WO2009081747A1 - Dicing apparatus and dicing method - Google Patents

Dicing apparatus and dicing method Download PDF

Info

Publication number
WO2009081747A1
WO2009081747A1 PCT/JP2008/072515 JP2008072515W WO2009081747A1 WO 2009081747 A1 WO2009081747 A1 WO 2009081747A1 JP 2008072515 W JP2008072515 W JP 2008072515W WO 2009081747 A1 WO2009081747 A1 WO 2009081747A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
work
processing
workpiece
work table
Prior art date
Application number
PCT/JP2008/072515
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitami Hojo
Original Assignee
Tokyo Seimitsu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co., Ltd. filed Critical Tokyo Seimitsu Co., Ltd.
Publication of WO2009081747A1 publication Critical patent/WO2009081747A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means

Definitions

  • the present invention relates to a dicing apparatus and a dicing method for dividing a workpiece such as a wafer on which a semiconductor device or an electronic component is formed into individual chips.
  • a dicing machine for cutting and grooving a workpiece such as a wafer on which a semiconductor device or an electronic component is formed is at least a rotating blade made of a thin grindstone called a blade rotated at high speed by a spindle, and a workpiece holding the workpiece.
  • a table, and X, Y, Z, and ⁇ movement axes that change the relative positions of the work table and the blade are provided.
  • cutting fluid for cooling and lubrication is supplied from the nozzle to a rotating blade or a machining point where the workpiece and the blade are in contact with each other. To be applied.
  • Fig. 9 shows a conventional example of a dicing apparatus.
  • the dicing device 70 is disposed as opposed to each other as processing means, and includes spindles 72 and 72 with a built-in high-frequency motor with a blade 71 and a wheel cover (not shown) attached to the tip, a work table 73 that holds the work W by suction, A processing unit 75 having an imaging unit 74 including a microscope, a CCD camera, or the like that images the workpiece W is provided.
  • the dicing apparatus 70 includes a cleaning unit 76 that spin-cleans the processed workpiece W processed by the processing unit 75 and a load port 77 that mounts a cassette that stores a large number of workpieces W mounted on the frame F.
  • a conveying means 78 for conveying the workpiece W, a controller 79 for controlling the operation of each part, and the like.
  • the structure of the processing section 75 is guided by X guides 81 and 81 provided on the X base 80 and driven by a linear motor 82 in the X direction indicated by XX in the figure.
  • the X table 83 is provided with a work table 85 via a rotary table 84 that rotates in the ⁇ direction.
  • Y tables 88 and 88 which are guided by Y guides 87 and 87 and driven in the Y direction indicated by YY in the figure by a stepping motor and a ball screw (not shown).
  • Each Y table 88 is provided with a Z table 89 that is driven in the Z direction indicated by ZZ in the figure by driving means (not shown), and the Z table 89 has a built-in high-frequency motor with a blade 71 attached to the tip.
  • the spindle 72 is fixed. Since the structure of the processing unit 74 is as described above, the blade 71 is index-fed in the Y direction and cut and fed in the Z direction, and the work table 73 is cut and fed in the X direction.
  • Both spindles 72 are rotated at a high speed of 1,000 rpm to 80,000 rpm, and a supply nozzle (not shown) for supplying a cutting fluid for immersing the workpiece W in the cutting fluid is provided in the vicinity.
  • the blade 71 an electrodeposition blade in which diamond abrasive grains or CBN abrasive grains are electrodeposited with nickel, a metal resin bond blade in which metal powder is mixed and a resin is used.
  • the dimensions of the blade 71 are variously selected depending on the content of processing. When dicing a normal semiconductor wafer as a workpiece, a blade having a diameter of about 50 mm and a thickness of about 30 ⁇ m is used.
  • the controller that controls the operation of each part of the dicing apparatus 70 includes a CPU, a memory, an input / output circuit section, various control circuit sections, and the like, and is incorporated in the frame of the dicing apparatus 70.
  • a dicing apparatus for example, a dicing apparatus described in Patent Document 1 has been proposed.
  • laser light having a focused point inside the work W is incident on the work W, and a plurality of modified regions by multiphoton absorption are formed inside the work W.
  • a laser dicing apparatus that expands the work W and divides the work W into individual chips T is also used for processing the work W.
  • the laser dicing apparatus is provided with a load port, a conveying means, a work table and the like, similar to the dicing apparatus 70. As shown in FIG. ing.
  • the laser head 91 includes a laser oscillator 91A, a collimating lens 91B, a mirror 91C, a condensation lens 91D, and the like.
  • the laser light L oscillated from the laser oscillator 91A is collimated in the horizontal direction by the collimating lens 91B.
  • the light is reflected in the vertical direction and condensed by the condensation lens 91D (see, for example, Patent Document 2).
  • the condensing point of the laser beam L When the condensing point of the laser beam L is set inside the thickness direction of the workpiece W placed on the workpiece table 73, the laser beam L transmitted through the surface of the workpiece W is collected as shown in FIG. Energy is concentrated at the light spot, and a modified region P such as a crack region, a melted region, a refractive index changing region or the like due to multiphoton absorption is formed in the vicinity of the condensing point inside the workpiece.
  • a modified region P such as a crack region, a melted region, a refractive index changing region or the like due to multiphoton absorption is formed in the vicinity of the condensing point inside the workpiece.
  • a plurality of reformed regions P are formed side by side inside the workpiece W by moving the workpiece W in the horizontal direction.
  • the workpiece W is naturally cleaved starting from the reforming region P, or is cleaved starting from the reforming region P by applying a slight external force.
  • the workpiece W is easily divided into chips without causing chipping on the front and back surfaces.
  • the relative distance between the imaging position of the imaging means 74 and the processing position by the blade 71 or laser light is measured before dicing, and the imaging means 74, Adjustment of the focal position of the blade 71 or the laser beam is performed.
  • Such adjustment is performed by performing dicing processing of the workpiece W on a trial basis and imaging the processing groove formed in the workpiece W by the imaging means 74.
  • the workpiece W to be newly machined is placed on the workpiece table 73, the workpiece W is imaged by the imaging means 74 aligned in this way, and alignment is performed to adjust the position between the machining position and the machining means. The operation is performed. Further, during machining, the workpiece W is imaged by the imaging means 74 at any time as needed to check the machining status.
  • the present invention has been made for such a problem, and an object of the present invention is to provide a dicing apparatus and a dicing method that can shorten the adjustment time of a blade and a workpiece and improve the operating rate of the entire apparatus. It is said.
  • the dicing apparatus provides a work table on which a work is placed, a processing means for processing the work, and a relative relationship between the work table and the processing means.
  • Moving means for moving the imaging means imaging means capable of simultaneously imaging the work on the work table and the processing means, imaging means moving axis for moving the imaging means, the processing means, the moving means, and the imaging
  • a control means for controlling the moving axis of the imaging means.
  • the imaging means moving axis positions the imaging means between the work table and the processing means, and the imaging means is the work table. And the processing means.
  • a third aspect of the present invention is the first or second aspect, wherein the imaging means is a first imaging unit that images the processing means and is provided in the direction of the processing means. 1, and a second imaging unit that images a workpiece on the work table and is provided in the direction of the work table.
  • a dicing method relatively includes a work table on which a work is placed, a processing means for processing the work, and the work table and the processing means.
  • a work table on which a work is placed and a processing means such as a blade or a laser rotated by a spindle are moved relative to each other in XYZ ⁇ directions by moving means controlled by the control means.
  • the workpiece is diced and moved.
  • the dicing apparatus is provided with an imaging unit capable of simultaneously imaging the workpiece on the work table and the processing unit, and an imaging unit moving axis for moving the imaging unit.
  • the imaging unit includes a first imaging unit that images the processing unit provided in the direction of the processing unit and a second imaging unit that images a workpiece on the work table provided in the direction of the work table. And is moved between the work table and the processing means by being moved by the imaging means moving axis.
  • the imaging unit images a position serving as a reference for the processing unit such as the tip of the blade by the first imaging unit, and images a position serving as a reference such as a street or an alignment mark on the workpiece by the second imaging unit.
  • the captured two images are processed by a known image processing method such as superposition by the control means, and the relative position coordinates between the processing means and the workpiece are calculated.
  • the positions of the processing means and the workpiece are matched based on the calculated relative position coordinates.
  • the imaging means moves and retracts between the work table and the machining means by the imaging means moving axis, and does not hinder the machining of the workpiece on the work table by the machining means.
  • the imaging means can acquire information on the height direction of the blade by focusing on the tip of the blade.
  • the outer shape of the blade can be known, and the wear amount of the blade can be measured without contact.
  • the dicing apparatus and the dicing method of the present invention it is possible to adjust the blade and the workpiece without experimentally processing the dummy workpiece, shortening the adjustment time and necessary for the adjustment. It is possible to improve the operating rate of the entire apparatus by reducing the cost.
  • FIG. 1 is a perspective view showing the appearance of a dicing apparatus in which the dicing method of the invention is implemented;
  • FIG. 2 is a perspective view showing a structure of a processing portion of the dicing apparatus shown in FIG. 1;
  • FIG. 3 is a cross-sectional view showing the main structure of the processed part shown in FIG. 2;
  • FIG. 4 is a plan view showing the structure of the processing part of the dicing apparatus;
  • FIG. 5 is a side view showing the structure of the processing portion of the dicing apparatus;
  • FIG. 6 is a plan view showing a state where one blade and a workpiece are imaged by the imaging device;
  • FIG. 7 is a plan view showing a state in which the other blade and the workpiece are imaged by the imaging device;
  • FIG. 1 is a perspective view showing the appearance of a dicing apparatus in which the dicing method of the invention is implemented;
  • FIG. 2 is a perspective view showing a structure of a processing portion of the dic
  • FIG. 8 is a plan view showing a state in which the imaging device is retracted;
  • FIG. 9 is a perspective view showing the appearance of a conventional dicing apparatus;
  • 10 is a perspective view showing a structure of a processing portion of the dicing apparatus shown in FIG. 8;
  • FIG. 11 is a side view showing the configuration of a dicing apparatus that performs dicing with a laser;
  • FIG. 12 is a side sectional view showing the principle of laser dicing.
  • FIG. 1 is an overall perspective view of the dicing apparatus.
  • the dicing apparatus 1 includes a load port 2 for transferring a cassette storing a plurality of workpieces to and from an external device, and a suction unit 3, and a conveying unit that conveys the workpiece to each part of the device. 4, a processing unit 5, a spinner 6 that cleans and dries a workpiece after processing, and a controller 7 that serves as control means for controlling the operation of each part of the apparatus.
  • the processing unit 5 includes two spindles 9 and 9 which are arranged opposite to each other as processing means and have a blade 8 attached to the tip, and two work tables 10 and 11 having the same shape on which the workpieces are sucked and placed. , 11 is provided with an imaging means 12 capable of imaging the workpiece and the blade 8 simultaneously.
  • a box-shaped oil pan 20 is horizontally arranged so as to sufficiently surround the work tables 10 and 11 as shown in FIG.
  • Two pairs of guide rails (guide mechanisms) 22 and 22 are arranged on the left side surface of the oil pan 20 along an arrow X direction in the figure, and between these guide rails 22 and 22 are arranged.
  • the ball screw 24 constituting the drive mechanism is disposed in parallel with the guide rails 22 and 22 and along the left side surface of the oil pan 20.
  • a servo motor 26 that rotationally drives the ball screw 24 is disposed on the back side in the depth direction of the oil pan 20. Further, an X table 16 guided in the guide rails 22 and 22 and driven in the X direction by the rotation of the ball screw 24 by the servo motor 26 is arranged in the vertical direction.
  • the drive mechanism of the present invention may be a drive mechanism using a linear motor in addition to the drive mechanism using the ball screw 24.
  • the X table 16 is provided with a ball nut 28 screwed into the ball screw 24, and sliders 30 and 30 slidably engaged with the guide rails 22 and 22, and in the Z direction (see FIG. 1) is mounted, and a work table 10 is attached to the ⁇ table 32.
  • the bottom surface of the rotation axis of the ⁇ table 32 is fixed to an L-shaped fixing jig 33 attached to the X table 16 so that the work table 10 rotates in the ⁇ direction on a horizontal plane.
  • a pair of bellows (bellows members) 34, 34 that are extended and contracted as the X table 16 moves in the X direction and covers the guide rails 22, 22 and the ball screw 24 are disposed on the left side surface of the oil pan 20.
  • One bellows 34 has one end fixed to the front side in the depth direction of the oil pan 20 and the other end fixed to the front side edge in the depth direction of the X table 16.
  • One end of the other bellows 34 is fixed to the back side in the depth direction of the oil pan 20, and the other end is fixed to the back side edge in the depth direction of the X table 16.
  • the other bellows 34 is omitted.
  • a pair of guide rails (guide mechanisms) 36 and 36 are also provided on the right side surface of the oil pan 20 along the arrow X direction in FIG. Also between 36 and 36, a ball screw 38 constituting a drive mechanism is disposed in parallel with the guide rails 36 and 36 and along the right side surface of the oil pan 20.
  • a servo motor 40 that rotationally drives the ball screw 38 is disposed on the deep side of the oil pan 20 in the depth direction. Further, an X table 18 guided by the guide rails 36 and 36 and driven in the X direction by the rotation of the ball screw 38 by the servo motor 40 is disposed.
  • the X table 18 is provided with a ball nut (not shown) that is screwed with the ball screw 38, and a slider (not shown) that is slidably engaged with the guide rails 36, 36, and in the Z direction (see FIG. 1). ) Is mounted on a ⁇ table ( ⁇ rotation shaft) 44, and the work table 11 is attached to the ⁇ table 44. The bottom surface of the rotation axis of the ⁇ table 44 is fixed to an L-shaped fixing jig (not shown) attached to the X table 18 so that the work table 11 rotates in the ⁇ direction on a horizontal plane.
  • a pair of bellows (bellows members) 46 and 46 that are extended and contracted as the X table 18 moves in the X direction and covers the guide rails 36 and 36 and the ball screw 38 are disposed on the right side surface of the oil pan 20.
  • One bellows 46 has one end fixed to the front side in the depth direction of the oil pan 20 and the other end fixed to the front side edge in the depth direction of the X table 18.
  • One end of the other bellows 46 is fixed to the back side in the depth direction of the oil pan 20, and the other end is fixed to the back side edge in the depth direction of the X table 18.
  • the other bellows 46 is omitted.
  • a gate-shaped guide base 48 is erected on the processing portion 5 as shown in FIG.
  • a spindle Y guide 50 is mounted horizontally on the side surface of the guide base 48 in the direction of the arrow Y in the figure.
  • the spindle Y guide 50 is guided by the spindle Y guide 50 and serves as a moving means that is indexed in the Y direction by a drive mechanism (not shown).
  • Two spindle Y tables 52, 52 are provided.
  • Each spindle Y table 52 is provided with a spindle Z table 54 as a moving means that is cut and fed in the direction of arrow Z in the figure by a guide rail and a driving mechanism (not shown).
  • Each spindle Z table 54 has a holder 56.
  • a spindle 9 is attached via
  • the drive mechanism for the spindle Y table 52 and the spindle Z table 54 may be a linear motor, or may be a servo motor and a lead screw.
  • Spindles 9 and 9 are high-frequency motor built-in air bearing type or mechanical bearing type spindles, and are arranged to face each other. Each spindle 9 has a rotating blade 8 attached to the tip, and is rotated at high speed by the spindle 9.
  • the blade 8 is surrounded by a flange cover (not shown) opened on the front side and the lower side, and grinding water is supplied from a grinding nozzle provided on the flange cover toward a processing point.
  • the flange cover is provided with a cleaning nozzle (not shown), and cleaning water is supplied from the cleaning nozzle toward the processing point.
  • the blade 8 is a thin disk-shaped grindstone, and an electrodeposition blade in which diamond abrasive grains or CBN abrasive grains are electrodeposited with nickel, a metal resin bond blade in which a metal powder is mixed, and the like are used.
  • the dimensions of the blade 8 are variously selected depending on the contents of processing. When dicing a normal semiconductor wafer as a workpiece, a blade having a diameter of about 50 mm and a thickness of about 30 ⁇ m is used.
  • the two rotary blades 8 and 8 are independently indexed in the Y direction and cut in the Z direction in the drawing.
  • imaging means Y guides 13 and 13 are provided on the bottom surface of the guide base 48 as imaging means moving axes.
  • An imaging means moving table 14 to which the imaging means 12 is fixed is attached to the imaging means Y guides 13 and 13 so that the imaging means 12 is movable in the Y direction.
  • the imaging means 12 is provided in the direction of the blade 8 and is provided in the direction of the first imaging unit 12A made of a microscope, a CCD camera, or the like, and the work tables 10 and 11, and the microscope. And a second imaging unit 12B composed of a CCD camera or the like.
  • the imaging unit 12 is positioned between the work table 11 (or the work table 10) and the blade 8 as the imaging unit moving table 14 moves on the imaging unit Y guides 13 and 13, and the first imaging unit 12A uses the blade. 8 is imaged, and the second imaging unit 12B images a reference position such as a street or an alignment mark on the work W on the work table 11.
  • the two images picked up by the first image pickup unit 12A and the second image pickup unit 12B are transmitted to the controller 7 and processed by a known image processing method such as superposition, whereby the blade 8 and the work W are processed.
  • Relative position coordinates for adjusting the position are calculated.
  • the blade 8 and the workpiece W are aligned based on the calculated relative position coordinates. As a result, the blade 8 and the workpiece W can be adjusted without processing the dummy workpiece experimentally.
  • one piece of work W attached to the frame via dicing tape accommodated in a cassette placed on the load port 2 of the dicing apparatus 1 is conveyed by the conveying means 4. It is pulled out from the cassette one by one and is attracted to the work table 11 (or work table 10).
  • the work W attracted to the work table 11 is positioned below the blade 8 attached to the tip of one spindle 9 as the work table 11 moves in the X direction as shown in FIG.
  • the imaging means 12 is positioned between the workpiece table 11 and the blade 8, and the tip of the blade 8 is imaged by the first imaging unit 12A as shown in FIG.
  • the second imaging unit 12B captures a reference position such as a street or an alignment mark on the work W on the work table 11.
  • the two images captured by the first imaging unit 12A and the second imaging unit 12B are transmitted to the controller 7.
  • the two images transmitted to the controller 7 are processed by a known image processing technique such as superposition so that relative position coordinates for adjusting the positions of the blade 8 and the workpiece W are calculated.
  • the blade 8 and the workpiece W are aligned based on the calculated relative position coordinate values.
  • the other spindle 9 moves and moves on the work table 11 as shown in FIG.
  • the blade 8 is positioned above the workpiece W, and the imaging means 12 is moved to be positioned between the blade 8 attached to the tip of the other spindle 9 and the work table 11.
  • the tip of the blade 8 is imaged by the first imaging unit 12A in the same manner as the blade 8 attached to one spindle 9, and the workpiece W on the work table 11 is imaged by the second imaging unit 12B.
  • the imaging unit 12 moves to a position where the blades 8 and 8 do not prevent the workpiece W from being processed as shown in FIG. . While the work W on the work table 11 is being machined, a new work W is placed on the work table 10, and as soon as the work W on the work table 11 has been machined, the imaging unit 12 similarly uses the blade 8. , 8 and the work W on the work table 10 are aligned.
  • the blade 8 and the workpiece W can be adjusted without processing the dummy workpiece experimentally.
  • the blade 8 and the work W are simultaneously imaged by the imaging means 12 and alignment is performed. Is called.
  • a warning for prompting the operator to replace the blade is issued from the dicing apparatus 1.
  • the dicing apparatus and the dicing method of the present invention it is possible to adjust the blade and the workpiece without experimentally processing the dummy workpiece, shortening the adjustment time, and adjusting. It is possible to improve the operating rate of the entire apparatus by reducing the cost required for the system. Furthermore, it becomes possible to measure the amount of wear of the blade in a non-contact manner, and the operating rate of the apparatus is further improved.
  • the opposing spindles 8 and 8 each having the blade 8 attached to the opposing tip are used as the processing means.
  • the present invention is not limited to this, and known processing means such as a laser is used. Any dicing apparatus can be suitably implemented.
  • a plurality of processing means and work tables are provided.
  • the present invention is not limited to this, and can be suitably implemented in a single work table or a dicing apparatus having a single processing means.
  • the dicing apparatus may include a plurality of imaging units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dicing (AREA)

Abstract

A dicing apparatus in one mode of this invention is provided with a work table for placing a work; a machining means for machining the work; a moving means for relatively moving the work table with the machining means; an imaging means which can pick up the image of the work on the work table and the image of the machining means at the same time; an imaging means moving shaft for moving the imaging means; and a control means for controlling the machining means, the moving means, the imaging means and the imaging means moving shaft. The dicing apparatus makes it possible to adjust a blade with the work without machining a dummy work on the test basis, shorten an adjustment time, and improve an operation rate of the device as a whole by reducing cost required for adjustment.

Description

ダイシング装置及びダイシング方法Dicing apparatus and dicing method
 本発明は、半導体装置や電子部品が形成されたウェーハ等のワークを個々のチップに分割するダイシング装置及びダイシング方法に関するものである。 The present invention relates to a dicing apparatus and a dicing method for dividing a workpiece such as a wafer on which a semiconductor device or an electronic component is formed into individual chips.
 半導体装置や電子部品が形成されたウェーハ等のワークに対して切断や溝入れ加工を施すダイシング装置は、少なくともスピンドルによって高速に回転されるブレードと称する薄型砥石による回転刃と、ワークを保持するワークテーブルと、ワークテーブルとブレードとの相対的位置を変化させるX、Y、Z、θの各移動軸とが設けられている。ワークを加工する際には、冷却や潤滑用の切削液が、回転するブレード、またはワークとブレードとが接触する加工点へノズルより供給され、各移動軸の動作によって切断や溝入れ加工がワークに施される。 A dicing machine for cutting and grooving a workpiece such as a wafer on which a semiconductor device or an electronic component is formed is at least a rotating blade made of a thin grindstone called a blade rotated at high speed by a spindle, and a workpiece holding the workpiece. A table, and X, Y, Z, and θ movement axes that change the relative positions of the work table and the blade are provided. When machining a workpiece, cutting fluid for cooling and lubrication is supplied from the nozzle to a rotating blade or a machining point where the workpiece and the blade are in contact with each other. To be applied.
 図9にダイシング装置の従来例を示す。ダイシング装置70は、加工手段として互いに対向配置され、先端にブレード71とホイールカバー(不図示)が取付けられた高周波モータ内蔵型のスピンドル72、72と、ワークWを吸着保持するワークテーブル73と、ワークWを撮像する顕微鏡やCCDカメラ等からなる撮像手段74とを有する加工部75を備えている。この他にダイシング装置70は、加工部75で加工された加工済みのワークWをスピン洗浄する洗浄部76と、フレームFにマウントされたワークWを多数枚収納したカセットを載置するロードポート77と、ワークWを搬送する搬送手段78と、各部の動作を制御するコントローラ79等とから構成されている。 Fig. 9 shows a conventional example of a dicing apparatus. The dicing device 70 is disposed as opposed to each other as processing means, and includes spindles 72 and 72 with a built-in high-frequency motor with a blade 71 and a wheel cover (not shown) attached to the tip, a work table 73 that holds the work W by suction, A processing unit 75 having an imaging unit 74 including a microscope, a CCD camera, or the like that images the workpiece W is provided. In addition to this, the dicing apparatus 70 includes a cleaning unit 76 that spin-cleans the processed workpiece W processed by the processing unit 75 and a load port 77 that mounts a cassette that stores a large number of workpieces W mounted on the frame F. And a conveying means 78 for conveying the workpiece W, a controller 79 for controlling the operation of each part, and the like.
 加工部75の構造は、図10に示すように、Xベース80に設けられたXガイド81、81でガイドされ、リニアモータ82によって図のX-Xで示すX方向に駆動されるXテーブル83があり、Xテーブル83にはθ方向に回転する回転テーブル84を介してワークテーブル85が設けられている。 As shown in FIG. 10, the structure of the processing section 75 is guided by X guides 81 and 81 provided on the X base 80 and driven by a linear motor 82 in the X direction indicated by XX in the figure. The X table 83 is provided with a work table 85 via a rotary table 84 that rotates in the θ direction.
 一方、Yベース86の側面には、Yガイド87、87でガイドされ、図示しないステッピングモータとボールスクリューによって図のY-Yで示すY方向に駆動されるYテーブル88、88が設けられている。各Yテーブル88には夫々図示しない駆動手段によって図のZ-Zで示すZ方向に駆動されるZテーブル89が設けられ、Zテーブル89には先端にブレード71が取付けられた高周波モータ内蔵型のスピンドル72が固定されている。加工部74の構造は以上のようになっているので、ブレード71はY方向にインデックス送りされると共にZ方向に切込み送りされ、ワークテーブル73はX方向に切削送りされる。 On the other hand, on the side surface of the Y base 86, there are provided Y tables 88 and 88 which are guided by Y guides 87 and 87 and driven in the Y direction indicated by YY in the figure by a stepping motor and a ball screw (not shown). . Each Y table 88 is provided with a Z table 89 that is driven in the Z direction indicated by ZZ in the figure by driving means (not shown), and the Z table 89 has a built-in high-frequency motor with a blade 71 attached to the tip. The spindle 72 is fixed. Since the structure of the processing unit 74 is as described above, the blade 71 is index-fed in the Y direction and cut and fed in the Z direction, and the work table 73 is cut and fed in the X direction.
 スピンドル72は、どちらも1,000rpm~80,000rpmで高速回転され、近傍にはワークWを切削液内に浸漬させるための切削液を供給する不図示の供給ノズルが設けられている。 Both spindles 72 are rotated at a high speed of 1,000 rpm to 80,000 rpm, and a supply nozzle (not shown) for supplying a cutting fluid for immersing the workpiece W in the cutting fluid is provided in the vicinity.
 ブレード71は、ダイヤモンド砥粒やCBN砥粒をニッケルで電着した電着ブレードや、金属粉末を混入した樹脂で結合したメタルレジンボンドのブレード等が用いられる。ブレード71の寸法は、加工内容によって種々選択されるが、通常の半導体ウェーハをワークとしてダイシングする場合は、直径50mm、厚さ30μm前後のものが用いられる。 As the blade 71, an electrodeposition blade in which diamond abrasive grains or CBN abrasive grains are electrodeposited with nickel, a metal resin bond blade in which metal powder is mixed and a resin is used. The dimensions of the blade 71 are variously selected depending on the content of processing. When dicing a normal semiconductor wafer as a workpiece, a blade having a diameter of about 50 mm and a thickness of about 30 μm is used.
 また、ダイシング装置70の各部の動作を制御するコントローラは、CPU、メモリ、入出力回路部、各種制御回路部、等からなり、ダイシング装置70の架台内部に組込まれている。このようなダイシング装置としては例えば、特許文献1に記載されるダイシング装置が提案されている。 The controller that controls the operation of each part of the dicing apparatus 70 includes a CPU, a memory, an input / output circuit section, various control circuit sections, and the like, and is incorporated in the frame of the dicing apparatus 70. As such a dicing apparatus, for example, a dicing apparatus described in Patent Document 1 has been proposed.
 また、近年このようなブレード71を用いる代わりに、ワークWの内部に集光点を合わせたレーザー光をワークWへ入射し、ワークW内部に多光子吸収による改質領域を複数形成した後、ワークWをエキスパンドして個々のチップTに分割するレーザーダイシング装置もワークWの加工に用いられるようになってきている。 Further, in recent years, instead of using such a blade 71, laser light having a focused point inside the work W is incident on the work W, and a plurality of modified regions by multiphoton absorption are formed inside the work W. A laser dicing apparatus that expands the work W and divides the work W into individual chips T is also used for processing the work W.
 レーザーダイシング装置は、ダイシング装置70と同様にロードポート、搬送手段、ワークテーブル等を備え、図11に示すように、加工部75内にはスピンドル72と同様に対向してレーザーヘッド91が設けられている。 The laser dicing apparatus is provided with a load port, a conveying means, a work table and the like, similar to the dicing apparatus 70. As shown in FIG. ing.
 レーザーヘッド91は、レーザー発振器91A、コリメートレンズ91B、ミラー91C、コンデンスレンズ91D等からなり、レーザー発振器91Aから発振されたレーザー光Lは、コリメートレンズ91Bで水平方向に平行光線とされ、ミラー91Cで垂直方向に反射され、コンデンスレンズ91Dによって集光される(例えば、特許文献2参照。)。 The laser head 91 includes a laser oscillator 91A, a collimating lens 91B, a mirror 91C, a condensation lens 91D, and the like. The laser light L oscillated from the laser oscillator 91A is collimated in the horizontal direction by the collimating lens 91B. The light is reflected in the vertical direction and condensed by the condensation lens 91D (see, for example, Patent Document 2).
 レーザー光Lの集光点を、ワークテーブル73に載置されたワークWの厚さ方向内部に設定すると、図12(a)に示すように、ワークWの表面を透過したレーザー光Lは集光点でエネルギーが集中され、ワーク内部の集光点近傍に多光子吸収によるクラック領域、溶融領域、屈折率変化領域等の改質領域Pを形成する。 When the condensing point of the laser beam L is set inside the thickness direction of the workpiece W placed on the workpiece table 73, the laser beam L transmitted through the surface of the workpiece W is collected as shown in FIG. Energy is concentrated at the light spot, and a modified region P such as a crack region, a melted region, a refractive index changing region or the like due to multiphoton absorption is formed in the vicinity of the condensing point inside the workpiece.
 改質領域Pは、図12(b)に示すように、ワークWが水平方向に移動されることにより、ワークW内部に複数並んで形成される。この状態でワークWは改質領域Pを起点として自然に割断するか、或いは僅かな外力を加えることによって改質領域Pを起点として割断される。この場合、ワークWは表面や裏面にはチッピングが発生せずに容易にチップに分割される。 As shown in FIG. 12 (b), a plurality of reformed regions P are formed side by side inside the workpiece W by moving the workpiece W in the horizontal direction. In this state, the workpiece W is naturally cleaved starting from the reforming region P, or is cleaved starting from the reforming region P by applying a slight external force. In this case, the workpiece W is easily divided into chips without causing chipping on the front and back surfaces.
 このようなダイシング装置10やレーザーダイシング装置では、ダイシングを行う前に撮像手段74の撮像位置とブレード71やレーザー光による加工位置との相対距離の計測が行われ、必要に応じて撮像手段74、ブレード71、またはレーザー光の焦点位置の調整が行われる。このような調整では、試験的にワークWのダイシング加工を行い、ワークWに形成された加工溝を撮像手段74で撮像することにより行われている。 In such a dicing apparatus 10 or laser dicing apparatus, the relative distance between the imaging position of the imaging means 74 and the processing position by the blade 71 or laser light is measured before dicing, and the imaging means 74, Adjustment of the focal position of the blade 71 or the laser beam is performed. Such adjustment is performed by performing dicing processing of the workpiece W on a trial basis and imaging the processing groove formed in the workpiece W by the imaging means 74.
 新たに加工するワークWはワークテーブル73上に載置されると、このようにして位置が合わされた撮像手段74によりワークWが撮像され、加工される位置と加工手段との位置調整を行うアライメント動作が実施される。また、加工中も必要に応じて随時ワークW上を撮像手段74にて撮像して加工状況のチェックが行われる。
特開2002-280328号公報 特開2002-192367号公報
When the workpiece W to be newly machined is placed on the workpiece table 73, the workpiece W is imaged by the imaging means 74 aligned in this way, and alignment is performed to adjust the position between the machining position and the machining means. The operation is performed. Further, during machining, the workpiece W is imaged by the imaging means 74 at any time as needed to check the machining status.
JP 2002-280328 A JP 2002-192367 A
 しかし、ダイシング装置70のような装置では、ブレード71と撮像手段74との位置を調整する度にワークWを試験的に加工する必要があり、また試験的な加工を行うためのダミーのワークを多数準備する必要があって、調整に必要な時間と費用を増やしダイシング装置の効率を大きく下げる原因となっている。 However, in an apparatus such as the dicing apparatus 70, it is necessary to process the workpiece W on a trial basis every time the positions of the blade 71 and the imaging means 74 are adjusted, and a dummy workpiece for performing a trial machining is required. A large number of preparations are required, which increases the time and cost required for adjustment and greatly reduces the efficiency of the dicing apparatus.
 本発明は、このような問題に対して成されたものであり、ブレードやワークの調整時間を短縮し、装置全体の稼働率を向上することができるダイシング装置及びダイシング方法を提供することを目的としている。 The present invention has been made for such a problem, and an object of the present invention is to provide a dicing apparatus and a dicing method that can shorten the adjustment time of a blade and a workpiece and improve the operating rate of the entire apparatus. It is said.
 本発明の第一の態様に係るダイシング装置は前記目的を達成するために、ワークを載置するワークテーブルと、前記ワークの加工を行う加工手段と、前記ワークテーブルと前記加工手段とを相対的に移動させる移動手段と、前記ワークテーブル上の前記ワークと前記加工手段とを同時に撮像可能な撮像手段と、前記撮像手段を移動させる撮像手段移動軸と、前記加工手段、前記移動手段、前記撮像手段、及び前記撮像手段移動軸を制御する制御手段と、を備えたことを特徴としている。 In order to achieve the above object, the dicing apparatus according to the first aspect of the present invention provides a work table on which a work is placed, a processing means for processing the work, and a relative relationship between the work table and the processing means. Moving means for moving the imaging means, imaging means capable of simultaneously imaging the work on the work table and the processing means, imaging means moving axis for moving the imaging means, the processing means, the moving means, and the imaging And a control means for controlling the moving axis of the imaging means.
 また、本発明の第二の態様は第一の態様において、前記撮像手段移動軸は、前記撮像手段を前記ワークテーブルと前記加工手段との間に位置させること、及び前記撮像手段を該ワークテーブルと該加工手段との間から退避させることを特徴としている。 According to a second aspect of the present invention, in the first aspect, the imaging means moving axis positions the imaging means between the work table and the processing means, and the imaging means is the work table. And the processing means.
 更に、本発明の第三の態様は第一又は第二の態様において、前記撮像手段は、前記加工手段を撮像する第1の撮像部であって前記加工手段の方向に向かって設けられた第1の撮像部と、前記ワークテーブル上のワークを撮像する第2の撮像部であって前記ワークテーブルの方向に向かって設けられた第2の撮像部と、を備えることを特徴としている。 Furthermore, a third aspect of the present invention is the first or second aspect, wherein the imaging means is a first imaging unit that images the processing means and is provided in the direction of the processing means. 1, and a second imaging unit that images a workpiece on the work table and is provided in the direction of the work table.
 本発明の他の態様に係るダイシング方法は上記目的を達成するために、ワークを載置するワークテーブルと、前記ワークの加工を行う加工手段と、前記ワークテーブルと前記加工手段とを相対的に移動させる移動手段と、前記ワークテーブル上の前記ワークと前記加工手段とを同時に撮像可能な撮像手段と、前記撮像手段を移動させる撮像手段移動軸と、前記加工手段、前記移動手段、前記撮像手段、及び前記撮像手段移動軸を制御する制御手段と、を備えたダイシング装置で用いるダイシング方法において、前記撮像手段を前記撮像手段移動軸により前記ワークテーブルと前記加工手段との間に位置させ、前記加工手段を撮像する第1の撮像部であって前記加工手段の方向に向かって前記撮像手段に設けられた第1の撮像部と、前記ワークテーブル上のワークを撮像する第2の撮像部であって前記ワークテーブルの方向に向かって前記撮像手段に設けられた第2の撮像部と、により前記加工手段と前記ワークとを同時に撮像し、該撮像された前記加工手段の画像と前記ワークの画像とを前記制御手段で処理することにより前記加工手段と前記ワークとの相対位置座標を算出し、該算出された前記相対位置座標に基づき該加工手段と該ワークとの位置合わせ行って該ワークの加工を行うことを特徴としている。 In order to achieve the above object, a dicing method according to another aspect of the present invention relatively includes a work table on which a work is placed, a processing means for processing the work, and the work table and the processing means. Moving means for moving; Imaging means capable of simultaneously imaging the work on the work table and the processing means; Imaging means moving axis for moving the imaging means; Processing means; Moving means; Imaging means And a control means for controlling the imaging means moving axis, a dicing method used in a dicing apparatus comprising: the imaging means is positioned between the work table and the processing means by the imaging means moving axis; A first imaging unit that images the processing unit, the first imaging unit provided in the imaging unit toward the processing unit; A second imaging unit that images the workpiece on the table, and the second imaging unit provided in the imaging unit toward the work table, and simultaneously images the processing unit and the workpiece; A relative position coordinate between the processing means and the work is calculated by processing the captured image of the processing means and the image of the work with the control means, and the relative position coordinates are calculated based on the calculated relative position coordinates. The workpiece is machined by aligning the machining means and the workpiece.
 本発明のダイシング装置及びダイシング方法によれば、ワークが載置されたワークテーブルと、スピンドルにより回転するブレードやレーザー等の加工手段とが制御手段で制御された移動手段によりXYZθの各方向に相対的に移動されてワークのダイシングが行われていく。 According to the dicing apparatus and the dicing method of the present invention, a work table on which a work is placed and a processing means such as a blade or a laser rotated by a spindle are moved relative to each other in XYZθ directions by moving means controlled by the control means. The workpiece is diced and moved.
 ダイシング装置には、ワークテーブル上のワークと加工手段とを同時に撮像可能な撮像手段と、撮像手段を移動させる撮像手段移動軸が設けられている。撮像手段は、加工手段の方向に向かって設けられた加工手段を撮像する第1の撮像部とワークテーブルの方向に向かって設けられたワークテーブル上のワークを撮像する第2の撮像部を備えており、撮像手段移動軸により移動してワークテーブルと加工手段との間に位置付けられる。 The dicing apparatus is provided with an imaging unit capable of simultaneously imaging the workpiece on the work table and the processing unit, and an imaging unit moving axis for moving the imaging unit. The imaging unit includes a first imaging unit that images the processing unit provided in the direction of the processing unit and a second imaging unit that images a workpiece on the work table provided in the direction of the work table. And is moved between the work table and the processing means by being moved by the imaging means moving axis.
 この状態で撮像手段は第1の撮像部でブレードの先端等の加工手段の基準となる位置を撮像し、第2の撮像部でワーク上のストリートやアライメントマーク等の基準となる位置を撮像する。撮像された2画像は制御手段により重ね合わされるなどの既知の画像処理手法により処理が行われ、加工手段とワークとの相対位置座標が算出される。加工手段とワークとは算出された相対位置座標に基づき位置が合わせられる。 In this state, the imaging unit images a position serving as a reference for the processing unit such as the tip of the blade by the first imaging unit, and images a position serving as a reference such as a street or an alignment mark on the workpiece by the second imaging unit. . The captured two images are processed by a known image processing method such as superposition by the control means, and the relative position coordinates between the processing means and the workpiece are calculated. The positions of the processing means and the workpiece are matched based on the calculated relative position coordinates.
 撮像手段は、加工手段とワークの撮像が終了すると撮像手段移動軸によりワークテーブルと加工手段との間より移動して退避し、加工手段によるワークテーブル上のワークの加工を妨げることがない。 When the imaging of the machining means and the workpiece is completed, the imaging means moves and retracts between the work table and the machining means by the imaging means moving axis, and does not hinder the machining of the workpiece on the work table by the machining means.
 これにより、ダミーワークを試験的に加工することなくブレードとワークとの調整を行うことが可能となり、調整時間が短縮され、ダミーワーク等にかかる費用を削減し、装置全体の稼働率を向上することができる。 This makes it possible to adjust the blade and workpiece without experimentally processing the dummy workpiece, shortening the adjustment time, reducing the cost of the dummy workpiece, and improving the operating rate of the entire device. be able to.
 また、撮像手段はブレードの先端へ焦点を合わせることにより、ブレードの高さ方向の情報を取得できる。これにより、ブレードの外形形状を知ることが可能となり、ブレードの磨耗量などを非接触で計測することが可能となる。 Also, the imaging means can acquire information on the height direction of the blade by focusing on the tip of the blade. As a result, the outer shape of the blade can be known, and the wear amount of the blade can be measured without contact.
 以上説明したように、本発明のダイシング装置及びダイシング方法によれば、ダミーワークを試験的に加工することなくブレードとワークとの調整を行うことが可能となり、調整時間を短縮させ、調整に必要な費用を削減することにより装置全体の稼働率を向上することが可能となる。 As described above, according to the dicing apparatus and the dicing method of the present invention, it is possible to adjust the blade and the workpiece without experimentally processing the dummy workpiece, shortening the adjustment time and necessary for the adjustment. It is possible to improve the operating rate of the entire apparatus by reducing the cost.
図1は、発明のダイシング方法が実施されるダイシング装置の外観を示す斜視図であり;FIG. 1 is a perspective view showing the appearance of a dicing apparatus in which the dicing method of the invention is implemented; 図2は、図1に示したダイシング装置の加工部の構造を示した斜視図であり;FIG. 2 is a perspective view showing a structure of a processing portion of the dicing apparatus shown in FIG. 1; 図3は、図2に示した加工部の要部構造を示した断面図であり;FIG. 3 is a cross-sectional view showing the main structure of the processed part shown in FIG. 2; 図4は、ダイシング装置の加工部の構造を示した平面図であり;FIG. 4 is a plan view showing the structure of the processing part of the dicing apparatus; 図5は、ダイシング装置の加工部の構造を示した側面図であり;FIG. 5 is a side view showing the structure of the processing portion of the dicing apparatus; 図6は、撮像装置により一方のブレードとワークを撮像している状態を示した平面図であり;FIG. 6 is a plan view showing a state where one blade and a workpiece are imaged by the imaging device; 図7は、撮像装置により他方のブレードとワークを撮像している状態を示した平面図であり;FIG. 7 is a plan view showing a state in which the other blade and the workpiece are imaged by the imaging device; 図8は、撮像装置が退避している状態を示した平面図であり;FIG. 8 is a plan view showing a state in which the imaging device is retracted; 図9は、従来のダイシング装置の外観を示す斜視図であり;FIG. 9 is a perspective view showing the appearance of a conventional dicing apparatus; 図10は、図8に示したダイシング装置の加工部の構造を示した斜視図であり;10 is a perspective view showing a structure of a processing portion of the dicing apparatus shown in FIG. 8; 図11はレーザーによるダイシングを行うダイシング装置の構成を示した側面図であり;FIG. 11 is a side view showing the configuration of a dicing apparatus that performs dicing with a laser; 図12は、レーザーダイシングの原理を示した側面断面図である。FIG. 12 is a side sectional view showing the principle of laser dicing.
符号の説明Explanation of symbols
1、70…ダイシング装置,2…ロードポート,3…吸着部,4…搬送手段,5…加工部,6…スピンナ,7…コントローラ(制御手段),8…ブレード,9…スピンドル,10、11…ワークテーブル,12…撮像手段、13…撮像手段Yガイド,14…撮像手段移動テーブル,16、18…Xテーブル,20…オイルパン,22…ガイドレール,24…ボールねじ,26…サーボモータ,28…ボールナット,30…スライダ,32…θテーブル,33…固定治具,34…蛇腹,36…ガイドレール,38…ボールねじ,40…サーボモータ,44…θテーブル,46…蛇腹,48…ガイドベース,50…スピンドルYガイド,52…スピンドルYテーブル,54…スピンドルZテーブル,56…ホルダ  DESCRIPTION OF SYMBOLS 1,70 ... Dicing apparatus, 2 ... Load port, 3 ... Adsorption part, 4 ... Conveyance means, 5 ... Processing part, 6 ... Spinner, 7 ... Controller (control means), 8 ... Blade, 9 ... Spindle, 10, 11 ... Work table, 12 ... Imaging means, 13 ... Imaging means Y guide, 14 ... Imaging means moving table, 16, 18 ... X table, 20 ... Oil pan, 22 ... Guide rail, 24 ... Ball screw, 26 ... Servo motor, 28 ... Ball nut, 30 ... Slider, 32 ... θ table, 33 ... Fixing jig, 34 ... Bellow, 36 ... Guide rail, 38 ... Ball screw, 40 ... Servo motor, 44 ... θ table, 46 ... Bellow, 48 ... Guide base 50 ... Spindle Y guide 52 ... Spindle Y table 54 ... Spindle Z table 56 ... Holder
 以下、添付図面に従って本発明に係るダイシング装置及びダイシング方法の好ましい実施の形態について詳説する。 Hereinafter, preferred embodiments of a dicing apparatus and a dicing method according to the present invention will be described in detail with reference to the accompanying drawings.
 まず初めに、本発明に係わるダイシング装置の構成について説明する。図1はダイシング装置の全体斜視図である。 First, the configuration of the dicing apparatus according to the present invention will be described. FIG. 1 is an overall perspective view of the dicing apparatus.
 図1に示した実施の形態のダイシング装置1は、複数のワークが収納されたカセットを外部装置との間で受け渡すロードポート2、吸着部3を有しワークを装置各部に搬送する搬送手段4、加工部5、加工後のワークを洗浄し乾燥させるスピンナ6、及び装置各部の動作を制御する制御手段としてのコントローラ7等とから構成されている。 The dicing apparatus 1 according to the embodiment shown in FIG. 1 includes a load port 2 for transferring a cassette storing a plurality of workpieces to and from an external device, and a suction unit 3, and a conveying unit that conveys the workpiece to each part of the device. 4, a processing unit 5, a spinner 6 that cleans and dries a workpiece after processing, and a controller 7 that serves as control means for controlling the operation of each part of the apparatus.
 加工部5には、加工手段として2本対向して配置され先端にブレード8が取り付けられたスピンドル9、9、ワークを吸着載置する2台の同形状のワークテーブル10、11、ワークテーブル10、11上のワークとブレード8とを同時に撮像可能な撮像手段12が設けられている。 The processing unit 5 includes two spindles 9 and 9 which are arranged opposite to each other as processing means and have a blade 8 attached to the tip, and two work tables 10 and 11 having the same shape on which the workpieces are sucked and placed. , 11 is provided with an imaging means 12 capable of imaging the workpiece and the blade 8 simultaneously.
 ワークテーブル10、11の下方には、図2に示すようにワークテーブル10、11を十分に囲むように箱状のオイルパン20が水平に配置されている。このオイルパン20の左側面には、2本で一対のガイドレール(ガイド機構)22、22が図の矢印X方向に沿って配設されており、これらのガイドレール22、22の間には、駆動機構を構成するボールねじ24がガイドレール22、22と平行に、かつオイルパン20の左側面に沿って配設されている。 Below the work tables 10 and 11, a box-shaped oil pan 20 is horizontally arranged so as to sufficiently surround the work tables 10 and 11 as shown in FIG. Two pairs of guide rails (guide mechanisms) 22 and 22 are arranged on the left side surface of the oil pan 20 along an arrow X direction in the figure, and between these guide rails 22 and 22 are arranged. The ball screw 24 constituting the drive mechanism is disposed in parallel with the guide rails 22 and 22 and along the left side surface of the oil pan 20.
 また、このボールねじ24を回転駆動するサーボモータ26がオイルパン20の奥行き方向奥側に配置されている。更に、ガイドレール22、22で案内され、サーボモータ26によるボールねじ24の回転でX方向に駆動されるXテーブル16が縦方向に配置されている。なお、本発明の駆動機構はボールねじ24を用いた駆動機構の他に、リニアモータを用いた駆動機構であってもよい。 Further, a servo motor 26 that rotationally drives the ball screw 24 is disposed on the back side in the depth direction of the oil pan 20. Further, an X table 16 guided in the guide rails 22 and 22 and driven in the X direction by the rotation of the ball screw 24 by the servo motor 26 is arranged in the vertical direction. The drive mechanism of the present invention may be a drive mechanism using a linear motor in addition to the drive mechanism using the ball screw 24.
 Xテーブル16には、図3に示すようにボールねじ24と螺合するボールナット28と、ガイドレール22、22に摺動自在に係合するスライダ30、30とが設けられるとともにZ方向(図1参照)を軸にθ回転するθテーブル(θ回転軸)32が搭載され、このθテーブル32にワークテーブル10が取り付けられている。θテーブル32の回転軸は、ワークテーブル10が水平面上でθ方向に回転するように、Xテーブル16に取り付けられたL字型の固定治具33にその底面が固定されている。 As shown in FIG. 3, the X table 16 is provided with a ball nut 28 screwed into the ball screw 24, and sliders 30 and 30 slidably engaged with the guide rails 22 and 22, and in the Z direction (see FIG. 1) is mounted, and a work table 10 is attached to the θ table 32. The bottom surface of the rotation axis of the θ table 32 is fixed to an L-shaped fixing jig 33 attached to the X table 16 so that the work table 10 rotates in the θ direction on a horizontal plane.
 また、Xテーブル16のX方向の移動に伴い伸縮動作されてガイドレール22、22、及びボールねじ24を覆う一対の蛇腹(蛇腹部材)34、34がオイルパン20の左側面に配置されている。一方の蛇腹34は、一端がオイルパン20の奥行き方向手前側に固定され、他端がXテーブル16の奥行き方向手前側縁部に固定されている。他方の蛇腹34は、一端がオイルパン20の奥行き方向手奥側に固定され、他端がXテーブル16の奥行き方向奥側縁部に固定されている。なお、図2では、他方の蛇腹34を省略している。 A pair of bellows (bellows members) 34, 34 that are extended and contracted as the X table 16 moves in the X direction and covers the guide rails 22, 22 and the ball screw 24 are disposed on the left side surface of the oil pan 20. . One bellows 34 has one end fixed to the front side in the depth direction of the oil pan 20 and the other end fixed to the front side edge in the depth direction of the X table 16. One end of the other bellows 34 is fixed to the back side in the depth direction of the oil pan 20, and the other end is fixed to the back side edge in the depth direction of the X table 16. In FIG. 2, the other bellows 34 is omitted.
 一方で、図2の如くオイルパン20の右側面にも同様に、2本で一対のガイドレール(ガイド機構)36、36が図1の矢印X方向に沿って配設され、これらのガイドレール36、36の間にも、駆動機構を構成するボールねじ38がガイドレール36、36と平行に、かつオイルパン20の右側面に沿って配設されている。 On the other hand, as shown in FIG. 2, a pair of guide rails (guide mechanisms) 36 and 36 are also provided on the right side surface of the oil pan 20 along the arrow X direction in FIG. Also between 36 and 36, a ball screw 38 constituting a drive mechanism is disposed in parallel with the guide rails 36 and 36 and along the right side surface of the oil pan 20.
 また、このボールねじ38を回転駆動するサーボモータ40がオイルパン20の奥行き方向奥側に配置されている。更に、ガイドレール36、36で案内され、サーボモータ40によるボールねじ38の回転でX方向に駆動されるXテーブル18が配置されている。 Further, a servo motor 40 that rotationally drives the ball screw 38 is disposed on the deep side of the oil pan 20 in the depth direction. Further, an X table 18 guided by the guide rails 36 and 36 and driven in the X direction by the rotation of the ball screw 38 by the servo motor 40 is disposed.
 Xテーブル18には、ボールねじ38と螺合するボールナット(不図示)と、ガイドレール36、36に摺動自在に係合するスライダ(不図示)とが設けられるとともにZ方向(図1参照)を軸にθ回転するθテーブル(θ回転軸)44が搭載され、このθテーブル44にワークテーブル11が取り付けられている。θテーブル44の回転軸は、ワークテーブル11が水平面上でθ方向に回転するようにXテーブル18に取り付けられた不図示のL字型の固定治具にその底面が固定されている。 The X table 18 is provided with a ball nut (not shown) that is screwed with the ball screw 38, and a slider (not shown) that is slidably engaged with the guide rails 36, 36, and in the Z direction (see FIG. 1). ) Is mounted on a θ table (θ rotation shaft) 44, and the work table 11 is attached to the θ table 44. The bottom surface of the rotation axis of the θ table 44 is fixed to an L-shaped fixing jig (not shown) attached to the X table 18 so that the work table 11 rotates in the θ direction on a horizontal plane.
 また、Xテーブル18のX方向の移動に伴い伸縮動作されてガイドレール36、36、及びボールねじ38を覆う一対の蛇腹(蛇腹部材)46、46がオイルパン20の右側面に配置されている。一方の蛇腹46は、一端がオイルパン20の奥行き方向手前側に固定され、他端がXテーブル18の奥行き方向手前側縁部に固定されている。他方の蛇腹46は、一端がオイルパン20の奥行き方向手奥側に固定され、他端がXテーブル18の奥行き方向奥側縁部に固定されている。なお、図2では、他方の蛇腹46を省略している。 A pair of bellows (bellows members) 46 and 46 that are extended and contracted as the X table 18 moves in the X direction and covers the guide rails 36 and 36 and the ball screw 38 are disposed on the right side surface of the oil pan 20. . One bellows 46 has one end fixed to the front side in the depth direction of the oil pan 20 and the other end fixed to the front side edge in the depth direction of the X table 18. One end of the other bellows 46 is fixed to the back side in the depth direction of the oil pan 20, and the other end is fixed to the back side edge in the depth direction of the X table 18. In FIG. 2, the other bellows 46 is omitted.
 また、加工部5には、図4に示すように門型形状のガイドベース48が立設されている。ガイドベース48の側面には、図の矢印Y方向に向けて水平にスピンドルYガイド50が取り付けられ、スピンドルYガイド50にガイドされ、図示しない駆動機構によってY方向にインデックス送りされる移動手段としてのスピンドルYテーブル52、52が2台設けられている。各々のスピンドルYテーブル52には、図示しないガイドレールと駆動機構によって図の矢印Z方向に切込み送りされる移動手段としてのスピンドルZテーブル54が設けられ、各々のスピンドルZテーブル54には、ホルダ56を介してスピンドル9が取り付けられている。なお、スピンドルYテーブル52及びスピンドルZテーブル54の駆動機構は、リニアモータが用いられてもよいし、サーボモータとリードスクリューが用いられてもよい。 In addition, a gate-shaped guide base 48 is erected on the processing portion 5 as shown in FIG. A spindle Y guide 50 is mounted horizontally on the side surface of the guide base 48 in the direction of the arrow Y in the figure. The spindle Y guide 50 is guided by the spindle Y guide 50 and serves as a moving means that is indexed in the Y direction by a drive mechanism (not shown). Two spindle Y tables 52, 52 are provided. Each spindle Y table 52 is provided with a spindle Z table 54 as a moving means that is cut and fed in the direction of arrow Z in the figure by a guide rail and a driving mechanism (not shown). Each spindle Z table 54 has a holder 56. A spindle 9 is attached via The drive mechanism for the spindle Y table 52 and the spindle Z table 54 may be a linear motor, or may be a servo motor and a lead screw.
 スピンドル9、9は高周波モータ内蔵型のエアーベアリング式またはメカニカルベアリング式のスピンドルであって、互いに対向するように配置されている。各々のスピンドル9には先端に回転ブレード8が取り付けられ、スピンドル9により高速回転される。 Spindles 9 and 9 are high-frequency motor built-in air bearing type or mechanical bearing type spindles, and are arranged to face each other. Each spindle 9 has a rotating blade 8 attached to the tip, and is rotated at high speed by the spindle 9.
 ブレード8は手前側と下方が開口した図示しないフランジカバーで囲われ、フランジカバーに設けられた研削ノズルから研削水が加工ポイントに向けて供給される。また、フランジカバーには、不図示の洗浄ノズルが設けられており、この洗浄ノズルから加工ポイントに向けて洗浄水が供給される。 The blade 8 is surrounded by a flange cover (not shown) opened on the front side and the lower side, and grinding water is supplied from a grinding nozzle provided on the flange cover toward a processing point. The flange cover is provided with a cleaning nozzle (not shown), and cleaning water is supplied from the cleaning nozzle toward the processing point.
 ブレード8は薄い円盤状の砥石であり、ダイヤモンド砥粒やCBN砥粒をニッケルで電着した電着ブレードや、金属粉末を混入した樹脂で結合したメタルレジンボンドのブレード等が用いられる。ブレード8の寸法は、加工内容によって種々選択されるが、通常の半導体ウェーハをワークとしてダイシングする場合は、直径50mm、厚さ30μm前後のものが用いられる。 The blade 8 is a thin disk-shaped grindstone, and an electrodeposition blade in which diamond abrasive grains or CBN abrasive grains are electrodeposited with nickel, a metal resin bond blade in which a metal powder is mixed, and the like are used. The dimensions of the blade 8 are variously selected depending on the contents of processing. When dicing a normal semiconductor wafer as a workpiece, a blade having a diameter of about 50 mm and a thickness of about 30 μm is used.
 このような機構により、2枚の回転ブレード8、8は互いに独立して図のY方向のインデックス送りとZ方向の切込み送りとがなされる。 By such a mechanism, the two rotary blades 8 and 8 are independently indexed in the Y direction and cut in the Z direction in the drawing.
 また、ガイドベース48の底面には撮像手段移動軸として撮像手段Yガイド13、13が設けられている。撮像手段Yガイド13、13には、撮像手段12が固定された撮像手段移動テーブル14が取り付けられ、これにより撮像手段12はY方向に移動可能に設けられている。 Also, imaging means Y guides 13 and 13 are provided on the bottom surface of the guide base 48 as imaging means moving axes. An imaging means moving table 14 to which the imaging means 12 is fixed is attached to the imaging means Y guides 13 and 13 so that the imaging means 12 is movable in the Y direction.
 撮像手段12は、図5に示すように、ブレード8の方向に向かって設けられ顕微鏡やCCDカメラ等からなる第1の撮像部12Aと、ワークテーブル10、11の方向に向かって設けられ同じく顕微鏡やCCDカメラ等からなる第2の撮像部12Bを備えている。 As shown in FIG. 5, the imaging means 12 is provided in the direction of the blade 8 and is provided in the direction of the first imaging unit 12A made of a microscope, a CCD camera, or the like, and the work tables 10 and 11, and the microscope. And a second imaging unit 12B composed of a CCD camera or the like.
 撮像手段12は、撮像手段移動テーブル14が撮像手段Yガイド13、13上を移動することによりワークテーブル11(またはワークテーブル10)とブレード8の間に位置づけられ、第1の撮像部12Aによりブレード8の先端部を撮像し、第2の撮像部12Bによりワークテーブル11上のワークW上のストリートやアライメントマーク等の基準となる位置を撮像する。 The imaging unit 12 is positioned between the work table 11 (or the work table 10) and the blade 8 as the imaging unit moving table 14 moves on the imaging unit Y guides 13 and 13, and the first imaging unit 12A uses the blade. 8 is imaged, and the second imaging unit 12B images a reference position such as a street or an alignment mark on the work W on the work table 11.
 第1の撮像部12A及び第2の撮像部12Bにより撮像された2つの画像はコントローラ7に送信され、重ね合わされるなどの既知の画像処理手法により処理が行われることによってブレード8とワークWの位置を調整するための相対位置座標が算出される。ブレード8とワークWとは算出された相対位置座標に基づきアライメント動作が行われる。これにより、ダミーワークを試験的に加工することなくブレード8とワークWとの調整を行うことが可能となる。 The two images picked up by the first image pickup unit 12A and the second image pickup unit 12B are transmitted to the controller 7 and processed by a known image processing method such as superposition, whereby the blade 8 and the work W are processed. Relative position coordinates for adjusting the position are calculated. The blade 8 and the workpiece W are aligned based on the calculated relative position coordinates. As a result, the blade 8 and the workpiece W can be adjusted without processing the dummy workpiece experimentally.
 次に、このように構成されたダイシング装置1による実施される本発明に係わるダイシング方法について説明する。 Next, a dicing method according to the present invention performed by the dicing apparatus 1 configured as described above will be described.
 本発明のダイシング方法では、まず、ダイシング装置1のロードポート2に載置されたカセットに複数枚収納されているダイシングテープを介してフレームに貼着されたワークWが、搬送手段4によって1枚ずつカセットから引き出されワークテーブル11(またはワークテーブル10)に吸着される。 In the dicing method of the present invention, first, one piece of work W attached to the frame via dicing tape accommodated in a cassette placed on the load port 2 of the dicing apparatus 1 is conveyed by the conveying means 4. It is pulled out from the cassette one by one and is attracted to the work table 11 (or work table 10).
 続いてワークテーブル11に吸着されたワークWは、図6に示すようにワークテーブル11がX方向に移動して一方のスピンドル9の先端に取り付けられたブレード8の下方に位置づけられる。ワークWがブレード8の下方に位置づけられた後、撮像手段12はワークテーブル11とブレード8の間に位置づけられ、図5に示すように第1の撮像部12Aによりブレード8の先端部を撮像し、第2の撮像部12Bによりワークテーブル11上のワークW上のストリートやアライメントマーク等の基準となる位置を撮像する。 Subsequently, the work W attracted to the work table 11 is positioned below the blade 8 attached to the tip of one spindle 9 as the work table 11 moves in the X direction as shown in FIG. After the workpiece W is positioned below the blade 8, the imaging means 12 is positioned between the workpiece table 11 and the blade 8, and the tip of the blade 8 is imaged by the first imaging unit 12A as shown in FIG. The second imaging unit 12B captures a reference position such as a street or an alignment mark on the work W on the work table 11.
 第1の撮像部12A及び第2の撮像部12Bにより撮像された2つの画像はコントローラ7に送信される。コントローラ7に送信された2つの画像は、重ね合わせるなどの既知の画像処理技術によって処理されることによりブレード8とワークWの位置を調整するための相対位置座標が算出される。ブレード8とワークWとは算出された相対位置座標の値に基づきアライメントされる。 The two images captured by the first imaging unit 12A and the second imaging unit 12B are transmitted to the controller 7. The two images transmitted to the controller 7 are processed by a known image processing technique such as superposition so that relative position coordinates for adjusting the positions of the blade 8 and the workpiece W are calculated. The blade 8 and the workpiece W are aligned based on the calculated relative position coordinate values.
 更に、対向して設けられた他方のスピンドル9に取り付けられたブレード8でもワークテーブル11上のワークWをダイシングする場合は、図7に示すように他方のスピンドル9が移動してワークテーブル11上のワークWの上方にブレード8を位置づけるとともに、撮像手段12が移動して他方のスピンドル9先端に取り付けられたブレード8とワークテーブル11との間に位置する。この状態で一方のスピンドル9に取り付けられたブレード8と同様に第1の撮像部12Aによりブレード8の先端部を撮像し、第2の撮像部12Bによりワークテーブル11上のワークWが撮像され、コントローラ7に送信された2つの画像をコントローラ7で処理することによりブレード8とワークWの位置を調整するための相対位置座標が算出される。ブレード8とワークWとは算出された相対位置座標の値に基づきアライメントされる。 Further, when the workpiece 8 on the work table 11 is diced by the blade 8 attached to the other spindle 9 provided oppositely, the other spindle 9 moves and moves on the work table 11 as shown in FIG. The blade 8 is positioned above the workpiece W, and the imaging means 12 is moved to be positioned between the blade 8 attached to the tip of the other spindle 9 and the work table 11. In this state, the tip of the blade 8 is imaged by the first imaging unit 12A in the same manner as the blade 8 attached to one spindle 9, and the workpiece W on the work table 11 is imaged by the second imaging unit 12B. By processing the two images transmitted to the controller 7 with the controller 7, relative position coordinates for adjusting the positions of the blade 8 and the workpiece W are calculated. The blade 8 and the workpiece W are aligned based on the calculated relative position coordinate values.
 続いて、全てのアライメント動作が終了し、ワークWのダイシングを開始する際には、撮像手段12は図8に示すようにブレード8、8がワークWを加工するのを妨げない位置まで移動する。ワークテーブル11上のワークWが加工されている間には、新たなワークWがワークテーブル10に載置され、ワークテーブル11上のワークWの加工が終了次第、同様に撮像手段12によりブレード8、8とワークテーブル10上のワークWとのアライメント動作が行われる。 Subsequently, when all the alignment operations are completed and dicing of the workpiece W is started, the imaging unit 12 moves to a position where the blades 8 and 8 do not prevent the workpiece W from being processed as shown in FIG. . While the work W on the work table 11 is being machined, a new work W is placed on the work table 10, and as soon as the work W on the work table 11 has been machined, the imaging unit 12 similarly uses the blade 8. , 8 and the work W on the work table 10 are aligned.
 これらにより、ダミーワークを試験的に加工することなくブレード8とワークWとの調整を行うことが可能となる。 Thus, the blade 8 and the workpiece W can be adjusted without processing the dummy workpiece experimentally.
 なお、ワークテーブル11に最初に載置したワークWのダイシングが終了し、新たなワークWが載置された際には同様に撮像手段12でブレード8とワークWを同時に撮像してアライメントが行われる。このとき、第1の撮像部12Aの焦点をブレード8の先端部に合わせる際の焦点距離の変化より、ブレード8のZ方向の高さの変化を計測することが可能となり、ブレード8の磨耗量などを非接触で計測される。ブレード8の磨耗量が規定の値よりも大きい場合には、オペレータに対してブレード交換を促す警告がダイシング装置1より発せられる。 In addition, when the dicing of the work W initially placed on the work table 11 is finished and a new work W is placed, the blade 8 and the work W are simultaneously imaged by the imaging means 12 and alignment is performed. Is called. At this time, it is possible to measure the change in the height of the blade 8 in the Z direction from the change in the focal length when the first imaging unit 12A is focused on the tip of the blade 8, and the amount of wear of the blade 8 is measured. Etc. are measured without contact. When the amount of wear of the blade 8 is larger than a predetermined value, a warning for prompting the operator to replace the blade is issued from the dicing apparatus 1.
 以上、説明したように、本発明に係るダイシング装置及びダイシング方法によれば、ダミーワークを試験的に加工することなくブレードとワークとの調整を行うことが可能となり、調整時間を短縮させ、調整に必要な費用を削減することにより装置全体の稼働率を向上することが可能となる。更に、ブレードの磨耗量を非接触で計測することも可能となり、装置の稼働率をより向上させる。 As described above, according to the dicing apparatus and the dicing method of the present invention, it is possible to adjust the blade and the workpiece without experimentally processing the dummy workpiece, shortening the adjustment time, and adjusting. It is possible to improve the operating rate of the entire apparatus by reducing the cost required for the system. Furthermore, it becomes possible to measure the amount of wear of the blade in a non-contact manner, and the operating rate of the apparatus is further improved.
 なお、本実施の形態では加工手段として対向する先端にブレード8がそれぞれ取り付けられた対向するスピンドル8、8を用いているが、本発明はこれに限らずレーザー等の既知の加工手段が用いられたダイシング装置であれば好適に実施可能である。 In the present embodiment, the opposing spindles 8 and 8 each having the blade 8 attached to the opposing tip are used as the processing means. However, the present invention is not limited to this, and known processing means such as a laser is used. Any dicing apparatus can be suitably implemented.
 また、本実施の形態では加工手段及びワークテーブルが複数備えられているが、本発明はこれに限らず単独のワークテーブルまたは単独の加工手段のダイシング装置においても好適に実施可能である。さらに本実施の形態において、ダイシング装置は撮像部を複数個備えていてもよい。 In the present embodiment, a plurality of processing means and work tables are provided. However, the present invention is not limited to this, and can be suitably implemented in a single work table or a dicing apparatus having a single processing means. Further, in the present embodiment, the dicing apparatus may include a plurality of imaging units.

Claims (4)

  1.  ワークを載置するワークテーブルと、
     前記ワークの加工を行う加工手段と、
     前記ワークテーブルと前記加工手段とを相対的に移動させる移動手段と、
     前記ワークテーブル上の前記ワークと前記加工手段とを同時に撮像可能な撮像手段と、
     前記撮像手段を移動させる撮像手段移動軸と、
     前記加工手段、前記移動手段、前記撮像手段、及び前記撮像手段移動軸を制御する制御手段と、
     を備えたことを特徴とするダイシング装置。
    A work table on which the work is placed;
    Processing means for processing the workpiece;
    Moving means for relatively moving the work table and the processing means;
    Imaging means capable of simultaneously imaging the work on the work table and the processing means;
    An imaging means moving axis for moving the imaging means;
    Control means for controlling the processing means, the moving means, the imaging means, and the imaging means moving axis;
    A dicing apparatus comprising:
  2.  前記撮像手段移動軸は、前記撮像手段を前記ワークテーブルと前記加工手段との間に位置させること、及び前記撮像手段を該ワークテーブルと該加工手段との間から退避させることを特徴とする請求項1に記載のダイシング装置。 The imaging means moving axis positions the imaging means between the work table and the processing means, and retracts the imaging means from between the work table and the processing means. Item 2. The dicing apparatus according to Item 1.
  3.  前記撮像手段は、前記加工手段を撮像する第1の撮像部であって前記加工手段の方向に向かって設けられた第1の撮像部と、前記ワークテーブル上のワークを撮像する第2の撮像部であって前記ワークテーブルの方向に向かって設けられた第2の撮像部と、を備えることを特徴とする請求項1または請求項2に記載のダイシング装置。 The imaging unit is a first imaging unit that images the processing unit, the first imaging unit provided in the direction of the processing unit, and a second imaging that images a workpiece on the work table. The dicing apparatus according to claim 1, further comprising: a second imaging unit that is provided in a direction toward the work table.
  4.  ワークを載置するワークテーブルと、前記ワークの加工を行う加工手段と、前記ワークテーブルと前記加工手段とを相対的に移動させる移動手段と、前記ワークテーブル上の前記ワークと前記加工手段とを同時に撮像可能な撮像手段と、前記撮像手段を移動させる撮像手段移動軸と、前記加工手段、前記移動手段、前記撮像手段、及び前記撮像手段移動軸を制御する制御手段と、を備えたダイシング装置で用いるダイシング方法において、
     前記撮像手段を前記撮像手段移動軸により前記ワークテーブルと前記加工手段との間に位置させ、
     前記加工手段を撮像する第1の撮像部であって前記加工手段の方向に向かって前記撮像手段に設けられた第1の撮像部と、前記ワークテーブル上のワークを撮像する第2の撮像部であって前記ワークテーブルの方向に向かって前記撮像手段に設けられた第2の撮像部と、により前記加工手段と前記ワークとを同時に撮像し、
     該撮像された前記加工手段の画像と前記ワークの画像とを前記制御手段で処理することにより前記加工手段と前記ワークとの相対位置座標を算出し、
     該算出された前記相対位置座標に基づき該加工手段と該ワークとの位置合わせ行って該ワークの加工を行うことを特徴とするダイシング方法。
    A work table on which a work is placed; a processing means for processing the work; a moving means for relatively moving the work table and the processing means; the work on the work table; and the processing means. A dicing apparatus comprising: an imaging unit capable of simultaneously imaging; an imaging unit moving axis that moves the imaging unit; and a processing unit, the moving unit, the imaging unit, and a control unit that controls the imaging unit moving axis. In the dicing method used in
    The imaging means is positioned between the work table and the processing means by the imaging means moving axis,
    A first imaging unit for imaging the processing unit, a first imaging unit provided in the imaging unit in the direction of the processing unit, and a second imaging unit for imaging a workpiece on the work table Then, the processing unit and the workpiece are simultaneously imaged by a second imaging unit provided in the imaging unit toward the work table,
    Calculating the relative position coordinates of the processing means and the work by processing the captured image of the processing means and the image of the work by the control means;
    A dicing method, wherein the workpiece is machined by aligning the machining means with the workpiece based on the calculated relative position coordinates.
PCT/JP2008/072515 2007-12-21 2008-12-11 Dicing apparatus and dicing method WO2009081747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-330132 2007-12-21
JP2007330132 2007-12-21

Publications (1)

Publication Number Publication Date
WO2009081747A1 true WO2009081747A1 (en) 2009-07-02

Family

ID=40801054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072515 WO2009081747A1 (en) 2007-12-21 2008-12-11 Dicing apparatus and dicing method

Country Status (2)

Country Link
TW (1) TWI450805B (en)
WO (1) WO2009081747A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054768A (en) * 2009-09-02 2011-03-17 Disco Abrasive Syst Ltd Cutting device
JP2016076601A (en) * 2014-10-06 2016-05-12 株式会社東京精密 Dicing device
JP2019050429A (en) * 2018-12-27 2019-03-28 株式会社東京精密 Imaging apparatus
NL2027333A (en) * 2020-01-17 2021-09-01 Tokyo Seimitsu Co Ltd Wafer machining system and wafer machining method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554374B (en) * 2012-06-22 2016-10-21 Motech Taiwan Automatic Corp Cutting unit and its application equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138504A (en) * 1991-11-15 1993-06-01 Hitachi Ltd Processing method and device and vtr head thereof
JP2007081317A (en) * 2005-09-16 2007-03-29 Disco Abrasive Syst Ltd Cutting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161264A (en) * 1989-08-21 1991-07-11 Hitachi Ltd Working method for video head by wire saw and wire saw working device
JP3765265B2 (en) * 2001-11-28 2006-04-12 株式会社東京精密 Dicing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138504A (en) * 1991-11-15 1993-06-01 Hitachi Ltd Processing method and device and vtr head thereof
JP2007081317A (en) * 2005-09-16 2007-03-29 Disco Abrasive Syst Ltd Cutting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054768A (en) * 2009-09-02 2011-03-17 Disco Abrasive Syst Ltd Cutting device
JP2016076601A (en) * 2014-10-06 2016-05-12 株式会社東京精密 Dicing device
JP2019050429A (en) * 2018-12-27 2019-03-28 株式会社東京精密 Imaging apparatus
NL2027333A (en) * 2020-01-17 2021-09-01 Tokyo Seimitsu Co Ltd Wafer machining system and wafer machining method

Also Published As

Publication number Publication date
TWI450805B (en) 2014-09-01
TW200936341A (en) 2009-09-01

Similar Documents

Publication Publication Date Title
JP5459484B2 (en) Dicing apparatus and dicing method
JP5182653B2 (en) Dicing method
JP4441823B2 (en) Truing method and chamfering device for chamfering grindstone
US8790157B2 (en) Method and device for machining workpieces
KR101223203B1 (en) Laser Processing Method
JP2006312233A (en) Device and method for processing optical workpiece, particularly, plastic spectacle lens
KR20080061363A (en) Laser dicing apparatus and laser dicing method
WO2009081747A1 (en) Dicing apparatus and dicing method
JP2003163178A (en) Dicing apparatus
JP5762005B2 (en) Processing position adjustment method and processing apparatus
TW200918270A (en) Dicing device and dicing method
JP2009130173A (en) Dicing apparatus
JP4876819B2 (en) Dicing apparatus and dicing method
JP5464421B2 (en) Dicing apparatus and dicing method
JP2017183503A (en) Chamfering method for wafer
JP7016934B2 (en) Wafer chamfering equipment
JP5610123B2 (en) Dicing machine
JP6246566B2 (en) Dressing method
JP2010062435A (en) Dicing method and dicing device
JP5234399B2 (en) Dicing method
JP2022048232A (en) Chamfering device for wafer
CN111452238A (en) Cutting device and dressing method of cutting tool
KR20140121782A (en) Processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP