WO2009081993A1 - Process for producing display - Google Patents

Process for producing display Download PDF

Info

Publication number
WO2009081993A1
WO2009081993A1 PCT/JP2008/073656 JP2008073656W WO2009081993A1 WO 2009081993 A1 WO2009081993 A1 WO 2009081993A1 JP 2008073656 W JP2008073656 W JP 2008073656W WO 2009081993 A1 WO2009081993 A1 WO 2009081993A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy film
atomic
film
temperature
alloy
Prior art date
Application number
PCT/JP2008/073656
Other languages
French (fr)
Japanese (ja)
Inventor
Mototaka Ochi
Hiroshi Goto
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Publication of WO2009081993A1 publication Critical patent/WO2009081993A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements

Definitions

  • the present invention relates to a method for manufacturing a display device represented by a liquid crystal display, an organic electroluminescence (EL) display, or the like. Specifically, the present invention relates to a method for manufacturing a display device having a structure in which an oxide transparent conductive film and an Al alloy film for a reflective electrode are directly connected, and alkaline corrosion during patterning of the Al alloy film. The present invention relates to a method for manufacturing a display device that can effectively prevent the above. In the following, a liquid crystal display will be described as a representative example, but the present invention is not limited to this.
  • liquid crystal displays There are two types of liquid crystal displays: a transmissive display device that uses light from a lighting device (backlight) installed behind the liquid crystal panel as a light source, a reflective display device that uses ambient light, and both transmissive and reflective types. It is roughly divided into a semi-transmission type display device having both.
  • the transmissive display device performs display by allowing the backlight irradiated from the rear surface of the liquid crystal panel to pass through the liquid crystal panel and the color filter, and performs display with a high contrast ratio regardless of the use environment. It has the advantage of being capable of being used, and is widely used in electronic devices that require large brightness such as televisions and personal computer monitors. However, since power for the backlight is required, it is somewhat unsuitable for small devices such as mobile phones.
  • a reflective display device reflects natural light or artificial light in a liquid crystal panel and displays the reflected light through a liquid crystal panel or a color filter. It is widely used mainly for calculators and watches.
  • the reflective display device has a drawback that the brightness and contrast ratio of the display are greatly affected by the use environment, and in particular, it becomes difficult to see when it becomes dark.
  • transflective display devices use reflective electrodes during the day to save power consumption, and light and turn on lights when necessary indoors or at night, depending on the usage environment. Since the display in the transmissive mode and the display in the reflective mode can be performed, there is an advantage that power consumption can be saved without being restricted by the surrounding environment, and a bright high contrast ratio display can be obtained.
  • the transflective display device is optimally used for mobile devices, and in particular, is widely used for colored mobile phones and the like.
  • FIGS. 1 and 2 correspond to FIGS. 1 and 2 disclosed in Patent Document 3 described later.
  • a transflective liquid crystal display device 11 includes a thin film transistor (hereinafter referred to as “TFT”) substrate 21, a counter substrate 15 disposed to face the TFT substrate 21, and a TFT A liquid crystal layer 23 is provided between the substrate 21 and the counter substrate 15 and functions as a light modulation layer.
  • the counter substrate 15 includes a color filter 17 including a black matrix 16, and a transparent common electrode 13 is formed on the color filter 17.
  • the TFT substrate 21 has a pixel electrode 19, a switching element T, and a wiring portion including a scanning line and a signal line. In the wiring portion, a plurality of gate wirings 5 and a plurality of data wirings 7 are arranged perpendicular to each other, and a switching element TFT (in the figure, T) are arranged in a matrix.
  • the pixel area P of the pixel electrode 19 is composed of a transmissive area A and a reflective area C.
  • the transmissive area A is a transparent pixel electrode 19a
  • the reflective area C is a transparent pixel electrode 19a.
  • a reflective electrode 19b is provided.
  • a barrier metal layer 51 made of a refractory metal such as Mo, Cr, Ti, or W is formed between the transparent pixel electrode 19a and the reflective electrode 19b.
  • a barrier metal layer 51 such as Mo or Cr is interposed between an Al-based alloy film and an oxide transparent conductive film.
  • the operation principle of the transmission mode will be described.
  • the light F of the backlight 41 disposed below the TFT substrate 21 is used as a light source.
  • Light emitted from the backlight 41 enters the liquid crystal layer 23 via the transparent pixel electrode 19a and the transmission region A, and liquid crystal molecules in the liquid crystal layer 23 are generated by an electric field formed between the transparent pixel electrode 19a and the common electrode 13.
  • the incident light F from the backlight 41 passing through the liquid crystal layer 23 is modulated.
  • the amount of light transmitted through the counter substrate 15 is controlled to display an image.
  • external natural light or artificial light B is used as a light source.
  • the light B incident on the counter substrate 15 is reflected by the reflective electrode 19b, and the alignment direction of the liquid crystal molecules in the liquid crystal layer 23 is controlled by the electric field formed between the reflective electrode 19b and the common electrode 13.
  • the passing light B is modulated.
  • the amount of light transmitted through the counter substrate 15 is controlled to display an image.
  • the pixel electrode 19 includes a transparent pixel electrode 19a and a reflective electrode 19b.
  • the transparent pixel electrode 19a is typically indium tin oxide (ITO) containing about 10% by mass of tin oxide (SnO) in indium oxide (In 2 O 3 ), or zinc oxide in indium oxide. It is formed from an oxide transparent conductive film such as indium zinc oxide (IZO) containing about mass%.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the reflective electrode 19b is made of a metal material having high reflectivity, and is typically an Al alloy such as pure Al or Al—Nd (hereinafter, these are collectively referred to as “Al-based alloy”). Is used. Al-based alloys are extremely useful as wiring materials because of their low electrical resistivity.
  • Galvanic corrosion is said to occur when the electrode potential difference between different metals is large, such as an oxide transparent conductive film such as ITO and an Al-based alloy film.
  • the electrode potential with respect to an Ag / AgCl standard electrode in an aqueous tetramethylammonium hydroxide (TMAH) solution that is an alkaline developer of photoresist is about -0.17 V for amorphous-ITO and about -0.19 V for poly-ITO.
  • TMAH tetramethylammonium hydroxide
  • pure Al is very low at about -1.93V.
  • Al-based alloys are very easily oxidized.
  • an Al oxide insulating layer is formed at the interface between the Al alloy film and the oxide transparent conductive film during immersion in the TMAH aqueous solution. Produced and corroded.
  • the TMAH aqueous solution penetrates into the interface with the oxide transparent conductive film along the pinholes and through grain boundaries generated in the Al-based alloy film and galvanic corrosion occurs at the interface, various problems such as oxide transparent conductive Blackening of the film, resulting in blackening of the pixel, poor pattern formation such as wiring thinning and disconnection, an increase in contact resistance between the Al alloy film and the oxide transparent conductive film, resulting in defective display (lighting).
  • the method of interposing the barrier metal layer has problems such as a complicated manufacturing process and an increase in production cost.
  • direct contact technology that can omit the formation of the barrier metal layer and can directly contact the Al alloy film with the transparent pixel electrode has been studied.
  • the direct contact technology is required to have a low contact resistance between the Al alloy film, which is an electrode material, and the transparent pixel electrode and to have excellent heat resistance so that a display device with high display quality can be obtained.
  • Patent Document 4 discloses an Al alloy film wiring material containing 0.1 to 6 atomic% of at least one alloy element selected from the group consisting of Au, Ag, Zn, Cu, Ni, Sr, Ge, Sm, and Bi. Is disclosed. If the Al alloy film is used, a conductive alloy element-containing precipitate is formed at the interface between the Al alloy film and the transparent pixel electrode, and generation of an insulating material such as aluminum oxide is suppressed. Can be reduced.
  • the addition amount of the alloy element is within the above range, the electrical resistivity of the Al alloy itself can be kept low. Further, if at least one alloy element of Nd, Y, Fe, and Co is further added to the Al alloy film, generation of hillocks (cove-like projections) can be suppressed, and heat resistance can be improved.
  • the precipitate of the alloy element is subjected to a heat treatment (annealing) at 150 to 400 ° C. (preferably 200 to 350 ° C.) for 15 minutes to 1 hour after forming an Al alloy film on the substrate by sputtering or the like. Obtained by. JP 2004-144826 A JP 2005-91477 A JP 2005-196172 A JP 2004-214606 A
  • An object of the present invention is to prevent corrosion in an alkaline developer such as an aqueous TMAH solution in a display device having a structure in which an Al alloy film for a reflective electrode is directly connected on a transparent oxide conductive film. It is an object of the present invention to provide a method for manufacturing a display device capable of effectively preventing corrosion of an alloy film.
  • a manufacturing method of a display device that has solved the above problems is a manufacturing method of a display device having a structure in which an Al alloy film for a reflective electrode is directly connected on an oxide transparent conductive film, A first step of forming the oxide transparent conductive film thereon, a second step of forming the Al alloy film on the oxide transparent conductive film, and a third step of heating the Al alloy film;
  • the Al alloy film includes 0.1 to 4 atomic% of at least one of Ni and Co, and 0.1 to 2 atomic% in total of at least one element selected from group X.
  • Al— (Ni / Co) —X alloy contained in a range, where X is La, Mg, Cr, Mn, Ru, Rh, Pt, Pd, Ir, Ce, Pr, Gd, Tb, Dy, Nd Ti, Zr, Nb, Mo, Hf, Ta, W, Y, Fe, S , Eu, Ho, Er, Tm, Yb, and Lu, the second step depending on at least one of the Ni content and the Co content of the Al— (Ni / Co) —X alloy film
  • the present invention has a gist in controlling the substrate temperature and the heating temperature in the third step.
  • the Al alloy film contains 0.5 to 4 atomic% of at least one of Ni and Co.
  • the Al alloy film contains 0.5 to 4 atomic% of Ni.
  • the temperature of the substrate in the second step and the heating temperature in the third step are as follows according to the Ni content (atomic%, [Ni]) of the Al alloy film: It is controlled as in (3).
  • the heating temperature in the third step is increased to 200 ° C. by a temperature of 50 ° C. or less set according to ⁇ (4- [Ni]). Control within the specified temperature range.
  • the heating temperature in the third step is set according to ⁇ (4- [Ni]) 100 The temperature below °C is controlled within the temperature range plus 100 °C.
  • the heating temperature in the third step is set according to ⁇ (4- [Ni]) 100 The temperature below °C is controlled within the temperature range plus 100 °C.
  • the heating temperature in the third step is set according to ⁇ (4- [Ni]) 100 The temperature below °C is controlled within the temperature range plus 100 °C.
  • the Al— (Ni / Co) —X alloy film includes at least one of 0.1 to 4 atomic% of Ni and Co, and at least of 0.1 to 2 atomic% of La and Nd. And one.
  • the Al— (Ni / Co) —X alloy film further comprises at least one element selected from the group consisting of 0.1 to 2 atomic% Z (Z is Ge, Cu, and Si). Is contained).
  • the Al— (Ni / Co) —X alloy film includes at least one of 0.1 to 4 atomic% of Ni and Co, and at least of 0.1 to 2 atomic% of La and Nd. 1 and at least one of 0.1 to 2 atomic% of Ge and Cu.
  • TMAH tetramethylammonium hydroxide
  • a preferable oxide transparent conductive film is indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the thermal history (specifically, the substrate temperature at the time of film formation and the heating temperature after the film formation) of the Al alloy film as the reflective electrode is determined according to the amount of Ni and / or Co contained in the Al alloy film. Therefore, even when immersed in an alkaline developer such as TMAH aqueous solution during patterning, corrosion of the Al alloy film is suppressed, and the contact resistance between the transparent oxide conductive film and the Al alloy film is reduced. can do.
  • an alkaline developer such as TMAH aqueous solution during patterning
  • FIG. 1 is an exploded perspective view showing a configuration of a typical transflective liquid crystal display device.
  • FIG. 2 is a diagram schematically showing a cross section of a typical transflective liquid crystal display device.
  • FIG. 3 is a graph showing the immersion potential of an Al alloy film (Al-2 atomic% Ni-0.35 atomic% La) formed by changing the substrate temperature during sputtering.
  • FIG. 4 is a graph showing the reflectivity of a pure Al film and an Al—Ni—La alloy film (reflection electrode) in which the amount of Ni is changed (composition unit in the graph is atomic%).
  • FIG. 5 shows the sample No. after being immersed in the TMAH aqueous solution in the example.
  • FIG. 6 shows the sample No. after being immersed in the TMAH aqueous solution in the example.
  • 19 is 19 transmission electron micrographs.
  • FIG. 7 shows the sample No. after being immersed in the TMAH aqueous solution in the example.
  • FIG. 8 shows the sample No. after being immersed in the TMAH aqueous solution in the example. 23 is a transmission electron micrograph of 23.
  • FIG. 9 is a diagram showing a Kelvin pattern (TEG pattern) used for measuring the connection resistance between the Al alloy film and the oxide transparent conductive film (ITO film).
  • FIG. 10 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is formed at room temperature in an Al—Ni—La alloy film.
  • FIG. 11 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is increased to 100 ° C. in an Al—Ni—La alloy film.
  • FIG. 12 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is increased to 150 ° C. and 250 ° C. in an Al—Ni—La alloy film. is there.
  • FIG. 13 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is formed at room temperature in an Al—Ni—La—Cu alloy film.
  • FIG. 14 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is increased to 100 ° C. in an Al—Ni—La—Cu alloy film.
  • FIG. 15 shows the effect of heating temperature and Ni amount on the alkali corrosion resistance when the substrate temperature is increased to 150 ° C. and 250 ° C. in an Al—Ni—La—Cu alloy film. It is a graph.
  • FIG. 14 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is formed at room temperature in an Al—Ni—La—Cu alloy film.
  • FIG. 14 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is increased to 100 ° C. in an Al—N
  • FIG. 16 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is formed at room temperature in an Al—Ni—La—Ge alloy film.
  • FIG. 17 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when an Al—Ni—La—Ge alloy film is formed at a substrate temperature increased to 100 ° C. .
  • FIG. 18 shows the effect of heating temperature and Ni amount on the alkali corrosion resistance when the substrate temperature is increased to 150 ° C. and 250 ° C. in an Al—Ni—La—Ge alloy film. It is a graph.
  • the present inventors represent a TMAH aqueous solution or the like when patterning an Al alloy film in a display device having a structure in which an Al alloy film for a reflective electrode is directly connected on an oxide transparent conductive film.
  • studies have been repeated.
  • a method for appropriately controlling the substrate temperature during the formation of the Al alloy film and the heating temperature after the formation of the Al alloy film, specifically, the heating temperature after the film formation are used.
  • the inventors have found that the intended purpose can be achieved by adopting a method in which the amount of Ni in the Al alloy film is controlled in consideration of the relationship with the substrate temperature during film formation, and the present invention has been completed.
  • Co may be used instead of Ni as the Al alloy film, and Co has also been found to be a synergistic element having the same action as Ni.
  • Ni and Co may be used alone or in combination. Therefore, when the Al alloy film contains only Co, the Al alloy film is formed according to the amount of Co. On the other hand, when the Al alloy film contains both Ni and Co, the Al alloy film is formed according to the Ni amount and the Co amount. It was found that the substrate temperature at the time and the heating temperature after the Al alloy film formation may be appropriately controlled. Further, according to the method of the present invention, 0.1 to 2 atomic% of the group Z (the group Z is at least one element selected from the group consisting of Ge, Cu, and Si) in the Al alloy film. It was found that the present invention can also be applied to the case of further containing.
  • an Al alloy containing Ni and / or Co and at least one group X may be referred to as an Al— (Ni / Co) —X alloy.
  • an Al alloy further including at least one of group Z in the Al— (Ni / Co) —X alloy may be referred to as an Al— (Ni / Co) —XZ alloy.
  • the amounts of Ni, Co, and group Z in the Al alloy film are represented by [Ni], [Co], and [Z]. [Z] means a single amount when the group Z element is contained alone, and a total amount when two or more group Z elements are contained.
  • Al alloy film used in the present invention (i) an Al— (Ni / Co) —X alloy film is used, and (ii) Al— (Ni / Co) —XZ. This will be described separately for the case of using an alloy film.
  • the manufacturing method of the present invention is a display having a structure in which an Al alloy film for a reflective electrode is directly connected on an oxide transparent conductive film.
  • a device manufacturing method comprising: a first step of forming the oxide transparent conductive film on a substrate; a second step of forming the Al alloy film on the oxide transparent conductive film; and the Al alloy. And a third step of heating the membrane.
  • the Al alloy film contains Ni and / or Co in an amount of 0.1 to 4 atomic% and Al— (Ni in a total amount of at least one element selected from group X in the range of 0.1 to 2 atomic%.
  • X La, Mg, Cr, Mn, Ru, Rh, Pt, Pd, Ir, Ce, Pr, Gd, Tb, Dy, Nd, Ti, Zr, Nb, Mo, It consists of Hf, Ta, W, Y, Fe, Sm, Eu, Ho, Er, Tm, Yb, and Lu.
  • the feature of the present invention is that the temperature of the substrate in the second step and the third step depend on the Ni content and / or Co content of the Al— (Ni / Co) —X alloy film.
  • the heating temperature is controlled. First, the characteristic part will be described.
  • the temperature of the substrate in the second step that is, the substrate temperature at the time of forming the Al alloy film.
  • the heating temperature in the third step that is, the heating temperature after forming the Al alloy film
  • the Ni amount ([Ni]) and / or Co amount ([Co]) in the Al alloy film are mentioned.
  • the contents of Ni and Co are given because it is considered that these elements combine with Al to form a fine intermetallic compound useful for preventing galvanic corrosion.
  • the generation of fine intermetallic compounds reduces pinholes or the like penetrating the Al alloy film, resulting in improved alkali corrosion resistance.
  • the contact resistance between the oxide transparent conductive film and the Al alloy film can be kept low. The action of these elements will be described in detail later.
  • the temperature of the substrate and The subsequent heating temperature may be controlled as in the following (1) to (3).
  • the heating temperature in the third step is set to 50 ° C. or less that is set according to ⁇ ⁇ 4-([Ni] + [Co]) ⁇ .
  • the temperature is controlled within the temperature range plus 200 ° C.
  • the heating temperature in the third step is set to ⁇ ⁇ 4-([Ni] + [Co]) ⁇ .
  • the heating temperature in the third step is set to ⁇ ⁇ 4-([Ni] + [Co]) ⁇ .
  • the temperature of 100 ° C. or less that is set accordingly is controlled within the range of the temperature plus 100 ° C.
  • the temperature of the substrate and subsequent heating depending on the amount of Ni in the Al alloy film ([Ni])
  • the temperature may be controlled as in the following (1A) to (3A).
  • the heating temperature in the third step is set according to ⁇ (4- [Ni]) 100 The temperature below °C is controlled within the temperature range plus 100 °C. (3A) When the substrate temperature is controlled to 150 ° C. or higher and 250 ° C. or lower in the second step, the heating temperature in the third step is set according to ⁇ (4- [Ni]) 100 The temperature below °C is controlled within the temperature range plus 100 °C.
  • the heating temperature after the Al alloy film formation is set.
  • the heating temperature after film formation can be set low, and these substrate temperature and heating
  • the setting (adjustment) of temperature means that the temperature can be set in consideration of the amount of Ni contained in the Al alloy film. The same applies to (1A) to (3A) above.
  • the substrate temperature is classified into the above three patterns (1) to (3) because “the lowering (lowering range) of the heating temperature after film formation is controlled in accordance with the increasing (increase width) of the substrate temperature.
  • the manufacturing method (adjustment means) of the present invention “to do” is generally based on the basic experiment of the present inventors that the above three patterns can be arranged.
  • the “substrate temperature” in the present invention means the temperature of the entire substrate. Therefore, when it is desired to control the substrate temperature to 200 ° C., the substrate temperature may be maintained at 200 ° C. during the film forming process so that the temperature of the entire substrate becomes 200 ° C. or higher.
  • the requirement of “ ⁇ ⁇ 4-([Ni] + [Co]) ⁇ ” in the above (1) to (3) is that the substrate temperature and the heating temperature depend on the amount of Ni contained in the Al alloy film ([Ni] ) And / or the amount of Co ([Co]) can be controlled and adjusted in a simplified manner for convenience.
  • the coefficient ⁇ in the above requirements can be arbitrarily adjusted depending on the substrate temperature, the heating temperature, the composition of the Al alloy film to be used, and the like.
  • “4” in the above requirements is the upper limit (4 atomic%) of the amount of Ni and / or Co that can be contained in the Al alloy film, and the amount of these elements is controlled within the range of 4 atomic%. It represents what can be done.
  • FIGS. 10 to 12 use the results of the examples described later, and arrange the relationship between the Ni amount and the heating temperature for each substrate temperature specified in the above (1) to (3). This is an investigation of the effect.
  • an Al—x atomic% Ni—0.35 atomic% La alloy film is used, and the Ni content (x) is in the range of 0 to 3 atomic% as shown in FIGS.
  • FIG. 10 shows the results when the substrate temperature is set to room temperature [corresponding to the above (1)]
  • FIG. 11 shows the results when the substrate temperature is raised to 100 ° C.
  • FIG. 12 shows the results [equivalent to (3) above] when the substrate temperature was further increased to 150 ° C. and 250 ° C. to form a film.
  • means that the alkali corrosion resistance is excellent, and ⁇ means that the alkali corrosion resistance is inferior. Details of the evaluation method will be described later.
  • the adjustment range of the substrate temperature and the heating temperature depends on the amount of Ni in the Al alloy film. It can be seen that
  • the substrate temperature when the substrate temperature is room temperature, it is preferable to control the heating temperature to approximately 250 ° C. or higher, but the substrate temperature is 100 ° C.
  • the preferable lower limit of the heating temperature can be lowered, and the alkali corrosion resistance is improved by simply heating to 150 ° C. or higher.
  • the preferable lower limit of the heating temperature can be further lowered, and generally good alkali corrosion resistance can be obtained only by heating to 100 ° C. or higher.
  • the present invention does not uniformly control the heating temperature after film formation as in Patent Document 4 described above, but considers the amount of Ni in the Al alloy film in relation to the substrate temperature during film formation. However, it has a technical idea in adopting a control method.
  • Patent Document 4 described above is common to the present invention in that it is a direct contact technique in which heating is performed after forming an Al alloy film, although the configuration of the present invention is different from that of the present invention.
  • Patent Document 4 no consideration is given to the substrate temperature at the time of film formation, and there is no concept of controlling the heating temperature after film formation in relation to the substrate temperature. And the idea of controlling the substrate temperature is different from the present invention.
  • the upper limit of the heating temperature is not particularly limited from the viewpoint of resistance to alkali corrosion, but if it is too high, hillocks and the like are generated in the Al alloy film, and therefore preferably 350 ° C. or less, more preferably 300 ° C. or less. is there.
  • the heat treatment is preferably performed for a predetermined time in a vacuum atmosphere or an inert atmosphere (for example, in a nitrogen atmosphere).
  • Preferred heating conditions at the respective substrate temperatures (1) to (3) are as follows (I) to (III). Actually, the heating temperature may be appropriately adjusted according to the amount of Ni and / or Co (0.5 to 4 atomic%) in the Al alloy film.
  • the substrate temperature is room temperature as in (1) above, the preferred heating temperature is about 200 to 250 ° C., and the preferred heating time is about 30 to 60 minutes.
  • the substrate temperature is 100 ° C. or higher and lower than 150 ° C. as in (2) above, the preferred heating temperature is about 100 to 200 ° C., and the preferred heating time is about 30 to 60 minutes.
  • the preferred heating temperature is about 100 to 200 ° C., and the preferred heating time is about 30 to 60 minutes.
  • the preferred heating temperature is about 100 to 200 ° C., and the preferred heating time is about 30 to 60 minutes.
  • the mechanism by which the Al alloy film can be prevented from alkaline corrosion by the method of the present invention is not known in detail, a fine intermetallic compound of Al and Ni and / or Co becomes transparent to an oxide such as an ITO film by heating. Since the concentration of nickel, which has a small ionization tendency, increases at the interface between the conductive film and the Al alloy film, the electrode potential of the Al alloy film shifts to the positive side, and contact with an oxide transparent conductive film such as an ITO film It is conceivable that the potential difference becomes small. As a result, galvanic corrosion due to the developer and etching solution used in the lithography method is less likely to occur.
  • the generation of the “fine intermetallic compound of Al and Ni and / or Co” useful for preventing galvanic corrosion is not limited to the heating temperature after film formation. It is assumed that it is also affected by the substrate temperature at the time of film formation.
  • the electrode potential difference between the Al alloy film and the oxide transparent conductive film can be suppressed to about 1.55 V or less, preferably 1.5 V or less.
  • FIG. 3 shows the relationship between the immersion time and the immersion potential when immersed in the TMAH aqueous solution.
  • an Al alloy film of Al-2 atomic% Ni-0.35 atomic% La is used, the substrate temperature during film formation is room temperature ⁇ no heating sample, and the substrate temperature during film formation is room temperature ⁇ 200 ° C. Two types of heated samples were used.
  • the immersion potential immediately after the immersion is higher by about 100 mV (0.1 V) in the sample heated after the film formation than in the sample not heated after the film formation. Moreover, it can be seen that this state is maintained for about 0.7 minutes after immersion. This result means that the difference from the immersion potential of the ITO film can be kept small for a long time by heating, suggesting that galvanic corrosion can be effectively suppressed.
  • the Al alloy film used in the present invention contains Ni and / or Co in an amount of 0.1 to 4 atomic% and at least one element selected from group X in a total amount of 0.1 to 2 atomic%. It is made of an Al- (Ni / Co) -X alloy, where X is La, Mg, Cr, Mn, Ru, Rh, Pt, Pd, Ir, Ce, Pr, Gd, Tb, Dy, Nd, Ti, Zr Nb, Mo, Hf, Ta, W, Y, Fe, Sm, Eu, Ho, Er, Tm, Yb, and Lu.
  • Ni and Co have the effect of reducing the contact resistance with the oxide transparent conductive film, and also have the effect of improving the alkali corrosion resistance (see Examples described later).
  • the reason why the contact resistance with the oxide transparent conductive film is reduced by adding Ni and / or Co to the Al alloy film is unknown in detail, but the interface between the Al alloy film and the oxide transparent conductive film is unknown. This is presumably because a Ni and / or Co-containing precipitate or a Ni and / or Co concentrated layer that can prevent Al diffusion is formed at the (contact interface).
  • the Al alloy film may contain either Ni or Co, or both.
  • the content of (Ni / Co) in the Al— (Ni / Co) —X alloy film (the amount contained alone is the amount alone, and the amount contained both is the total amount) is described above. In order to effectively exhibit the effect of reducing contact resistance and the effect of improving alkali corrosion resistance, it is necessary to be 0.1 atomic% or more. On the other hand, as shown in FIG. 4 to be described later, when the content of (Ni / Co) exceeds 4 atomic%, the reflectance and electrical resistivity of the Al alloy film are high and cannot be put into practical use.
  • the content of (Ni / Co) in the Al alloy film is 0.1 atomic% or more (preferably 0.5 atomic% or more, more preferably 1 atomic% or more, further preferably 2 atomic% or more), 4 atoms. % Or less (preferably 3 atom% or less).
  • Group X elements are elements (heat resistance improving elements) that contribute to improving the heat resistance of the Al alloy film. Specifically, the inclusion of at least one of group X can effectively prevent the formation of hillocks (cove-like projections) on the surface of the Al alloy film during heating. These elements may be added alone or in combination of two or more. When two or more elements are contained, the total amount of each element may be controlled so as to satisfy the following range.
  • the content of the element belonging to Group X is 0.1 atomic% or more, preferably 0.2 atomic% or more.
  • the content of these elements is 2 atomic% or less, preferably 0.8 atomic% or less.
  • the balance of the Al— (Ni / Co) —X alloy film is substantially composed of Al and inevitable impurities.
  • Al alloy film is the same as the Al- (Ni / Co) -X alloy film of (i) described above, and further includes a group Z element (at least one element selected from the group consisting of Ge, Cu, and Si). Is contained in an amount of 0.1 to 2 atom%, and as a result, contact resistance is reduced and heat resistance is further improved.
  • Ge and Cu are preferred from the viewpoints of reducing contact resistance with the transparent conductive film and improving alkali resistance. It is shown in FIGS.
  • Al— (Ni / Co) —XZ alloy layer 0.1 to 2 atomic% of Ni and / or Co and 0.1 to 2 atomic% of La and / or Nd are used. It is most preferable to use an alloy layer containing 0.1 to 2 atomic% of Ge and / or Cu.
  • the Z content is preferably 0.2 atomic percent or more and 0.8 atomic percent or less.
  • Each element of Ge, Cu, and Si belonging to Z may be added alone or in combination of two kinds. When two or more elements are added, the total content of each element may be controlled so as to satisfy the above range.
  • the design guideline (basic concept) of the manufacturing method when using the Al- (Ni / Co) -XZ alloy film is the same as that when using the Al alloy film of (i) described above, Depending on the amount of Ni ([Ni]) and / or amount of Co ([Co]) in the Al alloy film and the amount of group Z elements ([Z]), the substrate temperature and the subsequent heating temperature are appropriately set. Just control. Specifically, when film formation is performed with the substrate temperature set to a low room temperature (around 25 ° C.) as described above (1), the heating temperature after the Al alloy film formation can be set high, On the other hand, when the film is formed with the substrate temperature set as high as about 250 ° C.
  • the heating temperature after the film formation can be set low, and the substrate temperature and the heating temperature are set. (Adjustment) can be set in consideration of the amount of (Ni / Co) and the amount of group Z contained in the Al alloy film.
  • the elements to be considered for the prevention of galvanic corrosion include the elements of group Z in addition to the aforementioned contents of Ni and Co. This is because, like Ni and Co, it is considered that these elements combine with Al to form a fine intermetallic compound useful for preventing galvanic corrosion.
  • the generation of fine intermetallic compounds reduces pinholes or the like penetrating the Al alloy film, resulting in improved alkali corrosion resistance.
  • the contact resistance between the oxide transparent conductive film and the Al alloy film can be kept low.
  • the setting (adjustment) of the substrate temperature and the heating temperature depends on the amount of Ni in the Al alloy film and / or Alternatively, it is preferable to set not only the amount of Co but also the amount of element of group Z (single amount or total amount). This will be described in detail with reference to FIGS. 13 to 15 (containing Cu as an element of group Z) and FIGS. 16 to 18 (containing Ge as an element of group Z).
  • means that the alkali corrosion resistance is excellent, and ⁇ means that the alkali corrosion resistance is inferior.
  • FIGS. 13 to 15 Al—x atomic% Ni—0.35 atomic% La—0.5 atomic% Cu alloy film [Ni content (x) is in the range of 0 to 3 atomic% as shown in FIGS. Is within.
  • the relationship between the amount of Ni and the heating temperature is arranged for each substrate temperature specified in the above (1) to (3), and the influence of these on the alkali corrosion resistance is investigated.
  • FIG. 13 shows the results when the substrate temperature is set to room temperature [corresponding to (1) above]
  • FIG. 14 shows the results when the substrate temperature is raised to 100 ° C.
  • FIG. 15 shows the result [equivalent to (3) above] when the film was formed with the substrate temperature further increased to 150 ° C. and 250 ° C.
  • FIGS. 13, 14, and 15 show the results ( ⁇ , ⁇ ) when using the Al alloy film, as well as FIGS. (Without Cu) are also shown side by side ( ⁇ , ⁇ ).
  • the two are shifted laterally so that they do not overlap.
  • ⁇ and ⁇ on the right side are examples of addition of Cu
  • ⁇ and ⁇ on the left side are no addition of Cu. It is an example.
  • the size of the plot is also changed so that the difference between the two can be further understood.
  • the case where the size of ⁇ and ⁇ is large is an example of addition of Cu
  • the case where the size of ⁇ and ⁇ is small is an example of no addition of Cu.
  • the results of adding 1 atom% of Ni and the results of adding 1 atom% of Ni as an example of adding Cu are added as examples in which Cu is not added.
  • the Al— (Ni / Co) —La alloy film described above was used when the Al—Ni—La—Cu alloy film further containing Cu of group Z was used as the Al alloy film. It was found that the same tendency was observed. In other words, when the substrate temperature is low, it is not possible to effectively prevent alkali corrosion unless the heating temperature is generally high, but when the substrate temperature is high, alkali corrosion can be suppressed even if the heating temperature is low. I understand.
  • the adjustment range of the substrate temperature and the heating temperature is the amount of Ni in the Al alloy film or Cu It was also found that it was determined according to the amount.
  • the alkali corrosion resistance is further improved by the addition of Cu. Therefore, when the amount of Ni and the substrate temperature are the same, the preferable lower limit of the heating temperature is further increased. I also found that it can be lowered.
  • the substrate temperature is set to room temperature and the Al-2 atomic% Ni-0.35 atomic% La alloy film not containing Cu is used, it is preferable to control the heating temperature to approximately 250 ° C. or higher.
  • the preferable lower limit of the heating temperature can be lowered, and the heating is generally performed at 150 ° C. or higher. Only the alkali corrosion resistance is improved. This same trend was seen when the Ni content was 3 atomic% and in all cases where the Ni content was 1 atomic%. Therefore, when the substrate temperature was set to room temperature, it was demonstrated that when the Cu-containing Al alloy film was used, the preferable lower limit of the heating temperature could be lowered as compared with the case where an Al alloy film not containing Cu was used.
  • FIG. 16 to FIG. 18 (containing Ge as an element of group Z) will be considered.
  • the relationship between the amount of Ni and the heating temperature was arranged for each substrate temperature, and the influence of these on alkali corrosion resistance was investigated.
  • FIG. 16 shows the results when the substrate temperature is set to room temperature [corresponding to the above (1)]
  • FIG. 17 shows the results when the substrate temperature is raised to 100 ° C.
  • FIG. 18 shows the result [equivalent to (3) above] when the film was formed with the substrate temperature further increased to 150 ° C. and 250 ° C.
  • FIG. 16, FIG. 17 and FIG. 18 are the same as those of FIGS. 0.35 atom%) results ( ⁇ , ⁇ ) are also shown side by side.
  • the plots are laterally shifted so that they do not overlap.
  • Ni, ⁇ and ⁇ on the right side are examples of Ge addition
  • ⁇ and ⁇ on the left side are Ge. This is an additive-free example.
  • the size of the plot is also changed so that the difference between the two can be further understood.
  • the case where the size of ⁇ and ⁇ is large is an example of addition of Ge
  • the case where the size of ⁇ and ⁇ is small is an example of no addition of Ge.
  • the alkali corrosion resistance is further improved by the addition of Ge. Therefore, when the amount of Ni and the substrate temperature are the same, the preferable lower limit of the heating temperature is further increased. I also found that it can be lowered. In particular, it has also been found that the addition effect of Ge tends to be exerted remarkably when the Ni content is a low concentration of about 1 atomic% or less, although it cannot be uniformly arranged.
  • substrate temperature room temperature
  • good alkali corrosion resistance can be obtained unless the heating temperature is set to 250 ° C.
  • an Al-1 atomic% Ni-0.2 atomic% La-0.5 atomic% Ge alloy film containing Ge was used, it was resistant to alkali corrosion only by heating to 200 ° C or higher. was found to improve.
  • a similar tendency is seen when the Ni content in the Al alloy film is 0.5 atomic%, and when an Al-0.5 atomic% Ni-0.2 atomic% La alloy film not containing Ge is used.
  • the present invention is characterized in that the substrate temperature and the heating temperature are appropriately controlled according to the amount of Ni and / or Co (including the amount of Z when an element of group Z is included).
  • the film forming process other than the above is not particularly limited, and usually used means can be employed. Therefore, the first step of forming the oxide transparent conductive film on the substrate and the second step of forming the Al alloy film on the oxide transparent conductive film (excluding the substrate temperature) are appropriately performed using known methods. Select and use.
  • a typical example of the method for forming the Al alloy film is a sputtering method using a sputtering target.
  • the sputtering method is to form a plasma discharge between a substrate and a sputtering target (target material) composed of the same kind of material as the thin film to be formed, and to make the gas ionized by the plasma discharge collide with the target material.
  • target material a sputtering target
  • atoms of the target material are knocked out and stacked on a substrate to produce a thin film.
  • the sputtering method has an advantage that a thin film having the same composition as the target material can be formed.
  • an Al alloy film formed by a sputtering method has an advantage that it can dissolve an alloy element such as Nd that cannot be dissolved in an equilibrium state, and exhibits excellent performance as a thin film.
  • the gist of the present invention is not limited to the above, and a method usually used for a method of forming an Al alloy film can be appropriately employed.
  • the order of patterning is not particularly limited.
  • the transparent oxide conductive film and the Al alloy film may be sequentially formed on the substrate by sputtering or the like, and then the transparent oxide conductive film and the Al alloy film may be patterned by lithography and etching. .
  • an oxide transparent conductive film may be formed on the substrate and patterned, and then an Al alloy film may be formed and patterned.
  • the ITO film constituting the oxide transparent conductive film is in an amorphous state before heating, and is dissolved in an etching solution for aluminum containing phosphoric acid as a main component. Therefore, there is selectivity with respect to the etching solution for aluminum. Therefore, when an Al alloy film is formed after the oxide transparent conductive film is patterned and etched, it is possible to prevent unnecessary etching of the already formed oxide transparent conductive film.
  • an IZO film may be used as the oxide transparent conductive film.
  • an oxide transparent conductive film having selectivity with an Al etchant can be used without any problem.
  • the present invention does not limit the type of the oxide transparent conductive film.
  • Example 1 An ITO film (thickness: about 50 nm) containing about 10% by mass of SnO is sputtered on a substrate (non-alkali glass plate, thickness 0.7 mm, 4 inch size) as an oxide transparent conductive film (transparent pixel electrode). It formed by the method and patterned by photolithography. The sputtering conditions at this time are pressure: about 3 mTorr under an argon atmosphere.
  • Al-based alloy film On the ITO film patterned as described above, a pure Al film and an Al—Ni—La alloy film (hereinafter referred to as “Al-based alloy film”; film thickness: 100 nm) are formed as a reflective electrode by sputtering. Formed.
  • the substrate temperature at the time of sputtering is as shown in Table 1 and Table 2 below, and the sputtering conditions are pressure: about 2 mTorr under an argon atmosphere.
  • heat treatment was performed for 30 minutes at the heating temperatures shown in Tables 1 and 2 under a nitrogen atmosphere.
  • an unheated product was also prepared.
  • coating a resist to Al type alloy film and exposing it developed by being immersed in 2.38 mass% TMAH aqueous solution (20 degreeC) for 1 minute.
  • the heat treatment is performed in a nitrogen atmosphere.
  • the heat treatment is not limited thereto, and is performed in a known atmosphere condition (for example, in a vacuum atmosphere with a degree of vacuum of about 3 ⁇ 10 ⁇ 4 Pa). May be.
  • Alkaline corrosion resistance Alkaline corrosivity of each Al-based alloy film was evaluated by measuring the potential difference with a voltmeter by short-circuiting the electrode of the Al-based alloy film to be measured and the silver-silver chloride reference electrode in the above TMAH aqueous solution. .
  • the electrode potential of the poly-ITO film was also measured.
  • no corrosion was observed when the optical microscope observation and the transmission electron microscope observation after immersion in the THAH aqueous solution were performed, and the electrode potential difference from amorphous ITO was not observed.
  • excellent in alkali corrosion resistance
  • those not satisfying any of the above requirements were evaluated as x (inferior in alkali corrosion resistance).
  • the contact resistance when the Al-based alloy film and the ITO film were directly connected was measured by a four-terminal method using the Kelvin pattern (contact hole size, 20, 40, and 80 ⁇ m square) shown in FIG.
  • the content of the alloy element in the Al-based alloy film was determined by an ICP emission analysis (inductively coupled plasma emission analysis) method.
  • Tables 1 and 2 show the results of the electrode potentials measured for 19 (Al-2 atom% Ni-0.35 atom% La) as described above.
  • Al-based alloy films (Nos. 5, 6, 8 to 10, 12 to 14, 16 to 18, 23, 26 in Table 1) produced by the method of the present invention were used. 27, 29-31, 33-35, No. 40, 45, 48, 49, 52, 53) in Table 2 are all excellent in alkali corrosion resistance, and are composed of an Al alloy film and an ITO film. The contact resistance value is also low.
  • FIG. 5 and FIG. 19 is an optical microscope photograph and a transmission electron microscope cross-sectional photograph after immersion in a TMAH aqueous solution (FE-TEM, Hitachi, Ltd., model name: “HF2000” is used).
  • 7 and 8 show sample Nos. 23 is an optical microscope photograph and a transmission electron microscope cross-sectional photograph after immersion in a TMAH aqueous solution. In observation with a transmission electron microscope, the film composition was identified by electron excitation X-ray analysis.
  • an Al alloy of Al-x atomic% Ni-0.35 atomic% La (x is 1 to 5.5 atomic%) is used, the substrate temperature during film formation is set to room temperature, and heating after film formation is performed.
  • the reflectance of the sample formed by controlling the temperature to about 250 ° C. and the heating time to about 30 minutes was measured.
  • the reflectance was measured using a visible / ultraviolet spectrophotometer “V-570” manufactured by JASCO Corporation in the measurement wavelength range of 1000 to 250 nm.
  • V-570 visible / ultraviolet spectrophotometer
  • FIG. 4 is a graph showing the change in reflectance (wavelength: 850 to 250 nm) of each sample.
  • the reflectance at 550 nm is taken as a reference, a high reflectance of about 88% to 92% was obtained in a sample satisfying the range of the present invention with an Ni amount of 1 to 4 atomic%, whereas In the sample where the amount of Ni exceeds 5.5 atomic% and exceeds the range of the present invention, the reflectance is reduced to approximately 84%.
  • the present invention relates to a method for manufacturing a display device represented by a liquid crystal display, an organic electroluminescence (EL) display, or the like. Specifically, the present invention relates to a method for manufacturing a display device having a structure in which an oxide transparent conductive film and an Al alloy film for a reflective electrode are directly connected, and alkaline corrosion during patterning of the Al alloy film. The present invention relates to a method for manufacturing a display device that can effectively prevent the above.
  • the thermal history specifically, the substrate temperature at the time of film formation and the heating temperature after the film formation
  • the Al alloy film as the reflective electrode is determined according to the amount of Ni and / or Co contained in the Al alloy film. Therefore, even when immersed in an alkaline developer such as TMAH aqueous solution during patterning, corrosion of the Al alloy film is suppressed, and the contact resistance between the transparent oxide conductive film and the Al alloy film is reduced. can do.

Abstract

A process for producing a display which has a structure including a transparent conductive oxide film and an aluminum alloy film which serves as a reflective electrode and has been disposed on and directly connected to the oxide film. The process comprises: a first step in which a transparent conductive oxide film is formed on a substrate; a second step in which an aluminum alloy film is formed on the transparent conductive oxide film; and a third step in which the aluminum alloy film is heated to a given temperature. The aluminum alloy film contains 0.1-4 at.% nickel of cobalt and 0.1-2 at.% lanthanum. The given temperature in the third step is determined according to the nickel or cobalt content and the temperature of the substrate at which the aluminum alloy film is formed in the second step. The aluminum alloy film formed in this process is less apt to be corroded by alkaline developing solutions such as an aqueous TMAH solution.

Description

表示装置の製造方法Manufacturing method of display device
 本発明は、液晶ディスプレイや有機エレクトロルミネッセンス(EL)ディスプレイなどに代表される表示装置の製造方法に関するものである。詳細には、本発明は、酸化物透明導電膜と反射電極用のAl合金膜が直接接続されてなる構造を備えた表示装置の製造方法であって、該Al合金膜のパターニング時のアルカリ腐食を有効に防止できる表示装置の製造方法に関するものである。以下では、液晶ディスプレイを代表例として挙げて説明するが、これに限定する趣旨ではない。 The present invention relates to a method for manufacturing a display device represented by a liquid crystal display, an organic electroluminescence (EL) display, or the like. Specifically, the present invention relates to a method for manufacturing a display device having a structure in which an oxide transparent conductive film and an Al alloy film for a reflective electrode are directly connected, and alkaline corrosion during patterning of the Al alloy film. The present invention relates to a method for manufacturing a display device that can effectively prevent the above. In the following, a liquid crystal display will be described as a representative example, but the present invention is not limited to this.
 液晶ディスプレイは、液晶パネルの背後に設置された照明装置(バックライト)からの光を光源として用いる透過型表示装置と、周囲光を用いる反射型表示装置と、透過型と反射型の両タイプを兼ね備えた半透過型表示装置と、に大別される。 There are two types of liquid crystal displays: a transmissive display device that uses light from a lighting device (backlight) installed behind the liquid crystal panel as a light source, a reflective display device that uses ambient light, and both transmissive and reflective types. It is roughly divided into a semi-transmission type display device having both.
 このうち、透過型表示装置は、液晶パネルの後面から照射されたバックライトを液晶パネルやカラーフィルターに通過させて表示を行なうものであり、使用環境に左右されずに高コントラスト比の表示を行なうことができるという利点があり、テレビやパソコンモニタなどのような大型で輝度が必要な電子機器に汎用されている。しかし、バックライトの電力が必要になるため、携帯電話などの小型機器にはやや不向きである。 Among these, the transmissive display device performs display by allowing the backlight irradiated from the rear surface of the liquid crystal panel to pass through the liquid crystal panel and the color filter, and performs display with a high contrast ratio regardless of the use environment. It has the advantage of being capable of being used, and is widely used in electronic devices that require large brightness such as televisions and personal computer monitors. However, since power for the backlight is required, it is somewhat unsuitable for small devices such as mobile phones.
 一方、反射型表示装置は、自然光や人工光などを液晶パネル内で反射させ、その反射光を液晶パネルやカラーフィルターを通して表示を行なうものであり、バックライトを必要としないために消費電力が小さく、電卓や時計などを中心に汎用されている。しかし、反射型表示装置は、使用環境によって表示の明るさやコントラスト比が大きく左右され、特に、暗くなると見え難くなるという欠点がある。 On the other hand, a reflective display device reflects natural light or artificial light in a liquid crystal panel and displays the reflected light through a liquid crystal panel or a color filter. It is widely used mainly for calculators and watches. However, the reflective display device has a drawback that the brightness and contrast ratio of the display are greatly affected by the use environment, and in particular, it becomes difficult to see when it becomes dark.
 これに対し、半透過型表示装置は、昼間は反射電極を利用して消費電力を節約し、室内や夜間では必要に応じてライトを点灯して使用して表示を行なうなど、使用環境に応じて、透過モードによる表示装置と反射モードによる表示を行なうことができるため、周辺環境に制約されずに消費電力を節約でき、しかも明るい高コントラスト比の表示が得られるという利点がある。半透過型表示装置は、モバイル機器に最適に用いられ、特に、カラー化された携帯電話などに汎用されている。 In contrast, transflective display devices use reflective electrodes during the day to save power consumption, and light and turn on lights when necessary indoors or at night, depending on the usage environment. Since the display in the transmissive mode and the display in the reflective mode can be performed, there is an advantage that power consumption can be saved without being restricted by the surrounding environment, and a bright high contrast ratio display can be obtained. The transflective display device is optimally used for mobile devices, and in particular, is widely used for colored mobile phones and the like.
 図1および図2を参照しながら、代表的な半透過型液晶表示装置の構成および動作原理を説明する。なお図1および図2は、後記する特許文献3に開示された図1および図2に対応する。 Referring to FIGS. 1 and 2, the configuration and operation principle of a typical transflective liquid crystal display device will be described. 1 and 2 correspond to FIGS. 1 and 2 disclosed in Patent Document 3 described later.
 図1に示すように、半透過型液晶表示装置11は、薄膜トランジスタ(Thin Film Transitor、以下「TFT」と呼ぶ。)基板21と、TFT基板21に対向して配置された対向基板15と、TFT基板21と対向基板15との間に配置され、光変調層として機能する液晶層23とを備えている。対向基板15は、ブラックマトリックス16を含むカラーフィルター17を含み、カラーフィルター17上には、透明な共通電極13が形成されている。一方、TFT基板21は、画素電極19、スイッチング素子T、および走査線や信号線を含む配線部を有している。配線部には、複数個のゲート配線5と複数個のデータ配線7とが互いに垂直に配列されており、ゲート配線5とデータ配線7とが交差する部分にはスイッチング素子のTFT(図中、T)がマトリックス状に配置されている。 As shown in FIG. 1, a transflective liquid crystal display device 11 includes a thin film transistor (hereinafter referred to as “TFT”) substrate 21, a counter substrate 15 disposed to face the TFT substrate 21, and a TFT A liquid crystal layer 23 is provided between the substrate 21 and the counter substrate 15 and functions as a light modulation layer. The counter substrate 15 includes a color filter 17 including a black matrix 16, and a transparent common electrode 13 is formed on the color filter 17. On the other hand, the TFT substrate 21 has a pixel electrode 19, a switching element T, and a wiring portion including a scanning line and a signal line. In the wiring portion, a plurality of gate wirings 5 and a plurality of data wirings 7 are arranged perpendicular to each other, and a switching element TFT (in the figure, T) are arranged in a matrix.
 図2に詳しく示すように、画素電極19の画素領域Pは、透過領域Aと反射領域Cとから構成されており、透過領域Aは透明画素電極19aを、反射領域Cは透明画素電極19aと反射電極19bを備えている。透明画素電極19aと反射電極19bとの間には、Mo、Cr、Ti、Wなどの高融点金属からなるバリアメタル層51が形成されている。例えば、特許文献1~特許文献3では、Al系合金膜と酸化物透明導電膜との間にMoやCrなどのバリアメタル層51を介在させている。 As shown in detail in FIG. 2, the pixel area P of the pixel electrode 19 is composed of a transmissive area A and a reflective area C. The transmissive area A is a transparent pixel electrode 19a, and the reflective area C is a transparent pixel electrode 19a. A reflective electrode 19b is provided. A barrier metal layer 51 made of a refractory metal such as Mo, Cr, Ti, or W is formed between the transparent pixel electrode 19a and the reflective electrode 19b. For example, in Patent Documents 1 to 3, a barrier metal layer 51 such as Mo or Cr is interposed between an Al-based alloy film and an oxide transparent conductive film.
 図1に示す半透過型液晶表示装置11について、図2を参照しながら、透過モードおよび反射モードの動作原理を説明する。 The operation principle of the transmissive mode and the reflective mode of the transflective liquid crystal display device 11 shown in FIG. 1 will be described with reference to FIG.
 まず、透過モードの動作原理を説明する。
 透過モードでは、TFT基板21の下部に配置されたバックライト41の光Fを光源として使用する。バックライト41から出射した光は、透明画素電極19aおよび透過領域Aを介して液晶層23に入射し、透明画素電極19aと共通電極13との間に形成される電界によって液晶層23における液晶分子の配列方向が制御され、液晶層23を通過するバックライト41からの入射光Fが変調される。これにより、対向基板15を透過する光の透過量が制御されて画像が表示される。
First, the operation principle of the transmission mode will be described.
In the transmissive mode, the light F of the backlight 41 disposed below the TFT substrate 21 is used as a light source. Light emitted from the backlight 41 enters the liquid crystal layer 23 via the transparent pixel electrode 19a and the transmission region A, and liquid crystal molecules in the liquid crystal layer 23 are generated by an electric field formed between the transparent pixel electrode 19a and the common electrode 13. , And the incident light F from the backlight 41 passing through the liquid crystal layer 23 is modulated. As a result, the amount of light transmitted through the counter substrate 15 is controlled to display an image.
 一方、反射モードでは、外部の自然光または人工光Bが光源として利用される。対向基板15に入射した光Bは、反射電極19bに反射され、反射電極19bと共通電極13との間に形成される電界によって液晶層23における液晶分子の配列方向が制御され、液晶層23を通過する光Bが変調される。これにより、対向基板15を透過する光の透過量が制御されて画像が表示される。 On the other hand, in the reflection mode, external natural light or artificial light B is used as a light source. The light B incident on the counter substrate 15 is reflected by the reflective electrode 19b, and the alignment direction of the liquid crystal molecules in the liquid crystal layer 23 is controlled by the electric field formed between the reflective electrode 19b and the common electrode 13. The passing light B is modulated. As a result, the amount of light transmitted through the counter substrate 15 is controlled to display an image.
 画素電極19は、透明画素電極19aと反射電極19bとから構成されている。このうち、透明画素電極19aは、代表的には、酸化インジウム(In)中に酸化錫(SnO)を10質量%程度含む酸化インジウム錫(ITO)や、酸化インジウムに酸化亜鉛を10質量%程度含む酸化インジウム亜鉛(IZO)などの酸化物透明導電膜から形成されている。 The pixel electrode 19 includes a transparent pixel electrode 19a and a reflective electrode 19b. Among these, the transparent pixel electrode 19a is typically indium tin oxide (ITO) containing about 10% by mass of tin oxide (SnO) in indium oxide (In 2 O 3 ), or zinc oxide in indium oxide. It is formed from an oxide transparent conductive film such as indium zinc oxide (IZO) containing about mass%.
 また、反射電極19bは、反射率の高い金属材料で構成されており、代表的には、純AlやAl-NdなどのAl合金(以下、これらをまとめて「Al系合金」と呼ぶ。)が用いられている。Al系合金は、電気抵抗率も低いため、配線材料として極めて有用である。 The reflective electrode 19b is made of a metal material having high reflectivity, and is typically an Al alloy such as pure Al or Al—Nd (hereinafter, these are collectively referred to as “Al-based alloy”). Is used. Al-based alloys are extremely useful as wiring materials because of their low electrical resistivity.
 ここで、図2や、前述した特許文献1~3のように、反射電極19bを構成するAl系合金膜と、透明画素電極19aを構成するITOやIZOなどの酸化物透明導電膜との間にMoなどの高融点金属バリアメタル層51を形成する理由は、これらを直接接続して反射領域を形成すると、ガルバニック腐食などによって接触抵抗が上昇し、画面の表示品位が低下するからである。 Here, as shown in FIG. 2 and Patent Documents 1 to 3 described above, between the Al-based alloy film constituting the reflective electrode 19b and the transparent oxide conductive film such as ITO or IZO constituting the transparent pixel electrode 19a. The reason why the refractory metal barrier metal layer 51 such as Mo is formed is that if the reflective region is formed by directly connecting them, the contact resistance increases due to galvanic corrosion or the like, and the display quality of the screen decreases.
 ガルバニック腐食は、例えば、ITOなどの酸化物透明導電膜とAl系合金膜のように、異種金属間の電極電位差が大きい場合に生じるといわれている。例えば、フォトレジストのアルカリ現像液である水酸化テトラメチルアンモニウム(TMAH)水溶液中のAg/AgCl標準電極に対する電極電位は、アモルファス-ITOが約-0.17V、ポリ-ITOが約-0.19Vであるのに対し、純Alは約-1.93Vと非常に低い。更に、Al系合金は非常に酸化され易い。そのため、Al系合金膜を酸化物透明導電膜の上に直接形成してパターニングする際、TMAH水溶液での浸漬中にAl系合金膜と酸化物透明導電膜の界面にAl酸化物の絶縁層が生成し、腐食が発生する。TMAH水溶液は、Al系合金膜に生じたピンホールや貫通粒界に沿って酸化物透明導電膜との界面まで侵入し、その界面でガルバニック腐食が発生すると、様々な不具合、例えば酸化物透明導電膜の黒化、それによる画素の黒化、配線細り・断線などのパタン形成不良、Al合金膜と酸化物透明導電膜との接触抵抗の増大、それによる表示(点灯)不良などが生じる。 Galvanic corrosion is said to occur when the electrode potential difference between different metals is large, such as an oxide transparent conductive film such as ITO and an Al-based alloy film. For example, the electrode potential with respect to an Ag / AgCl standard electrode in an aqueous tetramethylammonium hydroxide (TMAH) solution that is an alkaline developer of photoresist is about -0.17 V for amorphous-ITO and about -0.19 V for poly-ITO. On the other hand, pure Al is very low at about -1.93V. Furthermore, Al-based alloys are very easily oxidized. Therefore, when an Al alloy film is directly formed on the oxide transparent conductive film and patterned, an Al oxide insulating layer is formed at the interface between the Al alloy film and the oxide transparent conductive film during immersion in the TMAH aqueous solution. Produced and corroded. When the TMAH aqueous solution penetrates into the interface with the oxide transparent conductive film along the pinholes and through grain boundaries generated in the Al-based alloy film and galvanic corrosion occurs at the interface, various problems such as oxide transparent conductive Blackening of the film, resulting in blackening of the pixel, poor pattern formation such as wiring thinning and disconnection, an increase in contact resistance between the Al alloy film and the oxide transparent conductive film, resulting in defective display (lighting).
 しかしながら、バリアメタル層を介在させる方法は、製造工程が煩雑になって生産コストの上昇を招くなどの問題がある。 However, the method of interposing the barrier metal layer has problems such as a complicated manufacturing process and an increase in production cost.
 そこで、バリアメタル層の形成を省略でき、Al合金膜を透明画素電極に直接接触させることが可能な「ダイレクトコンタクト技術」が検討されている。ダイレクトコンタクト技術では、高い表示品位の表示装置が得られるように、電極材料であるAl合金膜と透明画素電極との接触抵抗が低く、耐熱性に優れていることが要求される。 Therefore, “direct contact technology” that can omit the formation of the barrier metal layer and can directly contact the Al alloy film with the transparent pixel electrode has been studied. The direct contact technology is required to have a low contact resistance between the Al alloy film, which is an electrode material, and the transparent pixel electrode and to have excellent heat resistance so that a display device with high display quality can be obtained.
 本出願人も、本願発明のように、酸化物透明導電膜の上に反射電極用のAl合金膜が直接接続された構造を備えた表示装置を対象とするものではないが、関連のダイレクトコンタクト技術として、特許文献4に記載の方法を提案している。特許文献4には、Au、Ag、Zn、Cu、Ni、Sr、Ge、Sm、およびBiよりなる群から選ばれる少なくとも一種の合金元素を0.1~6原子%含むAl合金膜の配線材料が開示されている。上記のAl合金膜を用いれば、当該Al合金膜と透明画素電極との界面に導電性の合金元素含有析出物が形成され、酸化アルミニウム等の絶縁物質の生成が抑制されるため、接触抵抗を低減することができる。また、合金元素の添加量が上記範囲内であれば、Al合金自体の電気抵抗率も低く抑えられる。また、上記のAl合金膜にNd、Y、Fe、Coの少なくとも一種の合金元素を更に添加すれば、ヒロック(コブ状の突起物)の生成が抑えられ、耐熱性が向上する。上記合金元素の析出物は、基板上にAl合金膜をスパッタリング法などによって成膜した後、150~400℃(好ましくは200~350℃)で15分~1時間程度加熱(アニーリング)処理することによって得られる。
特開2004-144826号公報 特開2005-91477号公報 特開2005-196172号公報 特開2004-214606号公報
The present applicant is not intended for a display device having a structure in which an Al alloy film for a reflective electrode is directly connected on an oxide transparent conductive film as in the present invention. As a technique, the method described in Patent Document 4 is proposed. Patent Document 4 discloses an Al alloy film wiring material containing 0.1 to 6 atomic% of at least one alloy element selected from the group consisting of Au, Ag, Zn, Cu, Ni, Sr, Ge, Sm, and Bi. Is disclosed. If the Al alloy film is used, a conductive alloy element-containing precipitate is formed at the interface between the Al alloy film and the transparent pixel electrode, and generation of an insulating material such as aluminum oxide is suppressed. Can be reduced. Moreover, if the addition amount of the alloy element is within the above range, the electrical resistivity of the Al alloy itself can be kept low. Further, if at least one alloy element of Nd, Y, Fe, and Co is further added to the Al alloy film, generation of hillocks (cove-like projections) can be suppressed, and heat resistance can be improved. The precipitate of the alloy element is subjected to a heat treatment (annealing) at 150 to 400 ° C. (preferably 200 to 350 ° C.) for 15 minutes to 1 hour after forming an Al alloy film on the substrate by sputtering or the like. Obtained by.
JP 2004-144826 A JP 2005-91477 A JP 2005-196172 A JP 2004-214606 A
 本発明の目的は、酸化物透明導電膜の上に反射電極用のAl合金膜が直接接続された構造を備えた表示装置において、TMAH水溶液などのアルカリ現像液中での腐食が生じ難く、Al系合金膜の腐食を有効に防止することが可能な表示装置の製造方法を提供することにある。 An object of the present invention is to prevent corrosion in an alkaline developer such as an aqueous TMAH solution in a display device having a structure in which an Al alloy film for a reflective electrode is directly connected on a transparent oxide conductive film. It is an object of the present invention to provide a method for manufacturing a display device capable of effectively preventing corrosion of an alloy film.
 上記課題を解決し得た本発明に係る表示装置の製造方法は、酸化物透明導電膜の上に反射電極用のAl合金膜が直接接続する構造を備える表示装置の製造方法であって、基板上に前記酸化物透明導電膜を形成する第1の工程と、前記酸化物透明導電膜上に前記Al合金膜を形成する第2の工程と、前記Al合金膜を加熱する第3の工程と、を包含し、前記Al合金膜は、Ni及びCoのうち少なくとも一つを0.1~4原子%、およびグループXから選択される少なくとも一種の元素を総量で0.1~2原子%の範囲で含有するAl-(Ni/Co)-X合金からなり、前記Xは、La、Mg、Cr、Mn、Ru、Rh、Pt、Pd、Ir、Ce、Pr、Gd、Tb、Dy、Nd、Ti、Zr、Nb、Mo、Hf、Ta、W、Y、Fe、Sm、Eu、Ho、Er、Tm、Yb、およびLuからなり、前記Al-(Ni/Co)-X合金膜のNi含有量及びCo含有量のうち少なくとも一つに応じて、前記第2の工程における基板の温度および前記第3の工程における加熱温度を制御するところに要旨を有するものである。 A manufacturing method of a display device according to the present invention that has solved the above problems is a manufacturing method of a display device having a structure in which an Al alloy film for a reflective electrode is directly connected on an oxide transparent conductive film, A first step of forming the oxide transparent conductive film thereon, a second step of forming the Al alloy film on the oxide transparent conductive film, and a third step of heating the Al alloy film; The Al alloy film includes 0.1 to 4 atomic% of at least one of Ni and Co, and 0.1 to 2 atomic% in total of at least one element selected from group X. It is made of an Al— (Ni / Co) —X alloy contained in a range, where X is La, Mg, Cr, Mn, Ru, Rh, Pt, Pd, Ir, Ce, Pr, Gd, Tb, Dy, Nd Ti, Zr, Nb, Mo, Hf, Ta, W, Y, Fe, S , Eu, Ho, Er, Tm, Yb, and Lu, the second step depending on at least one of the Ni content and the Co content of the Al— (Ni / Co) —X alloy film The present invention has a gist in controlling the substrate temperature and the heating temperature in the third step.
 好ましい実施形態において、前記Al合金膜は、Ni及びCoのうち少なくとも一つを0.5~4原子%含有する。 In a preferred embodiment, the Al alloy film contains 0.5 to 4 atomic% of at least one of Ni and Co.
 好ましい実施形態において、前記Al合金膜は、Niを0.5~4原子%含有する。 In a preferred embodiment, the Al alloy film contains 0.5 to 4 atomic% of Ni.
 好ましい実施形態において、前記第2の工程における基板の温度および前記第3の工程における加熱温度は、前記Al合金膜のNi含有量(原子%、[Ni])に応じて、下記(1)~(3)のように制御されるものである。
 (1)前記第2の工程において基板を加熱しない場合は、前記第3の工程における加熱温度を、α(4-[Ni])に応じて設定される50℃以下の温度を200℃にプラスした温度の範囲内に制御する。
 (2)前記第2の工程において基板の温度を100℃以上150℃未満に制御する場合は、前記第3の工程における加熱温度を、α(4-[Ni])に応じて設定される100℃以下の温度を100℃にプラスした温度の範囲内に制御する。
 (3)前記第2の工程において基板の温度を150℃以上250℃以下に制御する場合は、前記第3の工程における加熱温度を、α(4-[Ni])に応じて設定される100℃以下の温度を100℃にプラスした温度の範囲内に制御する。
In a preferred embodiment, the temperature of the substrate in the second step and the heating temperature in the third step are as follows according to the Ni content (atomic%, [Ni]) of the Al alloy film: It is controlled as in (3).
(1) When the substrate is not heated in the second step, the heating temperature in the third step is increased to 200 ° C. by a temperature of 50 ° C. or less set according to α (4- [Ni]). Control within the specified temperature range.
(2) When the substrate temperature is controlled to 100 ° C. or higher and lower than 150 ° C. in the second step, the heating temperature in the third step is set according to α (4- [Ni]) 100 The temperature below ℃ is controlled within the temperature range plus 100 ℃.
(3) When the substrate temperature is controlled to 150 ° C. or higher and 250 ° C. or lower in the second step, the heating temperature in the third step is set according to α (4- [Ni]) 100 The temperature below ℃ is controlled within the temperature range plus 100 ℃.
 好ましい実施形態において、前記Al-(Ni/Co)-X合金膜は、0.1~4原子%のNi及びCoのうち少なくとも一つと、0.1~2原子%のLa及びNdのうち少なくとも一つと、を含有する。 In a preferred embodiment, the Al— (Ni / Co) —X alloy film includes at least one of 0.1 to 4 atomic% of Ni and Co, and at least of 0.1 to 2 atomic% of La and Nd. And one.
 好ましい実施形態において、前記Al-(Ni/Co)-X合金膜は、更に0.1~2原子%のZ(Zは、Ge、Cu、およびSiよりなる群から選択される少なくとも一種の元素である。)を含有する。 In a preferred embodiment, the Al— (Ni / Co) —X alloy film further comprises at least one element selected from the group consisting of 0.1 to 2 atomic% Z (Z is Ge, Cu, and Si). Is contained).
 好ましい実施形態において、前記Al-(Ni/Co)-X合金膜は、0.1~4原子%のNi及びCoのうち少なくとも一つと、0.1~2原子%のLa及びNdのうち少なくとも一つと、0.1~2原子%のGe及びCuのうち少なくとも一つと、を含有する。 In a preferred embodiment, the Al— (Ni / Co) —X alloy film includes at least one of 0.1 to 4 atomic% of Ni and Co, and at least of 0.1 to 2 atomic% of La and Nd. 1 and at least one of 0.1 to 2 atomic% of Ge and Cu.
 本発明の製造方法では、Al合金膜のパターニング時に、水酸化テトラメチルアンモニウム(TMAH)水溶液を用いることが好ましい。また本発明の製造方法において好ましい酸化物透明導電膜は、酸化インジウムスズ(ITO)または酸化インジウム亜鉛(IZO)である。 In the production method of the present invention, it is preferable to use a tetramethylammonium hydroxide (TMAH) aqueous solution during patterning of the Al alloy film. In the production method of the present invention, a preferable oxide transparent conductive film is indium tin oxide (ITO) or indium zinc oxide (IZO).
 本発明によれば、反射電極であるAl合金膜の熱履歴(詳しくは、成膜時の基板温度および成膜後の加熱温度)をAl合金膜に含まれるNi量及び/又はCo量に応じて適切に制御しているため、パターニングの際にTMAH水溶液などのアルカリ現像液中に浸漬してもAl合金膜の腐食が抑えられ、酸化物透明導電膜とAl合金膜との接触抵抗を低減することができる。 According to the present invention, the thermal history (specifically, the substrate temperature at the time of film formation and the heating temperature after the film formation) of the Al alloy film as the reflective electrode is determined according to the amount of Ni and / or Co contained in the Al alloy film. Therefore, even when immersed in an alkaline developer such as TMAH aqueous solution during patterning, corrosion of the Al alloy film is suppressed, and the contact resistance between the transparent oxide conductive film and the Al alloy film is reduced. can do.
図1は、代表的な半透過型液晶表示装置の構成を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a configuration of a typical transflective liquid crystal display device. 図2は、代表的な半透過型液晶表示装置の断面を模式的に示す図である。FIG. 2 is a diagram schematically showing a cross section of a typical transflective liquid crystal display device. 図3は、スパッタリング時の基板温度を変化させて成膜したAl合金膜(Al-2原子%Ni-0.35原子%La)の浸漬電位を示すグラフである。FIG. 3 is a graph showing the immersion potential of an Al alloy film (Al-2 atomic% Ni-0.35 atomic% La) formed by changing the substrate temperature during sputtering. 図4は、純Al膜およびNi量を変化させたAl-Ni-La合金膜(反射電極)の反射率を示すグラフである(グラフ中の組成単位は原子%である)。FIG. 4 is a graph showing the reflectivity of a pure Al film and an Al—Ni—La alloy film (reflection electrode) in which the amount of Ni is changed (composition unit in the graph is atomic%). 図5は、実施例でTMAH水溶液に浸漬した後の試料No.19(Al-2原子%Ni-0.35原子%La膜、基板温度=室温、熱処理なし)の光学顕微鏡写真である。FIG. 5 shows the sample No. after being immersed in the TMAH aqueous solution in the example. 19 is an optical micrograph of 19 (Al-2 atomic% Ni-0.35 atomic% La film, substrate temperature = room temperature, no heat treatment). 図6は、実施例でTMAH水溶液に浸漬した後の試料No.19の透過型電子顕微鏡写真である。FIG. 6 shows the sample No. after being immersed in the TMAH aqueous solution in the example. 19 is 19 transmission electron micrographs. 図7は、実施例でTMAH水溶液に浸漬した後の試料No.23(Al-2原子%Ni-0.35原子%La膜、基板温度=室温、熱処理温度=250℃)の光学顕微鏡写真である。FIG. 7 shows the sample No. after being immersed in the TMAH aqueous solution in the example. 23 is an optical micrograph of No. 23 (Al-2 atomic% Ni-0.35 atomic% La film, substrate temperature = room temperature, heat treatment temperature = 250 ° C.). 図8は、実施例でTMAH水溶液に浸漬した後の試料No.23の透過型電子顕微鏡写真である。FIG. 8 shows the sample No. after being immersed in the TMAH aqueous solution in the example. 23 is a transmission electron micrograph of 23. 図9は、Al合金膜と酸化物透明導電膜(ITO膜)との間の接続抵抗の測定に用いたケルビンパターン(TEGパターン)を示す図である。FIG. 9 is a diagram showing a Kelvin pattern (TEG pattern) used for measuring the connection resistance between the Al alloy film and the oxide transparent conductive film (ITO film). 図10は、Al-Ni-La合金膜において、基板温度を室温で成膜したとき、成膜後の加熱温度およびNi量が耐アルカリ腐食性に及ぼす影響を示すグラフである。FIG. 10 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is formed at room temperature in an Al—Ni—La alloy film. 図11は、Al-Ni-La合金膜において、基板温度を100℃に高めて成膜したとき、成膜後の加熱温度およびNi量が耐アルカリ腐食性に及ぼす影響を示すグラフである。FIG. 11 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is increased to 100 ° C. in an Al—Ni—La alloy film. 図12は、Al-Ni-La合金膜において、基板温度を150℃および250℃に高めて成膜したとき、成膜後の加熱温度およびNi量が耐アルカリ腐食性に及ぼす影響を示すグラフである。FIG. 12 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is increased to 150 ° C. and 250 ° C. in an Al—Ni—La alloy film. is there. 図13は、Al-Ni-La-Cu合金膜において、基板温度を室温で成膜したとき、成膜後の加熱温度およびNi量が耐アルカリ腐食性に及ぼす影響を示すグラフである。FIG. 13 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is formed at room temperature in an Al—Ni—La—Cu alloy film. 図14は、Al-Ni-La-Cu合金膜において、基板温度を100℃に高めて成膜したとき、成膜後の加熱温度およびNi量が耐アルカリ腐食性に及ぼす影響を示すグラフである。FIG. 14 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is increased to 100 ° C. in an Al—Ni—La—Cu alloy film. . 図15は、Al-Ni-La-Cu合金膜において、基板温度を150℃および250℃に高めて成膜したとき、成膜後の加熱温度およびNi量が耐アルカリ腐食性に及ぼす影響を示すグラフである。FIG. 15 shows the effect of heating temperature and Ni amount on the alkali corrosion resistance when the substrate temperature is increased to 150 ° C. and 250 ° C. in an Al—Ni—La—Cu alloy film. It is a graph. 図16は、Al-Ni-La-Ge合金膜において、基板温度を室温で成膜したとき、成膜後の加熱温度およびNi量が耐アルカリ腐食性に及ぼす影響を示すグラフである。FIG. 16 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when the substrate temperature is formed at room temperature in an Al—Ni—La—Ge alloy film. 図17は、Al-Ni-La-Ge合金膜において、基板温度を100℃に高めて成膜したとき、成膜後の加熱温度およびNi量が耐アルカリ腐食性に及ぼす影響を示すグラフである。FIG. 17 is a graph showing the influence of the heating temperature and the amount of Ni on the alkali corrosion resistance when an Al—Ni—La—Ge alloy film is formed at a substrate temperature increased to 100 ° C. . 図18は、Al-Ni-La-Ge合金膜において、基板温度を150℃および250℃に高めて成膜したとき、成膜後の加熱温度およびNi量が耐アルカリ腐食性に及ぼす影響を示すグラフである。FIG. 18 shows the effect of heating temperature and Ni amount on the alkali corrosion resistance when the substrate temperature is increased to 150 ° C. and 250 ° C. in an Al—Ni—La—Ge alloy film. It is a graph.
符号の説明Explanation of symbols
 5 ゲート配線
 7 データ配線
 11 半透過型液晶表示装置
 13 共通電極
 15 対向基板
 16 ブラックマトリックス
 17 カラーフィルター
 19 画素電極
 19a 透明画素電極
 19b 反射電極
 21 TFT基板
 23 液晶層
 41 バックライト
 51 バリアメタル層
 T スイッチング素子(TFT)
 P 画素領域
 A 透過領域
 B 周囲光(人工光源)
 C 反射領域
 F バックライトからの光
5 gate wiring 7 data wiring 11 transflective liquid crystal display device 13 common electrode 15 counter substrate 16 black matrix 17 color filter 19 pixel electrode 19a transparent pixel electrode 19b reflective electrode 21 TFT substrate 23 liquid crystal layer 41 backlight 51 barrier metal layer T switching Element (TFT)
P Pixel area A Transmission area B Ambient light (artificial light source)
C Reflection area F Light from backlight
 本発明者らは、酸化物透明導電膜の上に反射電極用のAl合金膜が直接接続されてなる構造を備えた表示装置において、Al合金膜をパターニングする際、TMAH水溶液などに代表されるフォトレジストのアルカリ現像液を用いたときなどに生じるAl合金膜の腐食(ガルバニック腐食)を防止するため、検討を重ねてきた。その結果、Al合金膜のNi含有量に応じて、Al合金膜の成膜時における基板温度およびAl合金成膜後の加熱温度を適切に制御する方法、詳細には、成膜後の加熱温度を、成膜時の基板温度との関係で、Al合金膜中のNi量を考慮しつつ制御する方法を採用すれば、所期の目的が達成されることを見出し、本発明を完成した。 The present inventors represent a TMAH aqueous solution or the like when patterning an Al alloy film in a display device having a structure in which an Al alloy film for a reflective electrode is directly connected on an oxide transparent conductive film. In order to prevent corrosion (galvanic corrosion) of the Al alloy film that occurs when an alkaline developer of photoresist is used, studies have been repeated. As a result, in accordance with the Ni content of the Al alloy film, a method for appropriately controlling the substrate temperature during the formation of the Al alloy film and the heating temperature after the formation of the Al alloy film, specifically, the heating temperature after the film formation. As a result, the inventors have found that the intended purpose can be achieved by adopting a method in which the amount of Ni in the Al alloy film is controlled in consideration of the relationship with the substrate temperature during film formation, and the present invention has been completed.
 更に、上記Al合金膜として、Niの代わりにCoを用いても良く、CoはNiと同様の作用を有する同効元素であることも判明した。NiおよびCoは、単独で用いても良いし、併用しても良い。従って、Al合金膜がCoのみを含有する場合はCo量に応じて、一方、Al合金膜がNiとCoの両方を含有する場合はNi量およびCo量に応じて、Al合金膜の成膜時における基板温度およびAl合金成膜後の加熱温度を適切に制御すれば良いことを見出した。更に、本発明の方法は、上記Al合金膜において、0.1~2原子%のグループZ(グループZは、Ge、Cu、およびSiよりなる群から選択される少なくとも一種の元素である。)を更に含有する場合にも適用可能であることを見出した。 Furthermore, Co may be used instead of Ni as the Al alloy film, and Co has also been found to be a synergistic element having the same action as Ni. Ni and Co may be used alone or in combination. Therefore, when the Al alloy film contains only Co, the Al alloy film is formed according to the amount of Co. On the other hand, when the Al alloy film contains both Ni and Co, the Al alloy film is formed according to the Ni amount and the Co amount. It was found that the substrate temperature at the time and the heating temperature after the Al alloy film formation may be appropriately controlled. Further, according to the method of the present invention, 0.1 to 2 atomic% of the group Z (the group Z is at least one element selected from the group consisting of Ge, Cu, and Si) in the Al alloy film. It was found that the present invention can also be applied to the case of further containing.
 以下では、Ni及び/又はCoと、グループXの少なくとも一種と、を含むAl合金を、Al-(Ni/Co)-X合金と呼ぶ場合がある。また、上記Al-(Ni/Co)-X合金中に、グループZの少なくとも一種を更に含むAl合金を、Al-(Ni/Co)-X-Z合金と呼ぶ場合がある。また、Al合金膜中のNi、Co、グループZの各量を[Ni]、[Co]、[Z]で表す。[Z]は、グループZの元素を単独で含有する場合は単独の量を、グループZの元素を2種以上含有する場合は合計の量を、意味する。 Hereinafter, an Al alloy containing Ni and / or Co and at least one group X may be referred to as an Al— (Ni / Co) —X alloy. In addition, an Al alloy further including at least one of group Z in the Al— (Ni / Co) —X alloy may be referred to as an Al— (Ni / Co) —XZ alloy. The amounts of Ni, Co, and group Z in the Al alloy film are represented by [Ni], [Co], and [Z]. [Z] means a single amount when the group Z element is contained alone, and a total amount when two or more group Z elements are contained.
 以下、本発明の製造方法を詳しく説明する。以下では、説明の便宜上、本発明に用いられるAl合金膜として、(i)Al-(Ni/Co)-X合金膜を用いる場合と、(ii)Al-(Ni/Co)-X-Z合金膜を用いる場合とに分けて説明する。 Hereinafter, the production method of the present invention will be described in detail. In the following, for convenience of explanation, as the Al alloy film used in the present invention, (i) an Al— (Ni / Co) —X alloy film is used, and (ii) Al— (Ni / Co) —XZ. This will be described separately for the case of using an alloy film.
 (i)Al-(Ni/Co)-X合金膜を用いる場合
 本発明の製造方法は、酸化物透明導電膜の上に反射電極用のAl合金膜が直接接続されてなる構造を備えた表示装置の製造方法であって、基板上に前記酸化物透明導電膜を形成する第1の工程と、前記酸化物透明導電膜上に前記Al合金膜を形成する第2の工程と、前記Al合金膜を加熱する第3の工程と、を包含している。上記Al合金膜は、Ni及び/又はCoを0.1~4原子%、およびグループXから選択される少なくとも一種の元素を総量で0.1~2原子%の範囲で含有するAl-(Ni/Co)-X合金からなり、Xは、La、Mg、Cr、Mn、Ru、Rh、Pt、Pd、Ir、Ce、Pr、Gd、Tb、Dy、Nd、Ti、Zr、Nb、Mo、Hf、Ta、W、Y、Fe、Sm、Eu、Ho、Er、Tm、Yb、およびLuからなる。
(I) When using Al— (Ni / Co) —X alloy film The manufacturing method of the present invention is a display having a structure in which an Al alloy film for a reflective electrode is directly connected on an oxide transparent conductive film. A device manufacturing method, comprising: a first step of forming the oxide transparent conductive film on a substrate; a second step of forming the Al alloy film on the oxide transparent conductive film; and the Al alloy. And a third step of heating the membrane. The Al alloy film contains Ni and / or Co in an amount of 0.1 to 4 atomic% and Al— (Ni in a total amount of at least one element selected from group X in the range of 0.1 to 2 atomic%. / Co) -X alloy, where X is La, Mg, Cr, Mn, Ru, Rh, Pt, Pd, Ir, Ce, Pr, Gd, Tb, Dy, Nd, Ti, Zr, Nb, Mo, It consists of Hf, Ta, W, Y, Fe, Sm, Eu, Ho, Er, Tm, Yb, and Lu.
 そして、本発明の特徴部分は、上記Al-(Ni/Co)-X合金膜のNi含有量及び/又はCo含有量に応じて、上記第2の工程における基板の温度および上記第3の工程における加熱温度を制御したところにある。まず、上記の特徴部分について説明する。 The feature of the present invention is that the temperature of the substrate in the second step and the third step depend on the Ni content and / or Co content of the Al— (Ni / Co) —X alloy film. The heating temperature is controlled. First, the characteristic part will be described.
 上述したように、本発明では、ガルバニック腐食防止(耐アルカリ腐食性)のために考慮すべき因子として、上記第2の工程における基板の温度(すなわち、Al合金膜の成膜時における基板温度)、上記第3の工程における加熱温度(すなわち、Al合金成膜後の加熱温度)、およびAl合金膜中のNi量([Ni])及び/又はCo量([Co])を挙げている。ここで、NiおよびCoの含有量を挙げたのは、これらの元素はいずれもAlと結合して、ガルバニック腐食の防止に有用な、微細な金属間化合物を形成すると考えられるからである。微細な金属間化合物の生成により、Al合金膜を貫通するピンホールなどが少なくなるため、結果的に、耐アルカリ腐食性が向上する。また、ガルバニック腐食の防止に有用な、微細な金属間化合物が界面に形成されることにより、酸化物透明導電膜とAl合金膜との接触抵抗も低く抑えられる。これら元素の作用は、後でも詳しく説明する。 As described above, in the present invention, as a factor to be considered for preventing galvanic corrosion (alkali corrosion resistance), the temperature of the substrate in the second step (that is, the substrate temperature at the time of forming the Al alloy film). The heating temperature in the third step (that is, the heating temperature after forming the Al alloy film) and the Ni amount ([Ni]) and / or Co amount ([Co]) in the Al alloy film are mentioned. Here, the contents of Ni and Co are given because it is considered that these elements combine with Al to form a fine intermetallic compound useful for preventing galvanic corrosion. The generation of fine intermetallic compounds reduces pinholes or the like penetrating the Al alloy film, resulting in improved alkali corrosion resistance. In addition, when a fine intermetallic compound useful for preventing galvanic corrosion is formed at the interface, the contact resistance between the oxide transparent conductive film and the Al alloy film can be kept low. The action of these elements will be described in detail later.
 具体的には、Al合金膜中のNi及び/又はCoの量(単独で含有する場合は単独の量であり、両方を含有する場合は合計量である。)に応じて、基板の温度およびその後の加熱温度を、下記(1)~(3)のように制御すれば良い。
 (1)前記第2の工程において基板を加熱しない場合は、前記第3の工程における加熱温度を、α{4-([Ni]+[Co])}に応じて設定される50℃以下の温度を200℃にプラスした温度の範囲内に制御する。
 (2)前記第2の工程において基板の温度を100℃以上150℃未満に制御する場合は、前記第3の工程における加熱温度を、α{4-([Ni]+[Co])}に応じて設定される100℃以下の温度を100℃にプラスした温度の範囲内に制御する。
 (3)前記第2の工程において基板の温度を150℃以上250℃以下に制御する場合は、前記第3の工程における加熱温度を、α{4-([Ni]+[Co])}に応じて設定される100℃以下の温度を100℃にプラスした温度の範囲内に制御する。
Specifically, depending on the amount of Ni and / or Co in the Al alloy film (a single amount when contained alone, and a total amount when containing both), the temperature of the substrate and The subsequent heating temperature may be controlled as in the following (1) to (3).
(1) When the substrate is not heated in the second step, the heating temperature in the third step is set to 50 ° C. or less that is set according to α {4-([Ni] + [Co])}. The temperature is controlled within the temperature range plus 200 ° C.
(2) When the substrate temperature is controlled to 100 ° C. or higher and lower than 150 ° C. in the second step, the heating temperature in the third step is set to α {4-([Ni] + [Co])}. The temperature of 100 ° C. or less that is set accordingly is controlled within the range of the temperature plus 100 ° C.
(3) When the substrate temperature is controlled to 150 ° C. or higher and 250 ° C. or lower in the second step, the heating temperature in the third step is set to α {4-([Ni] + [Co])}. The temperature of 100 ° C. or less that is set accordingly is controlled within the range of the temperature plus 100 ° C.
 例えば、Al合金膜がNiのみを含有する場合(すなわち、Al-Ni-X合金膜の場合)は、Al合金膜中のNi量([Ni])に応じて、基板の温度およびその後の加熱温度を、下記(1A)~(3A)のように制御すれば良い。
 (1A)前記第2の工程において基板を加熱しない場合は、前記第3の工程における加熱温度を、α(4-[Ni])に応じて設定される50℃以下の温度を200℃にプラスした温度の範囲内に制御する。
 (2A)前記第2の工程において基板の温度を100℃以上150℃未満に制御する場合は、前記第3の工程における加熱温度を、α(4-[Ni])に応じて設定される100℃以下の温度を100℃にプラスした温度の範囲内に制御する。
 (3A)前記第2の工程において基板の温度を150℃以上250℃以下に制御する場合は、前記第3の工程における加熱温度を、α(4-[Ni])に応じて設定される100℃以下の温度を100℃にプラスした温度の範囲内に制御する。
For example, when the Al alloy film contains only Ni (that is, in the case of an Al—Ni—X alloy film), the temperature of the substrate and subsequent heating depending on the amount of Ni in the Al alloy film ([Ni]) The temperature may be controlled as in the following (1A) to (3A).
(1A) If the substrate is not heated in the second step, the heating temperature in the third step is increased to 200 ° C. by a temperature of 50 ° C. or less set according to α (4- [Ni]). Control within the specified temperature range.
(2A) When the substrate temperature is controlled to 100 ° C. or higher and lower than 150 ° C. in the second step, the heating temperature in the third step is set according to α (4- [Ni]) 100 The temperature below ℃ is controlled within the temperature range plus 100 ℃.
(3A) When the substrate temperature is controlled to 150 ° C. or higher and 250 ° C. or lower in the second step, the heating temperature in the third step is set according to α (4- [Ni]) 100 The temperature below ℃ is controlled within the temperature range plus 100 ℃.
 上記(1)~(3)は、要するに、基板温度を上記(1)のように低い室温(約25℃近傍)に設定して成膜を行なった場合はAl合金成膜後の加熱温度を高く設定できるし、一方、基板温度を上記(3)のように約250℃と高く設定して成膜を行なった場合は成膜後の加熱温度を低く設定できること、しかも、これら基板温度と加熱温度の設定(調整)は、Al合金膜に含まれるNi量を考慮しながら設定できる、ということを意味している。上記(1A)~(3A)も同様である。 In the above (1) to (3), in short, when the film is formed with the substrate temperature set to a low room temperature (around 25 ° C.) as in (1) above, the heating temperature after the Al alloy film formation is set. On the other hand, when film formation is performed with the substrate temperature set as high as about 250 ° C. as in (3) above, the heating temperature after film formation can be set low, and these substrate temperature and heating The setting (adjustment) of temperature means that the temperature can be set in consideration of the amount of Ni contained in the Al alloy film. The same applies to (1A) to (3A) above.
 ここで、基板温度を上記(1)~(3)の3パターンに分類したのは、「基板温度の上昇程度(上げ幅)に応じて成膜後の加熱温度の下降程度(下げ幅)を制御する」という本発明の製造方法(調整手段)は、おおむね、上記の3パターンに整理できるという本発明者らの基礎実験に基づくものである。 Here, the substrate temperature is classified into the above three patterns (1) to (3) because “the lowering (lowering range) of the heating temperature after film formation is controlled in accordance with the increasing (increase width) of the substrate temperature. The manufacturing method (adjustment means) of the present invention “to do” is generally based on the basic experiment of the present inventors that the above three patterns can be arranged.
 なお、本発明における「基板温度」とは、基板全体の温度を意味する。従って、基板温度を200℃に制御したい場合には、基板全体の温度が200℃以上になるよう、成膜工程の間200℃で保持すればよい。 The “substrate temperature” in the present invention means the temperature of the entire substrate. Therefore, when it is desired to control the substrate temperature to 200 ° C., the substrate temperature may be maintained at 200 ° C. during the film forming process so that the temperature of the entire substrate becomes 200 ° C. or higher.
 また、上記(1)~(3)における「α{4-([Ni]+[Co])}」の要件は、基板温度と加熱温度は、Al合金膜に含まれるNi量([Ni])及び/又はCo量([Co])に応じて(考慮して)、制御し調整できることを便宜的に簡易に表現したものである。上記要件中の係数αは、基板温度や加熱温度、更には使用するAl合金膜の組成などにより任意に調整することができる。また、上記要件中の「4」は、上記Al合金膜に含まれ得るNi及び/又はCoの量の上限(4原子%)であり、4原子%の範囲内で、これらの元素量を制御し得ることを表している。現実にどのように制御したら良いかは、当業者の創作能力の範囲内であり、当業者であれば、後記する実施例の結果などを参考にし、酸化物透明導電膜とAl合金膜を直接接続させたときの接触抵抗や耐アルカリ腐食性の程度などを考慮して、適切に定めることができる。 In addition, the requirement of “α {4-([Ni] + [Co])}” in the above (1) to (3) is that the substrate temperature and the heating temperature depend on the amount of Ni contained in the Al alloy film ([Ni] ) And / or the amount of Co ([Co]) can be controlled and adjusted in a simplified manner for convenience. The coefficient α in the above requirements can be arbitrarily adjusted depending on the substrate temperature, the heating temperature, the composition of the Al alloy film to be used, and the like. “4” in the above requirements is the upper limit (4 atomic%) of the amount of Ni and / or Co that can be contained in the Al alloy film, and the amount of these elements is controlled within the range of 4 atomic%. It represents what can be done. How to actually control is within the scope of the creative ability of those skilled in the art, and those skilled in the art can directly connect the oxide transparent conductive film and the Al alloy film with reference to the results of the examples described later. It can be appropriately determined in consideration of the contact resistance when connected and the degree of alkali corrosion resistance.
 以下、図10~図12を参照しながら、本発明の製造方法をより詳しく説明する。 Hereinafter, the manufacturing method of the present invention will be described in more detail with reference to FIGS.
 (図10~図12について)
 図10~図12は、後記する実施例の結果を用い、上記(1)~(3)で規定する基板温度ごとにNi量と加熱温度との関係を整理し、これらが耐アルカリ腐食性に及ぼす影響を調べたものである。ここでは、Al-x原子%Ni-0.35原子%La合金膜を用い、Niの含有量(x)は図10~図12に示すように0~3原子%の範囲内である。図10は、基板温度を室温にして成膜したときの結果[上記(1)に相当]であり、図11は、基板温度を100℃に高めて成膜したときの結果[上記(2)に相当]であり、図12は、基板温度を更に150℃および250℃まで高めて成膜したときの結果[上記(3)に相当]を示している。図中、○は耐アルカリ腐食性に優れることを意味し、▲は耐アルカリ腐食性に劣ることを意味する。評価方法の詳細については後述する。
(About FIGS. 10 to 12)
FIGS. 10 to 12 use the results of the examples described later, and arrange the relationship between the Ni amount and the heating temperature for each substrate temperature specified in the above (1) to (3). This is an investigation of the effect. Here, an Al—x atomic% Ni—0.35 atomic% La alloy film is used, and the Ni content (x) is in the range of 0 to 3 atomic% as shown in FIGS. FIG. 10 shows the results when the substrate temperature is set to room temperature [corresponding to the above (1)], and FIG. 11 shows the results when the substrate temperature is raised to 100 ° C. [above (2) FIG. 12 shows the results [equivalent to (3) above] when the substrate temperature was further increased to 150 ° C. and 250 ° C. to form a film. In the figure, ◯ means that the alkali corrosion resistance is excellent, and ▲ means that the alkali corrosion resistance is inferior. Details of the evaluation method will be described later.
 図10~図12を対比すると、基板温度が低い場合には、加熱温度は総じて高くしないとアルカリ腐食を有効に防止することができないが、基板温度が高い場合には、加熱温度は低くしてもアルカリ腐食を抑えられることが分かる。しかも、基板温度と加熱温度の調整幅(例えば、基板温度を上げた場合には加熱温度を下げられるという、基板温度の上げ幅および加熱温度の下げ幅)は、Al合金膜中のNi量に応じて決定されることも分かる。 10 to 12, when the substrate temperature is low, alkali heating cannot be effectively prevented unless the heating temperature is increased as a whole. However, when the substrate temperature is high, the heating temperature is decreased. It can also be seen that alkali corrosion can be suppressed. In addition, the adjustment range of the substrate temperature and the heating temperature (for example, when the substrate temperature is raised, the heating temperature can be lowered, the increase range of the substrate temperature and the decrease range of the heating temperature) depends on the amount of Ni in the Al alloy film. It can be seen that
 例えば、Al合金膜中のNi量が2原子%の場合について考察すると、基板温度を室温としたときは、加熱温度を、おおむね、250℃以上に制御することが好ましいが、基板温度を100℃に制御したときは、加熱温度の好ましい下限を下げることができ、おおむね、150℃以上に加熱するだけで耐アルカリ腐食性が向上する。更に、基板温度を150~250℃に制御したときは、加熱温度の好ましい下限をより下げることができ、おおむね、100℃以上に加熱するだけで良好な耐アルカリ腐食性が得られる。 For example, considering the case where the amount of Ni in the Al alloy film is 2 atomic%, when the substrate temperature is room temperature, it is preferable to control the heating temperature to approximately 250 ° C. or higher, but the substrate temperature is 100 ° C. When the temperature is controlled, the preferable lower limit of the heating temperature can be lowered, and the alkali corrosion resistance is improved by simply heating to 150 ° C. or higher. Furthermore, when the substrate temperature is controlled to 150 to 250 ° C., the preferable lower limit of the heating temperature can be further lowered, and generally good alkali corrosion resistance can be obtained only by heating to 100 ° C. or higher.
 このように本発明は、前述した特許文献4のように成膜後の加熱温度を一律に制御するのではなく、成膜時の基板温度との関係で、Al合金膜中のNi量を考慮しつつ制御する方法を採用したところに技術的思想を有している。 Thus, the present invention does not uniformly control the heating temperature after film formation as in Patent Document 4 described above, but considers the amount of Ni in the Al alloy film in relation to the substrate temperature during film formation. However, it has a technical idea in adopting a control method.
 前述した特許文献4は、本願発明と表示装置の構成は相違しているが、Al合金膜を成膜した後に加熱を行なうダイレクトコンタクト技術である点で、本発明と共通している。しかしながら、特許文献4では、成膜時の基板温度について何ら考慮しておらず、基板温度との関係で成膜後の加熱温度を制御するという思想もなく、Ni量を考慮しつつ、加熱温度や基板温度を制御するという思想もない点で、本発明と相違している。 Patent Document 4 described above is common to the present invention in that it is a direct contact technique in which heating is performed after forming an Al alloy film, although the configuration of the present invention is different from that of the present invention. However, in Patent Document 4, no consideration is given to the substrate temperature at the time of film formation, and there is no concept of controlling the heating temperature after film formation in relation to the substrate temperature. And the idea of controlling the substrate temperature is different from the present invention.
 なお、図10~図12は、Al合金膜としてAl-Ni-X合金膜を用いた結果を示しているが、Niの代わりにCoを用いたとき、すなわち、Al-Co-X合金膜を用いたときも、上記と同様の傾向が見られることを実験により確認している。また、Niの代わりに、NiおよびCoの両方を用いたとき、すなわち、Al-(Ni+Co)-X合金膜を用いたときも、上記と同様の結果が得られることを実験により確認している。 10 to 12 show the results of using an Al—Ni—X alloy film as the Al alloy film, but when Co is used instead of Ni, that is, the Al—Co—X alloy film is used. When used, it has been confirmed by experiments that the same tendency as described above is observed. Further, it has been confirmed by experiments that the same results as described above can be obtained when both Ni and Co are used instead of Ni, that is, when an Al- (Ni + Co) -X alloy film is used. .
 なお、加熱温度の上限は、耐アルカリ腐食性の観点からは特に限定されないが、高すぎるとAl合金膜にヒロックなどが発生するため、好まししくは350℃以下、より好ましくは300℃以下である。 The upper limit of the heating temperature is not particularly limited from the viewpoint of resistance to alkali corrosion, but if it is too high, hillocks and the like are generated in the Al alloy film, and therefore preferably 350 ° C. or less, more preferably 300 ° C. or less. is there.
 具体的には、上記の加熱処理は、真空雰囲気または不活性雰囲気下(例えば窒素雰囲気下)で所定時間行うことが好ましい。上記(1)~(3)の各基板温度における、それぞれの好ましい加熱条件は、下記(I)~(III)のとおりである。実際には、Al合金膜中のNi量及び/又はCo量(0.5~4原子%)に応じて、加熱温度を適切に調整すれば良い。
 (I)上記(1)のように基板温度が室温の場合、好ましい加熱温度は約200~250℃であり、好ましい加熱時間は約30~60分である。
 (II)上記(2)のように基板温度が100℃以上150℃未満の場合、好ましい加熱温度は約100~200℃であり、好ましい加熱時間は約30~60分である。
 (III)上記(3)のように基板温度が150℃以上250℃以下の場合、好ましい加熱温度は約100~200℃であり、好ましい加熱時間は約30~60分である。
Specifically, the heat treatment is preferably performed for a predetermined time in a vacuum atmosphere or an inert atmosphere (for example, in a nitrogen atmosphere). Preferred heating conditions at the respective substrate temperatures (1) to (3) are as follows (I) to (III). Actually, the heating temperature may be appropriately adjusted according to the amount of Ni and / or Co (0.5 to 4 atomic%) in the Al alloy film.
(I) When the substrate temperature is room temperature as in (1) above, the preferred heating temperature is about 200 to 250 ° C., and the preferred heating time is about 30 to 60 minutes.
(II) When the substrate temperature is 100 ° C. or higher and lower than 150 ° C. as in (2) above, the preferred heating temperature is about 100 to 200 ° C., and the preferred heating time is about 30 to 60 minutes.
(III) When the substrate temperature is 150 ° C. or higher and 250 ° C. or lower as in (3) above, the preferred heating temperature is about 100 to 200 ° C., and the preferred heating time is about 30 to 60 minutes.
 本発明の方法によってAl合金膜のアルカリ腐食を防止できるメカニズムは詳細には不明であるが、加熱によってAlと、Ni及び/又はCoとの微細な金属間化合物が、ITO膜などの酸化物透明導電膜とAl合金膜との界面に集まり、界面でイオン化傾向の小さいニッケルの濃度が高まるため、Al合金膜の電極電位が正側にシフトし、ITO膜などの酸化物透明導電膜との接触電位差が小さくなることが考えられる。その結果、リソグラフィ法の際に用いる現像液やエッチング液に起因するガルバニック腐食が生じにくくなる。特に、本発明者の実験によれば、ガルバニック腐食の防止に有用な上記「Alと、Ni及び/又はCoとの微細な金属間化合物」の生成は、成膜後の加熱温度だけでなく成膜時の基板温度によっても影響を受けると推察される。 Although the mechanism by which the Al alloy film can be prevented from alkaline corrosion by the method of the present invention is not known in detail, a fine intermetallic compound of Al and Ni and / or Co becomes transparent to an oxide such as an ITO film by heating. Since the concentration of nickel, which has a small ionization tendency, increases at the interface between the conductive film and the Al alloy film, the electrode potential of the Al alloy film shifts to the positive side, and contact with an oxide transparent conductive film such as an ITO film It is conceivable that the potential difference becomes small. As a result, galvanic corrosion due to the developer and etching solution used in the lithography method is less likely to occur. In particular, according to the experiments of the present inventor, the generation of the “fine intermetallic compound of Al and Ni and / or Co” useful for preventing galvanic corrosion is not limited to the heating temperature after film formation. It is assumed that it is also affected by the substrate temperature at the time of film formation.
 本発明の製造方法によれば、Al合金膜と酸化物透明導電膜との電極電位差を、おおむね、1.55V以下、好ましくは1.5V以下に低く抑えることができる。 According to the production method of the present invention, the electrode potential difference between the Al alloy film and the oxide transparent conductive film can be suppressed to about 1.55 V or less, preferably 1.5 V or less.
 参考のため、図3に、TMAH水溶液中に浸漬したときの浸漬時間と浸漬電位との関係を示す。ここでは、Al-2原子%Ni-0.35原子%LaのAl合金膜を用い、成膜時の基板温度を室温→加熱なしの試料と、成膜時の基板温度を室温→200℃で加熱をした試料の2種類を用いた。 For reference, FIG. 3 shows the relationship between the immersion time and the immersion potential when immersed in the TMAH aqueous solution. Here, an Al alloy film of Al-2 atomic% Ni-0.35 atomic% La is used, the substrate temperature during film formation is room temperature → no heating sample, and the substrate temperature during film formation is room temperature → 200 ° C. Two types of heated samples were used.
 図3より、成膜後の加熱を行なった試料では、成膜後の加熱を行なわない試料に比べ、浸漬直後(約0.1分)の浸漬電位は約100mV(0.1V)高くなっており、しかも、この状態は、浸漬後約0.7分まで維持されていることが分かる。この結果は、加熱を行った方が、ITO膜の浸漬電位との差を長い間小さく抑えられることを意味し、ガルバニック腐食を有効に抑えられることを示唆している。 As shown in FIG. 3, the immersion potential immediately after the immersion (about 0.1 minute) is higher by about 100 mV (0.1 V) in the sample heated after the film formation than in the sample not heated after the film formation. Moreover, it can be seen that this state is maintained for about 0.7 minutes after immersion. This result means that the difference from the immersion potential of the ITO film can be kept small for a long time by heating, suggesting that galvanic corrosion can be effectively suppressed.
 本発明に用いられるAl合金膜は、Ni及び/又はCoを0.1~4原子%、およびグループXから選択される少なくとも一種の元素を総量で0.1~2原子%の範囲で含有するAl-(Ni/Co)-X合金からなり、前記Xは、La、Mg、Cr、Mn、Ru、Rh、Pt、Pd、Ir、Ce、Pr、Gd、Tb、Dy、Nd、Ti、Zr、Nb、Mo、Hf、Ta、W、Y、Fe、Sm、Eu、Ho、Er、Tm、Yb、およびLuからなる。 The Al alloy film used in the present invention contains Ni and / or Co in an amount of 0.1 to 4 atomic% and at least one element selected from group X in a total amount of 0.1 to 2 atomic%. It is made of an Al- (Ni / Co) -X alloy, where X is La, Mg, Cr, Mn, Ru, Rh, Pt, Pd, Ir, Ce, Pr, Gd, Tb, Dy, Nd, Ti, Zr Nb, Mo, Hf, Ta, W, Y, Fe, Sm, Eu, Ho, Er, Tm, Yb, and Lu.
 ここで、NiおよびCoは、酸化物透明導電膜との接触抵抗の低減作用を有するほか、耐アルカリ腐食性の向上作用も有している(後記する実施例を参照)。Al合金膜にNi及び/又はCoを添加することによって、酸化物透明導電膜との接触抵抗が低下する理由は、詳細には不明であるが、Al合金膜と酸化物透明導電膜との界面(接触界面)に、Alの拡散を防止し得るNi及び/又はCo含有析出物もしくはNi及び/又はCo濃化層が形成されるためであると考えられる。Al合金膜中には、NiおよびCoのいずれか一方を含んでいても良いし、両方を含んでいてもよい。 Here, Ni and Co have the effect of reducing the contact resistance with the oxide transparent conductive film, and also have the effect of improving the alkali corrosion resistance (see Examples described later). The reason why the contact resistance with the oxide transparent conductive film is reduced by adding Ni and / or Co to the Al alloy film is unknown in detail, but the interface between the Al alloy film and the oxide transparent conductive film is unknown. This is presumably because a Ni and / or Co-containing precipitate or a Ni and / or Co concentrated layer that can prevent Al diffusion is formed at the (contact interface). The Al alloy film may contain either Ni or Co, or both.
 Al-(Ni/Co)-X合金膜中の(Ni/Co)の含有量(単独で含有する場合は単独の量であり、両方を含有する場合は合計量である。)は、上述した接触抵抗の低減作用および耐アルカリ腐食性向上作用を有効に発揮させるため、0.1原子%以上であることが必要である。一方、後記する図4に示すように、(Ni/Co)の含有量が4原子%を超えると、Al合金膜の反射率および電気抵抗率が高く、実用に供し得なくなる。そこでAl合金膜中の(Ni/Co)含有量を、0.1原子%以上(好ましくは0.5原子%以上、より好ましくは1原子%以上、更に好ましくは2原子%以上)、4原子%以下(好ましくは3原子%以下)と定めた。 The content of (Ni / Co) in the Al— (Ni / Co) —X alloy film (the amount contained alone is the amount alone, and the amount contained both is the total amount) is described above. In order to effectively exhibit the effect of reducing contact resistance and the effect of improving alkali corrosion resistance, it is necessary to be 0.1 atomic% or more. On the other hand, as shown in FIG. 4 to be described later, when the content of (Ni / Co) exceeds 4 atomic%, the reflectance and electrical resistivity of the Al alloy film are high and cannot be put into practical use. Therefore, the content of (Ni / Co) in the Al alloy film is 0.1 atomic% or more (preferably 0.5 atomic% or more, more preferably 1 atomic% or more, further preferably 2 atomic% or more), 4 atoms. % Or less (preferably 3 atom% or less).
 また、グループXの元素(特にLaおよびNd)は、Al合金膜の耐熱性向上に寄与する元素(耐熱性向上元素)である。詳しくは、グループXの少なくとも1種を含有させることによって、加熱時に、Al合金膜表面のヒロック(コブ状の突起物)の形成を有効に防止することができる。これらの元素は、単独で添加しても良く、2種以上を併用してもよい。2種以上の元素を含有させるときは、各元素の総量が下記範囲を満足するように制御すればよい。 Further, Group X elements (particularly La and Nd) are elements (heat resistance improving elements) that contribute to improving the heat resistance of the Al alloy film. Specifically, the inclusion of at least one of group X can effectively prevent the formation of hillocks (cove-like projections) on the surface of the Al alloy film during heating. These elements may be added alone or in combination of two or more. When two or more elements are contained, the total amount of each element may be controlled so as to satisfy the following range.
 このような耐熱性向上作用を充分に発揮させるために、グループXに属する元素の含有量は0.1原子%以上であり、好ましくは0.2原子%以上である。しかし、これら元素の含有量が過剰になると、Al-(Ni/Co)-X合金膜自体の電気抵抗率が上昇する。そこで、これら元素の含有量は2原子%以下、好ましくは0.8原子%以下である。 In order to sufficiently exhibit such heat resistance improving effect, the content of the element belonging to Group X is 0.1 atomic% or more, preferably 0.2 atomic% or more. However, when the content of these elements becomes excessive, the electrical resistivity of the Al— (Ni / Co) —X alloy film itself increases. Therefore, the content of these elements is 2 atomic% or less, preferably 0.8 atomic% or less.
 耐熱性および電気抵抗率などの特性を考慮すると、グループXに属する元素の中でも、La、Nd、Gd、TbおよびMnが好ましく、LaおよびNdがより好ましい。 Considering characteristics such as heat resistance and electrical resistivity, among the elements belonging to Group X, La, Nd, Gd, Tb and Mn are preferable, and La and Nd are more preferable.
 本発明において、Al-(Ni/Co)-X合金膜の残部は、実質的にAlおよび不可避不純物からなる。 In the present invention, the balance of the Al— (Ni / Co) —X alloy film is substantially composed of Al and inevitable impurities.
 (ii)Al-(Ni/Co)-X-Z合金膜を用いる場合
 次に、Al合金膜として、Al-(Ni/Co)-X-Z合金膜を用いたときの製造方法を説明する。このAl合金膜は、前述した(i)のAl-(Ni/Co)-X合金膜に、更に、グループZの元素(Ge、Cu、およびSiよりなる群から選択される少なくとも一種の元素)を0.1~2原子%含有するものであり、これにより、接触抵抗の低減および耐熱性が一層向上するようになる。上記Zのうち、透明導電膜との接触抵抗の低減および耐アルカリ性向上の観点から好ましいのはGeおよびCuである。GeおよびCuの添加によって耐アルカリ性が向上することは、後記する図13~図15(Cu添加例)および図16~図18(Ge添加例)において示している。また、これらの図において、○(耐アルカリ腐食性が良好)の例は、いずれも、接触抵抗が1500Ω/cm2以下と、低く抑えられていた(図には示さず)。よって、本発明では、上記Al-(Ni/Co)-X-Z合金層として、0.1~2原子%のNi及び/又はCoと、0.1~2原子%のLa及び/又はNdと、0.1~2原子%のGe及び/又はCuを含む合金層を用いることが最も好ましい。
(Ii) Using Al— (Ni / Co) —XZ Alloy Film Next, a manufacturing method when using an Al— (Ni / Co) —XZ alloy film as the Al alloy film will be described. . This Al alloy film is the same as the Al- (Ni / Co) -X alloy film of (i) described above, and further includes a group Z element (at least one element selected from the group consisting of Ge, Cu, and Si). Is contained in an amount of 0.1 to 2 atom%, and as a result, contact resistance is reduced and heat resistance is further improved. Of the above Z, Ge and Cu are preferred from the viewpoints of reducing contact resistance with the transparent conductive film and improving alkali resistance. It is shown in FIGS. 13 to 15 (Cu addition example) and FIGS. 16 to 18 (Ge addition example) that the alkali resistance is improved by the addition of Ge and Cu. Further, in these figures, all of the examples of ◯ (good alkali corrosion resistance) were suppressed to a low contact resistance of 1500 Ω / cm 2 or less (not shown in the figure). Therefore, in the present invention, as the Al— (Ni / Co) —XZ alloy layer, 0.1 to 2 atomic% of Ni and / or Co and 0.1 to 2 atomic% of La and / or Nd are used. It is most preferable to use an alloy layer containing 0.1 to 2 atomic% of Ge and / or Cu.
 上記Zの含有量が0.1原子%未満の場合、上記作用を有効に発揮することができない。一方、上記Zの含有量が2原子%を超えると、上記作用は向上する反面、反射率の低下や電気抵抗率の増大を招く。Zの含有量は、0.2原子%以上0.8原子%以下であることが好ましい。Zに属するGe、Cu、Siの各元素は、単独で添加しても良く、2種を併用してもよい。2種以上の元素を添加するときは、各元素の合計の含有量が上記範囲を満足するように制御すればよい。 When the content of Z is less than 0.1 atomic%, the above effect cannot be exhibited effectively. On the other hand, when the content of Z exceeds 2 atomic%, the above effect is improved, but the reflectance is lowered and the electrical resistivity is increased. The Z content is preferably 0.2 atomic percent or more and 0.8 atomic percent or less. Each element of Ge, Cu, and Si belonging to Z may be added alone or in combination of two kinds. When two or more elements are added, the total content of each element may be controlled so as to satisfy the above range.
 上記Al-(Ni/Co)-X-Z合金膜を用いたときの製造方法の設計指針(基本的な考え方)は、前述した(i)のAl合金膜を用いたときと同じであり、Al合金膜中のNi量([Ni])及び/又はCo量([Co])、並びにグループZの元素の量([Z])に応じて、基板の温度およびその後の加熱温度を適切に制御すれば良い。具体的には、基板温度を前述した上記(1)のように低い室温(約25℃近傍)に設定して成膜を行なった場合はAl合金成膜後の加熱温度を高く設定できるし、一方、基板温度を前述した上記(3)のように約250℃と高く設定して成膜を行なった場合は成膜後の加熱温度を低く設定できること、しかも、これら基板温度と加熱温度の設定(調整)は、Al合金膜に含まれる(Ni/Co)の量およびグループZの量を考慮しながら設定できる、というものである。 The design guideline (basic concept) of the manufacturing method when using the Al- (Ni / Co) -XZ alloy film is the same as that when using the Al alloy film of (i) described above, Depending on the amount of Ni ([Ni]) and / or amount of Co ([Co]) in the Al alloy film and the amount of group Z elements ([Z]), the substrate temperature and the subsequent heating temperature are appropriately set. Just control. Specifically, when film formation is performed with the substrate temperature set to a low room temperature (around 25 ° C.) as described above (1), the heating temperature after the Al alloy film formation can be set high, On the other hand, when the film is formed with the substrate temperature set as high as about 250 ° C. as in the above (3), the heating temperature after the film formation can be set low, and the substrate temperature and the heating temperature are set. (Adjustment) can be set in consideration of the amount of (Ni / Co) and the amount of group Z contained in the Al alloy film.
 上記Al合金膜を用いる場合、ガルバニック腐食防止(耐アルカリ腐食性)のために考慮すべき因子として、前述したNiおよびCoの含有量のほかに、グループZの元素も挙げたのは、グループZの元素も上記Ni、Coと同様、Alと結合して、ガルバニック腐食の防止に有用な、微細な金属間化合物を形成すると考えられるからである。微細な金属間化合物の生成により、Al合金膜を貫通するピンホールなどが少なくなるため、結果的に、耐アルカリ腐食性が向上する。また、ガルバニック腐食の防止に有用な、微細な金属間化合物が界面に形成されることにより、酸化物透明導電膜とAl合金膜との接触抵抗も低く抑えられる。 In the case of using the above Al alloy film, the elements to be considered for the prevention of galvanic corrosion (alkali corrosion resistance) include the elements of group Z in addition to the aforementioned contents of Ni and Co. This is because, like Ni and Co, it is considered that these elements combine with Al to form a fine intermetallic compound useful for preventing galvanic corrosion. The generation of fine intermetallic compounds reduces pinholes or the like penetrating the Al alloy film, resulting in improved alkali corrosion resistance. In addition, when a fine intermetallic compound useful for preventing galvanic corrosion is formed at the interface, the contact resistance between the oxide transparent conductive film and the Al alloy film can be kept low.
 このように、グループZの元素を含むAl-(Ni/Co)-X-Z合金膜を用いたときは、基板温度と加熱温度の設定(調整)は、Al合金膜中のNi量及び/又はCo量だけでなく、グループZの元素の量(単独量または合計量)も考慮しながら設定することが好ましい。このことを、図13~図15(グループZの元素としてCuを含有する)および図16~図18(グループZの元素としてGeを含有)を用いて、詳しく説明する。なお、図10~12と同様、これらの図中においても、○は耐アルカリ腐食性に優れることを意味し、▲は耐アルカリ腐食性に劣ることを意味する。 Thus, when an Al— (Ni / Co) —XZ alloy film containing a group Z element is used, the setting (adjustment) of the substrate temperature and the heating temperature depends on the amount of Ni in the Al alloy film and / or Alternatively, it is preferable to set not only the amount of Co but also the amount of element of group Z (single amount or total amount). This will be described in detail with reference to FIGS. 13 to 15 (containing Cu as an element of group Z) and FIGS. 16 to 18 (containing Ge as an element of group Z). As in FIGS. 10 to 12, in these figures, ◯ means that the alkali corrosion resistance is excellent, and ▲ means that the alkali corrosion resistance is inferior.
 (図13~図15について)
 まず、図13~図15を参照する。ここでは、Al-x原子%Ni-0.35原子%La-0.5原子%Cu合金膜[Niの含有量(x)は図13~図15に示すように0~3原子%の範囲内である。]を用い、上記(1)~(3)で規定する基板温度ごとにNi量と加熱温度との関係を整理し、これらが耐アルカリ腐食性に及ぼす影響を調べたものである。図13は、基板温度を室温にして成膜したときの結果[上記(1)に相当]であり、図14は、基板温度を100℃に高めて成膜したときの結果[上記(2)に相当]であり、図15は、基板温度を更に150℃および250℃まで高めて成膜したときの結果[上記(3)に相当]を示している。
(Figures 13 to 15)
First, reference will be made to FIGS. Here, Al—x atomic% Ni—0.35 atomic% La—0.5 atomic% Cu alloy film [Ni content (x) is in the range of 0 to 3 atomic% as shown in FIGS. Is within. The relationship between the amount of Ni and the heating temperature is arranged for each substrate temperature specified in the above (1) to (3), and the influence of these on the alkali corrosion resistance is investigated. FIG. 13 shows the results when the substrate temperature is set to room temperature [corresponding to (1) above], and FIG. 14 shows the results when the substrate temperature is raised to 100 ° C. [above (2) FIG. 15 shows the result [equivalent to (3) above] when the film was formed with the substrate temperature further increased to 150 ° C. and 250 ° C.
 Cuの添加効果を示すため、これらの図13、図14、図15には、上記Al合金膜を用いたときの結果(▲、○)と共に、前述した図10、図11、図12(いずれもCuなし)の結果(▲、○)も並べて記載している。図13~図15では、両者が重ならないように、横にずらして記載しており、同一のNi量において、右側の▲、○はCu添加例であり、左側の▲、○はCu無添加例である。更に両者の違いが一層分かるように、プロットのサイズも変えており、▲、○のサイズが大きいものはCu添加例であり、▲、○のサイズが小さいものはCu無添加例である。なお、図14および図15には、Cu無添加の例として、Ni量が1原子%の結果及びCu添加の例として、Ni量が1原子%の結果も追加している。 In order to show the effect of addition of Cu, these FIGS. 13, 14, and 15 show the results (▲, ○) when using the Al alloy film, as well as FIGS. (Without Cu) are also shown side by side (▲, ○). In FIGS. 13 to 15, the two are shifted laterally so that they do not overlap. In the same Ni amount, ▲ and ○ on the right side are examples of addition of Cu, and ▲ and ○ on the left side are no addition of Cu. It is an example. Further, the size of the plot is also changed so that the difference between the two can be further understood. The case where the size of ▲ and ○ is large is an example of addition of Cu, and the case where the size of ▲ and ○ is small is an example of no addition of Cu. In FIG. 14 and FIG. 15, the results of adding 1 atom% of Ni and the results of adding 1 atom% of Ni as an example of adding Cu are added as examples in which Cu is not added.
 図13~図15より、Al合金膜として、グループZのCuを更に含むAl-Ni-La-Cu合金膜を用いたときも、前述したAl-(Ni/Co)-La合金膜を用いたときと同様の傾向が見られることが分かった。すなわち、基板温度が低い場合には、加熱温度は総じて高くしないとアルカリ腐食を有効に防止することができないが、基板温度が高い場合には、加熱温度は低くしてもアルカリ腐食を抑えられることが分かる。しかも、基板温度と加熱温度の調整幅(例えば、基板温度を上げた場合には加熱温度を下げられるという、基板温度の上げ幅および加熱温度の下げ幅)は、Al合金膜中のNi量やCu量に応じて決定されることも分かった。 From FIG. 13 to FIG. 15, the Al— (Ni / Co) —La alloy film described above was used when the Al—Ni—La—Cu alloy film further containing Cu of group Z was used as the Al alloy film. It was found that the same tendency was observed. In other words, when the substrate temperature is low, it is not possible to effectively prevent alkali corrosion unless the heating temperature is generally high, but when the substrate temperature is high, alkali corrosion can be suppressed even if the heating temperature is low. I understand. Moreover, the adjustment range of the substrate temperature and the heating temperature (for example, the heating temperature can be lowered when the substrate temperature is raised, the raising range of the substrate temperature and the lowering range of the heating temperature) is the amount of Ni in the Al alloy film or Cu It was also found that it was determined according to the amount.
 また、Cu添加ありとCu添加なしの結果を対比すると明らかなように、Cu添加によって耐アルカリ腐食性が更に向上するため、Ni量および基板温度が同じ場合には、加熱温度の好ましい下限を更に下げることができることも分かった。 Further, as apparent from the comparison of the results with and without Cu addition, the alkali corrosion resistance is further improved by the addition of Cu. Therefore, when the amount of Ni and the substrate temperature are the same, the preferable lower limit of the heating temperature is further increased. I also found that it can be lowered.
 詳細には、まず、図13(基板温度=室温)において、Al合金膜中のNi量が2原子%の場合について考察する。基板温度を室温としたとき、Cuを含まないAl-2原子%Ni-0.35原子%La合金膜を用いたときは、加熱温度を、おおむね、250℃以上に制御することが好ましいが、Cuを含むAl-2原子%Ni-0.35原子%La-0.5原子%Cu合金膜を用いたときは、加熱温度の好ましい下限を下げることができ、おおむね、150℃以上に加熱するだけで耐アルカリ腐食性が向上する。これと同じ傾向は、Ni量が3原子%の場合、およびNi量が1原子%のすべての場合に見られた。よって、基板温度を室温としたとき、Cu含有Al合金膜を用いると、Cuを含有しないAl合金膜を用いた場合に比べ、加熱温度の好ましい下限を下げられることが実証された。 Specifically, first, the case where the Ni content in the Al alloy film is 2 atomic% in FIG. 13 (substrate temperature = room temperature) will be considered. When the substrate temperature is set to room temperature and the Al-2 atomic% Ni-0.35 atomic% La alloy film not containing Cu is used, it is preferable to control the heating temperature to approximately 250 ° C. or higher. When an Al-2 atomic% Ni-0.35 atomic% La-0.5 atomic% Cu alloy film containing Cu is used, the preferable lower limit of the heating temperature can be lowered, and the heating is generally performed at 150 ° C. or higher. Only the alkali corrosion resistance is improved. This same trend was seen when the Ni content was 3 atomic% and in all cases where the Ni content was 1 atomic%. Therefore, when the substrate temperature was set to room temperature, it was demonstrated that when the Cu-containing Al alloy film was used, the preferable lower limit of the heating temperature could be lowered as compared with the case where an Al alloy film not containing Cu was used.
 図13には、基板温度を室温としたときの結果が示されているが、これと同様の傾向は、基板温度を変えた図14(基板温度=100℃)および図15(基板温度=150℃および250℃)においても見られた。 FIG. 13 shows the results when the substrate temperature is set to room temperature. The same tendency is shown in FIGS. 14 (substrate temperature = 100 ° C.) and FIG. 15 (substrate temperature = 150) when the substrate temperature is changed. C. and 250.degree. C.).
 以上の結果より、基板温度と加熱温度の調整幅は、Al合金膜中のNi量だけでなくCu量も寄与していることが推察される。 From the above results, it can be inferred that not only the amount of Ni in the Al alloy film but also the amount of Cu contributes to the adjustment range of the substrate temperature and the heating temperature.
 (図16~図18について)
 次に、図16~図18(グループZの元素としてGeを含有)について考察する。
(About FIGS. 16 to 18)
Next, FIG. 16 to FIG. 18 (containing Ge as an element of group Z) will be considered.
 ここでは、Al-x原子%Ni-0.2原子%La-0.5原子%Ge合金膜[Niの含有量(x)は図16~図18に示すように0~1原子%の範囲内であり、Ni=0.2原子%、0.5原子%、1原子%である。]を用い、基板温度ごとにNi量と加熱温度との関係を整理し、これらが耐アルカリ腐食性に及ぼす影響を調べた。図16は、基板温度を室温にして成膜したときの結果[上記(1)に相当]であり、図17は、基板温度を100℃に高めて成膜したときの結果[上記(2)に相当]であり、図18は、基板温度を更に150℃および250℃まで高めて成膜したときの結果[上記(3)に相当]を示している。 Here, an Al-x atomic% Ni-0.2 atomic% La-0.5 atomic% Ge alloy film [Ni content (x) is in the range of 0 to 1 atomic% as shown in FIGS. And Ni = 0.2 atomic%, 0.5 atomic%, and 1 atomic%. The relationship between the amount of Ni and the heating temperature was arranged for each substrate temperature, and the influence of these on alkali corrosion resistance was investigated. FIG. 16 shows the results when the substrate temperature is set to room temperature [corresponding to the above (1)], and FIG. 17 shows the results when the substrate temperature is raised to 100 ° C. [above (2) FIG. 18 shows the result [equivalent to (3) above] when the film was formed with the substrate temperature further increased to 150 ° C. and 250 ° C.
 Geの添加効果を示すため、これらの図16、図17、図18(いずれもGeあり)には、それぞれ、前述した図10、図11、図12(いずれもGeなし、ただし、La量は0.35原子%)の結果(▲、○)も並べて記載している。
 図16~図18では、両者が重ならないように、プロットを横にずらして記載しており、同一のNi量において、右側の▲、○はGe添加例であり、左側の▲、○はGe無添加例である。更に両者の違いが一層分かるように、プロットのサイズも変えており、▲、○のサイズが大きいものはGe添加例であり、▲、○のサイズが小さいものはGe無添加例である。なお、図16においては、図10のプロットに加え、Ni量が0.2原子%、0.5原子%とした時のGe無添加の時の結果、及びそれに対応するGe添加とした時の結果も追加している。図17においては、図11のプロットに加え、Ni量が0.2原子%、1原子%とした時のGe無添加の時の結果、及びそれに対応するGe添加とした時の結果も追加している。図18においては、図12のプロットに加え、Ni量が0.2原子%、1原子%とした時のGe無添加の時の結果、及びそれに対応するGe添加とした時の結果も追加している。また、図16~18におていは、Ni量が0~1原子%の間での結果のみを記載している。
In order to show the effect of addition of Ge, FIG. 16, FIG. 17 and FIG. 18 (all of which have Ge) are the same as those of FIGS. 0.35 atom%) results (▲, ○) are also shown side by side.
In FIGS. 16 to 18, the plots are laterally shifted so that they do not overlap. In the same amount of Ni, ▲ and ○ on the right side are examples of Ge addition, and ▲ and ○ on the left side are Ge. This is an additive-free example. Further, the size of the plot is also changed so that the difference between the two can be further understood. The case where the size of ▲ and ○ is large is an example of addition of Ge, and the case where the size of ▲ and ○ is small is an example of no addition of Ge. In addition to the plot of FIG. 10, in FIG. 16, the result when Ge was not added when the Ni amount was 0.2 atomic% and 0.5 atomic%, and the corresponding Ge addition. Results are also added. In FIG. 17, in addition to the plot of FIG. 11, the results when Ge is not added when the Ni content is 0.2 atomic% and 1 atomic%, and the results when Ge is added corresponding thereto are also added. ing. In FIG. 18, in addition to the plot of FIG. 12, the results when Ge is not added when the Ni content is 0.2 atomic% and 1 atomic%, and the results when Ge is added corresponding thereto are also added. ing. In FIGS. 16 to 18, only the results when the Ni content is between 0 and 1 atomic% are shown.
 図16~図18より、Al合金膜として、グループZのGeを更に含むAl-Ni-La-Ge合金膜を用いたときも、前述したAl-Ni-La合金膜(Geなし)を用いたときとほぼ同様の傾向が見られることが分かった。すなわち、基板温度が低い場合には、加熱温度は総じて高くしないとアルカリ腐食を有効に防止することができないが、基板温度が高い場合には、加熱温度は低くしてもアルカリ腐食を抑えられることが分かる。しかも、基板温度と加熱温度の調整幅は、Al合金膜中のNi量やGe量に応じて決定されることも分かった。 From FIG. 16 to FIG. 18, when the Al—Ni—La—Ge alloy film further containing Ge of group Z is used as the Al alloy film, the aforementioned Al—Ni—La alloy film (without Ge) was used. It turned out that the tendency similar to time is seen. In other words, when the substrate temperature is low, it is not possible to effectively prevent alkali corrosion unless the heating temperature is generally high, but when the substrate temperature is high, alkali corrosion can be suppressed even if the heating temperature is low. I understand. In addition, it has been found that the adjustment range of the substrate temperature and the heating temperature is determined according to the amount of Ni and the amount of Ge in the Al alloy film.
 また、Ge添加ありとGe添加なしの結果を対比すると明らかなように、Ge添加によって耐アルカリ腐食性が更に向上するため、Ni量および基板温度が同じ場合には、加熱温度の好ましい下限を更に下げることができることも分かった。特にGeの添加効果は、一律には整理できないものの、概ね、Ni量が約1原子%以下の低濃度のときに顕著に発揮される傾向があることも分かった。 Further, as apparent from the comparison of the results with and without Ge addition, the alkali corrosion resistance is further improved by the addition of Ge. Therefore, when the amount of Ni and the substrate temperature are the same, the preferable lower limit of the heating temperature is further increased. I also found that it can be lowered. In particular, it has also been found that the addition effect of Ge tends to be exerted remarkably when the Ni content is a low concentration of about 1 atomic% or less, although it cannot be uniformly arranged.
 詳細には、まず、図16(基板温度=室温)において、Al合金膜中のNi量が1原子%の場合について考察する。基板温度を室温としたとき、Geを含まないAl-1原子%Ni-0.2原子%La合金膜を用いたときは、加熱温度を250℃に設定しないと良好な耐アルカリ腐食性が得られなかったのに対し、Geを含むAl-1原子%Ni-0.2原子%La-0.5原子%Ge合金膜を用いたときは、200℃以上に加熱するだけで耐アルカリ腐食性が向上することが分かった。同様の傾向はAl合金膜中のNi量が0.5原子%の場合にも見られ、Geを含まないAl-0.5原子%Ni-0.2原子%La合金膜を用いたときは、加熱温度を250℃に設定しても良好な耐アルカリ腐食性は得られなかったのに対し、Geを含むAl-0.5原子%Ni-0.2原子%La-0.5原子%Ge合金膜を用いたときは、250℃に加熱すると耐アルカリ腐食性が向上した。 Specifically, first, the case where the Ni content in the Al alloy film is 1 atomic% in FIG. 16 (substrate temperature = room temperature) will be considered. When the Al-1 atomic% Ni-0.2 atomic% La alloy film not containing Ge is used when the substrate temperature is room temperature, good alkali corrosion resistance can be obtained unless the heating temperature is set to 250 ° C. In contrast, when an Al-1 atomic% Ni-0.2 atomic% La-0.5 atomic% Ge alloy film containing Ge was used, it was resistant to alkali corrosion only by heating to 200 ° C or higher. Was found to improve. A similar tendency is seen when the Ni content in the Al alloy film is 0.5 atomic%, and when an Al-0.5 atomic% Ni-0.2 atomic% La alloy film not containing Ge is used. On the other hand, good alkali corrosion resistance was not obtained even when the heating temperature was set to 250 ° C., whereas Al-0.5 atomic% Ni-0.2 atomic% La-0.5 atomic% containing Ge When a Ge alloy film was used, the alkali corrosion resistance improved when heated to 250 ° C.
 次に図17(基板温度=100℃)において、Al合金膜中のNi量が1原子%の場合について考察する。基板温度を100℃としたとき、Geを含まないAl-1原子%Ni-0.2原子%La合金膜を用いたときは、加熱温度を200℃に設定しないと良好な耐アルカリ腐食性が得られなかったのに対し、Geを含むAl-1原子%Ni-0.2原子%La-0.5原子%Ge合金膜を用いたときは、150℃以上に加熱するとだけで、耐アルカリ腐食性が向上することが分かった。これと同様の傾向は、Ni量が0.5原子%および0.2原子%のときにも見られ、Ge含有Al合金膜を用いると、Geを含有しないAl合金膜を用いた場合に比べ、加熱温度の好ましい下限を下げられることが分かった。 Next, in FIG. 17 (substrate temperature = 100 ° C.), the case where the amount of Ni in the Al alloy film is 1 atomic% will be considered. When the substrate temperature is 100 ° C. and an Al-1 atomic% Ni-0.2 atomic% La alloy film not containing Ge is used, good alkali corrosion resistance can be obtained unless the heating temperature is set to 200 ° C. In contrast, when an Al-1 atomic% Ni-0.2 atomic% La-0.5 atomic% Ge alloy film containing Ge was used, the alkali resistance was increased only by heating to 150 ° C. or higher. It was found that the corrosivity was improved. A similar tendency is observed when the Ni content is 0.5 atomic% and 0.2 atomic%. When using a Ge-containing Al alloy film, compared to using an Al alloy film not containing Ge. It has been found that the preferable lower limit of the heating temperature can be lowered.
 更に、図18(基板温度=150℃および250℃)においても、上記と同様、Ni量が1原子%および0.2原子%のときにGeの添加効果が見られ、Ge含有Al合金膜を用いると、Geを含有しないAl合金膜を用いた場合に比べ、加熱温度の好ましい下限を下げられることが分かった。 Further, also in FIG. 18 (substrate temperatures = 150 ° C. and 250 ° C.), the effect of addition of Ge is observed when the Ni content is 1 atomic% and 0.2 atomic%, as described above. When used, it was found that the preferable lower limit of the heating temperature can be lowered as compared with the case where an Al alloy film not containing Ge is used.
 上記図16~図18の結果を勘案すると、(1)基板温度と加熱温度の調整幅は、Al合金膜中のNi量だけでなくGe量も寄与していると思われること、(2)Geの添加効果は、Ni量や基板温度によっても若干相違するが、概ね、Ni量が約1原子%以下の低濃度の場合に、概して、顕著に認められる傾向にあることも分かった。 Considering the results shown in FIGS. 16 to 18, (1) it is considered that the adjustment range of the substrate temperature and the heating temperature contributes not only to the Ni amount in the Al alloy film but also to the Ge amount. It was also found that the addition effect of Ge is slightly different depending on the amount of Ni and the substrate temperature, but generally, when the amount of Ni is a low concentration of about 1 atomic% or less, it tends to be noticeable in general.
 以上、本発明を特徴付ける工程について説明した。 The process for characterizing the present invention has been described above.
 本発明は、上記のようにNi及び/又はCoの量(グループZの元素を含むときは、Zの量も含む)に応じて基板温度と加熱温度を適切に制御したところに最大の特徴があり、上記以外の成膜工程は特に限定されず、通常、用いられる手段を採用することができる。従って、基板上に酸化物透明導電膜を形成する第1の工程や、酸化物透明導電膜上にAl合金膜を形成する第2の工程(基板温度を除く)は、公知の方法を適切に選択して用いれば良い。 As described above, the present invention is characterized in that the substrate temperature and the heating temperature are appropriately controlled according to the amount of Ni and / or Co (including the amount of Z when an element of group Z is included). In addition, the film forming process other than the above is not particularly limited, and usually used means can be employed. Therefore, the first step of forming the oxide transparent conductive film on the substrate and the second step of forming the Al alloy film on the oxide transparent conductive film (excluding the substrate temperature) are appropriately performed using known methods. Select and use.
 Al合金膜の成膜方法としては、代表的には、スパッタリングターゲットを用いたスパッタリング法が挙げられる。スパッタリング法とは、基板と、形成しようとする薄膜と同種の材料から構成されるスパッタリングターゲット(ターゲット材)との間でプラズマ放電を形成し、プラズマ放電によってイオン化した気体をターゲット材に衝突させることによってターゲット材の原子をたたき出し、基板上に積層させて薄膜を作製する方法である。スパッタリング法は、真空蒸着法やアークイオンプレーティング(AIP:Arc Ion Plating)法と異なり、ターゲット材と同じ組成の薄膜を形成できるというメリットを有している。特に、スパッタリング法で成膜されたAl合金膜は、平衡状態で固溶し得ないNdなどの合金元素を固溶でき、薄膜として優れた性能を発揮するなどの利点を有している。ただし、本発明は上記に限定する主旨ではなく、Al合金膜の成膜方法に通常用いられる方法を適宜採用することができる。 A typical example of the method for forming the Al alloy film is a sputtering method using a sputtering target. The sputtering method is to form a plasma discharge between a substrate and a sputtering target (target material) composed of the same kind of material as the thin film to be formed, and to make the gas ionized by the plasma discharge collide with the target material. In this method, atoms of the target material are knocked out and stacked on a substrate to produce a thin film. Unlike the vacuum evaporation method or the arc ion plating (AIP) method, the sputtering method has an advantage that a thin film having the same composition as the target material can be formed. In particular, an Al alloy film formed by a sputtering method has an advantage that it can dissolve an alloy element such as Nd that cannot be dissolved in an equilibrium state, and exhibits excellent performance as a thin film. However, the gist of the present invention is not limited to the above, and a method usually used for a method of forming an Al alloy film can be appropriately employed.
 本発明において、パターニングの順序は特に限定されない。例えば、基板上に酸化物透明導電膜およびAl合金膜を順次、スパッタリング法などを用いて成膜した後、リソグラフィ法とエッチングによって上記の酸化物透明導電膜およびAl合金膜をパターニングしても良い。あるいは、基板上に酸化物透明導電膜を成膜し、パターンニングした後に、Al合金膜を成膜し、パターニングをしてもよい。 In the present invention, the order of patterning is not particularly limited. For example, the transparent oxide conductive film and the Al alloy film may be sequentially formed on the substrate by sputtering or the like, and then the transparent oxide conductive film and the Al alloy film may be patterned by lithography and etching. . Alternatively, an oxide transparent conductive film may be formed on the substrate and patterned, and then an Al alloy film may be formed and patterned.
 また、酸化物透明導電膜を構成するITO膜は、加熱を加える前はアモルファスの状態であり、りん酸を主成分とするアルミニウム用のエッチング液に溶解するが、200℃の熱を加えると結晶化するので、アルミニウム用のエッチング液に対して選択性がある。そのため、酸化物透明導電膜をパターニングした後にAl合金膜を成膜し、エッチングする際、既に形成された酸化物透明導電膜を不必要にエッチングしてしまうことを防止することができる。 Further, the ITO film constituting the oxide transparent conductive film is in an amorphous state before heating, and is dissolved in an etching solution for aluminum containing phosphoric acid as a main component. Therefore, there is selectivity with respect to the etching solution for aluminum. Therefore, when an Al alloy film is formed after the oxide transparent conductive film is patterned and etched, it is possible to prevent unnecessary etching of the already formed oxide transparent conductive film.
 ただし、Alとのエッチング選択性を求めない場合は、酸化物透明導電膜としてIZO膜を使用してもよい。また、ITO膜以外にAlエッチャントとの選択性のある酸化物透明導電膜も問題なく使用できる。本発明は、酸化物透明導電膜の種類を限定するものではない。 However, if the etching selectivity with Al is not required, an IZO film may be used as the oxide transparent conductive film. In addition to the ITO film, an oxide transparent conductive film having selectivity with an Al etchant can be used without any problem. The present invention does not limit the type of the oxide transparent conductive film.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
 実施例1
 基板(無アルカリ硝子板、板厚0.7mm、4インチサイズ)上に、酸化物透明導電膜(透明画素電極)として、SnOを約10質量%含むITO膜(膜厚:約50nm)をスパッタリング法によって形成し、フォトリソグラフィーによってパターニングした。このときのスパッタリング条件は、アルゴン雰囲気下、圧力:約3mTorrである。
Example 1
An ITO film (thickness: about 50 nm) containing about 10% by mass of SnO is sputtered on a substrate (non-alkali glass plate, thickness 0.7 mm, 4 inch size) as an oxide transparent conductive film (transparent pixel electrode). It formed by the method and patterned by photolithography. The sputtering conditions at this time are pressure: about 3 mTorr under an argon atmosphere.
 上記のようにしてパターニングを行なったITO膜の上に、反射電極として、純Al膜およびAl-Ni-La合金膜(以下「Al系合金膜」と呼ぶ。膜厚:100nm)をスパッタリング法によって形成した。スパッタリング時の基板温度は、下記表1および表2に示すとおりであり、スパッタリング条件は、アルゴン雰囲気下、圧力:約2mTorrである。 On the ITO film patterned as described above, a pure Al film and an Al—Ni—La alloy film (hereinafter referred to as “Al-based alloy film”; film thickness: 100 nm) are formed as a reflective electrode by sputtering. Formed. The substrate temperature at the time of sputtering is as shown in Table 1 and Table 2 below, and the sputtering conditions are pressure: about 2 mTorr under an argon atmosphere.
 次いで、窒素雰囲気下で、表1および表2に示す加熱温度で30分間、熱処理を施した。なお、比較のために、熱処理を施さなかったものも用意した。その後、Al系合金膜にレジストを塗布し露光した後、2.38質量%のTMAH水溶液(20℃)に1分間浸漬することで現像した。なお、本実施例では、上記の加熱処理を窒素雰囲気下で行なったが、これに限定されず、公知の雰囲気条件(例えば、真空度≦3×10-4Pa程度の真空雰囲気下)で行なってもよい。 Next, heat treatment was performed for 30 minutes at the heating temperatures shown in Tables 1 and 2 under a nitrogen atmosphere. For comparison, an unheated product was also prepared. Then, after apply | coating a resist to Al type alloy film and exposing, it developed by being immersed in 2.38 mass% TMAH aqueous solution (20 degreeC) for 1 minute. In this embodiment, the heat treatment is performed in a nitrogen atmosphere. However, the heat treatment is not limited thereto, and is performed in a known atmosphere condition (for example, in a vacuum atmosphere with a degree of vacuum of about 3 × 10 −4 Pa). May be.
 (耐アルカリ腐食性)
 各Al系合金膜のアルカリ腐食性は、上記のTMAH水溶液中で、測定対象となるAl系合金膜の電極と銀-塩化銀参照電極を短絡させて、電圧計で電位差を測定して評価した。比較のため、poly-ITO膜の電極電位も測定した。本実施例では、後記する図7~図8に示すようにTHAH水溶液浸漬後の光学顕微鏡観察および透過電子顕微鏡観察を行なったときに腐食が見られず、且つ、アモルファス-ITOとの電極電位差が1.55V以下を満足するものを○(耐アルカリ腐食性に優れる)と評価し、上記のいずれかの要件を満足しないものを×(耐アルカリ腐食性に劣る)と評価した。
(Alkaline corrosion resistance)
Alkaline corrosivity of each Al-based alloy film was evaluated by measuring the potential difference with a voltmeter by short-circuiting the electrode of the Al-based alloy film to be measured and the silver-silver chloride reference electrode in the above TMAH aqueous solution. . For comparison, the electrode potential of the poly-ITO film was also measured. In this example, as shown in FIGS. 7 to 8 to be described later, no corrosion was observed when the optical microscope observation and the transmission electron microscope observation after immersion in the THAH aqueous solution were performed, and the electrode potential difference from amorphous ITO was not observed. Those satisfying 1.55 V or less were evaluated as ◯ (excellent in alkali corrosion resistance), and those not satisfying any of the above requirements were evaluated as x (inferior in alkali corrosion resistance).
 (接触抵抗)
 図9に示すケルビンパターン(コンタクトホールサイズ、20、40および80μm角)を用いた4端子法にて、Al系合金膜とITO膜を直接接続させた場合の接触抵抗を測定した。接触抵抗は、Al系合金膜とITO膜との間に電流を流し、別の端子でITO-Al合金間の電圧降下を計測することにより調べた。具体的には、図9のI1-I2間に電流Iを流し、V1-V2間の電圧Vをモニターすることにより、コンタクト部Cの接触抵抗Rを[R=(V1-V2)/I2]として求めた。本実施例では、接触抵抗が1500Ω/cm以下のものを接触抵抗が低い(合格)と評価した。
(Contact resistance)
The contact resistance when the Al-based alloy film and the ITO film were directly connected was measured by a four-terminal method using the Kelvin pattern (contact hole size, 20, 40, and 80 μm square) shown in FIG. The contact resistance was examined by passing a current between the Al-based alloy film and the ITO film and measuring the voltage drop between the ITO-Al alloy at another terminal. Specifically, by passing the current I between I 1 and I 2 in FIG. 9 and monitoring the voltage V between V 1 and V 2 , the contact resistance R of the contact portion C is set to [R = (V 1 − V 2 ) / I 2 ]. In this example, a contact resistance of 1500 Ω / cm 2 or less was evaluated as having a low contact resistance (pass).
 また、Al系合金膜の合金元素の含有量は、ICP発光分析(誘導結合プラズマ発光分析)法によって求めた。 Further, the content of the alloy element in the Al-based alloy film was determined by an ICP emission analysis (inductively coupled plasma emission analysis) method.
 これらの結果を表1および表2に示す。また、表1のNo.1(純Al膜)およびNo.19(Al-2原子%Ni-0.35原子%La)について、上記のようにして測定した電極電位の結果を表3に示す。 These results are shown in Tables 1 and 2. In Table 1, No. 1 (pure Al film) and No. 1 Table 3 shows the results of the electrode potentials measured for 19 (Al-2 atom% Ni-0.35 atom% La) as described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1および表2の結果から明らかなように、本発明の方法によって製造したAl系合金膜(表1のNo.5、6、8~10、12~14、16~18、23、26、27、29~31、33~35、表2のNo.40、45、48、49、52、53)は、いずれも、耐アルカリ腐食性に優れ、且つ、Al系合金膜とITO膜との接触抵抗値も低い。 As is apparent from the results in Tables 1 and 2, Al-based alloy films (Nos. 5, 6, 8 to 10, 12 to 14, 16 to 18, 23, 26 in Table 1) produced by the method of the present invention were used. 27, 29-31, 33-35, No. 40, 45, 48, 49, 52, 53) in Table 2 are all excellent in alkali corrosion resistance, and are composed of an Al alloy film and an ITO film. The contact resistance value is also low.
 また、表3より、本発明に用いられるAl-Ni-X合金膜を使用すれば、純Al(No.1)に比べ、ITO膜との電極電位差を小さく抑えられることも分かった。 Also, from Table 3, it was found that the electrode potential difference with the ITO film can be suppressed to a smaller value when using the Al—Ni—X alloy film used in the present invention as compared with pure Al (No. 1).
 参考のため、Al-2原子%Ni-0.35原子%La合金を用い、基板温度を室温→加熱を行なわなかったNo.19(比較例)と、同じ合金を用い、基板温度を室温→250℃で加熱を行なったNo.23(本発明例)の腐食状況を図5~図8に示す。詳細には、図5および図6は、表1の試料No.19について、TMAH水溶液浸漬後の光学顕微鏡写真および透過型電子顕微鏡断面写真(FE-TEM、日立製作所製の型名:「HF2000」を使用)である。また、図7および図8は、試料No.23について、TMAH水溶液浸漬後の光学顕微鏡写真および透過型電子顕微鏡断面写真である。なお、透過型電子顕微鏡による観察では、電子励起型X線分析によって膜組成を同定した。 For reference, an Al-2 atomic% Ni-0.35 atomic% La alloy was used and the substrate temperature was changed from room temperature to no heating. No. 19 (Comparative Example) and the same alloy, the substrate temperature was changed from room temperature to 250 ° C. The corrosion status of No. 23 (Example of the present invention) is shown in FIGS. In detail, FIG. 5 and FIG. 19 is an optical microscope photograph and a transmission electron microscope cross-sectional photograph after immersion in a TMAH aqueous solution (FE-TEM, Hitachi, Ltd., model name: “HF2000” is used). 7 and 8 show sample Nos. 23 is an optical microscope photograph and a transmission electron microscope cross-sectional photograph after immersion in a TMAH aqueous solution. In observation with a transmission electron microscope, the film composition was identified by electron excitation X-ray analysis.
 これらの図を比較すると明らかなように、加熱を行なわなかった試料No.19では、TMAH浸漬による腐食が見られた(図5および図6を参照)のに対し、所定の加熱を行なった試料No.23では腐食は観察されなかった(図7および図8を参照)。 As is clear from comparison of these figures, the sample No. that was not heated was used. In No. 19, corrosion due to TMAH immersion was observed (see FIGS. 5 and 6), while sample No. No corrosion was observed with 23 (see FIGS. 7 and 8).
 更に、Al合金膜中のNi含有量が反射率に及ぼす影響を調べた。 Furthermore, the influence of the Ni content in the Al alloy film on the reflectance was investigated.
 具体的には、Al-x原子%Ni-0.35原子%La(xは1~5.5原子%)のAl合金を用い、成膜時の基板温度を室温とし、成膜後の加熱温度を約250℃、加熱時間を約30分に制御して成膜した試料の反射率を測定した。反射率は、日本分光株式会社製の可視・紫外分光光度計「V-570」を用い、測定波長:1000~250nmの範囲における分光反射率を測定した。具体的には、基準ミラーの反射光強度に対して、試料の反射光高度を測定した値を「分光反射率」とした。 Specifically, an Al alloy of Al-x atomic% Ni-0.35 atomic% La (x is 1 to 5.5 atomic%) is used, the substrate temperature during film formation is set to room temperature, and heating after film formation is performed. The reflectance of the sample formed by controlling the temperature to about 250 ° C. and the heating time to about 30 minutes was measured. The reflectance was measured using a visible / ultraviolet spectrophotometer “V-570” manufactured by JASCO Corporation in the measurement wavelength range of 1000 to 250 nm. Specifically, the value obtained by measuring the reflected light height of the sample with respect to the reflected light intensity of the reference mirror was defined as “spectral reflectance”.
 図4は、各試料の反射率の推移(波長:850~250nm)を示すグラフである。550nmでの反射率を基準としてみると、Ni量が1~4原子%と本発明の範囲を満足する試料では、約88%超~92%程度の高い反射率が得られたのに対し、Ni量が5.5原子%と本発明の範囲を超える試料では、反射率は概ね84%に低下した。 FIG. 4 is a graph showing the change in reflectance (wavelength: 850 to 250 nm) of each sample. When the reflectance at 550 nm is taken as a reference, a high reflectance of about 88% to 92% was obtained in a sample satisfying the range of the present invention with an Ni amount of 1 to 4 atomic%, whereas In the sample where the amount of Ni exceeds 5.5 atomic% and exceeds the range of the present invention, the reflectance is reduced to approximately 84%.
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2007年12月26日出願の日本特許出願(特願2007-335004)、2008年12月19日出願の日本特許出願(特願2008-324374)に基づくものであり、その内容はここに参照として取り込まれる。
Although this application has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on December 26, 2007 (Japanese Patent Application No. 2007-335004) and a Japanese patent application filed on December 19, 2008 (Japanese Patent Application No. 2008-324374). Incorporated herein by reference.
 本発明は、液晶ディスプレイや有機エレクトロルミネッセンス(EL)ディスプレイなどに代表される表示装置の製造方法に関するものである。詳細には、本発明は、酸化物透明導電膜と反射電極用のAl合金膜が直接接続されてなる構造を備えた表示装置の製造方法であって、該Al合金膜のパターニング時のアルカリ腐食を有効に防止できる表示装置の製造方法に関するものである。本発明によれば、反射電極であるAl合金膜の熱履歴(詳しくは、成膜時の基板温度および成膜後の加熱温度)をAl合金膜に含まれるNi量及び/又はCo量に応じて適切に制御しているため、パターニングの際にTMAH水溶液などのアルカリ現像液中に浸漬してもAl合金膜の腐食が抑えられ、酸化物透明導電膜とAl合金膜との接触抵抗を低減することができる。 The present invention relates to a method for manufacturing a display device represented by a liquid crystal display, an organic electroluminescence (EL) display, or the like. Specifically, the present invention relates to a method for manufacturing a display device having a structure in which an oxide transparent conductive film and an Al alloy film for a reflective electrode are directly connected, and alkaline corrosion during patterning of the Al alloy film. The present invention relates to a method for manufacturing a display device that can effectively prevent the above. According to the present invention, the thermal history (specifically, the substrate temperature at the time of film formation and the heating temperature after the film formation) of the Al alloy film as the reflective electrode is determined according to the amount of Ni and / or Co contained in the Al alloy film. Therefore, even when immersed in an alkaline developer such as TMAH aqueous solution during patterning, corrosion of the Al alloy film is suppressed, and the contact resistance between the transparent oxide conductive film and the Al alloy film is reduced. can do.

Claims (7)

  1.  酸化物透明導電膜の上に反射電極用のAl合金膜が直接接続する構造を備える表示装置の製造方法であって、
     基板上に前記酸化物透明導電膜を形成する第1の工程と、
     前記酸化物透明導電膜上に前記Al合金膜を形成する第2の工程と、
     前記Al合金膜を加熱する第3の工程と、を包含し、
     前記Al合金膜は、Ni及びCoのうち少なくとも一つを0.1~4原子%、およびグループXから選択される少なくとも一種の元素を総量で0.1~2原子%の範囲で含有するAl-(Ni/Co)-X合金からなり、前記Xは、La、Mg、Cr、Mn、Ru、Rh、Pt、Pd、Ir、Ce、Pr、Gd、Tb、Dy、Nd、Ti、Zr、Nb、Mo、Hf、Ta、W、Y、Fe、Sm、Eu、Ho、Er、Tm、Yb、およびLuからなり、
     前記Al-(Ni/Co)-X合金膜のNi含有量及びCo含有量のうち少なくとも一つに応じて、前記第2の工程における基板の温度および前記第3の工程における加熱温度を制御する、
    ことを特徴とする表示装置の製造方法。
    A manufacturing method of a display device comprising a structure in which an Al alloy film for a reflective electrode is directly connected on an oxide transparent conductive film,
    A first step of forming the oxide transparent conductive film on a substrate;
    A second step of forming the Al alloy film on the oxide transparent conductive film;
    A third step of heating the Al alloy film,
    The Al alloy film contains at least one of Ni and Co in an amount of 0.1 to 4 atomic% and at least one element selected from Group X in a total amount of 0.1 to 2 atomic%. -(Ni / Co) -X alloy, wherein X is La, Mg, Cr, Mn, Ru, Rh, Pt, Pd, Ir, Ce, Pr, Gd, Tb, Dy, Nd, Ti, Zr, Nb, Mo, Hf, Ta, W, Y, Fe, Sm, Eu, Ho, Er, Tm, Yb, and Lu,
    The substrate temperature in the second step and the heating temperature in the third step are controlled in accordance with at least one of the Ni content and the Co content of the Al— (Ni / Co) —X alloy film. ,
    A manufacturing method of a display device characterized by the above.
  2.  前記Al合金膜が、Ni及びCoのうち少なくとも一つを0.5~4原子%含有する請求項1に記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 1, wherein the Al alloy film contains 0.5 to 4 atomic% of at least one of Ni and Co.
  3.  前記Al合金膜が、Niを0.5~4原子%含有する請求項1に記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 1, wherein the Al alloy film contains 0.5 to 4 atomic% of Ni.
  4.  前記Al-(Ni/Co)-X合金膜が、0.1~4原子%のNi及びCoのうち少なくとも一つと、0.1~2原子%のLa及びNdのうち少なくとも一つと、を含有する請求項1~3のいずれか1項に記載の表示装置の製造方法。 The Al— (Ni / Co) —X alloy film contains at least one of 0.1 to 4 atomic% of Ni and Co and at least one of 0.1 to 2 atomic% of La and Nd The method for manufacturing a display device according to any one of claims 1 to 3.
  5.  前記Al-(Ni/Co)-X合金膜が、更に0.1~2原子%のZ(Zは、Ge、Cu、およびSiよりなる群から選択される少なくとも一種の元素である。)を含有する請求項1~3のいずれか1項に記載の表示装置の製造方法。 The Al— (Ni / Co) —X alloy film further contains 0.1 to 2 atomic% of Z (Z is at least one element selected from the group consisting of Ge, Cu, and Si). The method for producing a display device according to any one of claims 1 to 3, further comprising:
  6.  前記Al-(Ni/Co)-X合金膜が、0.1~4原子%のNi及びCoのうち少なくとも一つと、0.1~2原子%のLa及びNdのうち少なくとも一つと、0.1~2原子%のGe及びCuのうち少なくとも一つと、を含有する請求項5に記載の表示装置の製造方法。 The Al— (Ni / Co) —X alloy film comprises at least one of 0.1 to 4 atomic% of Ni and Co, at least one of 0.1 to 2 atomic% of La and Nd, and The method for manufacturing a display device according to claim 5, comprising at least one of 1 to 2 atomic% of Ge and Cu.
  7.  前記酸化物透明導電膜が、酸化インジウムスズ(ITO)または酸化インジウム亜鉛(IZO)である請求項1に記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 1, wherein the transparent oxide conductive film is indium tin oxide (ITO) or indium zinc oxide (IZO).
PCT/JP2008/073656 2007-12-26 2008-12-25 Process for producing display WO2009081993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007335004 2007-12-26
JP2007-335004 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081993A1 true WO2009081993A1 (en) 2009-07-02

Family

ID=40801291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073656 WO2009081993A1 (en) 2007-12-26 2008-12-25 Process for producing display

Country Status (3)

Country Link
JP (1) JP4611418B2 (en)
TW (1) TW200952079A (en)
WO (1) WO2009081993A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033834A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for manufacturing display device
US8617721B2 (en) 2009-10-12 2013-12-31 Samsung Display Co., Ltd. Organic light-emitting device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858297B1 (en) * 2001-11-02 2008-09-11 삼성전자주식회사 Reflective-transmissive type liquid crystal display device and method of manufacturing the same
JP2011091352A (en) * 2009-09-28 2011-05-06 Kobe Steel Ltd Thin-film transistor substrate, method of manufacturing the same, and display device
JP5719610B2 (en) * 2011-01-21 2015-05-20 三菱電機株式会社 Thin film transistor and active matrix substrate
JP5524905B2 (en) * 2011-05-17 2014-06-18 株式会社神戸製鋼所 Al alloy film for power semiconductor devices
JP7053290B2 (en) * 2018-02-05 2022-04-12 株式会社神戸製鋼所 Reflective anode electrode for organic EL display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790552A (en) * 1993-07-27 1995-04-04 Kobe Steel Ltd Al alloy thin film and its production and sputtering target for forming al alloy thin film
JP2004214606A (en) * 2002-12-19 2004-07-29 Kobe Steel Ltd Display device, method of manufacturing same, and sputtering target

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790552A (en) * 1993-07-27 1995-04-04 Kobe Steel Ltd Al alloy thin film and its production and sputtering target for forming al alloy thin film
JP2004214606A (en) * 2002-12-19 2004-07-29 Kobe Steel Ltd Display device, method of manufacturing same, and sputtering target

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033834A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for manufacturing display device
US8617721B2 (en) 2009-10-12 2013-12-31 Samsung Display Co., Ltd. Organic light-emitting device

Also Published As

Publication number Publication date
JP2009175720A (en) 2009-08-06
TW200952079A (en) 2009-12-16
TWI378509B (en) 2012-12-01
JP4611418B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4611417B2 (en) Reflective electrode, display device, and display device manufacturing method
JP4611418B2 (en) Manufacturing method of display device
JP5060904B2 (en) Reflective electrode and display device
JP4705062B2 (en) Wiring structure and manufacturing method thereof
JP2009008770A (en) Laminated structure and method for manufacturing the same
US20080239217A1 (en) Semi-Transmissive/Semi-Reflective Electrode Substrate, Method for Manufacturing Same, and Liquid Crystal Display Using Such Semi-Transmissive/Semi-Reflective Electrode Substrate
MXPA00006720A (en) Metallic material for electronic parts, electronic parts, electronic appliance, working method for metallic material and electronic optical parts.
WO2010053183A1 (en) Reflective anode and wiring film for organic el display device
KR20110082040A (en) Organic el display device reflective anode and method for manufacturing the same
KR20100118998A (en) Display device, process for producing the display device, and sputtering target
WO2014080933A1 (en) Electrode used in display device or input device, and sputtering target for use in electrode formation
KR101764053B1 (en) Ag alloy film for reflecting electrode or wiring electrode, reflecting electrode or wiring electrode, and ag alloy sputtering target
WO2004070812A1 (en) Method for manufacturing semi-transparent semi-reflective electrode substrate, reflective element substrate, method for manufacturing same, etching composition used for the method for manufacturing the reflective electrode substrate
JP5159558B2 (en) Manufacturing method of display device
JP2005121908A (en) Reflection-type liquid crystal display, semi-transparent liquid crystal display, and method for manufacturing the same
JP2011033834A (en) Method for manufacturing display device
JPH1144887A (en) Reflection electrode substrate for display device
JP3482825B2 (en) Color filter substrate for reflective liquid crystal display
JP4583564B2 (en) Wiring, electrodes and contacts
JP4009086B2 (en) Sputtering target, light shielding film, color filter, and display element body
US7978288B2 (en) Display device, method of the same and electronic device including the same
JPH10282906A (en) Electrode substrate for display device
JP2005250191A (en) Translucent / half-reflection electrode substrate, and method for manufacturing same, and liquid crystal display device using translucent / half-reflection electrode substrate
JP2008217017A (en) Reflective liquid crystal display device and transflective liquid crystal display device
JP2014120486A (en) Electrode for use in display device or input device, and sputtering target for electrode formation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863418

Country of ref document: EP

Kind code of ref document: A1