体 2和控制杆 3, 球体 2可以在支架 1内自由转动,控制杆 3相对球体 2滑动安装在穿过球体 2中心的 通道中, 如图中箭头所示。 所述支架 1为开放式支架, 控制杆 3用于控制球体 2 在支架 1内转动, 其另一端安装有用于使用者把握的手柄 4, 手柄 4是内窥镜的 仿真手柄,设置有按钮 41。所述手柄 4与控制杆 3之间采用可简易拆装的结构, 通过更换不同的手柄 4可以实现对不同类型的内窥镜的仿真, 也可以更换成其 它手术器械的手柄, 用于其它类似内窥镜的手术器械的练习, 如微创电剪刀, 电手术刀等。 本装置通过电缆 51及其末端的通用接口 52, 如 USB, 与计算机 连接。 在计算机上安装相应的仿真软件, 显示虚拟人体内部结构, 可以实现内 窥镜的仿真练习。
结合图 2和图 3所示, 支架 1内側与球体 2之间设有三个转动支撑台 6, 三 个转动支撑台 6所在平面穿过球体 2的球心, 相间 270度角均布在支架 1内侧。 转动支撑台 6顶部设有滚珠 61与球体 2滑动配合, 如图 4所示, 采用滚珠的结 构能够提高球体 2滑动的灵活性。 在支架 1内側与球体 2之间设有两个方位传 感器 71, 球体 2内部、 通道与控制杆 3之间设有深度传感器 72, 如图 5和图 6 所示。 两个方位传感器 71用于测量球体 2相对于支架 1的转动方位的变化,'深 度传感器 72用于测量控制杆 3在球体 2的通道内抽插的深度, 并将数据输入计 算机用于作为仿真软件的参数输入, 可以显示出内窥镜在虚拟的人体内部结构 中的移动。 传感器的工作原理如图 7所示, 本实施例采用光学传感器, 类似光 学鼠标的工作原理, 方位传感器 71通过发射光线至球体 2表面, 并通过光学感 应器接受从球体 2表面反射回来的光线, 记录和对比图像数据, 得出球体 2转 动的角度和距离。
本发明的使用过程图 8、 9和 10所示, 通过在把握控制杆 3—端的手柄 4 (图中未示出), 控制球体 2在支架 1内转动。 由于采用球体 2的结构, 且转动 支撑台布置合理, 为仿真内窥镜的转动提供充分的角度, 足以模拟真实的手术 设备, 如图 9所示。 而控制杆 3在球体 2内抽插的深度, 也足以满足真实手术 内窥镜插入深度的需要,如图 10所示。如果为六角形或多角形控制杆,旋转时, 可带转球体做顺逆时针转动。
可见本设备具有高仿真度, 而且结构简单, 设计合理, 稳定性高, 使用方 便, 成本低廉, 能够大批量生产,, 适用于教学和练习。
实施例 2
如图 11一种内窥镜仿真装置, 如图 1所示, 包括支架 1, 安装在支架 1内 可以自由转动的球体 2和插入球体 2中间通道的控制杆 3,通道及控制杆 3的横 截面为正六边形。 与实施 1的区别在于本实施例的支架 1釆用半封闭式结构, 在支架 1内侧与球体 2之间设有四个转动支撑台 6,四个转动支撑台 6在空间成 正四面体分布,所述正四面体的重心与球体 2的球心重叠,如图 12示意图所示。 这种结构大大提高了装置的稳定性, 并且给控制杆 3提供足够的运动空间。 由 于采用半封闭式的结构, 所以球体 2的通道必须前端封闭, 如图所示, 深度传 感器 72采用光学测距传感器, 安装在通道的前端, 与控制杆 3的前端相对。 为 了提高结构集成度, 本实施例的方位传感器 71安装在转动支撑台 6的顶部上, 如图 13所示。
实施例 3
本实施例的结构是在实施例 2 的基础上做进一步的改良, 在比邻转动支撑 台 6的位置上增加手动阻尼装置 81 , 如图 14所示。 由于人体组织内部不同部位 对内窥镜之间阻力不同, 所以练习者可以通过平时的经验或有经验的医师调节 球体 2 的转动阻力, 用于练习使用内窥镜时的力度控制。 本实施例采用的手动 阻尼装置 81包括手柄、 螺杆和阻尼块三部分, 通过螺杆与支架 1的旋转配合来 调节阻尼力度的大小, 如图 15所示。
实施例 4
本实施例的结构是在结合上述实施例的各个优点做进一步的改良, 采用如 实施例 1的半封闭的支架 1结构和三个转动支撑台 6的支撑结构, 深度传感器 72设在球体 2内部、 通道与控制杆 3之间, 并且如实施例 2—样将两个方位传 感器 71安装在转动支撑台 6的顶部上, 通道及控制杆 3的横截面为正六边形。 这种结构给模拟内窥镜的转动提供足够仿真的角度空间, 且保证了结构的稳定 性。 在第三个转动支撑台 6上安装有反馈自动调节阻尼装置 82, 反馈自动调节 阻尼装置 82的反馈自动调节器一般采用电机驱动, 接收从计算机发送来的控制 信息, 进行转动阻尼调节。 在安装深度传感器 72的另一侧, 控制杆 3与球体 1 之间还进一步安装有反馈自动调节阻尼装置 82, 用于接收从计算机发送来的控 制信息, 进行抽插阻尼调节。 上述方位传感器 71、 深度传感器 72、 反馈自动调 节阻尼装置 82和 83的数据线集成通过一个 USB接口 52与计算机连接。 釆用 反馈自动调节阻尼装置的优点是能够根据计算机仿真软件的驱动, 对仿真内窥 镜的转动和抽插进行限制, 从而实现真实模式内窥镜在人体内部机构的行进及 受到的阻力, 对于医师的手术触感的培养有极大的初进作用。
实施例 5
本实施例是在上述实施例 4的基础上做进一步的改良, 特别是增加了如实 施例 3中的手动阻尼装置 81, 以及控制杆 3与球体 1之间安装一个转角传感器 73, 通道及控制杆 3的横截面为圆形。 方位传感器 71、 深度传感器 72、 转角传 感器 73、 反馈自动调节阻尼装置 82和 83的数据线集成通过一个 USB接口 52 与计算机连接。 转角传感器 73可以向计算机反馈控制杆 3在模拟使用过程中的 转角, 适用于一些特别类型的内窥镜的仿真练习, 或者是其它手术器械, 特别 是非对称的电手术刀和剪刀等等。
综上所述, 本发明的结构并不局限于实施例中具体形状, 本设备主要是但 不局限于内窥镜单一手术设备的仿真, 在实际应用中也可以将两个相同的仿真 器通过串口器将信号整合, 接入计算机后驱动软件运行。 此过程中使用者通过 双手把握两个仿真器进行配合操作, 锻练双手互相配合的操作能力。 其它类似 的结构均属于本发明所要求保护的内容。
基于上述的装置, 本发明还设计了一种内窥镜仿真系统, 如图 18所示包括 计算机 9、 安装在计算机 9内的仿真软件 10和内窥镜仿真装置, 计算机与内窥 镜仿真装置通过数据线 51连接, 所述仿真软件 10在计算机 9中建立人体内部 空间数据库 101 体内部图像数据库 102,人体内部空间数据库 101内建阻尼 数据库 103。
基于上述内窥镜仿真系统的仿真方法, 如图 19所示, 包括以下步骤:
Φ计算机根据仿真软件的人体内部空间数据库建立人体内部虚拟模型, 并 结合人体内部图像数据库建立人体内部虚拟场景, 通过计算机的显示器显示出 来;
⑦初始化虚拟内窥镜的位置, 并通过显示器显示出虚拟内窺镜在虚拟场景 中的位置; ©通过控制杆转动球体或抽插控制杆, 方位传感器或深度传感器以将转动 的空间角度和抽插的深度数据通过数据线传送至计算机;
④仿真软件将转动的空间角度和抽插的深度数据与虚拟内窥镜的位置叠 加, 并通过显示器显示出虚拟内窥镜在虚拟场景中移动后的位置;
⑤方位传感器、 深度传感器、 仿真软件和计算机以一定频率重复步骤③和 ④, 显示器连续显示出虚拟内窥镜在虚拟场景中的不同位置, 形成连续的动态 图像。
虚拟内窥镜的旋转与上述移动的仿真方法类似, 如图 20所示, 包括以下步 骤:
®以控制杆为转轴转动球体, 方位传感器或转角传感器将球体转动的角度 数据通过数据线传送至计算机;
⑦仿真软件将角度数据与虚拟内窥镜的角度叠加, 并通过显示器显示出虚 拟内窥镜在虚拟场景中转动后的位置;
®方位传感器、 角度传感器、 仿真软件和计算机以一定频率重复步骤⑦和 ®, 显示器连续显示出虚拟内窥镜在虚拟场景中的不同角度, 形成连续的动态 图像。
当内窥镜仿真装置安装有反馈自动调节器阻尼装置时能够实现阻尼仿真, 阻尼仿真包括以下步骤:
⑨仿真软件根据虚拟内窥镜在虛拟场景中的位置从阻尼数据库中获取虚拟 内窥镜的转动和抽插阻尼系数, 并传送至反馈自动调节器阻尼装置;
©反馈自动调节器阻尼装置根据阻尼系数自动调节球体和控制杆的转动和 抽插的阻力。
在虚拟内窥镜不能穿越的位置上, 如人体内的骨骼等组织, 其阻尼系数为 无限大, 反馈自动调节器阻尼装置刹死球体或控制杆, 使其无法继续移动。

Claims

权 利 要 求 书
1.一种内窥镜仿真装置, 其特征是包括支架, 球体和控制杆, 球体自由转动 的安装在支架内, 控制杆相对球体滑动安装在穿过球体中心的通道中, 控制球 体转动; 支架内侧与球体之间至少设有两个方位传感器, 控制杆上设有深度传 感器。
2.根据权利要求 1所述的内窥镜仿真装置,其特征是在支架内侧与球体之间 设有至少两个转动支撑台, 转动支撑台顶部设有滚珠与球体滑动配合。
3.根据权利要求 2所述的内窥镜仿真装置,其特征是支架内側与球体之间设 有三个转动支撑台, 三个转动支撑台所在平面穿过球体的球心, 且相对球心均 匀分布, 或者设有四个转动支撑台, 四个转动支撑台在空间成正四面体分布, 所述正四面体的重心与球体的球心重叠。
4.根据权利要求 2所述的内窥镜仿真装置,其特征是通道与控制杆之间设有 测量控制杆相对于球体旋转角度的转角传感器。
5.根据权利要求 2或 3或 4所述的内窥镜仿真装置,其特征是所述深处传感 器安装在球体内部、 通道与控制杆之间或安装在通道端部、 正对控制杆末端。
6.根据权利要求 5所述的内窥镜仿真装置,其特征是所述方位传感器安装在 比邻转动支撑台的位置上或转动支撑台顶部上。
7.根据权利要求 1或 2或 3或 4所述的内窥镜仿真装置,其特征是在支架与 球体之间或球体与控制杆之间或上述两个位置均设有阻尼装置。
8.根据权利要求 7所述的内寇镜仿真装置,其特征是所述阻尼装置设有手动 调节器或反馈自动调节器或同时设有手动和反馈自动调节器, 安装在比邻转动 支撑台的位置上或转动支撑台顶部上。
9.根据权利要求 1或 2或 3或 4所述的内窺镜仿真装置,其特征是所述控制 杆截面及通道为非圓形。
10.根据权利要求 9所述的内窥镜仿真装置, 其特征是述控制杆截面及通道 为正六边形。
11.根据权利要求 1或 2或 3或 4所述的内窥镜仿真装置, 其特征是控制杆 末端安装有仿真内窥镜手柄及控制^ ¼。
12.—种内窥镜仿真系统, 包括计算机、 安装在计算机内的仿真软件和内窥 镜仿真装置, 计算机与内窥镜仿真装置通过数据线连接, 其特征是内窥镜仿真 装置包括支架, 球体和控制杆, 球体自由转动的安装在支架内, 控制杆相对球 体滑动安装在穿过球体中心的通道中, 控制球体转动; 支架内侧与求 之间至 少设有两个方位传感器, 控制杆上设有深度传感器; 所述仿真软件在计算机中 建立人体内部空间数据库 体内部图像数据库。
13.根据权利要求 12所述的内窥镜仿真系统,其特征是支架内側与球体之间 设有三个转动支撑台, 三个转动支撑台所在平面穿过球体的球心, 且相对球心 均匀分布, 或者设有四个转动支撑台, 四个转动支撑台在空间成正四面体分布, 所述正四面体的重心与球体的球心重叠。
14.根据权利要求 12所述的内窺镜仿真系统,其特征是所述控制杆截面及通 道为非圓形。
15.根据权利要求 12所述的内窥镜仿真系统,其特征是通道与控制杆之间设 有测量控制杆相对于球体旋转角度的转角传感器。
16.根据权利要求 12或 13或 14或 15所述的内窥镜仿真系统, 其特征是在 支架与球体之间或球体与控制杆之间或上述两个位置均设有阻尼装置, 空间敖 据库内建阻尼数据库。
17.根据权利要求 15所述的内窥镜仿真系统,其特征是所述阻尼装置设有手 动调节器或反馈自动调节器或同时设有手动和反馈自动调节器。
18.—种应用于权利要求 12所述内窥镜仿真系统的仿真方法,其特征在于包 括以下步骤:
①计算机根据仿真软件的人体内部空间数据库建立人体内部虚拟模型, 并 结合人体内部图像数据库建立人体内部虚拟场景, 通过计算机的显示器显示出 来;
©初始化虚拟内窥镜的位置, 并通过显示器显示出虚拟内窥镜在虚拟场景 中的位置;
③通过控制杆转动球体或抽插控制杆, 方位传感器或深度传感器以将转动 的空间角度和抽插的深度数据通过数据线传送至计算机;
@仿真软件将转动的空间角度和抽插的深度数据与虚拟内窥镜的位置叠 加, 并通过显示器显示出虚拟内窥镜在虚拟场景中移动后的位置; ⑤方位传感器、 深度传感器、 仿真软件和计算机以一定频率重复步骤③和 ④, 显示器连续显示出虚拟内窥镜在虚拟场景中的不同位置, 形成连续的动态 图像。
19.根据权利要求 18所述的仿真方法,.其特征在于还包括以下步驟:
©以控制杆为转轴转动球体, 方位传感器或转角传感器将球体转动的角度 数据通过数据线传送至计算机;
⑦仿真软件将角度数据与虚拟内窥镜的角度叠加, 并通过显示器显示出虚 拟内窥镜在虚拟场景中转动后的位置;
®方位传感器、 角度传感器、 仿真软件和计算机以一定频率重复步驟⑦和 ®, 显示器连续显示出虛拟内窺镜在虚拟场景中的不同角度, 形成连续的动态 图像。
20.根据权利要求 18或 19所述的仿真方法, 其特征在于当内窥镜仿真装置 安装有反馈自动调节器阻尼装置还包括以下步骤:
⑨仿真软件根据虚拟内窥镜在虛拟场景中的位置从阻尼数据库中获取虛拟 内窥镜的转动和抽插阻尼系数, 并传送至反馈自动调节器阻尼装置; ―'
®反馈自动调节器阻尼装置根据阻尼系数自动调节球体和控制杆的转动和 抽插的阻力。
PCT/CN2008/000880 2008-01-07 2008-04-30 一种内窥镜仿真装置及系统和仿真方法 WO2009086714A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/829,944 US8157567B2 (en) 2008-01-07 2010-07-02 Endoscope simulation apparatus and system and method using the same to perform simulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNU2008200424032U CN201215653Y (zh) 2008-01-07 2008-01-07 一种立体定位式鼠标器
CN200820042403.2 2008-01-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/829,944 Continuation US8157567B2 (en) 2008-01-07 2010-07-02 Endoscope simulation apparatus and system and method using the same to perform simulation

Publications (1)

Publication Number Publication Date
WO2009086714A1 true WO2009086714A1 (zh) 2009-07-16

Family

ID=40520858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000880 WO2009086714A1 (zh) 2008-01-07 2008-04-30 一种内窥镜仿真装置及系统和仿真方法

Country Status (3)

Country Link
US (1) US8157567B2 (zh)
CN (1) CN201215653Y (zh)
WO (1) WO2009086714A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306471A (zh) * 2011-08-02 2012-01-04 陈为坚 一种改进的内窥镜仿真装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2068294A1 (en) * 2007-12-03 2009-06-10 Endosim Limited Laparoscopic training apparatus
EP2760003A1 (en) * 2013-01-24 2014-07-30 Surgical Science Sweden AB Haptic user interface device for surgical simulation system
EP2811479B1 (en) * 2013-06-07 2017-08-02 Surgical Science Sweden AB A user interface for a surgical simulation system
CN105120103B (zh) * 2015-09-10 2018-01-19 广东欧珀移动通信有限公司 一种移动终端及其来电处理系统和方法
CN105120104B (zh) * 2015-09-10 2018-01-23 广东欧珀移动通信有限公司 一种移动终端及其解锁上锁处理系统和方法
DE102015122802A1 (de) * 2015-12-23 2017-06-29 Karl Storz Gmbh & Co. Kg Gelenkanordnung, Führungsvorrichtung, Herstellung sowie Verwendung einer Gelenkanordnung
US10255828B2 (en) * 2016-11-09 2019-04-09 Stephen J. Snyder Apparatus for releasably and adjustably mounting a tubular device to an object
WO2018118858A1 (en) 2016-12-19 2018-06-28 National Board Of Medical Examiners Medical training and performance assessment instruments, methods, and systems
CN108302116A (zh) * 2018-03-26 2018-07-20 郑州润德光电科技有限公司 一种管道内窥镜用万向球节
US11501661B2 (en) * 2018-03-29 2022-11-15 Cae Healthcare Canada Inc. Method and system for simulating an insertion of an elongated instrument into a subject
CN110575116A (zh) * 2019-09-23 2019-12-17 武汉佑康科技有限公司 一种可无级自锁的内窥镜装置
CN113892893B (zh) * 2021-12-09 2022-06-21 深圳市宏济医疗技术开发有限公司 一种耳鼻喉内窥镜支架
CN116081924B (zh) * 2023-02-09 2023-12-19 蚌埠凯盛工程技术有限公司 一种全自动内窥镜装置及其同步调整方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722836A (en) * 1996-05-21 1998-03-03 Simulab Corporation Reflected-image videoendoscopic surgical trainer and method of training
US5800177A (en) * 1995-03-29 1998-09-01 Gillio; Robert G. Surgical simulator user input device
DE10304736B3 (de) * 2003-02-06 2004-09-30 Forschungszentrum Karlsruhe Gmbh Einrichtung für die Bewegung eines Stabes/Rohres innerhalb eines/r durch die Konstruktion der Einrichtung vorgegebenen Doppelkegels/-Doppelpyramide
EP1722346A1 (en) * 2005-05-13 2006-11-15 KEYMED (MEDICAL & INDUSTRIAL EQUIPMENT) LIMITED An endoscopy simulation system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024576A (en) * 1996-09-06 2000-02-15 Immersion Corporation Hemispherical, high bandwidth mechanical interface for computer systems
EP1051698B1 (en) * 1998-01-28 2018-01-17 Immersion Medical, Inc. Interface device and method for interfacing instruments to vascular access simulation systems
US6113395A (en) * 1998-08-18 2000-09-05 Hon; David C. Selectable instruments with homing devices for haptic virtual reality medical simulation
DE10055292B4 (de) * 2000-11-03 2004-02-12 Karl Storz Gmbh & Co. Kg Simulatorvorrichtung mit zumindest zwei Bewegungsfreiheitsgraden für die Verwendung bei einem realen Instrument
US20050142525A1 (en) * 2003-03-10 2005-06-30 Stephane Cotin Surgical training system for laparoscopic procedures
US7594815B2 (en) * 2003-09-24 2009-09-29 Toly Christopher C Laparoscopic and endoscopic trainer including a digital camera
JP2006239002A (ja) * 2005-03-01 2006-09-14 Pentax Corp 内視鏡用データ生成装置および内視鏡システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800177A (en) * 1995-03-29 1998-09-01 Gillio; Robert G. Surgical simulator user input device
US5722836A (en) * 1996-05-21 1998-03-03 Simulab Corporation Reflected-image videoendoscopic surgical trainer and method of training
DE10304736B3 (de) * 2003-02-06 2004-09-30 Forschungszentrum Karlsruhe Gmbh Einrichtung für die Bewegung eines Stabes/Rohres innerhalb eines/r durch die Konstruktion der Einrichtung vorgegebenen Doppelkegels/-Doppelpyramide
EP1722346A1 (en) * 2005-05-13 2006-11-15 KEYMED (MEDICAL & INDUSTRIAL EQUIPMENT) LIMITED An endoscopy simulation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306471A (zh) * 2011-08-02 2012-01-04 陈为坚 一种改进的内窥镜仿真装置

Also Published As

Publication number Publication date
US8157567B2 (en) 2012-04-17
CN201215653Y (zh) 2009-04-01
US20100273134A1 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
WO2009086714A1 (zh) 一种内窥镜仿真装置及系统和仿真方法
EP1609431B1 (en) Haptic device for use in surgical simulation systems
CN102306471B (zh) 一种改进的内窥镜仿真装置
EP2068295B1 (en) Laparoscopic training apparatus
US5791908A (en) Apparatus and method for telesurgery
EP1103041B1 (en) Interface device and method for interfacing instruments to medical procedure simulation system
CN102622935B (zh) 一种微创手术仿真装置
US20070018958A1 (en) Force reflective robotic control system and minimally invasive surgical device
KR20090066453A (ko) 소화기 내시경 시뮬레이션용 원형 햅틱장치 및 햅틱인터페이스
GB2589458A (en) A virtual reality surgical system including a surgical tool assembly with haptic feedback
CN110662492A (zh) 一种手术模拟装置
KR100457927B1 (ko) 가상현실과 햅틱장치를 이용한 소화기 내시경 수련 시스템
Nageotte et al. Stras: a modular and flexible telemanipulated robotic device for intraluminal surgery
JP4838629B2 (ja) 内視鏡検査シミュレーション・システム
CN201177911Y (zh) 一种内窥镜仿真装置
JP7349159B2 (ja) 腹腔鏡トレーナーの作業ツールおよび操作・測定セット
CA2921848C (en) Apparatus for simulating insertion of an elongated instrument into a structure and medical insertion simulator
JP7205020B2 (ja) 内視鏡手順をシミュレーションするための周辺制御装置
US20220319355A1 (en) Apparatuses for simulating dental procedures and methods
CN115331531A (zh) 一种全真模拟关节镜手术的教学装置及方法
CA2921855C (en) Apparatus for simulating insertion of an elongated instrument into a structure and medical insertion simulator
DK180682B1 (en) Apparatus for simulating medical procedures and methods
JP2017021388A (ja) 手術シミュレータ用鉗子
WO2017143448A1 (en) Apparatus for simulating insertion of an elongated instrument into a structure including a pulley and a pulley position sensing arrangement
Zahraee Dexterous Serial Comanipulation for Minimally Invasive Surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08748439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08748439

Country of ref document: EP

Kind code of ref document: A1