TWI378509B - - Google Patents

Download PDF

Info

Publication number
TWI378509B
TWI378509B TW97151060A TW97151060A TWI378509B TW I378509 B TWI378509 B TW I378509B TW 97151060 A TW97151060 A TW 97151060A TW 97151060 A TW97151060 A TW 97151060A TW I378509 B TWI378509 B TW I378509B
Authority
TW
Taiwan
Prior art keywords
alloy film
nickel
film
aluminum
temperature
Prior art date
Application number
TW97151060A
Other languages
Chinese (zh)
Other versions
TW200952079A (en
Inventor
Mototaka Ochi
Hiroshi Goto
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of TW200952079A publication Critical patent/TW200952079A/en
Application granted granted Critical
Publication of TWI378509B publication Critical patent/TWI378509B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements

Description

1378509 如圖2所詳細顯示的,畫素電極19之畫素區域P, 係由透過區域A與反射區域C所構成,透過區域A具備 透明畫素電極19a,反射區域C具備透明畫素電極19a及 反射電極19b。透明畫素電極19a與反射電極19b之間, 被形成由Mo,Cr,Ti,W等高融點金屬所構成之障壁金屬層 (Barrier Metal Layer ) 5 1。例如,在專利文獻1〜專利文 獻3,於鋁系合金膜與氧化物透明導電膜之間中介著鉬或 鉻等障壁金屬層51。 針對圖1所示之半透過型液晶顯示裝置11,參照圖2 同時說明透過模式以及反射模式之動作原理。 首先,說明透過模式之動作原理。 在透過模式,被配置於TFT基板21的下部之背光41 的光線F作爲光源使用》由背光41射出的光,透過透明 畫素電極19a及透過區域A射入液晶層23,藉由被形成 於透明畫素電極1 9a與共通電極1 3之間的電場控制液晶 層23之液晶分子的排列方向,通過液晶層23的來自背光 41的入射光線F被調變。藉此,透過對向基板15的光的 透過量被控制而顯示影像。 另一方面,在反射模式,外部之自然光線或人工光線 B作爲光源利用。入射至對向基板15的光線B,於反射 電極19b被反射,藉由被形成於反射電極19b與共通電極 1 3之間的電場而控制液晶層23之液晶分子的排列方向, 通過液晶層23的光線B被調變。藉此,透過對向基板15 的光的透過量被控制而顯示影像。 -7- 1378509 畫素電極19係由透明畫素電極19a與反射 所構成》其中,透明畫素電極19a,具代表性者 化銦(Ιη203 )中含有10質量百分比的氧化錫( 銦錫氧化物(ITO)或者是氧化銦中含有10質量 氧化鋅之銦鋅氧化物(IZO )等氧化物透明導電 此外,反射電極19b,係以反射率高的金屬 成,具代表性者,使用純鋁或Al_Nd等鋁合金( 些統稱爲「鋁系合金」)。鋁系合金因爲電阻率 以作爲配線材料極爲有用。 此處,如圖2或前述之專利文獻1~3所示, 射電極19b的鋁系合金膜,與構成透明畫素電| ITO或IZO等氧化物透明導電膜之間形成鉬Mo 金屬障壁金屬層51的理由,係因爲直接連續此 形成反射區域的話,會由於伽凡尼(galvanic, 的)腐蝕而使接觸電阻上升,使得畫面的顯示品 伽凡尼腐蝕,係產生於例如ITO等氧化物透 與鋁系合金膜這樣的,異種金屬間的電極電位差 合。例如,光阻對鹼性顯影液之氫氧化四甲基翁 )水溶液中之Ag/AgCl標準電極之電極電位,非 約爲-0.17V,多晶質-ITO約爲-0.19,而純鋁爲 非常地低。而且,鋁系合金非常容易氧化。因此 合金膜直接形成於氧化物透明導電膜之上而進行 ,在TMAH水溶液之浸漬中鋁系合金膜與氧化 電極 19b ,係由氧 SnO )之 百分比的 膜所形成 材料所構 以下將這 很低,所 在構成反 返19a的 等商融點 二材料而 產生電流 質降低。 明導電膜 很大的場 c (TMAH 晶質- ITO 約· 1 .93V ’將鋁系 圖案化時 物透明導 1378509 電膜之界面產生氧化鋁之絕緣層,產生腐蝕 液,沿著產生於鋁系合金膜之針孔或貫通粒 化物透明導電膜之界面爲止,在該界面發生 galvanic corrosion ) 的話,會產生種種不 氧化物透明導電膜之黑化,因而導致的畫素 細/斷線等圖案形成不良,鋁合金膜與氧化 之接觸電阻的增大,及其所導致之顯示(點 然而,中介著障壁金屬層的方法,會有 繁雜生產成本上升等問題。 此處,檢討可以省略的形成,而可以使 接觸於透明畫素電極的「直接接觸技術」。 術,以可得到高顯示品質的顯示裝置的方式 料之鋁合金膜與透明畫素電極之接觸電阻要 佳。 本案申請人’也如本案發明所述,提案 文獻4之方法,作爲相關的直接接觸技術, 具備反射電極用之鋁合金膜被直接接觸在氧 膜之上的構造之顯示裝置爲對象。在專利文 包含0_1〜6原子百分比的由Au、Ag、Zn、 Ge、Sm、及Bi所構成的群所選出的至少— 鋁合金膜之配線材料。使用前述之鋁合金膜 合金膜與透明畫素電極之界面被形成導電性 素的析出物,抑制了氧化鋁等絕緣物質的產 減低接觸電阻。此外,合金元素的添加量如 。T M A Η水溶 界侵入至與氧 電化學腐蝕( 良情形,例如 黑化,配線過 物透明導電膜 亮)不良等。 製造步驟變得 鋁合金膜直接 在直接接觸技 ,要求電極材 低,耐熱性要 了記載於專利 雖然並不是以 化物透明導電 獻4,揭示著 Cu、Ni、Sr ' 種合金元素之 的話,在該鋁 之含有合金元 生,所以可以 果在前述範圍 -9- 1378509 內,鋁合金自身的電阻率也可抑制爲較低。此外’在前述 鋁合金膜進而添加Nd、Y、Fe、C〇之至少一種之合金元 素的話,可以抑制小丘(hillock,根瘤(nodule )狀之突 起物)的產生,使耐熱性提高。前述合金元素之析出物’ 係在基板上藉由濺鍍法等形成鋁合金膜後,藉由在 150-400 °C (較佳者爲200〜350 °C)加熱(退火)處理15 分鐘〜I小時程度即可獲得。 [專利文獻1]日本專利特開2004 - 1 44826號公報 [專利文獻2]日本專利特開2005 - 9 1 477號公報 [專利文獻3]日本專利特開2005 — 1 96 1 72號公報 [專利文獻4]日本專利特開2004 — 2 1 4606號公報 【發明內容】 [發明所欲解決之課題] 本發明之目的在於提供對於具備在氧化物透明導電膜 上直接被連接反射電極用之鋁合金膜的構造的顯示裝置, 不易產生在TMAH水溶液等鹼性顯影液中之腐蝕,可以 有效防止鋁系合金膜的腐蝕之顯示裝置之製造方法。 [供解決課題之手段] 相關於可以解決前述課題之顯示裝置之製造方法,其 要旨係具備反射電極用之鋁合金膜直接連接在氧化物透明 導電膜之上的構造之顯示裝置之製造方法,特徵爲包含: 在基板上形成前述氧化物透明導電膜之第1步驟,在前述 -10- 1378509 氧化物透明導電膜上形成前述鋁合金膜之第2步騾,及加 熱前述鋁合金膜之第3步驟;前述鋁合金膜係由鎳及鈷之 中至少一種含0.1 ~4原子百分比、以及由X群所選擇之至 少一種元素總量在0.1〜2原子百分比的範圍之鋁_(鎳/鈷 )_X合金所構成,前述X爲La、Mg、Cr、Mn、Ru、Rh 、Pt、Pd、Ir、Ce、Pr、Gd、Tb、Dy、Nd ' Ti ' Zr、Nb 、Mo、Hf、Ta、W、Y、Fe、Sm、Eu、Ho、Er、Tm、Yb 、以及Lu所構成,因應於前述鋁-(鎳/鈷)-x合金膜之 鎳含量以及鈷含量之中至少一個量,控制前述第2步驟之 基板溫度及前述第3步驟之加熱溫度。 於較佳之實施型態,前述鋁合金膜,含有0.5~4原子 百分比之鎳及鈷之中至少一種。 於較佳之實施型態,前述鋁合金膜,含有0.5~4原子 百分比之鎳。 於較佳之實施型態,前述第2步驟之基板的溫度以及 前述第3步驟之加熱溫度,係因應於前述鋁合金膜之鎳含 量(原子百分比,[Ni])而如下列(1 )〜(3 )所述地被 控制。 (1)於前述第2步驟不加熱基板的場合,把前述第 3步驟之加熱溫度,控制在把因應於a ( 4-[Ni])而被設 定的50°C以下的溫度加至200 °C的溫度範圍內》 (2 )於前述第2步驟使基板的溫度控制在1 〇〇°C以 上不滿150 °C的場合,把前述第3步驟之加熱溫度’控制 在把因應於a(4-[Ni])而被設定的100T:以下的溫度加 -11 - 1378509 至100°C的溫度範圍內。 (3)於前述第2步驟使基板的溫度控制在150 °C以 上不滿2 5 0°C的場合,把前述第3步驟之加熱溫度,控制 在把因應於a(4-[Ni])而被設定的10(TC以下的溫度加 至100°C的溫度範圍內。 於較佳之實施型態,前述Al- ( Ni/Co ) -X合金膜, 含有0.1〜4原子百分比之鎳與鈷之中至少一種,及0.1 ~2 原子百分比之鑭及銨之中至少一種。 於較佳之實施型態,前述Al-(Ni/Co) -X合金膜進 而含有由0.1〜2原子百分比之Z(Z爲Ge、Cu、及Si所 構成之群中選擇之至少一種元素)。 於較佳之實施型態,前述Al-(Ni/Co) -X合金膜含 有0.1〜4原子百分比之鎳及鈷之中至少一種,及0.1〜2原 子百分比之鑭(La)與鈸(Nd)之中至少一種,及0.1〜2 原子百分比之鍺(Ge )與銅(Cu )之中至少一種。 在本發明之製造方法,於鋁合金膜之圖案化時,最好 使用氫氧化四甲基銨(TMAH )水溶液。此外於本發明之 製造方法較佳之氧化物透明導電膜,係氧化銦錫(ITO) 或氧化銦鋅(IZO)。 [發明之效果] 根據本發明,可以因應於被包含於鋁合金膜的鎳含量 及鈷含量而適切控制反射電極之鋁合金膜的熱履歷(詳言 之,係成膜時之基板溫度及成膜後之加熱溫度),所以圖 -12- 1378509 案化時即使浸漬於ΤΜAH水溶液等鹼性顯影液中也抑制 了鋁合金膜的腐蝕,可以減低氧化物透明導電膜與鋁合金 膜之接觸電阻。 【實施方式】 本案發明人等,爲了對於具備在氧化物透明導電膜上 直接被連接反射電極用之鋁合金膜的構造的顯示裝置,在 圖案化鋁合金膜之際,使用以TMAH水溶液等爲代表之 光阻之鹼性顯影液時防止鋁合金的腐蝕(電化學腐蝕), 反覆進行檢討。結果,發現因應於鋁合金膜之鎳含量,而 適切地控制鋁合金膜成膜時之基板溫度以及鋁合金成膜後 的加熱溫度之方法,詳言之,只要採用考慮到鋁合金膜中 的鎳含量而控制成膜後的加熱溫度,及考慮與成膜時之基 板溫度之關係旳方法的話,可以達成所期望的目的,因而 完成本發明。 進而,做爲前述鋁合金膜,替代鎳而使用鈷亦可,也 辨明了鈷係具有與鎳相同作用的同效元素。鎳與鈷可以單 獨使用’亦可倂用。亦即,鋁合金膜僅含有鈷的場合,因 應於銘含量’另一方面鋁合金膜含有鎳及鈷雙方的場合因 應於錬含量及鈷含量,適切地控制鋁合金膜成膜時之基板 溫度以及鋁合金成膜後的加熱溫度即可。進而,發現了本 發明之方法’於則述銘合金膜進而含有由〇.1〜2原子百分 比之Z群(Z群爲Ge、Cu、及Si所構成之群中選擇之至 少一種元素)的場合也可以適用。 -13- 1378509 以下,亦有把包含鎳及/或鈷,與x群之至少一種的 銘合金稱爲Al-(Ni/Co) -X合金。此外,前述 αι·( Ni/Co ) -X合金中’把進而包含Ζ群之至少—種的鋁合金 稱爲 Al-(Ni/Co) -X-Z合金。此外,鋁合金膜中的鎳、 鈷、Z群之各量以[Ni]、[Co]、[Z]表示。〔ζ〕係在單獨 含有Z群的場合意味著單獨之量,含有2種以上Z群元 素的場合意味著合計之量。 以下,詳細說明本發明之製造方法。在以下,爲了說 明上的方便,使用於本發明之鋁合金膜,分爲(i)使用 Al-(Ni/Co) -X合金膜的場合 '與(ii)使用Al-( Ni/Co )-x-z合金膜的場合加以說明。 (i)使用Al-(Ni/Co)-X合金膜的場合 本發明之製造方法,係具備反射電極用之鋁合金膜直 接連接在氧化物透明導電膜之上的構造之顯示裝置之製造 方法,包含:在基板上形成前述氧化物透明導電膜之第1 步驟,在前述氧化物透明導電膜上形成前述鋁合金膜之第 2步驟,及加熱前述鋁合金膜之第3步驟。前述鋁合金膜 係含有卜4原子百分比之鎳及/或鈷,以及總量在0.1 ~2 原子百分比的範圍之由X群所選擇之至少一種元素之鋁-(鎳/鈷)-X合金所構成,X係由La、Mg、Cr、Mn、Ru 、Rh、Pt、Pd、Ir、Ce、Pr、Gd、Tb、Dy、Nd、Ti、Zr 、Nb、Mo、Hf、Ta、W、Y、Fe、Sm、Eu、Ho、Er、Tm 、丫1?、及1^11所構成。 · -14- 1378509 接著,本發明之特徵部分係因應於前述鋁-(鎳/鈷)-X合金膜之鎳含量及/或鈷含量,而控制前述第2步驟之 基板溫度及第3步驟之加熱溫度首先,針對前述之特徵部 分進行說明。 如前所述,在本發明,作爲供防止電化學腐鈾(耐鹼 性腐蝕性)而應該考慮的因子,可以舉出前述第2步驟之 基板的溫度(亦即鋁合金膜的成膜時之基板溫度)、前述 第3步驟之加熱溫度(亦即鋁合金成膜後之加熱溫度), 以及鋁合金膜中之鎳含量([Ni])及/或鈷含量([Co])。 此處,舉出鎳含量以及鈷含量,是因爲這些元素應該均與 鋁結合,形成有助於防止電化學腐蝕之細微的金屬間化合 物。藉由微細的金屬間化合物的產生,貫通鋁合金膜之針 孔等變少,結果提高耐鹼性腐蝕性。此外,藉由在界面產 生有助於防止電化學腐蝕之細微的金屬間化合物,氧化物 透明導電膜與鋁合金膜之接觸電阻也被抑制爲較低。這些 元素的作用,在稍後亦會有詳細說明。 具體而言,只要因應於鋁合金膜中的鎳及/或鈷含量 (單獨含有的場合爲單獨之量,含有雙方的場合爲合計量 ),使基板之溫度以及其後之加熱溫度如下列(1 )〜(3 )所述地控制即可。 (1) 於前述第2步驟不加熱基板的場合,把前述第 3步驟之加熱溫度,控制在把因應於<x{4-([Ni] + [Co]) } 而被設定的50°C以下的溫度加至2 00 °C的溫度範圍內。 (2) 於前述第2步驟使基板的溫度控制在i〇(TC以 -15- 1378509 上不滿150°C的場合’把前述第3步驟之加熱溫度,控制 在把因應於a{4-([Ni] + [Co]) }而被設定的i〇〇°c以下的 溫度加至100°C的溫度範圍內。 (3)於前述第2步驟使基板的溫度控制在i50°c以 上不滿250°C的場合,把前述第3步驟之加熱溫度,控制 在把因應於a{4-([Ni] + [Co]) }而被設定的l〇〇°c以下的 溫度加至100°C的溫度範圍內。 例如,因應於鋁合金膜僅含有鎳的場合(亦即,A1-Ni-X合金膜的場合),使基板之溫度以及其後之加熱溫 度如下列(1 A )〜(3 A )所述地控制即可。 (1A)於前述第2步驟不加熱基板的場合,把前述 第3步驟之加熱溫度,控制在把因應於<x( 4-[Ni])而被 設定的50°C以下的溫度加至200°C的溫度範圍內。 (2A)於前述第2步驟使基板的溫度控制在1 00°C以 上不滿150 °C的場合,把前述第3步驟之加熱溫度,控制 在把因應於a(4-[Ni])而被設定的100°C以下的溫度加 至10(TC的溫度範圍內。 (3A)於前述第2步驟使基板的溫度控制在150°C以 上不滿250°C的場合,把前述第3步驟之加熱溫度,控制 在把因應於a(4-[Ni])而被設定的100°C以下的溫度加 至100°C的溫度範圍內》 前述(1)〜(3)簡言之,意味著使基板溫度設定爲 前述(1)那樣低的室溫(約25°C附近)進行成膜的場合 使鋁合金膜形成後之加熱溫度可以設定爲較高,另一方面 -16- 1378509 ,使基板溫度如前述(3)那樣設定爲約250 °C之較高的 溫度而進行成膜的場合可以使成膜後之加熱溫度設定爲較 低,而且這些基板溫度與加熱溫度之設定(調整),可以 邊考慮鋁合金膜所含有的鎳含量邊進行設定。前述(1A )〜(1C)也是同樣。 此處,使基板溫度分類爲前述(1)〜(3)之3種形 態,是因爲「因應於基板溫度的上升程度(上升幅)來控 制成膜後之加熱溫度的下降程度(下降幅)」之本發明的 製造方法(調整手段),根據本案發明人的基礎實驗大致 上可以整理爲前述3個形態。 又,本發明之「基板溫度」意味著基板全體之溫度》 亦即,想要將基板溫度控制爲20(TC的場合,以基板全體 的溫度成爲20 0 °C以上的方式,在成膜步驟時保持在200 t即可。 此外’前述(1)〜(3)之「a{4-([Ni] + [Co]) }」之 要件’係爲了方便而以簡易方式表現出基板溫度與加熱溫 度可以因應於(考慮到)鋁合金膜所含之鎳含量([Ni]) 及/或鈷含量([Co]),而控制調整。前述要件中的係數a ’可以根據基板溫度或加熱溫度,甚至是使用的鋁合金膜 的組成等而任意調整。此外,前述要件中的「4」係指可 以包含於前述鋁合金膜的鎳及/或鈷之量的上限(4原子百 分比),在4原子百分比的範圍內,表示可以在4原子百 分比的範圍內控制這些元素量。現實上要如何控制比較好 ’係在該業者的創作能力範圍,如果是熟悉該項技藝的業 -17- 1378509 者,可以參考後述實施例之結果,考慮到直接連接氧化物 透明導電膜與鋁合金膜時之接觸電阻或耐鹼性腐蝕性之程 度等,而適切決定。 以下,參照圖10〜圖12同時更詳細說明本發明之製 造方法。 (關於圖10~圖12 ) 圖10~圖12係使用後述之實施例的結果,整理在前 述(1)〜(3)所規定的各基板溫度時鎳含量與加熱溫度 之關係,調查這些對耐鹼性腐蝕性所造成的影響。此處使 用鋁-X原子百分比之鎳-0.35原子百分比之鑭合金膜,鎳 含量(X)如圖10〜圖12所示在0〜3原子百分比之範圍內 。圖10係使基板溫度爲室溫而成膜時之結果[相當於前述 (1)],圖11係使基板溫度提高爲100°C而成膜時之結 果[相當於前述(2)],圖Γ0係使基板溫度進而提高至 150°c及25 0 °C爲止而成膜時之結果[相當於前述(3)]。 圖中,〇意味著耐鹼性腐蝕性優異,▲表示耐鹼性腐蝕性 低劣。針對評估方法之詳細內容於梢後詳述。 對比圖10〜圖12時,可知在基板溫度低的場合,加 熱溫度如果不提高的話無法有效防止鹼性腐蝕,但在基板 溫度高的場合,加熱溫度即使降低也可以抑制鹼性腐蝕。 而且,可知基板溫度與加熱溫度之調整幅(例如提高基板 溫度的場合降低加熱溫度時之基板溫度的上升幅度以及加 熱溫度的降低幅度),係因應於鋁合金膜中的鎳含量而決 -18- 1378509 定的。 例如,針對鋁合金膜中的鎳含量爲2原子百分比的場 合進行考察的話,使基板溫度爲室溫時,加熱溫度大致上 以控制在250°C以上較佳,但在把基板溫度控制於iOOt 時,加熱溫度之較佳的下限可以降低,大致上加熱至150 °c以上即可提高耐鹼性腐蝕性。進而,將基板溫度控制於 15 0〜2 5 0 °C時,加熱溫度之較佳的下限可以更爲降低,大 致上只要加熱至1 0(TC以上即可得到良好的耐鹼性腐蝕性 〇 如此般,本發明並不是如前述專利文獻4那樣將成膜 後之加熱溫度控制爲一致,技術思想在於採用藉由與成膜 時基板溫度之關係,同時考慮鋁合金膜中的鎳含量而進行 控制的方法。 前述之專利文獻4,與本發明在顯示裝置的構成上有 所不同’但其係在成膜鋁合金膜後進行加熱之直接接觸技 術這一點’與本發明共通。然而,在專利文獻4,針對成 膜時之基板溫度沒有任何考慮’也沒有藉由與基板溫度之 關係而控制成膜後的加熱溫度之思想,同時也沒有考慮鎳 含量同時控制加熱溫度或基板溫度之思想等等與本發明有 所不同。 又,圖10〜圖12顯示作爲鋁合金膜使用鋁-鎳—χ合金 膜之結果,但取代鎳而使用鈷時,亦即使用鋁- 鈷-χ合金 膜時’也藉由實驗確認了與前述同樣的傾向。此外,替代 鎳而使用鎳與鈷雙方時’亦即,使用鋁—(鎳+鈷)_χ合 -19- 1378509 金膜時,藉由實驗確認了可以得到與前述同樣的結果。 又,加熱溫度的上限,由耐鹼性腐蝕性的觀點來看並 沒有特別限定,但是太高的話會在鋁合金膜產生小丘( hillock)等,所以較佳者爲3 5 0°C以下,更佳者爲3 00°C 以下。 具體而言,前述之加熱處理,最好在真空環境下或非 活性環境下(例如氮氣環境下)進行特定時間。前述(1 )~ ( 3 )之各基板溫度之分別的較佳加熱條件,如下列( I)〜(瓜)所述。實際上,因應於鋁合金膜中之鎳含量及 /或鈷含量(0.5 ~4原子百分比),而適切調整加熱溫度即 可。 (I)如前述(1 )所述加熱溫度爲室溫的場合,較佳 的加熱溫度爲約200〜25 0 °C,較佳的加熱時間爲約 30〜60 分鐘。 (Π)如前述(2)所述加熱溫度爲100 °C以上不滿 150°C的場合,較佳的加熱溫度爲約100~200 °C,較佳的 加熱時間爲約30〜60分鐘。 (皿)如前述(3 )所述加熱溫度爲1 5 0 °C以上不滿 250 °C的場合,較佳的加熱溫度爲約1〇〇〜200°C,較佳的 加熱時間爲約30〜60分鐘。 根據本發明的方法可以防止鋁合金膜之鹼性腐蝕的機 制的詳細內容還不清楚,推論應該是藉由加熱使鋁,與鎳 及/或鈷之細微的金屬間化合物,聚集於IT0膜等氧化物 透明導電膜與鋁合金膜之界面,提高了在界面離子化傾向 -20- 1378509 很小的鎳的濃度,所以鋁合金膜之電極電位往正側偏移, 使得與ITO膜等氧化物透明導電膜之接觸電位差減少。結 果’使用蝕刻法時起因於顯影液或蝕刻液之電化學腐蝕不 容易發生。特別是,根據本案發明人之實驗,可以推論有 助於防止電化學腐蝕的前述「鋁,與鎳及/或鈷之細微的 金屬間化合物」的產生,不僅受到成膜後的加熱溫度的影 響,也受成膜時基板溫度的影響。 • 根據本發明之製造方法,可以將鋁合金膜與氧化物透 明導電膜之電極電位差大致上抑制到1.55V以下,較佳者 爲可抑制至1.5V以下。 爲了參考’於圖3顯示浸漬於TMAH水溶液時的浸 漬時間與浸漬電位之關係。此處,使用鋁-2原子百分比 鎳- 0.35原子百分比鑭之鋁合金膜,使成膜時之基板溫度 由室溫—沒有加熱之試樣,與使成膜時之基板溫度由室溫 —在200 °C加熱之試樣等2種。 • 由圖3可知,進行了成膜後的加熱之試樣,與沒有進 行成膜後的加熱之試樣相比,浸漬之後(約0 · 1分鐘)之 浸漬電位爲約1 OOmV ( 0.1 V ),而且此狀態維持到浸漬後 約0.7分鐘爲止。此結果,暗示了進行加熱的作法,可長 • 期間把與ITO膜的浸漬電位之差抑制爲較小,可以有效抑 . 制電化學腐蝕。 使用於本發明之鋁合金膜係含有0.1〜4原子百分比之 鎳及/或鈷,以及總量在0.1〜2原子百分比的範圍之由X 群所選擇之至少一種元素之鋁-(鎳/鈷)-X合金所構成, -21 - 1378509 前述 X 係由 La、Mg、Cr、Μη、Ru、Rh、Pt、Pd' Ir、Ce 、Pr、Gd、Tb、Dy、Nd、Ti、Zr、Nb、Mo、Hf、Ta、W 、Y、Fe、Sm、Eu、Ho' Er、Tm、Yb、及 Lu 所構成。 此處,鎳及鈷,除了具有減低與氧化物透明導電膜之 接觸電阻的作用以外,還具有提高耐鹼性腐蝕性的作用( 參照後述之實施例)。藉由對鋁合金膜添加鎳及/或鈷, 降低與氧化物透明導電膜之接觸電阻的理由還不清楚詳細 情形,但應該是在鋁合金膜與氧化物透明導電膜之界面( 接觸界面),被形成可防止鋁的擴散之含鎳及/或鈷的析 出物或者鎳及/或鈷濃化層。於鋁合金膜中,可以單獨含 .有鎳及銘之任一方,亦可包含雙方。 鋁-(鎳/鈷)-X合金膜中的(鎳/鈷)之含量(單獨 含有的場合爲單獨之量,含有雙方的場合爲合計量),爲 了有效發揮減低前述接觸電阻的作用以及提高耐鹼性腐蝕 性的作用,有必要達到0.1原子百分比以上。另一方面, 如後述之圖4所示,(鎳/鈷)之含量超過4原子百分比 時’鋁合金膜的反射率及電阻率提高,變得不能供實際應 用。在鋁合金膜中的(鎳/鈷)含量定爲0.1原子百分比 以上(較佳者爲0_5原子百分比以上,更佳者爲1原子百 分比以上)’4原子百分比以下(較佳者爲3原子百分比 以下)。 此外,X群之元素(特別是鑭以及鈸),係對鋁合金 膜之耐熱性提高有所貢獻的元素(提高耐熱性之元素)。 詳言之,藉由使含有X群之至少1種,可以有效防止在 -22- 1378509 加熱時於鋁合金膜表面產生小丘(根瘤(nodule )狀之突 起物)。這些元素可以單獨添加,也可以倂用2種以上。 含有2種以上元素時,各元素的總量只要以滿足下列範圍 的方式來控制即可。 爲了充分發揮這樣的提高耐熱性的作用,屬於X群 的元素的含量要在0.1原子百分比以上,較佳者爲0.2原 子百分比以上。但是’這些元素的含有量如果過剩,八1-(Ni/Co ) -X合金膜自身的電阻率會上升。此處,這些元 素的含量最好爲2原子百分比以下,較佳者爲〇.8原子百 分比以下。 考慮到耐熱性及電阻率等特性時,屬於X群的元素 中以La、Nd、Gd、Tb及Μη較佳,尤以鑭(La )及銨( Nd )爲佳。 於本發明,Al- ( Ni/Co ) -X合金膜之其餘成分,實 質上係由鋁以及不可避免的不純物所構成。 (ii)使用Al- (Ni/Co) -X-Z合金膜的場合 其次’說明作爲鋁合金膜,使用Al- ( Ni/Co ) -X-Z 合金膜時之製造方法。此鋁合金膜,係於前述(i)之A1-(Ni/Co) -X合金膜’進而含有由0.^2原子百分比之z 群元素(由Ge、Cu、及Si所構成之群中選擇之至少一種 元素),藉此,可以更進一步減低接觸電阻及進一步提升 耐熱性。前述Z之中,從提升與透明導電膜之接觸電阻以 及提高耐鹼性的觀點來看,較佳者爲鍺(Ge)以及銅( -23- 13785091378509 As shown in detail in FIG. 2, the pixel region P of the pixel electrode 19 is composed of a transmission region A and a reflection region C, the transmission region A is provided with a transparent pixel electrode 19a, and the reflection region C is provided with a transparent pixel electrode 19a. And a reflective electrode 19b. Between the transparent pixel electrode 19a and the reflective electrode 19b, a barrier metal layer 51 composed of a high melting point metal such as Mo, Cr, Ti, or W is formed. For example, in Patent Document 1 to Patent Document 3, a barrier metal layer 51 such as molybdenum or chromium is interposed between the aluminum-based alloy film and the oxide transparent conductive film. The operation principle of the transmission mode and the reflection mode will be described with reference to Fig. 2 with respect to the transflective liquid crystal display device 11 shown in Fig. 1 . First, the principle of operation of the transmission mode will be explained. In the transmission mode, the light F of the backlight 41 disposed in the lower portion of the TFT substrate 21 is used as a light source. The light emitted from the backlight 41 is incident on the liquid crystal layer 23 through the transparent pixel electrode 19a and the transmission region A, and is formed by The electric field between the transparent pixel electrode 19a and the common electrode 13 controls the alignment direction of the liquid crystal molecules of the liquid crystal layer 23, and the incident light F from the backlight 41 through the liquid crystal layer 23 is modulated. Thereby, the amount of light transmitted through the counter substrate 15 is controlled to display an image. On the other hand, in the reflection mode, external natural light or artificial light B is utilized as a light source. The light B incident on the counter substrate 15 is reflected by the reflective electrode 19b, and the alignment direction of the liquid crystal molecules of the liquid crystal layer 23 is controlled by the electric field formed between the reflective electrode 19b and the common electrode 13 through the liquid crystal layer 23. The light B is modulated. Thereby, the amount of light transmitted through the counter substrate 15 is controlled to display an image. -7- 1378509 The pixel electrode 19 is composed of a transparent pixel electrode 19a and reflection. Among them, the transparent pixel electrode 19a contains a 10% by mass of tin oxide (indium tin oxide) in a representative indium (Ιη203). (ITO) or an oxide such as indium zinc oxide (IZO) containing 10 mass of zinc oxide in indium oxide is transparently conductive, and the reflective electrode 19b is made of a metal having a high reflectance, and representative aluminum or Aluminum alloys such as Al_Nd (collectively referred to as "aluminum alloys"). Aluminum alloys are extremely useful as wiring materials because of their electrical resistivity. Here, as shown in Fig. 2 or the aforementioned Patent Documents 1 to 3, the aluminum of the emitter electrode 19b. The reason for forming the molybdenum Mo metal barrier metal layer 51 between the alloy film and the oxide transparent conductive film such as ITO or IZO is because galvanic is directly formed by this continuous reflection region. Corrosion causes the contact resistance to rise, causing the display product of the screen to be etched by the Galvania, such as an oxide such as ITO, and an aluminum-based alloy film, such as an electrode potential difference between the dissimilar metals. The electrode potential of the Ag/AgCl standard electrode in the aqueous solution of the photoresist to the alkaline developing solution is not about -0.17V, and the polycrystalline-ITO is about -0.19, while the pure aluminum is very low. Moreover, aluminum alloys are very susceptible to oxidation. Therefore, the alloy film is directly formed on the oxide transparent conductive film, and the aluminum alloy film and the oxidation electrode 19b, which are formed by the film of the percentage of the oxygen SnO) in the immersion of the TMAH aqueous solution, are low in the following. The material that constitutes the reverse 19a is a material that reduces the current quality. The field of the conductive film is very large (TMAH crystal - ITO about 1.93V'. The pattern of the aluminum film is transparent. The interface of the transparent film 1378509 produces an insulating layer of alumina, which produces corrosive liquid, which is produced along the aluminum. When the pinhole of the alloy film or the interface of the granulated transparent conductive film is passed through, the galvanic corrosion occurs at the interface, and the blackening of various non-oxide transparent conductive films occurs, resulting in fine patterns such as fine pixels and broken lines. The formation is poor, the contact resistance of the aluminum alloy film and oxidation increases, and the display caused by it (the point, however, the method of interposing the barrier metal layer, there are problems such as an increase in complicated production costs. Here, the review can be omitted. In addition, it is possible to make contact with the transparent pixel electrode "direct contact technology". The contact resistance of the aluminum alloy film and the transparent pixel electrode in the manner of obtaining a display device with high display quality is better. Also, as described in the invention of the present invention, the method of the proposed document 4, as a related direct contact technique, the aluminum alloy film having the reflective electrode is directly contacted on the oxygen film. The display device of the structure is a target. The patent material includes at least one aluminum alloy film wiring material selected from the group consisting of Au, Ag, Zn, Ge, Sm, and Bi in an atomic percentage of 0 to 6 atomic percent. A precipitate of a conductive element is formed at the interface between the alloy film alloy film and the transparent pixel electrode, and the contact resistance of the insulating material such as alumina is suppressed, and the addition amount of the alloy element is as follows: TMA is dissolved in water and invades to oxygen. Electrochemical corrosion (good conditions, such as blackening, wiring transparent conductive film is bright), etc. The manufacturing process becomes aluminum alloy film directly in direct contact technology, requiring low electrode material, heat resistance is described in the patent although not In the case of a transparent conductive material 4, which reveals Cu, Ni, and Sr' alloying elements, the alloy containing the alloy is born, so that the resistivity of the aluminum alloy itself can be within the above range of -9 - 1378509. The suppression is low. In addition, when the alloy element of at least one of Nd, Y, Fe, and C is further added to the aluminum alloy film, hillocks can be suppressed. The generation of the nodule) increases the heat resistance. The precipitate of the alloying element is formed on the substrate by an aluminum alloy film by sputtering or the like, and is preferably 150-400 ° C (preferably It is obtained by heating (annealing) for a period of 15 minutes to 1 hour. [Patent Document 1] Japanese Patent Laid-Open Publication No. 2004-144826 [Patent Document 2] Japanese Patent Laid-Open No. 2005- 9 1 [Patent Document 3] Japanese Patent Laid-Open Publication No. 2005-1961 72 [Patent Document 4] Japanese Patent Laid-Open Publication No. 2004- 2 1606 It is an object of the invention to provide a display device having a structure in which an aluminum alloy film for a reflective electrode is directly connected to an oxide transparent conductive film, which is less likely to cause corrosion in an alkaline developing solution such as a TMAH aqueous solution, and can effectively prevent an aluminum-based alloy film. A method of manufacturing a corrosion display device. [Means for Solving the Problem] The present invention relates to a method of manufacturing a display device having a structure in which an aluminum alloy film for a reflective electrode is directly connected to an oxide transparent conductive film, and a method of manufacturing the display device. The method includes a first step of forming the oxide transparent conductive film on a substrate, a second step of forming the aluminum alloy film on the -10- 1378509 oxide transparent conductive film, and heating the aluminum alloy film 3 steps; the aluminum alloy film is composed of at least one of nickel and cobalt containing 0.1 to 4 atomic percent, and the total amount of at least one element selected by the group X is 0.1 to 2 atomic percent of aluminum_(nickel/cobalt) _X alloy, the above X is La, Mg, Cr, Mn, Ru, Rh, Pt, Pd, Ir, Ce, Pr, Gd, Tb, Dy, Nd ' Ti ' Zr, Nb, Mo, Hf, Ta And W, Y, Fe, Sm, Eu, Ho, Er, Tm, Yb, and Lu, depending on at least one of the nickel content and the cobalt content of the aforementioned aluminum-(nickel/cobalt)-x alloy film, The substrate temperature in the second step and the heating temperature in the third step are controlled. In a preferred embodiment, the aluminum alloy film contains at least one of 0.5 to 4 atom% of nickel and cobalt. In a preferred embodiment, the aluminum alloy film contains 0.5 to 4 atomic percent of nickel. In a preferred embodiment, the temperature of the substrate of the second step and the heating temperature of the third step are based on the nickel content (atomic percentage, [Ni]) of the aluminum alloy film as follows (1) to (1) 3) The ground is controlled. (1) When the substrate is not heated in the second step, the heating temperature in the third step is controlled to be increased to 200 ° at a temperature of 50 ° C or lower which is set in accordance with a ( 4-[Ni]). (2) In the temperature range of C (2) When the temperature of the substrate is controlled to be 1 〇〇 ° C or more and less than 150 ° C in the second step, the heating temperature of the third step is controlled to correspond to a (4). -[Ni]) is set to 100T: The following temperature is added in the temperature range of -11 - 1378509 to 100 °C. (3) When the temperature of the substrate is controlled to 150 ° C or higher and less than 250 ° C in the second step, the heating temperature in the third step is controlled in accordance with a (4-[Ni]). 10 (the temperature below TC is added to a temperature range of 100 ° C. In a preferred embodiment, the Al-(Ni/Co ) -X alloy film contains 0.1 to 4 atomic percent of nickel and cobalt. At least one of, and at least one of 0.1 to 2 atomic percent of cerium and ammonium. In a preferred embodiment, the aforementioned Al-(Ni/Co)-X alloy film further contains 0.1 to 2 atomic percent of Z (Z) It is at least one element selected from the group consisting of Ge, Cu, and Si. In a preferred embodiment, the Al-(Ni/Co)-X alloy film contains 0.1 to 4 atomic percent of nickel and cobalt. At least one of, and at least one of 0.1 to 2 atomic percent of lanthanum (La) and yttrium (Nd), and at least one of 0.1 to 2 atomic percent of yttrium (Ge) and copper (Cu). Preferably, in the patterning of the aluminum alloy film, it is preferred to use an aqueous solution of tetramethylammonium hydroxide (TMAH). Further, the manufacturing method of the present invention is preferred. The oxide transparent conductive film is indium tin oxide (ITO) or indium zinc oxide (IZO). [Effects of the Invention] According to the present invention, the reflective electrode can be appropriately controlled in accordance with the nickel content and the cobalt content contained in the aluminum alloy film. The thermal history of the aluminum alloy film (in detail, the substrate temperature at the time of film formation and the heating temperature after film formation), so that it is suppressed even when immersed in an alkaline developing solution such as ΤΜAH aqueous solution in the case of Fig. -12-1378509 The corrosion resistance of the aluminum alloy film can reduce the contact resistance between the oxide transparent conductive film and the aluminum alloy film. [Embodiment] The inventors of the present invention have an aluminum alloy for directly connecting a reflective electrode to an oxide transparent conductive film. In the case of a patterned aluminum alloy film, when an alkaline developing solution represented by a TMAH aqueous solution or the like is used, corrosion of an aluminum alloy (electrochemical corrosion) is prevented, and the review is repeated. In view of the nickel content of the aluminum alloy film, the method of controlling the substrate temperature at the time of film formation of the aluminum alloy film and the heating temperature after the film formation of the aluminum alloy is appropriately controlled, in detail, The present invention can be achieved by controlling the heating temperature after film formation in consideration of the nickel content in the aluminum alloy film, and considering the relationship with the substrate temperature at the time of film formation, thereby achieving the desired object. For the aluminum alloy film, cobalt may be used instead of nickel, and it is also recognized that cobalt has the same effect as nickel. Nickel and cobalt may be used alone. That is, the aluminum alloy film contains only cobalt. In the case of the case where the aluminum content of the aluminum alloy film contains nickel and cobalt, the substrate temperature at the time of film formation of the aluminum alloy film and the heating temperature after the film formation of the aluminum alloy are appropriately controlled depending on the content of bismuth and the content of cobalt. Just fine. Further, it has been found that the method of the present invention is further characterized in that the alloy film of the present invention further contains a Z group of at least 1 atomic percent (Z group is at least one selected from the group consisting of Ge, Cu, and Si). The occasion can also be applied. -13- 1378509 Hereinafter, an alloy containing nickel and/or cobalt and at least one of the x groups is referred to as an Al-(Ni/Co)-X alloy. Further, the above-mentioned αι·(Ni/Co)-X alloy is referred to as an Al-(Ni/Co)-X-Z alloy in which at least one type of bismuth group is further included. Further, the respective amounts of nickel, cobalt, and Z group in the aluminum alloy film are represented by [Ni], [Co], and [Z]. [ζ] means that the Z group alone means a single amount, and when two or more Z group elements are contained, it means a total amount. Hereinafter, the production method of the present invention will be described in detail. In the following, for the convenience of explanation, the aluminum alloy film used in the present invention is classified into (i) a case where an Al-(Ni/Co)-X alloy film is used' and (ii) an Al-(Ni/Co) is used. The case of the -xz alloy film will be described. (i) When an Al-(Ni/Co)-X alloy film is used, the manufacturing method of the present invention is a display device having a structure in which an aluminum alloy film for a reflective electrode is directly connected to an oxide transparent conductive film The first step of forming the oxide transparent conductive film on a substrate, the second step of forming the aluminum alloy film on the oxide transparent conductive film, and the third step of heating the aluminum alloy film. The aluminum alloy film contains aluminum and/or cobalt of 4 atomic percent, and aluminum-(nickel/cobalt)-X alloy of at least one element selected from the group X in a total amount of 0.1 to 2 atomic percent. Composition, X is composed of La, Mg, Cr, Mn, Ru, Rh, Pt, Pd, Ir, Ce, Pr, Gd, Tb, Dy, Nd, Ti, Zr, Nb, Mo, Hf, Ta, W, Y , Fe, Sm, Eu, Ho, Er, Tm, 丫1?, and 1^11. -14- 1378509 Next, the characteristic part of the present invention controls the substrate temperature of the second step and the third step in response to the nickel content and/or the cobalt content of the aluminum-(nickel/cobalt)-X alloy film. Heating Temperature First, the above-described characteristic portions will be described. As described above, in the present invention, as a factor to be considered for preventing electrochemical uranium (alkaline corrosion resistance), the temperature of the substrate in the second step (that is, the film formation of the aluminum alloy film) may be mentioned. The substrate temperature), the heating temperature of the third step (that is, the heating temperature after the aluminum alloy is formed), and the nickel content ([Ni]) and/or the cobalt content ([Co]) in the aluminum alloy film. Here, the nickel content and the cobalt content are cited because these elements should all be combined with aluminum to form a fine intermetallic compound which helps prevent electrochemical corrosion. By the generation of the fine intermetallic compound, the number of pinholes or the like penetrating through the aluminum alloy film is reduced, and as a result, the alkali corrosion resistance is improved. Further, by producing a fine intermetallic compound at the interface which contributes to prevention of electrochemical corrosion, the contact resistance between the oxide transparent conductive film and the aluminum alloy film is also suppressed to be low. The role of these elements will be explained in detail later. Specifically, as long as the content of nickel and/or cobalt in the aluminum alloy film (in the case where it is contained alone is a single amount and the total amount is contained in both cases), the temperature of the substrate and the subsequent heating temperature are as follows ( 1) ~ (3) can be controlled as described. (1) When the substrate is not heated in the second step, the heating temperature in the third step is controlled to 50° set in accordance with <x{4-([Ni] + [Co]) } The temperature below C is added to the temperature range of 200 °C. (2) In the second step, the temperature of the substrate is controlled to be 〇 (when TC is less than 150 ° C on -15-1378509), the heating temperature of the third step is controlled to be in accordance with a{4-( [Ni] + [Co]) } The temperature below i〇〇°c is set to a temperature range of 100° C. (3) The temperature of the substrate is controlled to be less than i50°c or more in the second step. In the case of 250 ° C, the heating temperature in the third step is controlled to be increased to 100 ° below the temperature set in accordance with a {4-([Ni] + [Co]) }. For example, in the case where the aluminum alloy film contains only nickel (that is, in the case of the A1-Ni-X alloy film), the temperature of the substrate and the subsequent heating temperature are as follows (1 A )~ (3A) The control may be performed as described above. (1A) When the substrate is not heated in the second step, the heating temperature in the third step is controlled in accordance with <x(4-[Ni]) The set temperature of 50 ° C or lower is added to a temperature range of 200 ° C. (2A) When the temperature of the substrate is controlled to 100 ° C or more and 150 ° C or less in the second step, the third step is performed. Heating temperature Controlling the temperature below 100 ° C set to a (4-[Ni]) is added to a temperature range of 10 (TC). (3A) The temperature of the substrate is controlled at 150 ° in the second step described above. When C is less than 250 ° C, the heating temperature in the third step is controlled to be within a temperature range of 100 ° C or lower set to 100 ° C depending on a (4-[Ni]). In the above, (1) to (3), the temperature of the substrate is set to a temperature lower than the room temperature (about 25 ° C) as low as the above (1), and the heating temperature after the formation of the aluminum alloy film is formed. When the film temperature is set to a higher temperature of about 250 ° C as in the above (3), the film can be set to a higher temperature, and the heating temperature after film formation can be set to The setting (adjustment) of the substrate temperature and the heating temperature can be set in consideration of the nickel content contained in the aluminum alloy film. The same applies to the above (1A) to (1C). Here, the substrate temperature is classified as The three types of the above (1) to (3) are because of the increase in the temperature of the substrate (on The manufacturing method (adjustment means) of the present invention for controlling the degree of decrease (decreased) of the heating temperature after film formation) can be roughly classified into the above three forms according to the basic experiment of the inventors of the present invention. The "substrate temperature" means the temperature of the entire substrate, that is, when the substrate temperature is controlled to 20 (TC), the temperature of the entire substrate is 20 ° C or higher, and is maintained at 200 during the film formation step. t can be. In addition, 'the requirement of 'a{4-([Ni] + [Co]) }" in the above (1) to (3) is a simple way to express the substrate temperature and heating temperature for convenience (considering The aluminum content ([Ni]) and/or cobalt content ([Co]) contained in the aluminum alloy film is controlled and adjusted. The coefficient a ' in the above-mentioned requirements can be arbitrarily adjusted depending on the substrate temperature or the heating temperature, even the composition of the aluminum alloy film to be used and the like. Further, "4" in the above-mentioned requirements means an upper limit (4 atomic percent) of the amount of nickel and/or cobalt which may be contained in the above aluminum alloy film, and in the range of 4 atomic percent, it means that it may be in the range of 4 atomic percent. Control the amount of these elements internally. In reality, how to control better is based on the creative ability of the industry. If you are familiar with the art of -17-1378509, you can refer to the results of the examples described later, considering the direct connection of oxide transparent conductive film and aluminum. The degree of contact resistance or alkali corrosion resistance of the alloy film is determined as appropriate. Hereinafter, the manufacturing method of the present invention will be described in more detail with reference to Figs. 10 to 12 . (Figs. 10 to 12) Figs. 10 to 12 are the results of the examples described later, and the relationship between the nickel content and the heating temperature at the respective substrate temperatures specified in the above (1) to (3) is examined, and these pairs are investigated. The effect of alkali corrosion resistance. Here, an aluminum-X atomic percentage of nickel-0.35 atomic percent of a ruthenium alloy film is used, and the nickel content (X) is in the range of 0 to 3 atom% as shown in Figs. Fig. 10 is a result of forming a film at a substrate temperature of room temperature [corresponding to the above (1)], and Fig. 11 is a result of forming a film at a substrate temperature of 100 ° C [corresponding to the above (2)], Fig. 0 is a result of forming a film when the substrate temperature is further increased to 150 ° C and 25 ° C [corresponding to the above (3)]. In the figure, 〇 means excellent alkali corrosion resistance, and ▲ means poor alkali corrosion resistance. The details of the evaluation method are detailed later. In comparison with Figs. 10 to 12, it is understood that when the substrate temperature is low, if the heating temperature is not increased, alkaline corrosion cannot be effectively prevented. However, when the substrate temperature is high, even if the heating temperature is lowered, alkaline corrosion can be suppressed. Further, it can be seen that the substrate temperature and the heating temperature adjustment width (for example, when the substrate temperature is raised, the increase in the substrate temperature and the decrease in the heating temperature when the heating temperature is lowered) are determined by the nickel content in the aluminum alloy film. - 1378509. For example, when the nickel content in the aluminum alloy film is 2 atomic percent, when the substrate temperature is room temperature, the heating temperature is preferably controlled at 250 ° C or higher, but the substrate temperature is controlled at iOOt. At the time, the preferred lower limit of the heating temperature can be lowered, and the alkali corrosion resistance can be improved by heating to substantially 150 ° C or more. Further, when the substrate temperature is controlled to 15 0 to 250 ° C, the preferred lower limit of the heating temperature can be further lowered, and as long as it is heated to 10 (TC or higher), good alkali corrosion resistance can be obtained. As described above, the present invention does not control the heating temperature after film formation to be uniform as in the above-described Patent Document 4, and the technical idea is to adopt a relationship between the temperature of the substrate at the time of film formation and the nickel content in the aluminum alloy film. The above-mentioned Patent Document 4 is different from the present invention in that the present invention differs in the configuration of the display device, but the direct contact technique of heating after forming the aluminum alloy film is common to the present invention. Patent Document 4 does not have any consideration for the substrate temperature at the time of film formation. The idea of controlling the heating temperature after film formation by the relationship with the substrate temperature, and the idea of controlling the heating temperature or the substrate temperature without considering the nickel content. And the like is different from the present invention. Further, FIGS. 10 to 12 show the results of using an aluminum-nickel-niobium alloy film as an aluminum alloy film, but when cobalt is used instead of nickel, In other words, when an aluminum-cobalt-niobium alloy film was used, the same tendency as described above was confirmed by experiments. In addition, when nickel and cobalt were used instead of nickel, that is, aluminum-(nickel+cobalt)_χ-19 was used. - 1378509 In the case of a gold film, it was confirmed by experiments that the same results as described above were obtained. Further, the upper limit of the heating temperature is not particularly limited from the viewpoint of alkali corrosion resistance, but if it is too high, it will be in the aluminum alloy film. A hillock or the like is produced, so that it is preferably 350 ° C or less, more preferably 300 ° C or less. Specifically, the aforementioned heat treatment is preferably performed under a vacuum atmosphere or an inactive environment. (For example, in a nitrogen atmosphere), the specific heating conditions of the respective substrate temperatures of the above (1) to (3) are as described in the following (I) to (melon). Actually, the aluminum alloy film is applied. In the case of the nickel content and/or the cobalt content (0.5 to 4 atomic percent), the heating temperature may be appropriately adjusted. (I) When the heating temperature is room temperature as described in the above (1), the preferred heating temperature is about 200~25 0 °C, the preferred heating time is about 30~60 minutes (Π) When the heating temperature is 100 ° C or more and 150 ° C or less as described in the above (2), the heating temperature is preferably about 100 to 200 ° C, and the preferred heating time is about 30 to 60 minutes. (Dish) If the heating temperature is 150 ° C or higher and 250 ° C or less as described in the above (3), the heating temperature is preferably about 1 〇〇 to 200 ° C, and the preferred heating time is about 30. ~60 minutes. The details of the mechanism for preventing the alkaline corrosion of the aluminum alloy film according to the method of the present invention are not clear, and it is inferred that the aluminum, and the fine intermetallic compound of nickel and/or cobalt are aggregated by heating. At the interface between the oxide transparent conductive film such as the IT0 film and the aluminum alloy film, the concentration of nickel which is small at the interface ionization tendency -20 - 1378509 is increased, so the electrode potential of the aluminum alloy film is shifted to the positive side, so that ITO is bonded The contact potential difference of the oxide transparent conductive film such as a film is reduced. As a result, electrochemical etching due to a developing solution or an etching solution does not easily occur when an etching method is used. In particular, according to the experiments of the inventors of the present invention, it is possible to infer the generation of the above-mentioned "aluminum, a fine intermetallic compound of nickel and/or cobalt" which contributes to prevention of electrochemical corrosion, which is affected not only by the heating temperature after film formation. It is also affected by the substrate temperature at the time of film formation. According to the production method of the present invention, the electrode potential difference between the aluminum alloy film and the oxide transparent conductive film can be substantially suppressed to 1.55 V or less, preferably to 1.5 V or less. For reference, the relationship between the immersion time and the immersion potential when immersed in an aqueous TMAH solution is shown in Fig. 3. Here, an aluminum alloy film of aluminum-2 atomic percent nickel - 0.35 atomic percent is used, so that the substrate temperature at the time of film formation is from room temperature - the sample without heating, and the substrate temperature at the time of film formation is from room temperature - Two kinds of samples, such as a sample heated at 200 °C. • As can be seen from Fig. 3, the sample subjected to heating after film formation has an immersion potential of about 1 00 mV (0.1 V) after immersion (about 0.1 min) compared with the sample which is not heated after film formation. ), and this state is maintained until about 0.7 minutes after immersion. This result suggests that the heating can be carried out for a long period of time, and the difference between the immersion potential of the ITO film and the ITO film can be suppressed to a small extent, and the electrochemical corrosion can be effectively suppressed. The aluminum alloy film used in the present invention contains 0.1 to 4 atomic percent of nickel and/or cobalt, and a total amount of 0.1 to 2 atomic percent of aluminum selected from the group X of at least one element - (nickel/cobalt -X alloy, -21 - 1378509 The above X system is composed of La, Mg, Cr, Μη, Ru, Rh, Pt, Pd' Ir, Ce, Pr, Gd, Tb, Dy, Nd, Ti, Zr, Nb , Mo, Hf, Ta, W, Y, Fe, Sm, Eu, Ho' Er, Tm, Yb, and Lu. Here, in addition to the effect of reducing the contact resistance with the oxide transparent conductive film, nickel and cobalt also have an effect of improving alkali corrosion resistance (refer to Examples described later). The reason for reducing the contact resistance with the oxide transparent conductive film by adding nickel and/or cobalt to the aluminum alloy film is not clear in detail, but it should be at the interface between the aluminum alloy film and the oxide transparent conductive film (contact interface). A nickel- and/or cobalt-containing precipitate or a nickel and/or cobalt-concentrated layer that prevents diffusion of aluminum is formed. It can be contained in the aluminum alloy film alone or in combination with either nickel or nickel. The content of (nickel/cobalt) in the aluminum-(nickel/cobalt)-X alloy film (in the case of a single amount, which is a single amount, and the total amount of both of them), in order to effectively reduce the contact resistance and improve the contact resistance The effect of alkali corrosion resistance is necessary to reach 0.1 atomic percent or more. On the other hand, as shown in Fig. 4 which will be described later, when the content of (nickel/cobalt) exceeds 4 atom%, the reflectance and specific resistance of the aluminum alloy film are increased, and it becomes impossible to be practically used. The (nickel/cobalt) content in the aluminum alloy film is set to be 0.1 atomic percent or more (preferably 0 to 5 atom% or more, more preferably 1 atomic percent or more) of '4 atomic percent or less (preferably 3 atomic percent) the following). In addition, the elements of the X group (especially yttrium and yttrium) are elements that contribute to the improvement of heat resistance of the aluminum alloy film (elements that improve heat resistance). In particular, by including at least one of the X groups, it is possible to effectively prevent the occurrence of hillocks (nodule-like protrusions) on the surface of the aluminum alloy film when -22-1378509 is heated. These elements may be added alone or in combination of two or more. When two or more elements are contained, the total amount of each element may be controlled so as to satisfy the following range. In order to sufficiently exert such an effect of improving heat resistance, the content of the element belonging to the X group is 0.1 atom% or more, preferably 0.2 atom% or more. However, if the content of these elements is excessive, the electrical resistivity of the octa-(Ni/Co)-X alloy film itself increases. Here, the content of these elements is preferably 2 atomic percent or less, preferably 8% by weight or less. In view of characteristics such as heat resistance and electrical resistivity, elements belonging to the X group are preferably La, Nd, Gd, Tb and Μη, particularly preferably lanthanum (La) and ammonium (Nd). In the present invention, the remaining components of the Al-(Ni/Co)-X alloy film are substantially composed of aluminum and unavoidable impurities. (ii) When an Al-(Ni/Co)-X-Z alloy film is used Next, a manufacturing method in which an Al-(Ni/Co)-X-Z alloy film is used as the aluminum alloy film will be described. The aluminum alloy film is the A1-(Ni/Co)-X alloy film of the above (i) and further contains a z group element of 0. 2 atomic percent (in the group consisting of Ge, Cu, and Si). At least one element selected), whereby the contact resistance can be further reduced and the heat resistance can be further improved. Among the aforementioned Z, from the viewpoint of improving the contact resistance with the transparent conductive film and improving the alkali resistance, it is preferably bismuth (Ge) and copper (-23-1378509).

Cu)。藉由鍺與銅的添加提高耐鹼性,顯示於後述之圖 13〜圖1 5 (添加銅之例)以及圖1 6~圖1 8 (添加鍺之例) 。於這些圖,〇(耐鹼性腐蝕性良好)之例,接觸電阻均 爲1 500Q/cm2以下,被抑制爲較低(未圖示)。因而,在 本發明,作爲前述Al-(Ni/Co) -X-Z合金層,最好使用 包含0.1〜2原子百分比之鎳及/或鈷,與0.1〜2原子百分比 之La及/或Nd,與0.1~2原子百分比之Ge及/或Cu之合 金層。 前述Z之含量不滿0.1原子百分比的場合,無法有效 發揮前述作用。另一方面,前述Z的含量超過2原子百分 比時,提升前述作用的同時,也招致了反射率的降低或電 阻率的增大。Z的含量最好爲0.2原子百分比以上,0.8 原子百分比以下。屬於Z的Ge,Cu,Si等各元素可以單獨 添加,也可以倂用2種。添加2種以上元素時,各元素的 合計含量只要以滿足前述範圍的方式來控制即可。 使用前述Al-(Ni/Co) -X-Z合金膜時之製造方法的 設計方針(基本的考慮方式),在使用前述之(i)之鋁 合金膜時爲相同,只要因應於鋁合金膜中的鎳含量([Ni] )及/或鈷含量([Co]) ’以及Z群的元素含量([z])適 切地控制基板溫度及其後的加熱溫度即可。具體而言,係 使基板溫度設定爲前述(1)那樣低的室溫(約25。(:附近 )進行成膜的場合使鋁合金膜形成後之加熱溫度可以設定 爲較高’另一方面,使基板溫度如前述那樣設定爲 約250 °C之較高的溫度而進行成膜的場合可以使成膜後之 -24- 1378509 加熱溫度設定爲較低,而且這些基板溫度與加熱溫度之設 定(調整),可以邊考慮鋁合金膜所含有的(鎳/鈷)含 量及Z群的量邊進行設定。 使用前述鋁合金膜的場合,作爲供防止電化學腐蝕( 耐鹼性腐蝕性)所應考慮的因子,除了前述鎳及鈷的含有 量以外,也舉出Z群之元素,是因爲Z群元素也應該與 前述鎳、鈷同樣,與鋁結合形成有助於防止電化學腐蝕之 細微的金屬間化合物。藉由微細的金屬間化合物的產生, 貫通鋁合金膜之針孔等變少,結果提高耐鹼性腐蝕性。此 外,藉由在界面產生有助於防止電化學腐蝕之細微的金屬 間化合物,氧化物透明導電膜與鋁合金膜之接觸電阻也被 抑制爲較低。 如此般,使用包含Z群元素的Al-(Ni/Co) -X-Z合 金膜時,最好是基板溫度與加熱溫度之設定(調整),不 僅考慮鋁合金膜中的鎳含量及/或鈷含量,也考慮Z群的 元素之量(單獨量或者合計量)而進行設定。以下使用圖 13〜圖15 (作爲Z群元素含有銅)以及圖16〜圖18 (作爲 Z群元素含有鍺)來詳細說明。又,與圖10〜12相同,這 些圖中,〇也意味著耐鹼性腐鈾性優異,▲表示耐鹼性腐 蝕性低劣。 (關於圖1 3〜圖1 5 ) 首先,參照圖13〜圖15。此處,使用鋁-X原子百分 比鎳- 0.35原子百分比鑭- 0.5原子百分比銅之合金膜[鎳含 -25- 1378509 量(x )如圖13〜圖1 5所示在0~3原子百分比之範圍內] ,整理在前述(1)〜(3)所規定的各基板溫度時鎳含量 與加熱溫度之關係,調查這些對耐鹼性腐蝕性所造成的影 響。圖13係使基板溫度爲室溫而成膜時之結果[相當於前 述(1)],圖14係使基板溫度提高爲10(TC而成膜時之 結果[相當於前述(2)],圖15係使基板溫度進而提高至 150°C及250°C爲止而成膜時之結果[相當於前述(3)]。 爲了顯示銅的添加效果,於這些圖13、圖14、圖15 ’與使用前述鋁合金膜時之結果(▲、〇)一起,一倂記 載前述之圖10、圖11、圖12(均無銅)的結果(▲、〇 )。在圖13〜圖15,以二者不重疊的方式橫向挪移記載, 於相同之鎳含量,右側之▲、〇係添加銅之例,左側之▲ 、〇係未添加銅之例。進而以更容易分辨二者差異的方式 ’改變繪製標記的尺寸,▲、〇尺寸較大者係添加銅之例 ’▲、〇尺寸較小者係未添加銅之例。又,於圖1 4及圖 15’作爲未添加銅之例,追加鎳含量爲1原子百分比之結 果’以及作爲添加銅之例,追加鎳含量爲1原子百分比之 結果* 由圖13〜圖15,可知作爲鋁合金膜進而含有Z群的銅 之Al-Ni-La-Cu合金膜時,也具有與使用前述之 Al-( Wi/C〇) -La合金膜時同樣的傾向。亦即,可知在基板溫 度低的場合,加熱溫度如果不提高的話無法有效防止鹼性 腐触’但在基板溫度高的場合,加熱溫度即使降低也可以 抑制驗性腐蝕。而且,可知基板溫度與加熱溫度之調整幅 -26- 1378509 (例如提高基板溫度的場合降低加熱溫度時之基板溫度的 上升幅度以及加熱溫度的降低幅度)’係因應於鋁合金膜 中的鎳含量或銅含量而決定的。 此外,對比添加銅與未添加銅的結果可知,藉由銅的 添加進而提高耐鹼性腐蝕性,所以在鎳含量與基板溫度相 同的場合,加熱溫度之較佳的下限可以更爲降低。 詳言之,首先,於圖13(基板溫度=室溫),針對鋁 合金膜中的鎳含量爲2原子百分比的場合加以考察。基板 溫度爲室溫時,使用不含銅的鋁-2原子百分比鎳-0.35原 子百分比鑭的合金膜時,把加熱溫度控制在大致爲250°C 以上較佳,但使用包含銅的鋁-2原子百分比鎳-0.35原子 百分比鑭-0.5原子百分比銅的合金膜時,可以降低加熱溫 度之較佳的下限,大致上僅加熱至1 50°C以上即可提高耐 鹼性腐蝕性。與此相同的傾向,也見於鎳含量爲3原子百 分比的場合,以及鎳含量爲1原子百分比之所有的場合。 因而,基板溫度爲室溫時,使用含銅之鋁合金膜時,與不 含銅的鋁合金膜相比,實際證實了可以降低加熱溫度之較 佳的下限。 於圖13,顯示使基板溫度爲室溫時的結果,與此相 同的傾向,也見於改變基板溫度的圖14(基板溫度=1〇〇 °C )以及圖1 5 (基板溫度=1 5 0 t以及2 5 0 °C )。 由以上的結果’可以推知基板溫度與加熱溫度的調整 幅度’不僅鋁合金膜中之鎳含量有影響,銅含量也有影響 -27- 1378509 (關於圖16〜圖18) 其次,參照圖16~圖18(作爲Z群元素含有鍺) 考察。 此處,使用鋁-X原子百分比鎳-0.2原子百分比鑛 原子百分比鍺之合金膜[鎳含量(X)如圖16〜圖18 在0~1原子百分比之範圍內,鎳=0.2原子百分比、0 子百分比、1原子百分比],整理在前述(1)〜(3) 定的各基板溫度時鎳含量與加熱溫度之關係,調查這 耐鹼性腐蝕性所造成的影響。圖16係使基板溫度爲 而成膜時之結果[相當於前述(1)],圖17係使基板Cu). The alkali resistance is improved by the addition of bismuth and copper, and is shown in Fig. 13 to Fig. 15 (an example of adding copper) and Fig. 16 to Fig. 18 (an example of adding bismuth) which will be described later. In these figures, in the case of 〇 (good alkali corrosion resistance), the contact resistance was 1 500 Q/cm 2 or less, and it was suppressed to be low (not shown). Therefore, in the present invention, as the Al-(Ni/Co)-XZ alloy layer, it is preferable to use 0.1 to 2 atomic percent of nickel and/or cobalt, and 0.1 to 2 atomic percent of La and/or Nd, and 0.1 to 2 atomic percent of the alloy layer of Ge and/or Cu. When the content of Z is less than 0.1 atomic percent, the above effects cannot be effectively exerted. On the other hand, when the content of Z described above exceeds 2 atom%, the above-mentioned effects are enhanced, and a decrease in reflectance or an increase in resistivity is also caused. The content of Z is preferably 0.2 atomic percent or more and 0.8 atomic percent or less. Each element such as Ge, Cu, and Si belonging to Z may be added alone or in combination of two. When two or more elements are added, the total content of each element may be controlled so as to satisfy the above range. The design policy (basic consideration) of the manufacturing method using the above-described Al-(Ni/Co)-XZ alloy film is the same when using the aluminum alloy film of the above (i), as long as it is in the aluminum alloy film The nickel content ([Ni] ) and/or cobalt content ([Co]) ' and the element content ([z]) of the Z group can appropriately control the substrate temperature and the heating temperature thereafter. Specifically, when the substrate temperature is set to a room temperature lower than the above (1) (about 25 (in the vicinity), when the film formation is performed, the heating temperature after the formation of the aluminum alloy film can be set to be higher] When the substrate temperature is set to a high temperature of about 250 ° C as described above, the film formation temperature can be set to be lower after the film formation - 24 - 1378509 heating temperature, and the substrate temperature and heating temperature are set. (Adjustment) It can be set in consideration of the (nickel/cobalt) content and the amount of Z group contained in the aluminum alloy film. When the aluminum alloy film is used, it is used as a means for preventing electrochemical corrosion (alkaline corrosion resistance). Factors to be considered, in addition to the above-mentioned nickel and cobalt contents, the elements of the Z group are also mentioned, because the Z group elements should also be combined with aluminum as described above to form a fine layer to help prevent electrochemical corrosion. In the intermetallic compound, the pinholes and the like which penetrate the aluminum alloy film are reduced by the generation of the fine intermetallic compound, and as a result, the alkali corrosion resistance is improved. The contact resistance of the fine intermetallic compound, the oxide transparent conductive film and the aluminum alloy film is also suppressed to be low. Thus, when an Al-(Ni/Co)-XZ alloy film containing a Z group element is used, the most It is preferable to set (adjust) the substrate temperature and the heating temperature, and consider not only the nickel content and/or the cobalt content in the aluminum alloy film but also the amount of the elements of the Z group (individual amount or total amount). 13 to 15 (containing copper as the Z group element) and FIG. 16 to FIG. 18 (containing yttrium as the Z group element) are explained in detail. Again, as in FIGS. 10 to 12, in the figures, 〇 also means alkali resistance. Excellent uranium, ▲ indicates poor alkali corrosion resistance (Refer to Figure 13 to Figure 15) First, refer to Figure 13 to Figure 15. Here, aluminum-X atomic percent nickel - 0.35 atomic percent 镧 - 0.5 is used. Atomic percentage copper alloy film [nickel contains -25 - 1378509 (x) as shown in Fig. 13 to Fig. 15 in the range of 0 to 3 atomic percent], and is arranged in the above (1) to (3) The relationship between the nickel content and the heating temperature at each substrate temperature, investigate these resistance to alkaline corrosion Fig. 13 shows the result when the substrate temperature is formed at room temperature [corresponding to the above (1)], and Fig. 14 is a result of increasing the substrate temperature to 10 (the result of TC film formation [equivalent In the above (2)], FIG. 15 is a result of forming a film when the substrate temperature is further increased to 150 ° C and 250 ° C [corresponding to the above (3)]. In order to show the effect of adding copper, these FIG. 13 Fig. 14 and Fig. 15 ' together with the results (▲, 〇) when the aluminum alloy film is used, the results (▲, 〇) of the above-mentioned Fig. 10, Fig. 11, and Fig. 12 (both without copper) are described. Fig. 13 to Fig. 15 show the case where the two are not overlapped, and the same nickel content, the right side of the ▲, the lanthanum is added to the copper, the left side of the ▲, the lanthanum is not added with copper. Further, in a way that makes it easier to distinguish the difference between the two, the size of the drawn mark is changed, ▲, the case where the larger size is added is the case of adding copper ▲, and the case where the size is smaller is the case where copper is not added. Further, in FIG. 14 and FIG. 15', as a result of not adding copper, a result of adding a nickel content of 1 atomic percent and a case of adding copper, a result of adding a nickel content of 1 atomic percent * from FIG. 13 to FIG. 15 In addition, when the aluminum alloy film further contains a Z-group copper Al-Ni-La-Cu alloy film, the same tendency as in the case of using the above-described Al-(Wi/C〇)-La alloy film is also known. That is, it is understood that when the substrate temperature is low, if the heating temperature is not increased, the alkaline corrosion can not be effectively prevented. However, when the substrate temperature is high, the temperature can be suppressed even if the heating temperature is lowered. Moreover, it can be seen that the substrate temperature and the heating temperature adjustment range -26 - 1378509 (for example, when the substrate temperature is raised, the increase in the substrate temperature when the heating temperature is lowered and the heating temperature decrease) is determined by the nickel content in the aluminum alloy film. Or the copper content is determined. Further, as a result of comparing the addition of copper with the addition of copper, it is understood that the addition of copper improves the alkali corrosion resistance. Therefore, when the nickel content is the same as the substrate temperature, the lower limit of the heating temperature can be further lowered. In detail, first, in Fig. 13 (substrate temperature = room temperature), the case where the nickel content in the aluminum alloy film is 2 atomic percent is examined. When the substrate temperature is room temperature, when an alloy film containing copper-free aluminum-2 atomic percent nickel-0.35 atomic percent ruthenium is used, the heating temperature is preferably controlled to be substantially 250 ° C or higher, but aluminum-2 containing copper is used. When an alloy film of atomic percentage nickel - 0.35 atomic percent 镧 - 0.5 atomic percent copper is used, the lower limit of the heating temperature can be lowered, and the alkali corrosion resistance can be improved by heating only to 150 ° C or more. The same tendency is also seen in the case where the nickel content is 3 atom%, and the case where the nickel content is 1 atomic percent. Therefore, when the substrate temperature is room temperature, when a copper-containing aluminum alloy film is used, a lower limit which can lower the heating temperature is actually confirmed as compared with the aluminum alloy film not containing copper. Fig. 13 shows the results when the substrate temperature is room temperature, and the same tendency is also seen in Fig. 14 (substrate temperature = 1 〇〇 ° C) for changing the substrate temperature and Fig. 15 (substrate temperature = 150) t and 2 50 °C). From the above results, it can be inferred that the adjustment range of the substrate temperature and the heating temperature is not only affected by the nickel content in the aluminum alloy film, but also the copper content is affected -27-1378509 (refer to FIG. 16 to FIG. 18). Next, referring to FIG. 16 to FIG. 18 (as a group Z element containing 锗). Here, an alloy film of aluminum-X atomic percentage nickel-0.2 atomic percent atomic percent yttrium is used [nickel content (X) as shown in FIGS. 16 to 18 in the range of 0 to 1 atomic percent, nickel = 0.2 atomic percent, 0 The percentage of the sub-portion, the atomic percentage of 1 atom%, and the relationship between the nickel content and the heating temperature at the respective substrate temperatures (1) to (3), and the influence of the alkali corrosion resistance. Fig. 16 is a result of forming a substrate at a film temperature [corresponding to the above (1)], and Fig. 17 is a substrate.

提高爲10(TC而成膜時之結果[相當於前述(2 ) ],I 係使基板溫度進而提高至150 °C及250 °C爲止而成膜 結果[相當於前述(3 )]。 爲了顯示銅的添加效果,於這些圖16、圖17、β (均含有鍺),一併記載前述之圖10、圖11、圖12 無鍺,但鑭含量爲0.35原子百分比)的結果(▲、 〇 在圖16〜圖18,使繪圖以二者不重疊的方式橫向 記載’於相同之鎳含量,右側之▲、〇係添加鍺之例 側之▲、〇係未添加鍺之例。進而以更容易分辨二者 的方式,改變繪製標記的尺寸,▲、〇尺寸較大者係 鍺之例,▲、〇尺寸較小者係未添加鍺之例。又, 16,除了圖1〇之繪圖以外’也追加鎳含量爲〇2原 分比、0.5原子百分比時之無添加鍺的結果,以及對 進行 1-0.5 所示 .5原 所規 些對 室溫 溫度 Β 18 時之 圖1 8 (均 〇) 挪移 ,左 差異 添加 於圖 子百 應之 -28- 1378509 添加鍺時的結果。於圖17,除了圖11之繪圖 加鎳含量爲0.2原子百分比、1原子百分比時 的結果’以及對應之添加鍺時的結果。於圖 12之繪圖以外,也追加鎳含量爲〇.2原子百分 百分比時之無添加鍺的結果,以及對應之添加 。此外’於圖16〜圖18,僅記載鎳含量爲〇〜1 之間的結果。 由圖16〜圖18,可知作爲鋁合金膜進而含 之Al-Ni-La-Ge合金膜時,也具有與使用前述 (沒有鍺)合金膜時幾乎同樣的傾向。亦即, 溫度低的場合,加熱溫度如果不提高的話無法 性腐蝕,但在基板溫度高的場合,加熱溫度即 以抑制鹼性腐蝕。而且,可知基板溫度與加熱 幅度,係因應於鎳含量或鍺含量而決定的。 此外,對比添加鍺與未添加鍺的結果可知 添加進而提高耐鹼性腐蝕性,所以在鎳含量與 同的場合,加熱溫度之較佳的下限可以更爲降 鍺的添加效果,無法整理爲齊一之規律,但可 含量約1原子百分比以下之低濃度時有顯著發 詳言之,首先,於圖16(基板溫度=室溫 合金膜中的鎳含量爲1原子百分比的場合加以 在基板溫度爲室溫時,使用不含鍺的鋁-1原^ 0.2原子百分比鑭的合金膜時,不把加熱溫度 °C的話無法得到良好的耐鹼性腐蝕性,相對地 以外,也追 之無添加鍺 1 8 ^除了圖 比、1原子 錯時的結果 原子百分比 有Z群的鍺 之 Al-Ni-La 可知在基板 有效防止鹼 使降低也可 溫度的調整 ,藉由鍺的 基板溫度相 低。特別是 知大致上鎳 揮之傾向。 ),針對鋁 考察。可知 F百分比鎳-設定在250 使用包含鍺 1378509 的鋁-1原子百分比鎳-0.2原子百分比鑭-0.5原子百分比鍺 的合金膜時,僅加熱至200 °C以上即可提高耐鹼性腐蝕性 。同樣的傾向在鋁合金膜中的鎳含量爲0.5原子百分比的 場合亦可見到,在使用不含鍺的鋁-0.5原子百分比鎳-0.2 原子百分比鑭的合金膜時,不把加熱溫度設定爲2 5 0°C也 可以得到良好的耐鹼性腐蝕性,相對地使用包含鍺的鋁-0.5原子百分比鎳-0.2原子百分比鑭-0.5原子百分比鍺的 合金膜時,加熱至25 0°C可提高耐鹼性腐蝕性。 其次於圖17(基板溫度=100 °C),針對鋁合金膜中 的鎳含量爲1原子百分比的場合加以考察。可知在基板溫 度爲l〇0t時,使用不含鍺的鋁-1原子百分比鎳-0.2原子 百分比鑭的合金膜時,不把加熱溫度設定在20(TC的話無 法得到良好的耐鹼性腐蝕性,相對地使用包含鍺的鋁-1 原子百分比鎳-0.2原子百分比鑭-0.5原子百分比鍺的合金 膜時,僅加熱至15(TC以上即可提高耐鹼性腐蝕性。與此 同樣的傾向,在鎳含量0.5原子百分比及0.2原子百分比 時亦可見到,可知使用含鍺之鋁合金膜時,與不含鍺的鋁 合金膜相比,可以降低加熱溫度之較佳的下限。 進而,於圖18(基板溫度=150°C及250°C),也與前 述同樣,在鎳含量1原子百分比及0.2原子百分比時可見 到添加鍺的效果,可知使用含鍺之鋁合金膜時,與使用不 含鍺的鋁合金膜相比,可以降低加熱溫度之較佳的下限。 檢討前述圖16~圖18的結果,(1)基板溫度與加熱 溫度的調整幅度,不僅應該是鋁合金膜中之鎳含量有影響 -30- 1378509 ,鍺含量亦應有影響,(2)鍺之添加效果,隨著鎳含量 或基板溫度而有若干不同,大致上鎳含量約1原子百分比 以下之低濃度的場合,大致有被認爲是顯著的傾向。 以上針對特徵說明本發明。 本發明,如前所述因應於含有鎳及/或鈷之量(包含 Z群元素時,亦包括Z之量)而適切控制基板溫度與加熱 溫度爲其最大特徵,前述以外之成膜步驟並沒有特別限定 ’可以採用通常使用的手段。亦即,於基板上形成氧化物 透明導電膜的第1步驟,或在氧化物透明導電膜上形成鋁 合金膜的第2步驟(除了基板溫度以外),只要適切選擇 習知的方法即可。 作爲鋁合金膜的成膜方法,代表性者可以舉出使用濺 鍍靶之濺鍍法。所謂濺鍍法,係在欲形成的薄膜與由同種 材料所構成的濺鍍靶(靶材)之間形成電漿放電,藉由電 漿放電使離子化的氣體與靶材衝突藉以打擊出靶材的原子 ,使層積於基板上以製作薄膜的方法。濺鍍法與真空蒸鍍 法或電弧離子電鏡(AIP: Arc Ion Plating)法不同,但 具有可以形成與靶材相同組成的薄膜之優點。特別是,以 濺鍍法形成的鋁合金膜,可以固溶在平衡狀態下不會固溶 的鈸等合金元素,具有可以作爲薄膜發揮優異特性等之優 點。但是,本發明之主旨並不以前述爲限定,可以適宜採 用鋁合金膜之成膜所通常使用的方法。 於本發明,圖案化之順序無特別限定。例如,於基板 上依序藉由濺鍍法等形成氧化物透明導電膜以及鋁合金膜 -31 - 1378509 後,藉由平版印刷法或蝕刻法來圖案化前述氧化物透明導 電膜及鋁合金膜亦可。或者是,在基板上形成氧化物透明 導電膜,圖案化之後,形成鋁合金膜,進行圖案化亦可。 此外,構成氧化物透明導電膜之ITO膜,在加以加熱 之前係非晶質狀態,溶解於以磷酸爲主成分的鋁用蝕刻液 ,但施加200°c之熱而結晶化的話,對於鋁用蝕刻液具有 選擇性。因此,圖案化氧化物透明導電膜後形成鋁合金膜 ,進行蝕刻時,可以防止已經被形成的氧化物透明導電膜 被不必要地蝕刻掉。 但是,在不要求鋁之鈾刻選擇性的場合,作爲氧化物 透明導電膜使用IZO膜亦可。此外,除ITO膜以外與鋁 蝕刻劑之間有選擇性之氧化物透明導電膜亦可無問題地採 用β本發明並不限定氧化物透明導電膜的種類。 [實施例] 以下,舉出實施例更具體說明本發明,但本發明並不 受限於以下之實施例,在適合下述的要旨之範圍當然而以 加上適當的變更而實施,這些也都包含於本發明的技術範 圍。 第1實施例 於基板(無驗玻璃板,板厚0.7mm、4英吋尺寸)上 ,作爲氧化物透明導電膜(透明畫素電極),藉由濺鍍法 形成包含約1〇質量百分比之SnO之ITO膜(膜厚:約 -32- 1378509 5〇nm ),藉由光蝕刻法圖案化。此時濺鍍條件係氬氣環 境下,壓力約3mTorr。 如前所述進行圖案化的ITO膜之上,作爲反射電極, 藉由濺鍍法形成純鋁膜以及鋁-鎳-鑭合金膜(以下稱爲「 鋁系合金膜」;膜厚:100nm)。濺鍍時之基板溫度,如 下列表1及表2所示,濺鍍條件係氬氣環境下,壓力:約 2 m T 〇 r r 〇 接著,在氮氣環境下,以表1及表2所示之加熱溫度 施以30分鐘之熱處理。又,爲了比較,也準備未施以熱 處理者。其後,對鋁系合金膜塗布光阻進行曝光後,浸漬 於2.38質量百分比之TMAH水溶液(20°C ) 1分鐘以顯 影。又,在本實施例,係使前述加熱處理在氮氣環境下進 行,但不以此爲限,亦可在習知之環境條件(例如,真空 度S3xl(T4Pa程度之真空環境下)下進行。 (耐鹼性腐蝕性) 各鋁系合金膜之鹼性腐蝕性,係以在前述之TMAH 水溶液中,使測定對象之鋁系合金膜之電極與銀-氯化銀 參考電極短路,以電壓計測定電位差而進行評估。爲了比 較,也測定多晶質ITO膜之電極電位。在本實施例,如後 述之圖7〜圖8所示進行TMAH水溶液浸漬後之光學顯微 鏡觀察以及透過電子顯微鏡觀察時沒有見到腐蝕,而且與 非晶質ITO之電極電位差滿足1.55V以下者評估爲〇(耐 鹼性腐蝕性優異),沒有滿足前述任一要件者評估爲x( -33- 1378509 耐鹼性腐蝕性低劣)。 (接觸電阻) 使用如圖9所不之瞎爾文圖案(Kelvin pattern, TEG圖案)(接觸孔尺寸爲20、40以及80 # m正方)以 四端子法’測定鋁系合金膜與ITO膜直接連接的場合之接 觸電阻。接觸電阻’係藉由使電流流過鋁系合金膜與IT 0 膜之間,以其他端子測定ITO-鋁合金間的電壓降低而調 查出來的。具體而言,圖9之h-I2間流有電流I,藉由監 視ν,-Vz間之電壓,可以[R^V^VO/h]求出接觸部C之 接觸電阻R。在本實施例,接觸電阻在以150〇n/cm2下者 評估爲接觸電阻很低(合格)。 此外,鋁系合金膜之合金元素含量,藉由ICP發光分 析(誘導結合電漿發光分析)法來求出。 這些結果顯示於表1及表2。此外,針對表1之No.1 (純鋁膜)以及No. 19 (鋁-2原子百分比之鎳-0.35原子 百分比之鑭),如前所述進行測定的電極電位的結果顯示 於表3 » -34 1378509 mi]Increasingly, it is a result of the film formation of TC (corresponding to the above (2)], and the result of film formation is further increased to 150 °C and 250 °C [corresponding to the above (3)]. The results of the addition of copper are shown in Fig. 16, Fig. 17, and β (all containing 锗), together with the results of the above-mentioned Fig. 10, Fig. 11, and Fig. 12, but the cerium content is 0.35 atomic percent) (▲, In Fig. 16 to Fig. 18, the drawing is described in the horizontal direction of the same nickel content, the right side of the ▲, the side of the 〇 锗 added 锗, the 〇 system is not added 锗. It is easier to distinguish the two ways, change the size of the drawn mark, ▲, the case of the larger size of the 锗, ▲, 〇, the smaller size is not added 锗. In addition, 16, in addition to the drawing of Figure 1 Outside the 'additional nickel content is 〇2 original ratio, 0.5 atomic percent of the result without adding yttrium, and the first one shown in the 1-0.5 shows the room temperature Β 18 when the graph 18 ( Uniform) Move, the left difference is added to the picture of Baiyingzhi -28- 1378509 when adding 锗. Figure 17, in addition to the result of adding a nickel content of 0.2 atomic percent, 1 atomic percent in Figure 11 and the corresponding addition of yttrium. In addition to the plot of Figure 12, the additional nickel content is 〇. 2 atomic percent. In the case of the percentage, there is no result of adding ruthenium, and the corresponding addition is added. Further, in Fig. 16 to Fig. 18, only the result of the nickel content being 〇~1 is described. From Fig. 16 to Fig. 18, it is understood that the aluminum alloy film is further included. When the Al-Ni-La-Ge alloy film is used, it has almost the same tendency as when the above-mentioned (no ruthenium) alloy film is used. That is, when the temperature is low, the heating temperature is not corroded if it is not increased, but on the substrate. When the temperature is high, the heating temperature suppresses alkaline corrosion. Moreover, it is known that the substrate temperature and the heating range are determined depending on the nickel content or the niobium content. Moreover, it is known that the addition and the addition of antimony are combined to improve the addition. Alkaline corrosion resistance, so in the case of nickel content and the same, the lower limit of the heating temperature can be more effective in reducing the enthalpy, can not be organized into a uniform law, but the content is about 1 When the low concentration is below the sub-percentage, it is remarkable. First, in the case where the substrate temperature is 1 atomic percent in the substrate temperature = room temperature alloy film, when the substrate temperature is room temperature, the use of ruthenium-free is used. When the aluminum alloy is an alloy film of 0.2 atomic percent bismuth, the alkali corrosion resistance cannot be obtained without the heating temperature °C, and it is also added without the addition of 锗1 8 ^ In addition to the graph ratio, 1 As a result of the atomic error, the atomic percentage is Al-Ni-La of the Z group, and it is understood that the substrate can be effectively prevented from lowering the temperature and the temperature can be adjusted, and the substrate temperature of the crucible is relatively low. ), for aluminum inspection. It can be seen that the F percentage nickel is set at 250 when an alloy film containing -1 1378509 of aluminum-1 atomic percent nickel - 0.2 atomic percent 镧 -0.5 atomic percent 锗 is used, and the alkali corrosion resistance can be improved only by heating to 200 ° C or more. The same tendency is also observed in the case where the nickel content in the aluminum alloy film is 0.5 atomic percent, and the heating temperature is not set to 2 when an alloy film containing bismuth-free aluminum-0.5 atomic percent nickel-0.2 atomic percent ruthenium is used. Good alkali corrosion resistance can also be obtained at 50 ° C. When an alloy film containing yttrium aluminum - 0.5 atomic percent nickel - 0.2 atomic percent 镧 - 0.5 atomic percent 锗 is used, heating to 25 ° C can be improved. Alkaline corrosion resistance. Next, in the case of Fig. 17 (substrate temperature = 100 °C), the case where the nickel content in the aluminum alloy film was 1 atomic percent was examined. It can be seen that when an alloy film containing yttrium-containing aluminum-1 atomic percent nickel-0.2 atomic percent ruthenium is used at a substrate temperature of 10 Torr, the heating temperature is not set to 20 (TC cannot obtain good alkali corrosion resistance). When an alloy film containing yttrium aluminum-1 atomic percent nickel-0.2 atomic percent 镧-0.5 atomic percent 相对 is used, heating to only 15 (TC or more improves alkali corrosion resistance. The same tendency, It can also be seen that the nickel content is 0.5 atomic percent and 0.2 atomic percent, and it is understood that when the aluminum alloy film containing ruthenium is used, the lower limit of the heating temperature can be lowered as compared with the aluminum alloy film containing no ruthenium. 18 (substrate temperature = 150 ° C and 250 ° C), as in the above, when the nickel content is 1 atomic percent and 0.2 atomic percent, the effect of adding cerium is observed, and it is known that when using an aluminum alloy film containing cerium, The lower limit of the heating temperature can be lowered as compared with the aluminum alloy film containing ruthenium. Reviewing the results of the above-mentioned FIGS. 16 to 18, (1) the adjustment range of the substrate temperature and the heating temperature should not only be nickel in the aluminum alloy film. content Effect -30- 1378509, bismuth content should also have an effect, (2) 添加 addition effect, with nickel content or substrate temperature, there are some differences, generally a low concentration of nickel content of about 1 atomic percent or less, roughly The present invention is described above with respect to the features. The present invention suitably controls the substrate temperature in response to the amount of nickel and/or cobalt (including the Z group element, including the amount of Z) as described above. The heating temperature is the maximum characteristic, and the film forming step other than the above is not particularly limited. A commonly used means can be employed. That is, the first step of forming an oxide transparent conductive film on a substrate, or an oxide transparent conductive film. In the second step of forming the aluminum alloy film (excluding the substrate temperature), a conventional method may be appropriately selected. As a film forming method of the aluminum alloy film, a sputtering method using a sputtering target is exemplified. The sputtering method is to form a plasma discharge between a film to be formed and a sputtering target (target) composed of the same material, and ionize the gas and the target by plasma discharge. The method by which the conflict strikes the atoms of the target and is laminated on the substrate to form a thin film. The sputtering method is different from the vacuum evaporation method or the Arc Ion Plating method, but has the ability to form and target In particular, an aluminum alloy film formed by a sputtering method can dissolve an alloying element such as ruthenium which does not solidify in an equilibrium state, and has an advantage that it can exhibit excellent characteristics as a film, etc. However, The gist of the present invention is not limited to the above, and a method generally used for film formation of an aluminum alloy film can be suitably employed. In the present invention, the order of patterning is not particularly limited. For example, sputtering is sequentially performed on a substrate. After the oxide transparent conductive film and the aluminum alloy film -31 - 1378509 are formed, the oxide transparent conductive film and the aluminum alloy film may be patterned by a lithography method or an etching method. Alternatively, an oxide transparent conductive film is formed on the substrate, and after patterning, an aluminum alloy film is formed and patterned. In addition, the ITO film constituting the oxide transparent conductive film is in an amorphous state before being heated, and is dissolved in an etching solution for aluminum containing phosphoric acid as a main component. However, when crystallization is performed by applying heat of 200 ° C, it is used for aluminum. The etchant is selective. Therefore, an aluminum alloy film is formed after patterning the oxide transparent conductive film, and when etching is performed, it is possible to prevent the oxide transparent conductive film which has been formed from being unnecessarily etched away. However, when the uranium selectivity of aluminum is not required, an IZO film may be used as the oxide transparent conductive film. Further, the oxide transparent conductive film which is selective between the aluminum etchant and the aluminum etchant can be used without any problem. The present invention does not limit the type of the oxide transparent conductive film. [Examples] Hereinafter, the present invention will be specifically described by way of Examples. However, the present invention is not limited to the following examples, and it is a matter of course that the following is intended to be appropriately modified. All are included in the technical scope of the present invention. The first embodiment is formed on a substrate (without a glass plate having a thickness of 0.7 mm and a size of 4 inches) as an oxide transparent conductive film (transparent pixel electrode) by sputtering to form about 1 Å by mass. The ITO film of SnO (film thickness: about -32 - 1378509 5 〇 nm) was patterned by photolithography. At this time, the sputtering conditions were in an argon atmosphere at a pressure of about 3 mTorr. On the ITO film patterned as described above, a pure aluminum film and an aluminum-nickel-niobium alloy film (hereinafter referred to as "aluminum alloy film"; film thickness: 100 nm) were formed as a reflective electrode by sputtering. . The substrate temperature during sputtering is as shown in Table 1 and Table 2 below. The sputtering conditions are in an argon atmosphere. The pressure is about 2 m T 〇 rr 〇 Next, in a nitrogen atmosphere, as shown in Table 1 and Table 2. The heating temperature was heat treated for 30 minutes. Also, for comparison, a person who has not been subjected to heat treatment is also prepared. Thereafter, the aluminum alloy film was coated with a photoresist and exposed to a 2.38 mass% aqueous TMAH solution (20 ° C) for 1 minute to develop. Further, in the present embodiment, the heat treatment is carried out under a nitrogen atmosphere, but it is not limited thereto, and it can be carried out under a known environmental condition (for example, a vacuum degree S3xl (in a vacuum atmosphere of a degree of T4Pa). Alkaline corrosion resistance) The alkaline corrosion resistance of each aluminum alloy film is determined by a voltmeter by short-circuiting the electrode of the aluminum-based alloy film to be measured with the silver-silver chloride reference electrode in the TMAH aqueous solution described above. The potential difference was evaluated. For comparison, the electrode potential of the polycrystalline ITO film was also measured. In the present example, the optical microscope observation after the immersion of the TMAH aqueous solution and the observation by the electron microscope were carried out as shown in Figs. 7 to 8 which will be described later. When corrosion is observed, and the electrode potential difference of amorphous ITO is 1.55 V or less, it is evaluated as 〇 (excellent alkali corrosion resistance), and those who do not satisfy any of the above requirements are evaluated as x ( -33-1378509 alkali corrosion resistance). Inferior. (Contact resistance) Use a four-terminal method to measure aluminum using a Kelvin pattern (TEG pattern) (contact hole sizes of 20, 40, and 80 #m square) as shown in Figure 9. Contact resistance in the case where the alloy film is directly connected to the ITO film. The contact resistance is investigated by flowing a current between the aluminum alloy film and the IT 0 film and measuring the voltage drop between the ITO-aluminum alloy by other terminals. Specifically, the current I between the h-I2 in Fig. 9 can be obtained by [R^V^VO/h] by monitoring the voltage between ν and -Vz. In the examples, the contact resistance was evaluated as being low (qualified) at 150 〇n/cm 2 . In addition, the alloying element content of the aluminum-based alloy film was determined by ICP luminescence analysis (induction combined with plasma luminescence analysis). These results are shown in Tables 1 and 2. In addition, for No. 1 (pure aluminum film) and No. 19 (aluminum - 2 atomic percent nickel - 0.35 atomic percent) of Table 1, as before The results of the measured electrode potentials are shown in Table 3 » -34 1378509 mi]

No. 基板酿 (°C) 加熱溫度 (0〇 Ni/LaM 成 源子%) 耐鹼性 腐蝕性 接觸電阻値 (u Q/cm2) 1 室溫 250 (純 A1) X >3000 2 室溫 — 3/0.35 X >3000 3 室溫 100 3/0.35 X >3000 4 室溫 150 3/0.35 X >3000 5 室溫 200 3/0.35 〇 700^1500 6 室溫 250 3/0.35 〇 7〇〇~t2〇〇 7 100 一 3/0.35 X >3000 8 100 100 3/0.35 〇 600-1100 9 100 150 3/0.35 〇 400~900 10 100 200 3/0.35 〇 200^700 1t 150 — 3/0.35 X >3000 12 150 100 3/0.35 〇 5〇〇^1〇〇〇 13 150 150 3/0.35 〇 300-700 14 150 200 3/0.35 3/0.35 X 200~600 15 200 一 >3000 te 200 100 3/0.35 〇 400〜900 17 200 150 3/0.35 〇 100—400 18 200 200 3/0.35 〇 50—300 19 室溫 一 2/0.35 X >3000 20 室溫 100 2/0.35 X >3000 21 室溫 150 2/0.35 X >3000 22 室溫 200 2/0.35 X >3000 23 室溫 250 2/0.35 〇 800^1500 24 100 — 2/0*35 X >3000 25 100 100 2/0.35 X >3000 26 100 150 2/0.35 〇 500-1000 27 100 200 2/0.35 〇 300〜800 28 150 — 2/0.35 X >3000 29 150 100 2/0,35 〇 800〜1500 30 150 150 2/0.35 〇 400-800 3t 150 200 2/0.35 〇 100~500 32 200 一 2/0.35 X >$000 33 200 100 2/0.35 〇 500〜1000 34 200 150 2/0.35 〇 200-500 35 200 200 2/0.35 〇 50〜400 -35- 1378509 [表2] No. 基板酿 (°C) 加熱德度 (°C) Ni/LaM 成 (原子%) 耐鹼性 腐蝕性 接觸電阻値 (u Q/cm2) 36 室溫 一 1/0.35 X >3000 37 室溫 100 1/0.35 X >3000 36 室溫 150 1/0.35 X >3000 39 i溫 200 1/0.35 X >3000 40 室溫 250 1/0.35 〇 1000-1500 41 室溫 250 0.5/Λ35 X >3000 42 100 ―― 0.5/0.35 X >3000 43 100 100 0.5/0.35 X >3000 44 100 150 0.5/α35 X >3000 45 100 200 0.5/0.35 〇 500〜1000 46 150 — 0.5/0.35 X >3000 47 150 100 0.5/0.35 X >3000 4S 150 150 0.5/0.35 〇 500-0000 49 150 20C □ 5/0.35 Ω 300^800 50 200 一 0.5/0.35 X >3000 51 200 100 0.5/0.35 X >3000 52 200 150 0.5/0.35 〇 300-800 53 200 200 0.5/0.35 〇 200-700 [表3] 試料 電位(V) 純A1 -1,93 八1-2原子%1^-0.35原乎%La -1 26 ρΗΤΟ -0.19 a-rro -0.17 IZO -D.57 由表1及表2之結果可之,藉由本發明之方法所製造 的鋁系合金膜(表1之No.5' 6、8〜10、12〜14、16〜18、 23 ' 26 ' 27 ' 29~31 ' 33~35、表 2 之 N〇·40、45、48、49 、52、53)均爲耐鹼性腐蝕性優異,而且鋁系合金膜與 ITO膜之接觸電阻値也很低。 此外,由表3亦可知,使用用於本發明的Al-Ni-X合 -36- 1378509 金膜的話,與純鋁(No. 1 )相比,與ITO膜之電極電位差 被抑制爲很小。 爲了參考,使用鋁-2原子百分比之鎳-0.35原子百分 比之鑭合金,使基板溫度爲室溫—不進行加熱的No.19( 比較例),與使用相同合金,使基板溫度由室溫—在250 °C進行加熱的No. 23 (本發明例)之腐蝕狀況顯示於圖5〜 圖8»詳言之,圖5及圖6係針對表1之試樣No.19,浸 漬TMAH水溶液後之光學顯微鏡相片以及透過型電子顯 微鏡剖面相片(FE-TEM,使用日立製作所製造之型號「 HF2000」之機器)。此外,圖7及圖8係針對試樣No.23 ,浸漬TMAH水溶液後之光學顯微鏡相片及透過型電子 顯微鏡剖面相片。又,根據透過型電子顯微鏡之觀察,藉 由電子激發型X線分析測定了膜組成。 比較這些圖可知:不進行加熱的試樣No. 1 9可以見到 TMAH浸漬所導致的腐蝕(參照圖5及圖6 ),相反地進 行特定的加熱之試樣No.23未被觀察到腐蝕(參照圖7及 圖8 )。 進而,調查鋁合金膜中的鎳含量對反射率所造成的影 響。 具體而言,測定使用鋁-X原子百分比之鎳-〇·35原子 百分比之鑭(X爲1〜5.5原子百分比)之鋁合金,成膜時 之基板溫度爲室溫,成膜後之加熱溫度爲約25 0°C,把加 熱時間控制爲約3 0分鐘而進行成膜之試樣的反射率。反 射率,係使用日本分光(股)製造之可見/紫外分光光度 -37- 1378509 計「V-5 70」,於測定波長1 000~2 50nm的範圍測定分光 反射率。具體而言,對基準反射鏡之反射光強度,測定試 料的反射光強度之値爲「分光反射率」。 圖4係顯示各試樣之反射的變化(波長:850〜250nm )之圖。以550nm之反射率爲基準來看,鎳含量1〜4原 子百分比滿足本發明的範圍之試樣,可以得到約超過 88%〜92%程度的高反射率,相對而言,鎳含量在5_5原子 百分比之超過本發明的範圍的試樣,反射率大致降低至 8 4%。 以上參照特定的實施樣態詳細說明本申請案,但對於 熟悉該項技藝者而言明顯可以在不逸脫本發明的精神與範 圍的情況下再施以種種變更或修正,此亦應是爲落入本發 明之範圍。 本申請案係根據於2007年12月26日提出申請之日 本申請案(特願2007 -3 3 5 004 )、及於2008年12月19 日提出申請之日本申請案(特願2008-3243 74 )而提出者 ,在本說明書參照其內容而將其納入。 [產業上利用可能性] 本發明係關於液晶顯示器或有機電致發光(EL )顯 示器等爲代表之顯示裝置的製造方法。詳言之,本發明係 關於具備氧化物透明導電膜與反射電極用鋁合金膜直接連 接而成的構造的顯示裝置之製造方法,且係可以有效防止 該鋁合金膜在圖案化時之鹼腐蝕之顯示裝置之製造方法》 -38- 1378509 根據本發明,可以因應於被包含於鋁合金膜的鎳含量及鈷 含量而適切控制反射電極之鋁合金膜的熱履歷(詳言之, 係成膜時之基板溫度及成膜後之加熱溫度),所以圖案化 時即使浸漬於TMAH水溶液等鹼性顯影液中也抑制了鋁 合金膜的腐蝕,可以減低氧化物透明導電膜與鋁合金膜之 接觸電阻。 【圖式簡單說明】 圖1係表示代表性的半透過型液晶顯示裝置的構成之 分解立體圖。 圖2係模式表示代表性的半透過型液晶顯示裝置的剖 面。 圖3係表示改變濺鍍時之基板溫度而成膜之鋁合金膜 (鋁-2原子百分比鎳-0.35原子百分比鑭)之浸漬電位之 圖。 圖4係表示純鋁膜及改變鎳量之鋁-鎳-鑭合金膜(反 射電極)的反射率之圖(圖中之組成單位爲原子百分比) 〇 圖5係表示在實施例浸漬於TMAH水溶液後的第1 9 號試樣(鋁-2原子百分比鎳-0.35原子百分比鑭膜,基板 溫度=室溫,無熱處理)之光學顯微鏡相片。 圖6係在實施例浸漬於TMAH水溶液後的第19號試 樣之透過型電子顯微鏡相片。 圖7係表示在實施例浸漬於TMAH水溶液後的第23 -39- 1378509 號試樣(鋁-2原子百分比鎳-0.3 5原子百分比鑭膜,基板 溫度=室溫,熱處理溫度=2 5 0 °C )之光學顯微鏡相片。 圖8係在實施例浸漬於TMAH水溶液後的第23號試 樣之透過型電子顯微鏡相片。 圖9係表示使用於鋁合金膜與氧化物透明導電膜( ITO膜)之間的接觸電阻的測定之喀爾文圖案(Kelvin pattern, TEG 圖案)之圖。 圖係表示於鋁-鎳·鑭合金膜,使基板溫度處在室 溫下成膜時,成膜後之加熱溫度以及鎳量對於耐鹼性腐蝕 性所造成的影響之圖。 圖Π係表示於鋁·鎳-鑭合金膜,使基板溫度提高至 100 °C而成膜時,成膜後之加熱溫度以及鎳量對於耐鹼性 腐鈾性所造成的影響之圖、 圖12係表示於鋁-鎳-鑭合金膜,使基板溫度提高至 150°C以及2 5 0 °C而成膜時,成膜後之加熱溫度以及鎳量 對於耐鹼性腐蝕性所造成的影響之圖。 圖13係表示於鋁-鎳-鑭-銅合金膜,使基板溫度處在 室溫下成膜時,成膜後之加熱溫度以及鎳量對於耐鹼性腐 蝕性所造成的影響之圖。 圖14係表示於鋁-鎳-鑭-銅合金膜,使基板溫度提高 至l〇〇°C而成膜時,成膜後之加熱溫度以及鎳量對於耐鹼 性腐蝕性所造成的影響之圖。 圖15係表示於鋁-鎳-鑭-銅合金膜,使基板溫度提高 至150°C以及250°c而成膜時,成膜後之加熱溫度以及鎳 -40- 1378509 量對於耐鹼性腐蝕性所造成的影響之圖。 圖16係表示於鋁-鎳-鑭-鍺合金膜,使基板溫度處在 室溫下成膜時,成膜後之加熱溫度以及鎳量對於耐鹼性腐 蝕性所造成的影響之圖。 圖17係表示於鋁-鎳-鑭-鍺合金膜,使基板溫度提高 至100 °c而成膜時,成膜後之加熱溫度以及鎳量對於耐鹼 性腐蝕性所造成的影響之圖。 • 圖18係表示於鋁-鎳-鑭-鍺合金膜,使基板溫度提高 至l5〇°C以及25(TC而成膜時,成膜後之加熱溫度以及鎳 量對於耐鹼性腐蝕性所造成的影響之圖。 【主要元件符號說明】 5 :閘極配線 7 :資料配線 1 1 :半透過型液晶顯示裝置 # I3 :共通電極 1 5 ·_對向基板 16 :黑矩陣 1 7 :彩色濾光片 • 19 :畫素電極 . 19a :透明畫素電極 19b :反射電極 21 : TFT基板 23 :液晶層 -41 - 1378509 41 :背光 51 :障壁金屬層 T :開關元件(TFT) P :畫素區域 A :透過區域 B:周圍光(人工光源) C :反射區域 F :來自背光之光 -42No. Substrate brewing (°C) Heating temperature (0〇Ni/LaM source %) Alkaline corrosion resistance contact resistance u (u Q/cm2) 1 Room temperature 250 (pure A1) X > 3000 2 Room temperature — 3/0.35 X >3000 3 Room temperature 100 3/0.35 X > 3000 4 Room temperature 150 3/0.35 X > 3000 5 Room temperature 200 3/0.35 〇700^1500 6 Room temperature 250 3/0.35 〇7 〇〇~t2〇〇7 100一3/0.35 X >3000 8 100 100 3/0.35 〇600-1100 9 100 150 3/0.35 〇400~900 10 100 200 3/0.35 〇200^700 1t 150 — 3 /0.35 X >3000 12 150 100 3/0.35 〇5〇〇^1〇〇〇13 150 150 3/0.35 〇300-700 14 150 200 3/0.35 3/0.35 X 200~600 15 200 One >3000 Te 200 100 3/0.35 〇400~900 17 200 150 3/0.35 〇100-400 18 200 200 3/0.35 〇50-300 19 room temperature one 2/0.35 X >3000 20 room temperature 100 2/0.35 X &gt ; 3000 21 room temperature 150 2/0.35 X > 3000 22 room temperature 200 2/0.35 X > 3000 23 room temperature 250 2/0.35 〇800^1500 24 100 — 2/0*35 X >3000 25 100 100 2/0.35 X >3000 26 100 150 2/0.35 〇500-1000 27 100 200 2/0.35 〇300~800 28 150 — 2/0. 35 X >3000 29 150 100 2/0,35 〇800~1500 30 150 150 2/0.35 〇400-800 3t 150 200 2/0.35 〇100~500 32 200 one 2/0.35 X >$000 33 200 100 2/0.35 〇500~1000 34 200 150 2/0.35 〇200-500 35 200 200 2/0.35 〇50~400 -35- 1378509 [Table 2] No. Substrate stuffing (°C) Heating degree (°C) Ni/LaM formation (atomic %) Alkali corrosion resistance contact resistance u (u Q/cm2) 36 Room temperature 1/0.35 X > 3000 37 Room temperature 100 1/0.35 X > 3000 36 Room temperature 150 1/ 0.35 X > 3000 39 i temperature 200 1/0.35 X > 3000 40 room temperature 250 1/0.35 〇1000-1500 41 room temperature 250 0.5/Λ35 X >3000 42 100 —— 0.5/0.35 X >3000 43 100 100 0.5/0.35 X >3000 44 100 150 0.5/α35 X >3000 45 100 200 0.5/0.35 〇500~1000 46 150 — 0.5/0.35 X >3000 47 150 100 0.5/0.35 X >3000 4S 150 150 0.5/0.35 〇500-0000 49 150 20C □ 5/0.35 Ω 300^800 50 200 a 0.5/0.35 X >3000 51 200 100 0.5/0.35 X >3000 52 200 150 0.5/0.35 〇300-800 53 200 200 0.5/0.35 〇200-700 [Table 3] Sample potential (V) Pure A1 -1, 93 八1-2原子%1^-0.35 Original %La -1 26 ρΗΤΟ -0.19 a-rro -0.17 IZO -D.57 The results of Tables 1 and 2 can be produced by the method of the present invention. Aluminum alloy film (No. 5' 6, 8 to 10, 12 to 14, 16 to 18, 23 ' 26 ' 27 ' 29 to 31 ' 33 to 35 in Table 1 and N to · 40, 45 in Table 2 48, 49, 52, and 53) are excellent in alkali corrosion resistance, and the contact resistance of the aluminum alloy film and the ITO film is also low. Further, as is also understood from Table 3, when the Al-Ni-X-36- 1378509 gold film used in the present invention is used, the electrode potential difference from the ITO film is suppressed to be small as compared with the pure aluminum (No. 1). . For reference, an aluminum-2 atomic percent nickel-0.35 atomic percent bismuth alloy is used to make the substrate temperature to room temperature - No. 19 (comparative example) without heating, and the same alloy is used to make the substrate temperature from room temperature - The corrosion condition of No. 23 (inventive example) heated at 250 ° C is shown in Fig. 5 to Fig. 8» in detail, and Fig. 5 and Fig. 6 are for sample No. 19 of Table 1, after impregnating the TMAH aqueous solution. An optical microscope photograph and a transmission electron microscope cross-section photograph (FE-TEM, a machine of the model "HF2000" manufactured by Hitachi, Ltd.). Further, Fig. 7 and Fig. 8 are an optical microscope photograph and a transmission electron microscope cross-sectional photograph of Sample No. 23, after impregnating the TMAH aqueous solution. Further, the film composition was measured by electron-excitation X-ray analysis according to observation by a transmission electron microscope. Comparing these figures, it can be seen that the sample No. 19 which is not heated can see the corrosion caused by the TMAH immersion (refer to Figs. 5 and 6), and the specific heating No. 23 which is subjected to the specific heating is not observed to be corroded. (See Figures 7 and 8). Further, the influence of the nickel content in the aluminum alloy film on the reflectance was investigated. Specifically, an aluminum alloy having a nickel-x atomic percentage of aluminum-x·35 atomic percent (X is 1 to 5.5 atomic percent) is used, and the substrate temperature at the time of film formation is room temperature, and the heating temperature after film formation The reflectance of the film-formed sample was controlled at about 25 ° C by controlling the heating time to about 30 minutes. The reflectance was measured by using the visible/ultraviolet spectrophotometer -37- 1378509 "V-5 70" manufactured by Japan Spectrophotometer, and the spectroscopic reflectance was measured at a measurement wavelength of 1 000 to 2 50 nm. Specifically, the intensity of the reflected light of the reference mirror and the intensity of the reflected light of the sample are measured as "spectral reflectance". Fig. 4 is a view showing a change in reflection (wavelength: 850 to 250 nm) of each sample. From the viewpoint of the reflectance of 550 nm, a sample having a nickel content of 1 to 4 atom% satisfying the range of the present invention can obtain a high reflectance of about 88% to 92%, and a nickel content of 5 to 5 atoms. For samples having a percentage exceeding the scope of the present invention, the reflectance was substantially reduced to 8 4%. The present application has been described in detail with reference to the specific embodiments thereof, and it is obvious to those skilled in the art that various changes or modifications may be made without departing from the spirit and scope of the invention. It is within the scope of the invention. This application is based on a Japanese application filed on December 26, 2007 (Japanese Patent Application No. 2007-3 3 5 004), and a Japanese application filed on December 19, 2008 (Japanese Patent Application No. 2008-3243 74) And the presenter has incorporated this content with reference to its contents. [Industrial Applicability] The present invention relates to a method of manufacturing a display device typified by a liquid crystal display or an organic electroluminescence (EL) display. In particular, the present invention relates to a method of manufacturing a display device having a structure in which an oxide transparent conductive film and an aluminum alloy film for a reflective electrode are directly connected, and is capable of effectively preventing alkali corrosion of the aluminum alloy film during patterning. According to the present invention, it is possible to appropriately control the heat history of the aluminum alloy film of the reflective electrode in accordance with the nickel content and the cobalt content contained in the aluminum alloy film (in detail, film formation) In the case of the substrate, the temperature of the substrate and the heating temperature after the film formation are controlled, so that even if it is immersed in an alkaline developing solution such as a TMAH aqueous solution during patterning, the corrosion of the aluminum alloy film is suppressed, and the contact between the oxide transparent conductive film and the aluminum alloy film can be reduced. resistance. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an exploded perspective view showing the configuration of a representative transflective liquid crystal display device. Fig. 2 is a cross-sectional view showing a typical transflective liquid crystal display device. Fig. 3 is a view showing the impregnation potential of an aluminum alloy film (aluminum-2 atomic percent nickel - 0.35 atomic percent 镧) which is formed by changing the substrate temperature at the time of sputtering. Fig. 4 is a graph showing the reflectance of a pure aluminum film and an aluminum-nickel-niobium alloy film (reflective electrode) which changes the amount of nickel (the unit of the figure is atomic percentage). Fig. 5 shows the immersion in an aqueous solution of TMAH in the examples. An optical microscope photograph of the subsequent sample No. 9 (aluminum-2 atomic percent nickel - 0.35 atomic percent ruthenium film, substrate temperature = room temperature, no heat treatment). Fig. 6 is a transmission electron micrograph of the 19th sample after the embodiment was immersed in an aqueous TMAH solution. Figure 7 is a graph showing the sample No. 23 - 39-1378509 (aluminum-2 atomic percent nickel - 0.3 5 atomic percent ruthenium film, substrate temperature = room temperature, heat treatment temperature = 2 50 ° after the embodiment was immersed in the TMAH aqueous solution). Optical microscope photo of C). Fig. 8 is a transmission electron micrograph of the sample No. 23 after the embodiment was immersed in an aqueous TMAH solution. Fig. 9 is a view showing a Kelvin pattern (TEG pattern) used for measurement of contact resistance between an aluminum alloy film and an oxide transparent conductive film (ITO film). The figure is a graph showing the influence of the heating temperature after film formation and the amount of nickel on the alkali corrosion resistance when the substrate temperature is formed at room temperature in an aluminum-nickel-niobium alloy film. Fig. 表示 is a diagram showing the effect of the heating temperature after film formation and the amount of nickel on the resistance to alkaline uranium when the substrate is heated to 100 °C in an aluminum-nickel-bismuth alloy film. 12 series is shown in the aluminum-nickel-bismuth alloy film, when the substrate temperature is raised to 150 ° C and 250 ° C film formation, the heating temperature after film formation and the amount of nickel on the alkali corrosion resistance Picture. Fig. 13 is a view showing the influence of the heating temperature after film formation and the amount of nickel on the alkali corrosion resistance when the substrate temperature is formed at room temperature in an aluminum-nickel-yttrium-copper alloy film. Fig. 14 is a view showing the effect of the heating temperature after film formation and the amount of nickel on the alkali corrosion resistance when the substrate temperature is increased to 10 ° C in an aluminum-nickel-yttrium-copper alloy film. Figure. Figure 15 is a diagram showing the aluminum-nickel-yttrium-copper alloy film, when the substrate temperature is raised to 150 ° C and 250 ° c film formation, the heating temperature after film formation and the amount of nickel-40-1378509 for alkali corrosion resistance A map of the effects of sex. Fig. 16 is a view showing the influence of the heating temperature after film formation and the amount of nickel on the alkali corrosion resistance when the substrate temperature is formed at room temperature in an aluminum-nickel-niobium-niobium alloy film. Fig. 17 is a graph showing the effect of the heating temperature after film formation and the amount of nickel on the alkali corrosion resistance when the substrate temperature is raised to 100 °C in an aluminum-nickel-niobium-niobium alloy film. • Figure 18 shows the aluminum-nickel-niobium-niobium alloy film, which increases the substrate temperature to 15 °C and 25 (when TC is formed, the heating temperature after film formation and the amount of nickel are resistant to alkaline corrosion). Fig. [Description of main component symbols] 5: Gate wiring 7: Data wiring 1 1 : Semi-transmissive liquid crystal display device # I3 : Common electrode 1 5 · _ Counter substrate 16 : Black matrix 1 7 : Color Filter • 19: pixel electrode. 19a: transparent pixel electrode 19b: reflective electrode 21: TFT substrate 23: liquid crystal layer -41 - 1378509 41: backlight 51: barrier metal layer T: switching element (TFT) P: drawing Element area A: transmission area B: ambient light (artificial light source) C: reflection area F: light from backlight - 42

Claims (1)

1378509 十、申請專利範圍 1. 一種顯示裝置之製造方法,係具備反射電極用 合金膜直接連接在氧化物透明導電膜之上的構造之顯 置之製造方法,其特徵爲包含:在基板上形成前述氧 透明導電膜之第1步驟, 在前述氧化物透明導電膜上形成前述鋁合金膜之 步驟,及 • 加熱前述鋁合金膜之第3步驟; 前述鋁合金膜係由鎳及鈷之中至少一種含0.1〜4 百分比、以及由X群所選擇之至少一種元素總量在( 原子百分比的範圍之鋁-(鎳/鈷)-X合金所構成,前 爲 L a、M g、C r、Μ η、R u、R h、P t、P d、I r、C e、P r 、Tb、Dy、N-d、Ti、Zr、Nb、Mo、Hf、Ta、W、Y、 Sm、Eu、Ho、Er、Tm、Yb、以及 Lu 所構成, 因應於前述鋁·(鎳/鈷)-X合金膜之鎳含量以及 ® 量之中至少一個量,控制前述第2步驟之基板溫度及 第3步驟之加熱溫度。 2. 如申請專利範圍第1項之顯示裝置之製造方法 中 ' 前述鋁合金膜,含有0.5〜4原子百分比之鎳及鈷 - 至少一種。 3. 如申請專利範圍第1項之顯示裝置之製造方法 中 前述鋁合金膜,含有0.5〜4原子百分比之鎳。 之鋁 示裝 化物 第2 原子 K 1 ~2 述X 、Gd Fe、 鈷含 前述 ,其 之中 ,其 -43- 1378509 4.如申請專利範圍第1〜3項之任一項之顯示裝置之製 造方法,其中 前述Al- ( Ni/C〇 ) -X合金膜含有0·1〜4原子百分比之 鎳與鈷之中至少一種,及0.1〜2原子百分比之鑭(La)與 銨(Nd )之中至少一種。 5如申請專利範圍第1〜3項之任一項之顯示裝置之製 造方法,其中 前述A卜(Ni/C0) ·Χ合金膜進而含有由0·1〜2原子百 分比之Z(Z爲Ge、Cu'及Si所構成之群中選擇之至少 一種元素)。 6如$請專利範圍第5項之顯示裝置之製造方法,其 中 前述Ai_(Ni/C〇) -X合金膜含有〇·1〜4原子百分比之 鎳及銘之中至少一種’及〇.1〜2原子百分比之鋼(La)與 銳(Nd)之中至少一"種’及〇.1〜2原子百分比之錯(Ge) 與銅(Cu )之中至少—種° 7.如申請專利範圍第1項之顯示裝置之製造方法’其 中 前述氧化物透明導電膜’係氧化銦錫(ITO )或者氧 化.銦鋅(IZO)。 •44 (1378509 X. Patent Application No. 1. A manufacturing method of a display device, comprising a method for manufacturing a structure in which an alloy film for a reflective electrode is directly connected to an oxide transparent conductive film, characterized in that it comprises: forming on a substrate a first step of the oxygen transparent conductive film, a step of forming the aluminum alloy film on the oxide transparent conductive film, and a third step of heating the aluminum alloy film; the aluminum alloy film is made of at least nickel and cobalt A total of at least one element selected from the group X and having an atomic percentage of aluminum-(nickel/cobalt)-X alloy, the former being L a, Mg, Cr, η η, R u, R h, P t, P d, I r, C e, P r , Tb, Dy, Nd, Ti, Zr, Nb, Mo, Hf, Ta, W, Y, Sm, Eu, Ho, Er, Tm, Yb, and Lu are formed, and the substrate temperature and the third step of the second step are controlled in accordance with at least one of the nickel content and the amount of the aluminum (nickel/cobalt)-X alloy film. The heating temperature of the step 2. The manufacturer of the display device as claimed in claim 1 The above aluminum alloy film contains at least one of 0.5 to 4 atomic percent of nickel and cobalt. 3. The aluminum alloy film according to the manufacturing method of the display device of claim 1 containing 0.5 to 4 atomic percent of nickel. The display device of any one of the first to third aspects of the patent application of the present invention, wherein the aluminum atom is represented by a second atom, K 1 to 2, and X, Gd Fe, and cobalt are contained in the above-mentioned, and -43-1378509. The manufacturing method, wherein the Al-(Ni/C〇)-X alloy film contains 0.1 to 4 atomic percent of at least one of nickel and cobalt, and 0.1 to 2 atomic percent of lanthanum (La) and ammonium (Nd) A method of manufacturing a display device according to any one of claims 1 to 3, wherein the A (Ni/C0) · bismuth alloy film further contains from 0.1 to 2 atomic percent Z (Z is at least one element selected from the group consisting of Ge, Cu', and Si). 6 The manufacturing method of the display device of the fifth aspect of the invention, wherein the aforementioned Ai_(Ni/C〇)-X The alloy film contains 〇·1 to 4 atomic percent of nickel and at least one of the original 'and 〇.1~2 original At least one of the percentages of steel (La) and sharp (Nd) "species' and 1.1~2 atomic percent of the error (Ge) and at least one of copper (Cu). 7. As claimed in the patent scope The manufacturing method of the display device of the first aspect, wherein the oxide transparent conductive film is an indium tin oxide (ITO) or an indium zinc oxide (IZO).
TW97151060A 2007-12-26 2008-12-26 Process for producing display TW200952079A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007335004 2007-12-26
JP2008324374A JP4611418B2 (en) 2007-12-26 2008-12-19 Manufacturing method of display device

Publications (2)

Publication Number Publication Date
TW200952079A TW200952079A (en) 2009-12-16
TWI378509B true TWI378509B (en) 2012-12-01

Family

ID=40801291

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97151060A TW200952079A (en) 2007-12-26 2008-12-26 Process for producing display

Country Status (3)

Country Link
JP (1) JP4611418B2 (en)
TW (1) TW200952079A (en)
WO (1) WO2009081993A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI689121B (en) * 2018-02-05 2020-03-21 日商神戶製鋼所股份有限公司 Reflective anode electrode for organic EL display, thin film transistor substrate, organic electroluminescence display and sputtering target

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858297B1 (en) * 2001-11-02 2008-09-11 삼성전자주식회사 Reflective-transmissive type liquid crystal display device and method of manufacturing the same
JP2011033834A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for manufacturing display device
JP2011091352A (en) * 2009-09-28 2011-05-06 Kobe Steel Ltd Thin-film transistor substrate, method of manufacturing the same, and display device
KR101097316B1 (en) * 2009-10-12 2011-12-23 삼성모바일디스플레이주식회사 organic light emitting device
JP5719610B2 (en) * 2011-01-21 2015-05-20 三菱電機株式会社 Thin film transistor and active matrix substrate
JP5524905B2 (en) * 2011-05-17 2014-06-18 株式会社神戸製鋼所 Al alloy film for power semiconductor devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438945B2 (en) * 1993-07-27 2003-08-18 株式会社神戸製鋼所 Al alloy thin film
JP3940385B2 (en) * 2002-12-19 2007-07-04 株式会社神戸製鋼所 Display device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI689121B (en) * 2018-02-05 2020-03-21 日商神戶製鋼所股份有限公司 Reflective anode electrode for organic EL display, thin film transistor substrate, organic electroluminescence display and sputtering target

Also Published As

Publication number Publication date
JP2009175720A (en) 2009-08-06
WO2009081993A1 (en) 2009-07-02
TW200952079A (en) 2009-12-16
JP4611418B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
TWI378509B (en)
JP4611417B2 (en) Reflective electrode, display device, and display device manufacturing method
JP4705062B2 (en) Wiring structure and manufacturing method thereof
EP3435385B1 (en) Laminated transparent conductive film, laminated wiring film, and method for producing laminated wiring film
JP5060904B2 (en) Reflective electrode and display device
US6465117B2 (en) Transparent conductive film and process for forming a transparent electrode
JPH1170610A (en) Transparent conductive film and formation of transparent electrode
WO2010053183A1 (en) Reflective anode and wiring film for organic el display device
TW201033378A (en) Al alloy film for display device, display device, and sputtering target
TW200523374A (en) Ag-base interconnecting film for flat panel display, ag-base sputtering target and flat panel display
JPH10275683A (en) Thin film layered conductor
JPH09176837A (en) Transparent conductive film
KR101764053B1 (en) Ag alloy film for reflecting electrode or wiring electrode, reflecting electrode or wiring electrode, and ag alloy sputtering target
WO2014080933A1 (en) Electrode used in display device or input device, and sputtering target for use in electrode formation
TW201009849A (en) Wiring material and wiring board using the same
WO2004070812A1 (en) Method for manufacturing semi-transparent semi-reflective electrode substrate, reflective element substrate, method for manufacturing same, etching composition used for the method for manufacturing the reflective electrode substrate
JP2004050643A (en) Thin film laminated body
JP5159558B2 (en) Manufacturing method of display device
JP4583564B2 (en) Wiring, electrodes and contacts
JP2011033834A (en) Method for manufacturing display device
JP2009228068A (en) Reflective electrode and method for manufacturing the same, and electro-optic device having reflective electrode
JPH11262968A (en) Transparent conductive film
JP2003332262A (en) Wiring material and wiring substrate using same
WO2019044285A1 (en) Al ALLOY THIN FILM, LIGHT EMITTING ELEMENT AND SPUTTERING TARGET
JPH10282907A (en) Electrode substrate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees