WO2009081735A1 - Backlight device and liquid crystal display device - Google Patents

Backlight device and liquid crystal display device Download PDF

Info

Publication number
WO2009081735A1
WO2009081735A1 PCT/JP2008/072423 JP2008072423W WO2009081735A1 WO 2009081735 A1 WO2009081735 A1 WO 2009081735A1 JP 2008072423 W JP2008072423 W JP 2008072423W WO 2009081735 A1 WO2009081735 A1 WO 2009081735A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
selective reflection
wavelength
light
layer
Prior art date
Application number
PCT/JP2008/072423
Other languages
French (fr)
Japanese (ja)
Inventor
Ken'ichi Harai
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2009547023A priority Critical patent/JP5195765B2/en
Priority to TW097149112A priority patent/TWI465807B/en
Publication of WO2009081735A1 publication Critical patent/WO2009081735A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Definitions

  • Japanese Patent Application Laid-Open No. 2007-52398 describes that an LED is combined as a red light source in addition to a cold cathode tube.
  • the temperature characteristics and deterioration characteristics of the cold cathode fluorescent lamp and the LED are different, so that the time-dependent changes in the respective light emission characteristics are different. Therefore, there arises a problem that the white balance, which was good at the time of manufacture, is destroyed over time. Furthermore, the problem that the structure of an apparatus becomes complicated also arises.
  • FIG. 1 is a perspective view showing an outline of an example of a backlight device of the present invention.
  • FIG. 2 is a side view schematically showing the backlight device shown in FIG.
  • FIG. 3 is a graph showing an emission spectrum of a cold cathode tube that can be used as a light source in the backlight device of the present invention.
  • FIG. 4 is a graph showing a half-value width region of main bright lines by enlarging the region of the wavelength of 600 nm to 700 nm in the graph of FIG.
  • the light source having the specific emission line examples include red light emission YOX (Y 2 O 3 : Eu 3+ ), green light emission LAP (LaPO 4 : Tb 3+ , Ce 3+ ), blue light emission BAM (Ba 2 Al
  • YOX Y 2 O 3 : Eu 3+
  • green light emission LAP LaPO 4 : Tb 3+ , Ce 3+
  • blue light emission BAM Ba 2 Al
  • a cold cathode tube having a rare earth phosphor such as 16 O 27 : Eu 2+ ) can be preferably exemplified.
  • the 3CCFL shown in FIG. 4 has an emission line having a peak wavelength of about 611 nm as the emission line having the maximum luminance.
  • the selective reflection band of the selective reflection element preferably includes at least a part of a region having a wavelength of about 610 nm or more and 612 nm or less, which is the half width of the emission line, more preferably includes a peak wavelength of about 610 nm, and even more preferably 600 nm or more and 612 nm. Includes all of the following areas: In addition to the bright line having a peak wavelength of about 611 nm, the 4CCFL shown in FIG.
  • the cholesteric liquid crystal composition can optionally contain a crosslinking agent in order to improve the film strength and durability after curing.
  • a crosslinking agent it reacts simultaneously when the liquid crystal layer coated with the liquid crystal composition is cured, or heat treatment is performed after curing to accelerate the reaction, or the reaction proceeds spontaneously by moisture to increase the cross-linking density of the liquid crystal layer.
  • Those that can be enhanced and that do not deteriorate the alignment uniformity can be appropriately selected and used, and those that are cured by ultraviolet rays, heat, moisture, etc. can be suitably used.
  • the cholesteric liquid crystal composition can optionally contain a photoinitiator.
  • a photoinitiator known compounds that generate radicals or acids by ultraviolet rays or visible rays can be used. Specifically, benzoin, benzylmethyl ketal, benzophenone, biacetyl, acetophenone, Michler's ketone, benzyl, benzylisobutyl ether, tetramethylthiuram mono (di) sulfide, 2,2-azobisisobutyronitrile, 2,2-azobis -2,4-dimethylvaleronitrile, benzoyl peroxide, di-tert-butyl peroxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- (4 -Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone, 2-chlorothione,
  • the cholesteric liquid crystal composition can optionally contain a surfactant.
  • a surfactant those not inhibiting the orientation can be appropriately selected and used.
  • a nonionic surfactant containing siloxane or fluorinated alkyl group in the hydrophobic group portion can be preferably used, and an oligomer having two or more hydrophobic group portions in one molecule. Is particularly preferred.
  • surfactants include PF-151N, PF-636, PF-6320, PF-656, PF-6520, PF-3320, PF-651, PF-652 from PolyFox, OMNOVA, FTX- from Neos 209F, FTX-208G, FTX-204D, Seimi Chemical's Surflon KH-40, etc. can be used.
  • the blending ratio of the surfactant is preferably 0.05% to 3% by weight in the cured film obtained by curing the cholesteric liquid crystal composition. When the blending ratio of the surfactant is less than 0.05% by weight, the orientation regulating force at the air interface is lowered and an orientation defect may occur, which is not preferable. On the other hand, when it is more than 3% by weight, it is not preferable because an excessive surfactant may enter between liquid crystal molecules and lower the alignment uniformity.
  • the light irradiation can be performed, for example, by irradiating light having a wavelength of 200 to 500 nm for 0.01 second to 3 minutes.
  • a weakly irradiated ultraviolet ray of 0.01 to 50 mJ / cm 2 and heating may be alternately repeated a plurality of times to obtain a circularly polarized light separating sheet having a wide reflection band.
  • a relatively strong UV light of 50 to 10,000 mJ / cm 2 is irradiated to completely polymerize the liquid crystalline compound to form a cured cholesteric resin layer.
  • the expansion of the reflection band and the irradiation with strong ultraviolet rays may be performed in the air, or a part or all of the process may be performed in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere). .
  • the optically anisotropic element can have a retardation Re in the front direction (hereinafter sometimes abbreviated as “Re”) of approximately 1 ⁇ 4 wavelength of transmitted light.
  • the wavelength range of the transmitted light can be a desired range required for the selective reflection element of the present invention, and specifically, for example, 400 nm to 700 nm.
  • the retardation Re in the front direction is approximately 1 ⁇ 4 wavelength of transmitted light, and the Re value is ⁇ 65 nm from the 1 ⁇ 4 value of the center value in the center value of the wavelength range of transmitted light, preferably It means ⁇ 30 nm, more preferably ⁇ 10 nm.
  • the optically anisotropic element desirably has a thickness direction retardation Rth (hereinafter sometimes abbreviated as “Rth”) of less than 0 nm.
  • the value of retardation Rth in the thickness direction can be preferably ⁇ 30 nm to ⁇ 1000 nm, more preferably ⁇ 50 nm to ⁇ 300 nm, in the central value of the wavelength range of transmitted light.
  • the retardation Re in the front direction and the retardation Rth in the thickness direction are measured using a commercially available phase difference measuring apparatus, and the optically anisotropic elements are spaced 100 mm apart in the longitudinal direction and the width direction (longitudinal or lateral length). If the distance is less than 200 mm, three points are specified at equal intervals in that direction), and measurement is performed in a lattice point shape over the entire surface, and the average value is obtained.
  • the molecular weight of the styrenic resin used for the optically anisotropic element is appropriately selected according to the purpose of use, but is the weight average molecular weight (Mw) of polyisoprene measured by gel permeation chromatography using cyclohexane as a solvent. In general, it is 10,000 to 300,000, preferably 15,000 to 250,000, more preferably 20,000 to 200,000.
  • the methacrylic resin is a polymer having a methacrylic acid ester as a main component, and includes a methacrylic acid ester homopolymer and a copolymer of a methacrylic acid ester and other monomers. Usually, alkyl methacrylate is used. In the case of a copolymer, acrylic acid esters, aromatic vinyl compounds, vinylcyan compounds, etc. are used as other monomers copolymerized with methacrylic acid esters.
  • a stretched multilayer film formed by stretching can be mentioned.
  • this specific embodiment will be described.
  • the method of laminating the polystyrene resin that is the material of the a layer and the other thermoplastic resin that is the material of the b layer to form a multilayer film is not particularly limited, but is a coextrusion T-die method, coextrusion inflation
  • Known methods such as a method of forming by coextrusion such as a method, a coextrusion lamination method, a film lamination forming method such as dry lamination, and a coating forming method may be appropriately used.
  • a molding method by coextrusion is preferable from the viewpoints of production efficiency and that volatile components such as a solvent do not remain in the film.
  • the extrusion temperature can be appropriately selected according to the type of the polystyrene resin used and the other thermoplastic resin.
  • the backlight device of the present invention has the above-described specific light source and selective reflection element, there is no particular limitation on the configuration thereof, and the configuration includes a direct type backlight, a sidelight type backlight, and the like. be able to.
  • Example 1 Production and evaluation of selective reflection element and liquid crystal display device (1-a: Production of selective reflection element)
  • the circularly polarized light separating sheet obtained in Production Example 1 and the retardation film obtained in Production Example 3 were bonded together with an adhesive to obtain a selective reflection element.
  • the adhesive first, ethylene-vinyl acetate copolymer emulsion (non-volatile content 40% by weight, vinyl acetate content 40% by weight) 40 parts by weight, petroleum resin emulsion (non-volatile content 40% by weight, resin softening point 85).
  • Example 3 A liquid crystal display device was produced in the same manner as in Example 1 except that the circularly polarized light separating sheet obtained in Production Example 2 was used, and the same measurement as in Example 1 was performed. The results are shown in Table 1.
  • Example 4 A liquid crystal display device was produced in the same manner as in Example 2 except that the circularly polarized light separating sheet obtained in Production Example 2 was used, and the same measurement as in Example 1 was performed. The results are shown in Table 1.
  • Example 2 Example 4 and Comparative Example 2

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided are a liquid crystal display device, which has low manufacturing cost, low power consumption and high luminance, and a backlight device for providing such liquid crystal display device. The backlight device is provided with a light source, which has one or more light emitting regions in a wavelength band of 400nm or more but not more than 600nm and one or more light emitting regions in a wavelength band of 600nm or more but not more than 700nm; and a selective reflection element disposed on the side of the light emitting surface of the light source. The selective reflection band of the selective reflection element includes at least a part of the light emitting region in the wavelength band of 600nm or more but not more than 700nm. The liquid crystal display device provided with such backlight device is also provided.

Description

バックライト装置及び液晶表示装置Backlight device and liquid crystal display device
 本発明は、バックライト装置及び液晶表示装置に関し、特に、消費電力が低く、且つ輝度が高いバックライト装置及び液晶表示装置に関する。 The present invention relates to a backlight device and a liquid crystal display device, and more particularly to a backlight device and a liquid crystal display device with low power consumption and high luminance.
 液晶表示装置等の表示装置には、高輝度、低コスト、低消費電力、高い色再現性等の特性が求められるため、そのための様々な改善が提案されている。 Since display devices such as liquid crystal display devices are required to have characteristics such as high luminance, low cost, low power consumption, and high color reproducibility, various improvements have been proposed.
 液晶パネルに光を供給するバックライト装置には、光源として、蛍光体を封入した蛍光管が多く用いられている。かかる蛍光管として、従来は青色及び緑色の輝線に加えて赤色の輝線として波長611nm付近の輝線を有する冷陰極管(以下、3CCFLという。)を用いることが知られていたが、色再現範囲を広げる目的で、かかる赤色の輝線に加えて、またはかかる赤色の輝線に代えて、波長658nm付近の輝線を有する冷陰極管(以下、それぞれ「長波長3CCFL」、「4CCFL」という。)を用いることが行なわれている。 In a backlight device that supplies light to a liquid crystal panel, a fluorescent tube enclosing a phosphor is often used as a light source. Conventionally, it has been known to use a cold cathode tube (hereinafter referred to as 3CCFL) having a bright line near a wavelength of 611 nm as a red bright line in addition to blue and green bright lines. For the purpose of spreading, in addition to or instead of the red emission line, cold cathode tubes having emission lines near the wavelength of 658 nm (hereinafter referred to as “long wavelength 3CCFL” and “4CCFL”, respectively) are used. Has been done.
 しかしながら、一般に冷陰極管は赤色の輝線の輝度が弱く、特に上記長波長3CCFL及び4CCFLは、赤色の輝線の輝度が特に弱いという問題がある。更に、ホワイトバランスを取るためには、赤色の光強度に合うように、青と緑の波長成分の光強度を抑える必要がある。それにより、全体の光の利用効率が低くなる結果、輝度も弱くなるので、輝度を上げるために電力を上げなければならないという問題点がある。 However, in general, the cold-cathode tube has a weak red line brightness, and the long wavelengths 3CCFL and 4CCFL in particular have a problem that the red line brightness is particularly low. Furthermore, in order to achieve white balance, it is necessary to suppress the light intensities of the blue and green wavelength components so as to match the red light intensity. As a result, the overall light utilization efficiency is lowered, resulting in a decrease in luminance. Therefore, there is a problem that the power must be increased in order to increase the luminance.
 かかる問題点を解決するため、例えば特開2007-52398号公報では、冷陰極管に加えて、赤色の光源としてLEDを組み合わせることが記載されている。しかし、そのような構成とした場合、冷陰極管やLEDの温度特性や劣化特性等が異なるので、それぞれの発光特性の経時変化が異なる。従って、製造時には良好であったホワイトバランスが時間の経過と共に崩れてしまう問題が生じる。さらに、装置の構成が複雑になるという問題も生じる。 In order to solve such a problem, for example, Japanese Patent Application Laid-Open No. 2007-52398 describes that an LED is combined as a red light source in addition to a cold cathode tube. However, in such a configuration, the temperature characteristics and deterioration characteristics of the cold cathode fluorescent lamp and the LED are different, so that the time-dependent changes in the respective light emission characteristics are different. Therefore, there arises a problem that the white balance, which was good at the time of manufacture, is destroyed over time. Furthermore, the problem that the structure of an apparatus becomes complicated also arises.
 本発明の目的は、輝度が高く、ホワイトバランスが良好な液晶表示装置及びかかる液晶表示装置を与えるバックライト装置を提供することにある。 An object of the present invention is to provide a liquid crystal display device having high luminance and good white balance, and a backlight device that provides such a liquid crystal display device.
 上記課題を解決するために鋭意検討した結果、本発明者は、バックライト装置に、前述の赤色の輝線に対応する特定の波長領域において円偏光を選択的に透過させる選択反射素子を設けることにより、消費電力を高めることなく輝度を向上させることができることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventor has provided a selective reflection element that selectively transmits circularly polarized light in a specific wavelength region corresponding to the above-described red emission line in the backlight device. The present inventors have found that the luminance can be improved without increasing the power consumption, and have completed the present invention.
 即ち、本発明によれば、下記のものが提供される。
〔1〕 400nm以上600nm未満の波長帯域における一以上の発光領域及び600nm以上700nm以下の波長帯域における一以上の発光領域を有する光源、並びに前記光源の出光面側に設けられた選択反射素子を備え、前記選択反射素子の選択反射波長帯域が、前記600nm以上700nm以下の波長帯域における発光領域の少なくとも一部を含むことを特徴とするバックライト装置。
〔2〕 前記光源が、前記発光領域として640nm以上700nm以下の波長帯域において一以上の長波長側赤色輝線を有し、前記選択反射素子の前記選択反射帯域が、前記長波長側赤色輝線の少なくとも一つのピーク波長を含む、前記バックライト装置。
〔3〕 前記光源が、前記発光領域としてさらに、600nm以上640nm未満の波長帯域において一以上の短波長側赤色輝線を有し、前記選択反射素子の前記選択反射帯域が、前記短波長側赤色輝線の少なくとも一つのピーク波長を含む、前記バックライト装置。
〔4〕 前記選択反射素子が、400nm以上600nm未満の波長帯域において、実質的に選択反射帯域を有さない、前記バックライト装置。
〔5〕 前記光源が、冷陰極管又は発光ダイオードを含む前記バックライト装置。
〔6〕 前記バックライト装置、及び液晶パネルを備えることを特徴とする液晶表示装置。
That is, according to the present invention, the following is provided.
[1] A light source having one or more light emission regions in a wavelength band of 400 nm or more and less than 600 nm and one or more light emission regions in a wavelength band of 600 nm or more and 700 nm or less, and a selective reflection element provided on the light emission surface side of the light source. The selective reflection wavelength band of the selective reflection element includes at least a part of a light emitting region in the wavelength band of 600 nm to 700 nm.
[2] The light source has one or more long-wavelength red bright lines in the wavelength band of 640 nm or more and 700 nm or less as the light-emitting region, and the selective reflection band of the selective reflection element is at least of the long-wavelength red bright line. The backlight device including one peak wavelength.
[3] The light source further has one or more short-wavelength red emission lines in the wavelength band of 600 nm or more and less than 640 nm as the light-emitting region, and the selective reflection band of the selective reflection element is the short-wavelength side red emission line. The backlight device including at least one peak wavelength.
[4] The backlight device, wherein the selective reflection element has substantially no selective reflection band in a wavelength band of 400 nm or more and less than 600 nm.
[5] The backlight device, wherein the light source includes a cold cathode tube or a light emitting diode.
[6] A liquid crystal display device comprising the backlight device and a liquid crystal panel.
 本発明のバックライト装置は、消費電力が低く、輝度が高く、特に通常のバックライト装置では不足しやすい赤色の領域の輝度が高い。従ってこれを備える本発明の液晶表示装置は、消費電力が低く、輝度が高く、ホワイトバランスが良好な液晶表示装置とすることができる。 The backlight device of the present invention has low power consumption and high luminance, and in particular, the luminance of the red region that is likely to be insufficient with a normal backlight device is high. Therefore, the liquid crystal display device of the present invention including this can be a liquid crystal display device with low power consumption, high luminance, and good white balance.
図1は、本発明のバックライト装置の一例の概略を示す斜視図である。FIG. 1 is a perspective view showing an outline of an example of a backlight device of the present invention. 図2は、図1に示すバックライト装置の概略を示す側面図である。FIG. 2 is a side view schematically showing the backlight device shown in FIG. 図3は、本発明のバックライト装置に光源として用いうる冷陰極管の発光スペクトルを示すグラフである。FIG. 3 is a graph showing an emission spectrum of a cold cathode tube that can be used as a light source in the backlight device of the present invention. 図4は、図3のグラフの波長600nm以上700nm以下の領域を拡大し、主要な輝線の半値幅領域を示すグラフである。FIG. 4 is a graph showing a half-value width region of main bright lines by enlarging the region of the wavelength of 600 nm to 700 nm in the graph of FIG.
 (バックライト装置)
 本発明のバックライト装置は、特定の光源及び特定の選択反射素子を備える。前記選択反射素子は、バックライト装置において、前記光源より出光面側に設けられる。本発明のバックライト装置は、さらに任意に、反射板、光拡散板等の他の構成要素をも含むことができる。
(Backlight device)
The backlight device of the present invention includes a specific light source and a specific selective reflection element. The selective reflection element is provided on the light exit surface side of the light source in the backlight device. The backlight device of the present invention can further optionally include other components such as a reflection plate and a light diffusion plate.
 (光源)
 本発明において、光源は、冷陰極管、熱陰極管、発光ダイオード、又はこれらの組み合わせとすることができ、特に冷陰極管又は発光ダイオードを含むことが好ましい。
(light source)
In the present invention, the light source may be a cold cathode tube, a hot cathode tube, a light emitting diode, or a combination thereof, and particularly preferably includes a cold cathode tube or a light emitting diode.
 光源として発光ダイオード(LED)を用いる場合、各LEDの構成としては、例えば、(I)白色LEDのみからなる構成、(II)RGB三原色を組み合わせてなる構成、および(III)RGB三原色に中間色を組み合わせてなる構成等を挙げることができる。また、RGB三原色を組み合わせた構成((II)および(III))の構成)を用いた場合には、(i)赤色LEDと緑色LEDと青色LEDとを少なくとも1つずつ近接配置して、各色を混合させて白色を発光させる構成、および(ii)赤色LEDと緑色LEDと青色LEDとを適宜配置し、各色のLEDを時分割で発色させるフィールドシーケンシャル法を用いてカラー表示させる構成を挙げることができる。 When a light emitting diode (LED) is used as a light source, the configuration of each LED includes, for example, (I) a configuration consisting of only white LEDs, (II) a configuration combining RGB primary colors, and (III) an intermediate color for RGB primary colors. The structure etc. which are combined can be mentioned. Further, when a configuration combining the three primary colors of RGB (the configuration of (II) and (III)) is used, (i) at least one red LED, green LED, and blue LED are arranged close to each other, and each color And (ii) a configuration in which red LED, green LED, and blue LED are appropriately arranged and color display is performed using a field sequential method in which each color LED is colored in a time-sharing manner. Can do.
 本発明において、光源は、400nm以上600nm未満の波長帯域において一以上の発光領域を有し、かつ600nm以上700nm以下の波長帯域において一以上の発光領域を有する。ここで発光領域とは、発光スペクトルを観測した場合に発光が認められる波長帯域である。ここで、光源が複数種類のものの組み合わせである場合は、組み合わされた全光源のスペクトルにおける発光領域を、当該特定の発光領域とすることができる。例えば、上に述べたように複数種類の発光ダイオードを光源として有する場合、それらのうちの一種が400nm以上600nm未満の波長帯域における発光領域と600nm以上700nm以下の波長帯域における発光領域のうちのどちらか一方を有し、他の一種が他方の発光領域を有していてもよい。 In the present invention, the light source has one or more light emitting regions in a wavelength band of 400 nm or more and less than 600 nm, and one or more light emitting regions in a wavelength band of 600 nm or more and 700 nm or less. Here, the emission region is a wavelength band in which light emission is observed when an emission spectrum is observed. Here, when the light source is a combination of a plurality of types, the light emission region in the spectrum of all the combined light sources can be set as the specific light emission region. For example, when having a plurality of types of light emitting diodes as a light source as described above, one of them is either a light emitting region in a wavelength band of 400 nm or more and less than 600 nm or a light emitting region in a wavelength band of 600 nm or more and 700 nm or less. One of them may have the other light emitting region.
 好ましくは、光源は、400nm以上600nm未満の波長帯域及び600nm以上700nm以下の波長帯域のそれぞれにおいて、発光領域として、一以上の輝線を有する。例えば、光源は、600nm以上700nm以下の波長帯域の輝線として、好ましくは640nm以上700nm以下の波長帯域において一以上の輝線(以下「長波長側赤色輝線」ということがある。)を有することができる。さらに好ましくは、当該長波長側赤色輝線に加えて600nm以上640nm未満の波長帯域において一以上の輝線(以下「短波長側赤色輝線」ということがある。)を有することができる。 Preferably, the light source has one or more bright lines as a light emitting region in each of a wavelength band of 400 nm to less than 600 nm and a wavelength band of 600 nm to 700 nm. For example, the light source can have one or more emission lines (hereinafter sometimes referred to as “long wavelength red emission lines”) as emission lines in the wavelength band of 600 nm to 700 nm, preferably in the wavelength band of 640 nm to 700 nm. . More preferably, in addition to the long wavelength side red bright line, one or more bright lines (hereinafter sometimes referred to as “short wavelength side red bright line”) may be included in a wavelength band of 600 nm or more and less than 640 nm.
 前記長波長側赤色輝線及び短波長側赤色輝線としては、具体的には例えば、それぞれピーク波長が約650nm以上668nm以下及び約606nm以上618nm以下の範囲内の輝線とすることができる。 Specifically, the long wavelength side red bright line and the short wavelength side red bright line can be, for example, bright lines having peak wavelengths in the range of about 650 nm to 668 nm and about 606 nm to 618 nm, respectively.
 一方400nm以上600nm未満の波長帯域の一以上の輝線として、光源は、例えばピーク波長約430nm以上500nm以下の範囲の青色輝線及びピーク波長約540nmの緑色輝線を有することができる。 On the other hand, as one or more emission lines in the wavelength band of 400 nm or more and less than 600 nm, the light source can have, for example, a blue emission line with a peak wavelength of about 430 nm or more and 500 nm or less and a green emission line with a peak wavelength of about 540 nm.
 上に述べた光源の発光スペクトルの具体的な例を図3及び図4に示す。図3及び図4においては、ピーク波長約430nm以上500nm以下の範囲の青色輝線、ピーク波長約540nmの緑色輝線、及びピーク波長約611nmの赤色輝線を有する3CCFL、及びさらにピーク波長約658nmの赤色輝線を有する4CCFLのスペクトルの例を示している。ここに示す例に加えて、赤色輝線としてピーク波長658nmの輝線のみを有する長波長3CCFLも好ましい例として挙げることができる。 Specific examples of the emission spectrum of the light source described above are shown in FIGS. 3 and 4, 3CCFL having a blue emission line having a peak wavelength of about 430 nm to 500 nm, a green emission line having a peak wavelength of about 540 nm, and a red emission line having a peak wavelength of about 611 nm, and a red emission line having a peak wavelength of about 658 nm. The example of the spectrum of 4CCFL which has is shown. In addition to the example shown here, a long wavelength 3CCFL having only a bright line having a peak wavelength of 658 nm as a red bright line can also be given as a preferred example.
 このような青色、緑色及び赤色の輝線を有する冷陰極管においては、赤色の輝線の輝度が他の色の輝線の輝度より低く、赤色の輝線の輝度を上げるためには消費電力を高くしなければならないことが多いが、本発明によれば、そのような冷陰極管を用いた場合でも、低消費電力で色バランスの良好なバックライト装置を構成することができる。 In such a cold cathode tube having blue, green and red emission lines, the luminance of the red emission line is lower than that of the other color emission lines, and the power consumption must be increased in order to increase the luminance of the red emission line. In many cases, however, according to the present invention, a backlight device with low power consumption and good color balance can be configured even when such a cold cathode tube is used.
 前記の特定の輝線を有する光源としては、具体的には、赤色発光YOX(Y:Eu3+)、緑色発光LAP(LaPO:Tb3+、Ce3+)、青色発光BAM(BaAl1627:Eu2+)などの希土類蛍光体を有する冷陰極管を、好ましく挙げることができる。 Specific examples of the light source having the specific emission line include red light emission YOX (Y 2 O 3 : Eu 3+ ), green light emission LAP (LaPO 4 : Tb 3+ , Ce 3+ ), blue light emission BAM (Ba 2 Al A cold cathode tube having a rare earth phosphor such as 16 O 27 : Eu 2+ ) can be preferably exemplified.
 (選択反射素子)
 本発明において、選択反射素子の選択反射とは、素子が特定の偏光を透過しそれ以外の光の少なくとも一部を反射する特性をいい、選択反射帯域とは、特定の素子において、かかる選択反射が起こる波長帯域をいう。選択反射帯域は、選択反射素子の反射スペクトルを分光光度計(例えば、日本分光社製JASCO V-550)にて測定し、反射率が20%を超える帯域を、選択反射帯域とすることができる。
(Selective reflection element)
In the present invention, the selective reflection of the selective reflection element means a characteristic that the element transmits a specific polarized light and reflects at least a part of the other light, and the selective reflection band is a selective reflection of the specific element. This refers to the wavelength band where this occurs. For the selective reflection band, the reflection spectrum of the selective reflection element is measured with a spectrophotometer (for example, JASCO V-550 manufactured by JASCO Corporation), and the band with a reflectance exceeding 20% can be set as the selective reflection band. .
 本発明において、選択反射素子の選択反射帯域は、光源の600nm以上700nm以下の波長帯域における発光領域の少なくとも一部を含む。より好ましくは、選択反射帯域は、光源の600nm以上700nm以下の波長帯域における輝線の半値幅領域の少なくとも一部を含み、より好ましくは輝線のピーク波長を含み、さらにより好ましくは半値幅領域の全部を含む。 In the present invention, the selective reflection band of the selective reflection element includes at least a part of the light emitting region in the wavelength band of 600 nm to 700 nm of the light source. More preferably, the selective reflection band includes at least part of the half-width region of the bright line in the wavelength band of 600 nm to 700 nm of the light source, more preferably includes the peak wavelength of the bright line, and even more preferably the entire half-width region. including.
 また、光源が600nm以上700nm以下の波長帯域において複数の発光領域を有する場合、選択反射素子の選択反射帯域は、少なくともそれら複数の発光領域の1つ、好ましくは全部に対して、上に述べた関係を有する。さらに好ましくは、選択反射素子は、600nm以上700nm以下の波長帯域全体にわたり、選択反射帯域を有する。 Further, when the light source has a plurality of light emitting regions in a wavelength band of 600 nm to 700 nm, the selective reflection band of the selective reflection element is described above for at least one, preferably all of the plurality of light emitting regions. Have a relationship. More preferably, the selective reflection element has a selective reflection band over the entire wavelength band of 600 nm to 700 nm.
 図4に示す発光スペクトルの例を参照して具体的に説明する。例えば、図4に示す3CCFLの場合、最大の輝度を有する輝線としてピーク波長約611nmの輝線を有している。選択反射素子の選択反射帯域は、好ましくはこの輝線の半値幅である波長約610nm以上612nm以下の領域の少なくとも一部を含み、より好ましくはピーク波長約610nmを含み、さらにより好ましくは600nm以上612nm以下の領域の全てを含む。また、図4に示す4CCFLの場合、ピーク波長約611nmの輝線に加え、2番目の輝度を有する輝線としてピーク波長約658nmで半値幅領域648nm以上665nm以下の輝線を有している。選択反射素子の選択反射帯域は、これら2つの輝線の一方、好ましくは両方について、好ましくは輝線の半値幅領域の少なくとも一部を含み、より好ましくはピーク波長を含み、さらにより好ましくは半値幅領域の全てを含むことが好ましい。 This will be specifically described with reference to the example of the emission spectrum shown in FIG. For example, the 3CCFL shown in FIG. 4 has an emission line having a peak wavelength of about 611 nm as the emission line having the maximum luminance. The selective reflection band of the selective reflection element preferably includes at least a part of a region having a wavelength of about 610 nm or more and 612 nm or less, which is the half width of the emission line, more preferably includes a peak wavelength of about 610 nm, and even more preferably 600 nm or more and 612 nm. Includes all of the following areas: In addition to the bright line having a peak wavelength of about 611 nm, the 4CCFL shown in FIG. 4 has a bright line having a peak wavelength of about 658 nm and a full width at half maximum of 648 nm to 665 nm as a bright line having the second luminance. The selective reflection band of the selective reflection element preferably includes at least part of the half-width region of the bright line for one of these two bright lines, preferably both, more preferably includes the peak wavelength, and even more preferably includes the half-width region. It is preferable that all of these are included.
 本発明において、選択反射素子の600nm以上700nm以下の波長帯域以外の波長帯域における選択反射の特性は、特に限定されないが、400nm以上600nm未満の波長帯域においては、実質的に選択反射帯域を有さないことが好ましい。本発明において、「実質的に選択反射帯域を有さない」とは、選択反射素子の反射スペクトルを分光光度計にて測定したときに、当該帯域内における反射率が20%以下であることを意味する。具体的には、400nm以上600nm未満の波長帯域において反射スペクトルを分光光度計にて測定したときに、当該波長帯域内において反射率が20%を超える波長帯域がなかった場合、実質的に選択反射帯域を有さない。このような特性を有する選択反射素子は、後述するコレステリック液晶組成物において、液晶性化合物、カイラル剤等の成分を適宜調整することにより得ることができる。 In the present invention, the selective reflection characteristic in the wavelength band other than the wavelength band of 600 nm to 700 nm of the selective reflection element is not particularly limited. However, the selective reflection element substantially has a selective reflection band in the wavelength band of 400 nm to less than 600 nm. Preferably not. In the present invention, “substantially has no selective reflection band” means that when the reflection spectrum of the selective reflection element is measured with a spectrophotometer, the reflectance in the band is 20% or less. means. Specifically, when a reflection spectrum is measured with a spectrophotometer in a wavelength band of 400 nm or more and less than 600 nm, if there is no wavelength band with a reflectance exceeding 20% within the wavelength band, substantially selective reflection is performed. Has no bandwidth. The selective reflection element having such characteristics can be obtained by appropriately adjusting components such as a liquid crystal compound and a chiral agent in a cholesteric liquid crystal composition described later.
 本発明において、選択反射素子は、1枚の素子のみからなるものであってもよく、複数枚の素子の組み合わせからなる積層体であって、積層体全体として上記選択反射帯域を有するものであってもよい。 In the present invention, the selective reflection element may be composed of only one element, or a laminated body composed of a combination of a plurality of elements, and the laminated body as a whole has the selective reflection band. May be.
 本発明に用いる選択反射素子は、上記選択反射帯域を有する限りにおいて、如何なる材質のものを用いてもよくまた如何なる原理の選択反射をするものであってもよいが、好ましい選択反射素子の例として、円偏光分離シートを含むもの、又はこの円偏光分離シートと位相差フィルムとを組み合わせて含むものが挙げられる。 As long as the selective reflection element used in the present invention has the selective reflection band described above, any material may be used and selective reflection based on any principle may be used. And those containing a circularly polarized light separating sheet, or those containing a combination of this circularly polarized light separating sheet and a retardation film.
 選択反射素子が円偏光分離シートを有し位相差フィルムを有しない場合、かかる選択反射素子は、選択反射帯域において、特定の円偏光のみを透過しその他の光(他の円偏光、直線偏光等)を反射するものとなる。一方、選択反射素子が円偏光分離シート及び位相差フィルムを有する積層体であって、かかる選択反射素子を、円偏光分離シートを光源側、位相差フィルムを出射面側として配置した場合、選択反射帯域において、特定の円偏光が直線偏光に変換された光が出射することになる。反射された光は、バックライト装置内を反射して、再び選択反射素子に入射した際に特定の円偏光となっていれば出射する。本発明のバックライト装置では、かかる選択的反射が行われることにより、選択反射帯域において特定の偏光を高い輝度で出射して液晶パネルに供給することができ、その結果液晶表示装置の輝度を向上させることができる。 When the selective reflection element has a circularly polarized light separating sheet and no retardation film, the selective reflection element transmits only specific circularly polarized light in the selective reflection band, and other light (other circularly polarized light, linearly polarized light, etc.). ) Is reflected. On the other hand, when the selective reflection element is a laminate having a circularly polarized light separating sheet and a retardation film, the selective reflecting element is selectively reflected when the circularly polarized light separating sheet is disposed on the light source side and the retardation film is disposed on the exit surface side. In the band, light obtained by converting specific circularly polarized light into linearly polarized light is emitted. The reflected light is reflected inside the backlight device, and is emitted if it becomes a specific circularly polarized light when entering the selective reflection element again. In the backlight device of the present invention, by performing such selective reflection, specific polarized light can be emitted with high luminance in the selective reflection band and supplied to the liquid crystal panel, thereby improving the luminance of the liquid crystal display device. Can be made.
 前記円偏光分離シートの例としては、コレステリック液晶相を呈しうる組成物(コレステリック液晶組成物)を透明樹脂基材に塗布してコレステリック樹脂層を得、次いで少なくとも1回の、光照射及び/又は加温処理により硬化してなる円偏光分離シートを挙げることができる。 As an example of the circularly polarized light separating sheet, a composition capable of exhibiting a cholesteric liquid crystal phase (cholesteric liquid crystal composition) is applied to a transparent resin substrate to obtain a cholesteric resin layer, and then at least one time of light irradiation and / or A circularly polarized light separating sheet formed by curing by heating treatment can be mentioned.
 前記コレステリック液晶組成物としては、棒状液晶性化合物であって、それ自体または他の物質と共に硬化しうるものを含む組成物を用いることができる。具体的には例えば、Δnが0.18以上であって、1分子中に少なくとも2つ以上の反応性基を有する棒状液晶化合物を挙げることができる。
 より具体的には、前記棒状液晶性化合物としては、式(1)で表される化合物を挙げることができる。
3-C3-D3-C5-M-C6-D4-C4-R4 式(1)
(式中、R3及びR4は反応性基であり、それぞれ独立して(メタ)アクリル基、(チオ)エポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、ビニル基、アリル基、フマレート基、シンナモイル基、オキサゾリン基、メルカプト基、イソ(チオ)シアネート基、アミノ基、ヒドロキシル基、カルボキシル基、及びアルコキシシリル基からなる群より選択される基を表す。D3及びD4は単結合、炭素原子数1~20個の直鎖状又は分岐鎖状のアルキル基、及び炭素原子数1~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基からなる群より選択される基を表す。C3~C6は単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CH2COO-、及び-CH2OCO-からなる群より選択される基を表す。Mはメソゲン基を表し、具体的には、非置換又は置換基を有していてもよい、アゾメチン類、アゾキシ類、フェニル類、ビフェニル類、ターフェニル類、ナフタレン類、アントラセン類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、アルケニルシクロヘキシルベンゾニトリル類の群から選択された2~4個の骨格を、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CH2COO-、及び-CH2OCO-等の結合基によって結合されて形成される。)
 前記、メソゲン基Mが有しうる置換基としては、ハロゲン原子、置換基を有してもよい炭素数1~10のアルキル基、シアノ基、ニトロ基、-O-R5、-O-C(=O)-R5、-C(=O)-O-R5、-O-C(=O)-O-R5、-NR5-C(=O)-R5、-C(=O)-NR5、または-O-C(=O)-NR5を表す。ここで、R5及びRは、水素原子又は炭素数1~10のアルキル基を表し、アルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR6-C(=O)-、-C(=O)-NR6-、-NR6-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R6は、水素原子または炭素数1~6のアルキル基を表す。前記「置換基を有してもよい炭素数1~10個のアルキル基」における置換基としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1~6個のアルコキシ基、炭素原子数2~8個のアルコキシアルコキシ基、炭素原子数3~15個のアルコキシアルコキシアルコキシ基、炭素原子数2~7個のアルコキシカルボニル基、炭素原子数2~7個のアルキルカルボニルオキシ基、炭素原子数2~7個のアルコキシカルボニルオキシ基等が挙げられる。
 本発明において、該棒状液晶性化合物は非対称構造であることが好ましい。ここで非対称構造とは、一般式(1)において、メソゲン基Mを中心としてR3-C3-D3-C5-と-C6-D4-C4-R4が異なる構造のことをいう。該棒状液晶性化合物として、非対称構造のものを用いることにより、配向均一性をより高めることができる。
As the cholesteric liquid crystal composition, a composition containing a rod-like liquid crystal compound that can be cured by itself or with other substances can be used. Specific examples include rod-like liquid crystal compounds having Δn of 0.18 or more and having at least two or more reactive groups in one molecule.
More specifically, examples of the rod-like liquid crystalline compound include compounds represented by the formula (1).
R 3 -C 3 -D 3 -C 5 -MC 6 -D 4 -C 4 -R 4 Formula (1)
(Wherein R 3 and R 4 are reactive groups, each independently (meth) acryl group, (thio) epoxy group, oxetane group, thietanyl group, aziridinyl group, pyrrole group, vinyl group, allyl group, D 3 and D 4 are groups selected from the group consisting of fumarate group, cinnamoyl group, oxazoline group, mercapto group, iso (thio) cyanate group, amino group, hydroxyl group, carboxyl group, and alkoxysilyl group. A group selected from the group consisting of a bond, a linear or branched alkyl group having 1 to 20 carbon atoms, and a linear or branched alkylene oxide group having 1 to 20 carbon atoms; C 3 to C 6 are a single bond, —O—, —S—, —S—S—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —, —CH═. N—N═CH—, —NHC O -, - OCOO -, - CH 2 COO-, and .M represents a group selected from the group consisting of -CH 2 OCO- represents a mesogenic group, specifically, having a substituted or unsubstituted group Azomethines, azoxys, phenyls, biphenyls, terphenyls, naphthalenes, anthracenes, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, 2 to 4 skeletons selected from the group of alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolanes, alkenylcyclohexylbenzonitriles are represented by —O—, —S—, —SS—, —CO—, -CS -, - OCO -, - CH 2 -, - OCH 2 -, - CH = N-N = CH -, - NHCO -, - OCOO , -CH 2 COO-, and is formed are joined by a linking group of -CH 2 OCO-, and the like.)
Examples of the substituent that the mesogenic group M may have include a halogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, a cyano group, a nitro group, —O—R 5 , —O—C. (═O) —R 5 , —C (═O) —O—R 5 , —O—C (═O) —O—R 5 , —NR 5 —C (═O) —R 5 , —C ( ═O) —NR 5 R 7 or —O—C (═O) —NR 5 R 7 . Here, R 5 and R 7 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and when it is an alkyl group, the alkyl group includes —O—, —S—, —O—C (= O) —, —C (═O) —O—, —O—C (═O) —O—, —NR 6 —C (═O) —, —C (═O) —NR 6 —, —NR 6 — or —C (═O) — may be present (except when two or more of —O— and —S— are present adjacent to each other). Here, R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Examples of the substituent in the “optionally substituted alkyl group having 1 to 10 carbon atoms” include a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, and an alkoxy having 1 to 6 carbon atoms. Group, alkoxyalkoxy group having 2 to 8 carbon atoms, alkoxyalkoxyalkoxy group having 3 to 15 carbon atoms, alkoxycarbonyl group having 2 to 7 carbon atoms, alkylcarbonyloxy having 2 to 7 carbon atoms Group, an alkoxycarbonyloxy group having 2 to 7 carbon atoms, and the like.
In the present invention, the rod-like liquid crystalline compound preferably has an asymmetric structure. Here, the asymmetric structure is a structure in which R 3 -C 3 -D 3 -C 5 -and -C 6 -D 4 -C 4 -R 4 are different in the general formula (1) with the mesogenic group M as the center. Say. By using a rod-like liquid crystal compound having an asymmetric structure, alignment uniformity can be further improved.
 本発明において、前記棒状液晶性化合物は、そのΔn値が0.18以上、好ましくは0.22以上であることが好ましい。Δn値が0.30以上の化合物を用いると、紫外線吸収スペクトルの長波長側の吸収端が可視域に及ぶ場合があるが、該スペクトルの吸収端が可視域に及んでも所望する光学的性能に悪影響を及ぼさない限り、使用可能である。このような高いΔn値を有することにより、高い光学的性能(例えば、円偏光分離特性)を有する円偏光分離シートを与えることができる。 In the present invention, the rod-like liquid crystalline compound has a Δn value of 0.18 or more, preferably 0.22 or more. When a compound having an Δn value of 0.30 or more is used, the absorption edge on the long wavelength side of the ultraviolet absorption spectrum may extend to the visible range, but desired optical performance even when the absorption edge of the spectrum extends to the visible range. It can be used as long as it does not adversely affect By having such a high Δn value, a circularly polarized light separating sheet having high optical performance (for example, circularly polarized light separating characteristics) can be provided.
 本発明において、前記棒状液晶性化合物は、1分子中に少なくとも2つ以上の反応性基を有することが好ましい。前記反応性基としては、具体的にはエポキシ基、チオエポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、フマレート基、シンナモイル基、イソシアネート基、イソチオシアネート基、アミノ基、ヒドロキシル基、カルボキシル基、アルコキシシリル基、オキサゾリン基、メルカプト基、ビニル基、アリル基、メタクリル基、及びアクリル基が挙げられる。これらの反応性基を有することにより、コレステリック液晶組成物を硬化させた際に、安定した硬化物を得ることができる。 In the present invention, the rod-like liquid crystalline compound preferably has at least two or more reactive groups in one molecule. Specific examples of the reactive group include an epoxy group, a thioepoxy group, an oxetane group, a thietanyl group, an aziridinyl group, a pyrrole group, a fumarate group, a cinnamoyl group, an isocyanate group, an isothiocyanate group, an amino group, a hydroxyl group, and a carboxyl group. , Alkoxysilyl groups, oxazoline groups, mercapto groups, vinyl groups, allyl groups, methacryl groups, and acrylic groups. By having these reactive groups, a stable cured product can be obtained when the cholesteric liquid crystal composition is cured.
 本発明において、コレステリック液晶組成物は、硬化後の膜強度向上や耐久性向上のために、任意に架橋剤を含有することができる。当該架橋剤としては、液晶組成物を塗布した液晶層の硬化時に同時に反応したり、硬化後に熱処理を行って反応を促進したり、又は湿気により自然に反応が進行して液晶層の架橋密度を高めることができ、かつ配向均一性を悪化させないものを適宜選択し用いることができ、紫外線、熱、湿気等で硬化するものが好適に使用できる。架橋剤の具体例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、2-(2-ビニロキシエトキシ)エチルアクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート等のアジリジン化合物;ヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートから誘導されるイソシアヌレート型イソシアネート、ビウレット型イソシアネート、アダクト型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のアルコキシシラン化合物;が挙げられる。また、該架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度や耐久性向上に加えて生産性を向上させることができる。
 前記架橋剤の配合割合は、コレステリック液晶組成物を硬化して得られる硬化膜中に0.1~15重量%となるようにすることが好ましい。該架橋剤の配合割合が0.1重量%より少ないと架橋密度向上の効果が得られず、逆に15重量%より多いとコレステリック樹脂層の安定性を低下させてしまうため好ましくない。
In the present invention, the cholesteric liquid crystal composition can optionally contain a crosslinking agent in order to improve the film strength and durability after curing. As the cross-linking agent, it reacts simultaneously when the liquid crystal layer coated with the liquid crystal composition is cured, or heat treatment is performed after curing to accelerate the reaction, or the reaction proceeds spontaneously by moisture to increase the cross-linking density of the liquid crystal layer. Those that can be enhanced and that do not deteriorate the alignment uniformity can be appropriately selected and used, and those that are cured by ultraviolet rays, heat, moisture, etc. can be suitably used. Specific examples of the crosslinking agent include, for example, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 2- (2-vinyl Polyfunctional acrylate compounds such as loxyethoxy) ethyl acrylate; epoxy compounds such as glycidyl (meth) acrylate, ethylene glycol diglycidyl ether, glycerin triglycidyl ether, pentaerythritol tetraglycidyl ether; 2,2-bishydroxymethylbutanol-tris [ 3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane, trimethylolpropane-tri-β-aziridinyl Aziridine compounds such as lupropionate; Isocyanurate type isocyanates derived from hexamethylene diisocyanate, hexamethylene diisocyanate, isocyanurate type isocyanates, biuret type isocyanates, adduct type isocyanates; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane; N- (2-aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, N- (1 , 3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine and the like. Moreover, a well-known catalyst can be used according to the reactivity of this crosslinking agent, and productivity can be improved in addition to an improvement in film strength and durability.
The blending ratio of the crosslinking agent is preferably 0.1 to 15% by weight in the cured film obtained by curing the cholesteric liquid crystal composition. If the blending ratio of the crosslinking agent is less than 0.1% by weight, the effect of improving the crosslinking density cannot be obtained. Conversely, if the blending ratio is more than 15% by weight, the stability of the cholesteric resin layer is lowered.
 本発明において、コレステリック液晶組成物は、任意に光開始剤を含有することができる。当該光開始剤としては、紫外線又は可視光線によってラジカル又は酸を発生させる公知の化合物が使用できる。具体的には、ベンゾイン、ベンジルメチルケタール、ベンゾフェノン、ビアセチル、アセトフェノン、ミヒラーケトン、ベンジル、ベンジルイソブチルエーテル、テトラメチルチウラムモノ(ジ)スルフィド、2,2-アゾビスイソブチロニトリル、2,2-アゾビス-2,4-ジメチルバレロニトリル、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジエチルチオキサントン、メチルベンゾイルフォーメート、2,2-ジエトキシアセトフェノン、β-アイオノン、β-ブロモスチレン、ジアゾアミノベンゼン、α-アミルシンナックアルデヒド、p-ジメチルアミノアセトフェノン、p-ジメチルアミノプロピオフェノン、2-クロロベンゾフェノン、pp’-ジクロロベンゾフェノン、pp’-ビスジエチルアミノベンゾフェノン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-プロピルエーテル、ベンゾインn-ブチルエーテル、ジフェニルスルフィド、ビス(2,6-メトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、アントラセンベンゾフェノン、α-クロロアントラキノン、ジフェニルジスルフィド、ヘキサクロルブタジエン、ペンタクロルブタジエン、オクタクロロブテン、1-クロルメチルナフタリン、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)]や1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(o-アセチルオキシム)、(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヨードニウムヘキサフルオロフォスフェート、3-メチル-2-ブチニルテトラメチルスルホニウムヘキサフルオロアンチモネート、ジフェニル-(p-フェニルチオフェニル)スルホニウムヘキサフルオロアンチモネート等が挙げられる。また、所望する物性に応じて2種以上の化合物を混合することができ、必要に応じて公知の光増感剤や重合促進剤としての三級アミン化合物を添加して硬化性をコントロールすることもできる。
 該光開始剤の配合割合はコレステリック液晶組成物中0.03~7重量%であることが好ましい。該光開始剤の配合量が0.03重量%より少ないと重合度が低くなってしまい膜強度が低下してしまう場合があるため好ましくない。逆に7重量%より多いと、液晶の配向を阻害してしまい液晶相が不安定になってしまう場合があるため好ましくない。
In the present invention, the cholesteric liquid crystal composition can optionally contain a photoinitiator. As the photoinitiator, known compounds that generate radicals or acids by ultraviolet rays or visible rays can be used. Specifically, benzoin, benzylmethyl ketal, benzophenone, biacetyl, acetophenone, Michler's ketone, benzyl, benzylisobutyl ether, tetramethylthiuram mono (di) sulfide, 2,2-azobisisobutyronitrile, 2,2-azobis -2,4-dimethylvaleronitrile, benzoyl peroxide, di-tert-butyl peroxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- (4 -Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-diethylthioxanthone, methylbenzoyl formate, 2,2-dieto Cyacetophenone, β-ionone, β-bromostyrene, diazoaminobenzene, α-amylcinnac aldehyde, p-dimethylaminoacetophenone, p-dimethylaminopropiophenone, 2-chlorobenzophenone, pp'-dichlorobenzophenone, pp ' -Bisdiethylaminobenzophenone, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-propyl ether, benzoin n-butyl ether, diphenyl sulfide, bis (2,6-methoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, 2,4,6-trimethylbenzoyldiphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-methyl-1 [ 4- (Methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, anthracenebenzophenone, α-chloroanthraquinone , Diphenyl disulfide, hexachlorobutadiene, pentachlorobutadiene, octachlorobutene, 1-chloromethylnaphthalene, 1,2-octanedione, 1- [4- (phenylthio) -2- (o-benzoyloxime)] and 1- [9-Ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethanone 1- (o-acetyloxime), (4-methylphenyl) [4- (2-methylpropyl) phenyl] iodonium Hexafluorophosphate, 3-methyl-2-butynyltetramethylsulfonate Arm hexafluoroantimonate, diphenyl - (p-phenylthiophenyl) sulfonium hexafluoroantimonate, and the like. In addition, two or more compounds can be mixed depending on the desired physical properties, and if necessary, a known photosensitizer or a tertiary amine compound as a polymerization accelerator is added to control curability. You can also.
The blending ratio of the photoinitiator is preferably 0.03 to 7% by weight in the cholesteric liquid crystal composition. When the blending amount of the photoinitiator is less than 0.03% by weight, the degree of polymerization is lowered and the film strength may be lowered. On the other hand, if it is more than 7% by weight, the alignment of the liquid crystal is inhibited and the liquid crystal phase may become unstable.
 本発明において、コレステリック液晶組成物は、任意に界面活性剤を含有することができる。当該界面活性剤としては、配向を阻害しないものを適宜選択して使用することができる。当該界面活性剤としては、具体的には、疎水基部分にシロキサン、フッ化アルキル基を含有するノニオン系界面活性剤が好適に使用でき、1分子中に2個以上の疎水基部分を持つオリゴマーが特に好適である。これらの界面活性剤は、OMNOVA社PolyFoxのPF-151N、PF-636、PF-6320、PF-656、PF-6520、PF-3320、PF-651、PF-652、ネオス社フタージェントのFTX-209F、FTX-208G、FTX-204D、セイミケミカル社サーフロンのKH-40等を用いることができる。界面活性剤の配合割合はコレステリック液晶組成物を硬化して得られる硬化膜中0.05重量%~3重量%となるようにすることが好ましい。該界面活性剤の配合割合が0.05重量%より少ないと空気界面における配向規制力が低下して配向欠陥が生じる場合があるため好ましくない。逆に3重量%より多い場合には、過剰の界面活性剤が液晶分子間に入り込み、配向均一性を低下させる場合があるため好ましくない。 In the present invention, the cholesteric liquid crystal composition can optionally contain a surfactant. As the surfactant, those not inhibiting the orientation can be appropriately selected and used. As the surfactant, specifically, a nonionic surfactant containing siloxane or fluorinated alkyl group in the hydrophobic group portion can be preferably used, and an oligomer having two or more hydrophobic group portions in one molecule. Is particularly preferred. These surfactants include PF-151N, PF-636, PF-6320, PF-656, PF-6520, PF-3320, PF-651, PF-652 from PolyFox, OMNOVA, FTX- from Neos 209F, FTX-208G, FTX-204D, Seimi Chemical's Surflon KH-40, etc. can be used. The blending ratio of the surfactant is preferably 0.05% to 3% by weight in the cured film obtained by curing the cholesteric liquid crystal composition. When the blending ratio of the surfactant is less than 0.05% by weight, the orientation regulating force at the air interface is lowered and an orientation defect may occur, which is not preferable. On the other hand, when it is more than 3% by weight, it is not preferable because an excessive surfactant may enter between liquid crystal molecules and lower the alignment uniformity.
 本発明において、コレステリック液晶組成物は、必要に応じてさらに他の任意成分を含有することができる。当該他の任意成分としては、カイラル剤、溶媒、ポットライフ向上のための重合禁止剤、耐久性向上のための酸化防止剤、紫外線吸収剤、光安定化剤等を挙げることができる。これらの任意成分は、所望する光学的性能を低下させない範囲で添加できる。 In the present invention, the cholesteric liquid crystal composition may further contain other optional components as necessary. Examples of the other optional components include a chiral agent, a solvent, a polymerization inhibitor for improving pot life, an antioxidant for improving durability, an ultraviolet absorber, and a light stabilizer. These optional components can be added as long as the desired optical performance is not deteriorated.
 コレステリック液晶組成物の製造方法は、特に限定されず、上記必須成分及び任意成分を混合することにより製造することができる。 The method for producing the cholesteric liquid crystal composition is not particularly limited, and can be produced by mixing the above essential components and optional components.
 前記円偏光分離シートは、前記コレステリック液晶組成物を透明樹脂基材に塗布して液晶層を得、次いで少なくとも1回の、光照射及び/又は加温処理により硬化して調製することができる。 The circularly polarized light separating sheet can be prepared by applying the cholesteric liquid crystal composition to a transparent resin substrate to obtain a liquid crystal layer, and then curing by at least one light irradiation and / or heating treatment.
 前記透明樹脂基材は、特に限定されず1mm厚で全光透過率80%以上の基材を使用することができる。具体的には、脂環式オレフィンポリマー、ポリエチレンやポリプロピレンなどの鎖状オレフィンポリマー、トリアセチルセルロース、ポリビニルアルコール、ポリイミド、ポリアリレート、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、変性アクリルポリマー、エポキシ樹脂、ポリスチレン、アクリル樹脂などの合成樹脂からなる単層又は積層のフィルムが挙げられる。これらの中でも、脂環式オレフィンポリマー又は鎖状オレフィンポリマーが好ましく、透明性、低吸湿性、寸法安定性、軽量性などの観点から、脂環式オレフィンポリマーが特に好ましい。 The transparent resin substrate is not particularly limited, and a substrate having a thickness of 1 mm and a total light transmittance of 80% or more can be used. Specifically, alicyclic olefin polymers, chain olefin polymers such as polyethylene and polypropylene, triacetyl cellulose, polyvinyl alcohol, polyimide, polyarylate, polyester, polycarbonate, polysulfone, polyethersulfone, modified acrylic polymer, epoxy resin, Examples thereof include a single layer or laminated film made of a synthetic resin such as polystyrene or acrylic resin. Among these, an alicyclic olefin polymer or a chain olefin polymer is preferable, and an alicyclic olefin polymer is particularly preferable from the viewpoint of transparency, low hygroscopicity, dimensional stability, lightness, and the like.
 前記透明樹脂基材は、必要に応じて、配向膜を有することができる。配向膜を有することにより、その上に塗布されたコレステリック液晶組成物を所望の方向に配向させることができる。配向膜は、基材表面上に、必要に応じてコロナ放電処理等を施した後、セルロース、シランカップリング剤、ポリイミド、ポリアミド、ポリビニルアルコール、エポキシアクリレート、シラノールオリゴマー、ポリアクリロニトリル、フェノール樹脂、ポリオキサゾール、環化ポリイソプレンなどを水又は溶剤に溶解させた溶液等を、リバースグラビアコーティング、ダイレクトグラビアコーティング、ダイコーティング、バーコーティング等の公知の方法を用いて塗布し、乾燥させ、その後乾燥塗膜にラビング処理を施すことにより形成することができる。配向膜の厚さは、所望するコレステリック樹脂層の配向均一性が得られる膜厚であればよく、0.001~5μmであることが好ましく、0.01~2μmであることがさらに好ましい。 The transparent resin base material may have an alignment film as necessary. By having the alignment film, the cholesteric liquid crystal composition applied thereon can be aligned in a desired direction. The alignment film is subjected to a corona discharge treatment, if necessary, on the substrate surface, followed by cellulose, silane coupling agent, polyimide, polyamide, polyvinyl alcohol, epoxy acrylate, silanol oligomer, polyacrylonitrile, phenol resin, poly A solution in which oxazole, cyclized polyisoprene or the like is dissolved in water or a solvent is applied using a known method such as reverse gravure coating, direct gravure coating, die coating, bar coating, and the like, and then dried. It can be formed by subjecting to rubbing treatment. The thickness of the alignment film may be any film thickness that can achieve the desired alignment uniformity of the cholesteric resin layer, and is preferably 0.001 to 5 μm, and more preferably 0.01 to 2 μm.
 前記透明樹脂基材への液晶組成物の塗布は、リバースグラビアコーティング、ダイレクトグラビアコーティング、ダイコーティング、バーコーティング等の公知の方法により行うことができる。液晶組成物の塗布層の厚さは、後述する所望のコレステリック樹脂層乾燥膜厚が得られるよう、適宜調整することができる。 Application of the liquid crystal composition to the transparent resin substrate can be performed by a known method such as reverse gravure coating, direct gravure coating, die coating, or bar coating. The thickness of the coating layer of the liquid crystal composition can be appropriately adjusted so that a desired cholesteric resin layer dry film thickness described later can be obtained.
 前記塗布により得られた塗布層を硬化する前に、必要に応じて、配向処理を施すことができる。配向処理は、例えば塗布層を50~150℃で0.5~10分間加温することにより行うことができる。当該配向処理を施すことにより、コレステリック液晶層を良好に配向させることができる。 Before the coating layer obtained by the coating is cured, an orientation treatment can be performed as necessary. The alignment treatment can be performed, for example, by heating the coating layer at 50 to 150 ° C. for 0.5 to 10 minutes. By performing the alignment treatment, the cholesteric liquid crystal layer can be aligned well.
 必要に応じて配向処理を施した後、コレステリック液晶組成物を硬化させることにより、コレステリック液晶組成物の硬化層(即ち硬化コレステリック樹脂層)を有する円偏光分離シートを得ることができる。前記硬化の工程は、1回以上の光照射と加温処理との組み合わせにより行うことができる。加温条件は、具体的には例えば、温度40~200℃、好ましくは50~200℃、さらに好ましくは50~140℃、時間は1秒~3分、好ましくは5~120秒とすることができる。本発明において光照射に用いる光とは、可視光のみならず紫外線及びその他の電磁波をも含む。光照射は、具体的には例えば波長200~500nmの光を0.01秒~3分照射することにより行うことができる。また、例えば0.01~50mJ/cm2の微弱な紫外線照射と加温とを複数回交互に繰り返し、反射帯域の広い円偏光分離シートとすることもできる。上記の微弱な紫外線照射等による反射帯域の拡張を行った後に、50~10,000mJ/cm2といった比較的強い紫外線を照射し、液晶性化合物を完全に重合させ、硬化コレステリック樹脂層とすることができる。上記の反射帯域の拡張及び強い紫外線の照射は、空気下で行ってもよく、又はその工程の一部又は全部を、酸素濃度を制御した雰囲気(例えば、窒素雰囲気下)中で行うこともできる。 A circularly polarized light separation sheet having a cured layer of the cholesteric liquid crystal composition (that is, a cured cholesteric resin layer) can be obtained by curing the cholesteric liquid crystal composition after performing an alignment treatment as necessary. The curing step can be performed by a combination of one or more light irradiations and a heating treatment. Specifically, the heating conditions are, for example, a temperature of 40 to 200 ° C., preferably 50 to 200 ° C., more preferably 50 to 140 ° C., and a time of 1 second to 3 minutes, preferably 5 to 120 seconds. it can. The light used for light irradiation in the present invention includes not only visible light but also ultraviolet rays and other electromagnetic waves. Specifically, the light irradiation can be performed, for example, by irradiating light having a wavelength of 200 to 500 nm for 0.01 second to 3 minutes. Further, for example, a weakly irradiated ultraviolet ray of 0.01 to 50 mJ / cm 2 and heating may be alternately repeated a plurality of times to obtain a circularly polarized light separating sheet having a wide reflection band. After expanding the reflection band by the above-mentioned weak UV irradiation, etc., a relatively strong UV light of 50 to 10,000 mJ / cm 2 is irradiated to completely polymerize the liquid crystalline compound to form a cured cholesteric resin layer. Can do. The expansion of the reflection band and the irradiation with strong ultraviolet rays may be performed in the air, or a part or all of the process may be performed in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere). .
 本発明において、透明樹脂基材上へのコレステリック液晶組成物の塗布及び硬化の工程は、1回に限られず、塗布及び硬化を複数回繰り返し2層以上の硬化コレステリック樹脂層を形成することもできる。 In the present invention, the step of applying and curing the cholesteric liquid crystal composition on the transparent resin substrate is not limited to one time, and two or more cured cholesteric resin layers can be formed by repeating coating and curing a plurality of times. .
 前記円偏光分離シートにおいて、硬化コレステリック樹脂層の乾燥膜厚は好ましくは3.0μm~10.0μm、より好ましくは3.5μm~8μmとすることができる。前記硬化コレステリック樹脂層の乾燥膜厚が3.0μmより薄いと反射率が低下してしまい、逆に10.0μmより厚いと、硬化コレステリック樹脂層に対して斜め方向から観察した時に着色してしまうため、それぞれ好ましくない。なお、前記乾燥膜厚は、硬化コレステリック樹脂層が2以上の層である場合は、各層の膜厚の合計を、硬化液晶層が1層である場合にはその膜厚をさす。 In the circularly polarized light separating sheet, the dry thickness of the cured cholesteric resin layer is preferably 3.0 μm to 10.0 μm, more preferably 3.5 μm to 8 μm. When the dry thickness of the cured cholesteric resin layer is less than 3.0 μm, the reflectivity is lowered. Conversely, when the thickness is greater than 10.0 μm, the cured cholesteric resin layer is colored when observed from an oblique direction. Therefore, it is not preferable respectively. The dry film thickness refers to the total film thickness of each layer when the cured cholesteric resin layer is two or more layers, and the film thickness when the cured liquid crystal layer is one layer.
 本発明において、選択反射素子は、前記円偏光分離シートに加えて位相差フィルムを備えることができる。具体的には、円偏光分離シート及び位相差フィルムを積層して、選択反射素子とすることができる。当該積層は、円偏光分離シート及び位相差フィルムを、接着剤又は粘着剤を介して一体化させることにより達成しうる。さらには選択反射素子の耐久性や剛性を向上させることを目的として、透明樹脂基材上及び/又は位相差フィルム上に、さらに接着剤又は粘着剤を介して、追加の透明樹脂基材を一体化させることもできる。 In the present invention, the selective reflection element can include a retardation film in addition to the circularly polarized light separating sheet. Specifically, a circularly polarized light separating sheet and a retardation film can be laminated to form a selective reflection element. The lamination can be achieved by integrating the circularly polarized light separating sheet and the retardation film via an adhesive or a pressure-sensitive adhesive. Furthermore, for the purpose of improving the durability and rigidity of the selective reflection element, an additional transparent resin base material is integrated on the transparent resin base material and / or the retardation film via an adhesive or a pressure sensitive adhesive. It can also be made.
 本発明に用いる位相差フィルムとしては、(i)フィルム状のポリマーを延伸したもの、又は(ii)液晶性の材料を透明樹脂基材上に塗布し、配向させ、硬化させたものを用いることができる。(ii)の位相差フィルムを用いる場合は、適当な基材上に液晶性の材料を塗布し、配向させ、硬化させて得た当該位相差フィルムを円偏光分離シートと一体化させて選択反射素子とすることもでき、あるいは、本発明の円偏光分離シート上に、必要に応じて配向膜を設け種々の配向処理を行なって、その上に液晶性の材料を塗布し、配向させ、硬化させることで、円偏光分離シートと一体化した位相差フィルムの層を設け、選択反射素子とすることもできる。 As the retardation film used in the present invention, (i) a film-like polymer stretched or (ii) a liquid crystal material applied on a transparent resin substrate, oriented and cured is used. Can do. In the case of using the retardation film of (ii), selective reflection is performed by integrating the retardation film obtained by applying a liquid crystalline material on an appropriate base material, aligning, and curing it with a circularly polarized light separating sheet. It can also be used as an element, or on the circularly polarized light separating sheet of the present invention, if necessary, an alignment film is provided and subjected to various alignment treatments, and a liquid crystalline material is applied thereon, aligned, and cured. By making it, the layer of the retardation film integrated with the circularly polarized light separation sheet can be provided, and it can also be set as a selective reflection element.
 本発明に用いる位相差フィルムの好ましい例として、以下に述べる光学異方性素子を挙げることができる。 Preferred examples of the retardation film used in the present invention include the optically anisotropic elements described below.
 本発明において、光学異方性素子は、その正面方向のリターデーションRe(以下、「Re」と略記することがある。)を透過光の略1/4波長とすることができる。ここで、透過光の波長範囲は、本発明の選択反射素子に求められる所望の範囲とすることができ、具体的には例えば400nm~700nmである。また、正面方向のリターデーションReが透過光の略1/4波長であるとは、Re値が、透過光の波長範囲の中心値において、中心値の1/4の値から±65nm、好ましくは±30nm、より好ましくは±10nmの範囲であることをいう。 In the present invention, the optically anisotropic element can have a retardation Re in the front direction (hereinafter sometimes abbreviated as “Re”) of approximately ¼ wavelength of transmitted light. Here, the wavelength range of the transmitted light can be a desired range required for the selective reflection element of the present invention, and specifically, for example, 400 nm to 700 nm. Further, the retardation Re in the front direction is approximately ¼ wavelength of transmitted light, and the Re value is ± 65 nm from the ¼ value of the center value in the center value of the wavelength range of transmitted light, preferably It means ± 30 nm, more preferably ± 10 nm.
 また、光学異方性素子は、厚み方向のリターデーションRth(以下、「Rth」と略記することがある。)が0nm未満であることが望ましい。厚み方向のリターデーションRthの値は、透過光の波長範囲の中心値において、好ましくは-30nm~-1000nm、より好ましくは-50nm~-300nmとすることができる。このようなRe値及びRthを有する光学異方性素子を採用することにより、輝度を向上させ輝度ムラを低減させながら、出射光の色ムラをも低減させることができる。
 ここで、前記正面方向のリターデーションReは、式I:Re=(nx-ny)×d(式中、nxは厚み方向に垂直な方向(正面方向)であって最大の屈折率を与える方向の屈折率を表し、nyは厚み方向に垂直な方向(面内方向)であってnxに直交する方向の屈折率を表し、dは膜厚を表す。)で表される値であり、厚み方向のリターデーションRthは、式II:Rth={(nx+ny)/2-nz}×d(式中、nxは厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表し、nyは厚み方向に垂直な方向(面内方向)であってnxに直交する方向の屈折率であり、nzは厚み方向の屈折率を表し、dは膜厚を表す。)で表される値である。
 なお、前記正面方向のリターデーションRe及び厚み方向のリターデーションRthは、市販の位相差測定装置を用いて、光学異方性素子を長手方向及び幅方向に100mm間隔(長手方向又は横方向の長さが200mmに満たない場合は、その方向へは等間隔に3点指定する)で、全面にわたり、格子点状に測定を行い、その平均値とする。
The optically anisotropic element desirably has a thickness direction retardation Rth (hereinafter sometimes abbreviated as “Rth”) of less than 0 nm. The value of retardation Rth in the thickness direction can be preferably −30 nm to −1000 nm, more preferably −50 nm to −300 nm, in the central value of the wavelength range of transmitted light. By adopting such an optically anisotropic element having an Re value and Rth, it is possible to reduce color unevenness of emitted light while improving brightness and reducing brightness unevenness.
Here, the retardation Re in the front direction is represented by the formula I: Re = (nx−ny) × d (where nx is a direction perpendicular to the thickness direction (front direction) and gives the maximum refractive index). Ny represents a refractive index in a direction perpendicular to the thickness direction (in-plane direction) and perpendicular to nx, and d represents a film thickness). The direction retardation Rth is expressed by the formula II: Rth = {(nx + ny) / 2−nz} × d (where nx is a direction perpendicular to the thickness direction (in-plane direction) and gives the maximum refractive index) Ny is the refractive index in the direction perpendicular to the thickness direction (in-plane direction) and orthogonal to nx, nz is the refractive index in the thickness direction, and d is the film thickness. ).
In addition, the retardation Re in the front direction and the retardation Rth in the thickness direction are measured using a commercially available phase difference measuring apparatus, and the optically anisotropic elements are spaced 100 mm apart in the longitudinal direction and the width direction (longitudinal or lateral length). If the distance is less than 200 mm, three points are specified at equal intervals in that direction), and measurement is performed in a lattice point shape over the entire surface, and the average value is obtained.
 前記光学異方性素子を構成する材質は、特に限定されないが、スチレン系樹脂からなる層を有するものを好ましく用いることができる。ここでスチレン系樹脂とは、スチレン構造を繰り返し単位の一部又は全部として有するポリマー樹脂であり、ポリスチレン、又は、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、p-クロロスチレン、p-ニトロスチレン、p-アミノスチレン、p-カルボキシスチレン、p-フェニルスチレンなどのスチレン系単量体と、エチレン、プロピレン、ブタジエン、イソプレン、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸、メタクリル酸、無水マレイン酸、酢酸ビニルなどのその他の単量体との共重合体などを挙げることができる。これらの中で、ポリスチレン又はスチレンと無水マレイン酸との共重合体を好適に用いることができる。 The material constituting the optically anisotropic element is not particularly limited, but a material having a layer made of styrene resin can be preferably used. Here, the styrene resin is a polymer resin having a styrene structure as a part or all of repeating units, and is polystyrene, styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, p-chlorostyrene. , Styrene monomers such as p-nitrostyrene, p-aminostyrene, p-carboxystyrene, p-phenylstyrene, ethylene, propylene, butadiene, isoprene, acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, acrylic acid Examples thereof include copolymers with other monomers such as methyl, methyl methacrylate, ethyl acrylate, ethyl methacrylate, acrylic acid, methacrylic acid, maleic anhydride, and vinyl acetate. Among these, polystyrene or a copolymer of styrene and maleic anhydride can be suitably used.
 光学異方性素子に用いるスチレン系樹脂の分子量は使用目的に応じて適宜選定されるが、溶媒としてシクロヘキサンを用いたゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレンの重量平均分子量(Mw)で、通常10,000~300,000、好ましくは15,000~250,000、より好ましくは20,000~200,000である。 The molecular weight of the styrenic resin used for the optically anisotropic element is appropriately selected according to the purpose of use, but is the weight average molecular weight (Mw) of polyisoprene measured by gel permeation chromatography using cyclohexane as a solvent. In general, it is 10,000 to 300,000, preferably 15,000 to 250,000, more preferably 20,000 to 200,000.
 前記光学異方性素子は、好ましくは、前記スチレン系樹脂からなる層と、他の熱可塑性樹脂を含む層との積層構造を有する。当該積層構造を有することにより、スチレン系樹脂による光学的特性と、他の熱可塑性樹脂による機械的強度とを兼ね備えた素子とすることができる。他の熱可塑性樹脂としては、脂環式オレフィンポリマー、メタクリル樹脂、ポリカーボネート、アクリル酸エステル-ビニル芳香族化合物共重合体樹脂、メタクリル酸エステル-ビニル芳香族化合物共重合体樹脂、ポリエーテルスルホンなどを挙げることができる。これらの中で、脂環式構造を有する樹脂やメタクリル樹脂を好適に用いることができる。 The optically anisotropic element preferably has a laminated structure of a layer made of the styrene resin and a layer containing another thermoplastic resin. By having the laminated structure, it is possible to provide an element that has both the optical characteristics of the styrene resin and the mechanical strength of other thermoplastic resins. Other thermoplastic resins include alicyclic olefin polymer, methacrylic resin, polycarbonate, acrylate-vinyl aromatic compound copolymer resin, methacrylic ester-vinyl aromatic compound copolymer resin, polyethersulfone, etc. Can be mentioned. Among these, a resin having an alicyclic structure or a methacrylic resin can be preferably used.
 脂環式オレフィンポリマーは、主鎖及び/または側鎖にシクロアルカン構造又はシクロアルケン構造を有する非晶性のオレフィンポリマーである。具体的には、(1)ノルボルネン系重合体、(2)単環の環状オレフィン系重合体、(3)環状共役ジエン系重合体、(4)ビニル脂環式炭化水素重合体、及びこれらの水素化物などが挙げられる。これらの中でも、透明性や成形性の観点から、ノルボルネン系重合体がより好ましい。これらの脂環式構造を有する樹脂は、特開平05-310845号公報、特開平05-097978号公報、米国特許第6,511,756号公報に記載されているものが挙げられる。 The alicyclic olefin polymer is an amorphous olefin polymer having a cycloalkane structure or a cycloalkene structure in the main chain and / or side chain. Specifically, (1) norbornene polymer, (2) monocyclic olefin polymer, (3) cyclic conjugated diene polymer, (4) vinyl alicyclic hydrocarbon polymer, and these A hydride etc. are mentioned. Among these, norbornene-based polymers are more preferable from the viewpoints of transparency and moldability. Examples of these resins having an alicyclic structure include those described in JP-A No. 05-310845, JP-A No. 05-097978, and US Pat. No. 6,511,756.
 ノルボルネン系重合体としては、具体的にはノルボルネン系モノマーの開環重合体、ノルボルネン系モノマーと開環共重合可能なその他のモノマーとの開環共重合体、及びそれらの水素化物、ノルボルネン系モノマーの付加重合体、ノルボルネン系モノマーと共重合可能なその他のモノマーとの付加共重合体などが挙げられる。 Specific examples of the norbornene-based polymer include ring-opening polymers of norbornene-based monomers, ring-opening copolymers of norbornene-based monomers and other monomers capable of ring-opening copolymerization, hydrides thereof, and norbornene-based monomers. And addition copolymers with other monomers copolymerizable with norbornene monomers.
 メタクリル樹脂は、メタクリル酸エステルを主成分とする重合体であり、メタクリル酸エステルの単独重合体や、メタクリル酸エステルとその他の単量体との共重合体が挙げられる、メタクリル酸エステルとしては、通常、メタクリル酸アルキルが用いられる。共重合体とする場合は、メタクリル酸エステルと共重合するその他の単量体としては、アクリル酸エステルや、芳香族ビニル化合物、ビニルシアン化合物などが用いられる。 The methacrylic resin is a polymer having a methacrylic acid ester as a main component, and includes a methacrylic acid ester homopolymer and a copolymer of a methacrylic acid ester and other monomers. Usually, alkyl methacrylate is used. In the case of a copolymer, acrylic acid esters, aromatic vinyl compounds, vinylcyan compounds, etc. are used as other monomers copolymerized with methacrylic acid esters.
 本発明に用いる光学異方性素子の好ましい具体的態様として、ポリスチレン樹脂からなるフィルム(a層)の両面に、他の熱可塑性樹脂からなるフィルム(b層)を積層してなる複層フィルムを延伸してなる延伸複層フィルムを挙げることができる。以下、この具体的態様について説明する。 As a preferred specific embodiment of the optically anisotropic element used in the present invention, a multilayer film formed by laminating a film (b layer) made of another thermoplastic resin on both surfaces of a film (a layer) made of polystyrene resin. A stretched multilayer film formed by stretching can be mentioned. Hereinafter, this specific embodiment will be described.
 前記a層を構成するポリスチレン樹脂しては、上記「スチレン系樹脂」と同様のものを用いることができる。 As the polystyrene resin constituting the a layer, the same “styrene resin” as described above can be used.
 a層を構成するポリスチレン樹脂は、ガラス転移温度が120℃以上であることが好ましく、120~200℃であることがより好ましく、120~140℃であることがさらに好ましい。 The polystyrene resin constituting the a layer preferably has a glass transition temperature of 120 ° C. or higher, more preferably 120 to 200 ° C., and further preferably 120 to 140 ° C.
 本発明において、前記ポリスチレン樹脂及び前記他の熱可塑性樹脂は、それらのガラス転移温度をそれぞれTg(a)(℃)及びTg(b)(℃)としたとき、Tg(a)>Tg(b)+20℃の関係を満たすことが好ましい。このような関係を満たすことにより、延伸した際にポリスチレン樹脂からなるa層に有効に光学的異方性を与え、良好な光学異方性素子を得ることができる。 In the present invention, the polystyrene resin and the other thermoplastic resin have Tg (a)> Tg (b) when their glass transition temperatures are Tg (a) (° C.) and Tg (b) (° C.), respectively. ) It is preferable to satisfy the relationship of + 20 ° C. By satisfying such a relationship, optical anisotropy can be effectively given to the a layer made of polystyrene resin when stretched, and a good optical anisotropic element can be obtained.
 a層の材料である前記ポリスチレン樹脂及びb層の材料である前記他の熱可塑性樹脂を積層して、複層フィルムに成形する方法は、特に限定されないが、共押出Tダイ法、共押出インフレーション法、共押出ラミネーション法等の共押出による成形方法、ドライラミネーション等のフィルムラミネーション成形方法、及びコーティング成形方法などの公知の方法が適宜利用され得る。中でも、製造効率や、フィルム中に溶剤などの揮発性成分を残留させないという観点から、共押出による成形方法が好ましい。押出し温度は、使用する前記ポリスチレン樹脂、及び前記他の熱可塑性樹脂の種類に応じて適宜選択され得る。 The method of laminating the polystyrene resin that is the material of the a layer and the other thermoplastic resin that is the material of the b layer to form a multilayer film is not particularly limited, but is a coextrusion T-die method, coextrusion inflation Known methods such as a method of forming by coextrusion such as a method, a coextrusion lamination method, a film lamination forming method such as dry lamination, and a coating forming method may be appropriately used. Among these, a molding method by coextrusion is preferable from the viewpoints of production efficiency and that volatile components such as a solvent do not remain in the film. The extrusion temperature can be appropriately selected according to the type of the polystyrene resin used and the other thermoplastic resin.
 複層フィルムは、前記a層の両面に、前記b層を積層してなる。a層とb層の間には、接着層や粘着層を設けることができるが、a層とb層とを直接に積層させる(つまり、b層/a層/b層の3層構成の積層体とする)ことが好ましい。また、複層フィルムにおいて、前記a層及びその両面に積層されたb層の厚みは特に制限はないが、好ましくはそれぞれ10~300μm及び10~400μmとすることができる。 The multilayer film is formed by laminating the b layer on both sides of the a layer. An adhesive layer or a pressure-sensitive adhesive layer can be provided between the a layer and the b layer, but the a layer and the b layer are directly laminated (that is, lamination of a three-layer configuration of b layer / a layer / b layer). Body). In the multilayer film, the thickness of the a layer and the b layer laminated on both sides thereof is not particularly limited, but can preferably be 10 to 300 μm and 10 to 400 μm, respectively.
 前記延伸複層フィルムは、前記複層フィルムを延伸してなる。前記延伸複層フィルムは、a層の延伸により設けられたA層、及びb層の延伸により設けられたB層を含むことができる。前記延伸複層フィルムは、前記複層フィルムのb層/a層/b層の3層構造の積層体を延伸してなり、B層/A層/B層の3層構造の延伸フィルムであることが好ましい。
 当該延伸は、好ましくは一軸延伸又は斜め延伸により行うことができ、さらに好ましくはテンターによる一軸延伸又は斜め延伸により行うことができる。
The stretched multilayer film is formed by stretching the multilayer film. The stretched multilayer film may include an A layer provided by stretching the a layer and a B layer provided by stretching the b layer. The stretched multilayer film is a stretched film having a three-layer structure of B layer / A layer / B layer formed by stretching a laminate of b layer / a layer / b layer of the multilayer film. It is preferable.
The stretching can be preferably performed by uniaxial stretching or oblique stretching, and more preferably by uniaxial stretching or oblique stretching by a tenter.
 光学異方性素子の正面方向リターデーションReや厚み方向のリターデーションRthは、延伸温度や延伸倍率等の延伸条件を適宜調整することにより製造することができる。延伸温度は、前記Tg(a)-10℃~前記Tg(a)+20℃が好ましく、前記Tg(a)-5℃~前記Tg(a)+15℃の範囲であることがより好ましい。延伸倍率は、1.05~30倍が好ましく、1.1~10倍であることがより好ましい。延伸温度や延伸倍率が、上記範囲を外れると、配向が不十分で屈折率異方性、ひいてはリターデーションの発現が不十分になったり、積層体が破断したりするおそれがある。 The front direction retardation Re and the thickness direction retardation Rth of the optically anisotropic element can be produced by appropriately adjusting stretching conditions such as stretching temperature and stretch ratio. The stretching temperature is preferably Tg (a) -10 ° C. to Tg (a) + 20 ° C., more preferably Tg (a) −5 ° C. to Tg (a) + 15 ° C. The draw ratio is preferably 1.05 to 30 times, and more preferably 1.1 to 10 times. If the stretching temperature and the stretching ratio are out of the above ranges, the orientation may be insufficient and the refractive index anisotropy and thus the retardation may be insufficiently developed, or the laminate may be broken.
 光学異方性素子の厚みは、好ましくは50~1000μm、より好ましくは50~600μmである。 The thickness of the optically anisotropic element is preferably 50 to 1000 μm, more preferably 50 to 600 μm.
 (その他の構成要素及び装置の構成)
 本発明のバックライト装置は、上に述べた特定の光源及び選択反射素子を有するものであれば、その構成に格別の制限は無く、直下型バックライト、サイドライト型バックライト等の構成を有することができる。
(Configuration of other components and equipment)
As long as the backlight device of the present invention has the above-described specific light source and selective reflection element, there is no particular limitation on the configuration thereof, and the configuration includes a direct type backlight, a sidelight type backlight, and the like. be able to.
 かかる本発明のバックライト装置の一例の構成を、図1及び図2を参照して説明する。
 図1において、バックライト装置100は、直下型バックライト装置であり、光源としての冷陰極管102を含み、さらに、光源102の光を反射する反射板103、及び光源102及び反射板103からの光を拡散する光拡散板101をも含む。光拡散板101は、光を拡散させるための構成として、その光出射面111A側に、複数の線状プリズム101Aから構成されるプリズム条列101Bを有している。さらに、図示のため図2のみにおいて示す通り、光拡散板101の光出射面111Aを覆って、円偏光分離シート251及び位相差フィルム252を含む選択反射素子250が設けられている。
The configuration of an example of the backlight device of the present invention will be described with reference to FIGS.
In FIG. 1, a backlight device 100 is a direct type backlight device, includes a cold cathode tube 102 as a light source, further reflects the light from the light source 102, and reflects the light from the light source 102 and the reflective plate 103. A light diffusing plate 101 that diffuses light is also included. As a configuration for diffusing light, the light diffusing plate 101 has a prism row 101B composed of a plurality of linear prisms 101A on the light emitting surface 111A side. Further, as shown only in FIG. 2 for illustration, a selective reflection element 250 including a circularly polarized light separating sheet 251 and a retardation film 252 is provided so as to cover the light emitting surface 111A of the light diffusing plate 101.
 本発明のバックライト装置における選択反射素子の位置は、上に挙げた例に限らず、光源の出光面側の任意の位置とすることができる。例えば、光拡散板101の光源側の面に接して設けることができ、または下に述べる拡散シート、プリズムシート等の層上等に設けることもできる。 The position of the selective reflection element in the backlight device of the present invention is not limited to the example given above, and can be any position on the light exit surface side of the light source. For example, it can be provided in contact with the light source side surface of the light diffusion plate 101, or can be provided on a layer such as a diffusion sheet or a prism sheet described below.
 本発明のバックライト装置は、さらに、拡散シート、プリズムシート等の任意の構成要素を有することができる。これらを設ける位置は、特に限定されないが、通常、光拡散板の光出射面上に、任意の積層順序で設けることができる。 The backlight device of the present invention can further include arbitrary components such as a diffusion sheet and a prism sheet. The position where these are provided is not particularly limited, but can usually be provided in any order on the light exit surface of the light diffusion plate.
 本発明のバックライト装置は、他に、装置を構成するのに必要な筐体、電源供給装置等の構成要素を適宜有することができる。 The backlight device of the present invention can appropriately include other components such as a casing and a power supply device necessary for configuring the device.
 (液晶表示装置)
 本発明の液晶表示装置は、前記本発明のバックライト装置、及び液晶パネルを備える。
(Liquid crystal display device)
The liquid crystal display device of the present invention includes the backlight device of the present invention and a liquid crystal panel.
 前記液晶パネルは、特に限定されず液晶表示装置に用いられているものを適宜用いることができる。例えば、TN(Twisted Nematic)型液晶パネル、STN(Super Twisted Nematic)型液晶パネル、HAN(Hybrid Alignment Nematic)型液晶パネル、IPS(In Plane Switching)型液晶パネル、VA(Vertical Alignment)型液晶パネル、MVA(Multiple Vertical Alignment型液晶パネル、OCB(Optical Compensated Bend)型液晶パネルなどが挙げられる。 The liquid crystal panel is not particularly limited, and those used in liquid crystal display devices can be used as appropriate. For example, TN (Twisted Nematic) type liquid crystal panel, STN (Super Twisted Nematic) type liquid crystal panel, HAN (Hybrid Alignment Nematic) type liquid crystal panel, IPS (In Plane Switching) type liquid crystal panel, VA (vertical liquid crystal panel) Examples thereof include MVA (Multiple Vertical Alignment type liquid crystal panel), OCB (Optical Compensated Bend) type liquid crystal panel, and the like.
 本発明の液晶表示装置は、必要に応じて、前記バックライト装置に含まれるものとは別の選択反射素子を備えることができる。かかる選択反射素子としては、特に限定されず公知のものを用いることができる。 The liquid crystal display device of the present invention can include a selective reflection element different from that included in the backlight device, if necessary. The selective reflection element is not particularly limited, and a known element can be used.
 本発明の液晶表示装置は、上記の構成要素に加えて、偏光板等の、液晶表示装置を構成するのに必要な他の構成要素を適宜有することができる。 The liquid crystal display device of the present invention can appropriately include other components necessary for configuring the liquid crystal display device, such as a polarizing plate, in addition to the above-described components.
 以下に、本発明を実施例及び比較例を参照してより詳細に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 製造例1:円偏光分離シートの調製(1)
 (1-1:透明樹脂基材の調製)
 脂環式オレフィンポリマーからなる透明フィルム(株式会社オプテス製、商品名「ゼオノアフィルムZF14-100」)の両面をコロナ放電処理した。5%のポリビニルアルコールの水溶液を当該フィルムの片面に♯2のワイヤーバーを使用して塗布し、塗膜を乾燥し、膜厚0.1μmの配向膜を形成した。次いで当該配向膜をラビング処理し、配向膜を有する透明樹脂基材を調製した。
Production Example 1: Preparation of circularly polarized light separating sheet (1)
(1-1: Preparation of transparent resin base material)
Both surfaces of a transparent film made of an alicyclic olefin polymer (trade name “Zeonor film ZF14-100” manufactured by Optes Co., Ltd.) were subjected to corona discharge treatment. An aqueous solution of 5% polyvinyl alcohol was applied to one side of the film using a # 2 wire bar, and the coating film was dried to form an alignment film having a thickness of 0.1 μm. Next, the alignment film was rubbed to prepare a transparent resin substrate having the alignment film.
 (1-2:硬化コレステリック樹脂層の形成)
 下記の組成で、硬化コレステリック樹脂層を構成するためのコレステリック液晶組成物を調製した。
 固形分率40重量%
 液晶性化合物(Δn(ne-no)=0.18を有する棒状液晶化合物 94.93重量部
 光重合開始剤(チバ・スペシャリティ・ケミカルズ社製 商品名IRG907)3.1重量部
 界面活性剤(セイミケミカル株式会社製、商品名KH-40)0.11重量部
 カイラル剤(BASF社製、商品名LC756)5.07重量部
 溶媒 メチルエチルケトン 154.82重量部
(1-2: Formation of cured cholesteric resin layer)
A cholesteric liquid crystal composition for preparing a cured cholesteric resin layer having the following composition was prepared.
Solid content 40% by weight
Liquid crystalline compound (Δn (ne-no) = 0.18 rod-shaped liquid crystal compound 94.93 parts by weight Photopolymerization initiator (trade name IRG907 manufactured by Ciba Specialty Chemicals) 3.1 parts by weight Surfactant (Seimi Chemical Co., Ltd., trade name KH-40) 0.11 parts by weight Chiral agent (BASF, trade name LC756) 5.07 parts by weight Solvent Methyl ethyl ketone 154.82 parts by weight
 このコレステリック液晶組成物を♯8のワイヤーバーを使用して、上記(1-1)で調製した配向膜を有する透明樹脂基材の、配向膜を有する面に塗布した。塗膜を100℃で5分間乾燥及び配向熟成した。塗膜にさらに紫外線を1.0mJ/cm(UV-A:365nm±5nm)を照射し、100℃で1分間保持し、次いで紫外線を500mJ/cm2照射して塗膜を硬化させて、乾燥膜厚4μmの硬化コレステリック樹脂層を有する円偏光分離シートを作製した。得られた円偏光分離シートの反射スペクトルを分光光度計(日本分光社製JASCO V-550)を用いて測定したところ、600nm以上750nm以下の波長帯域における反射率が50%であることが分かった。また、400nm以上600nm未満の波長帯域における反射率は平均して10%であり、反射率が20%を超える波長帯域は400nm以上600nm未満の領域中に存在しなかった。 This cholesteric liquid crystal composition was applied to the surface having the alignment film of the transparent resin substrate having the alignment film prepared in (1-1) above using a # 8 wire bar. The coating film was dried at 100 ° C. for 5 minutes and subjected to orientation aging. The coating film was further irradiated with ultraviolet rays of 1.0 mJ / cm 2 (UV-A: 365 nm ± 5 nm), held at 100 ° C. for 1 minute, and then irradiated with ultraviolet rays of 500 mJ / cm 2 to cure the coating film, A circularly polarized light separating sheet having a cured cholesteric resin layer having a dry film thickness of 4 μm was prepared. When the reflection spectrum of the obtained circularly polarized light separating sheet was measured using a spectrophotometer (JASCO V-550 manufactured by JASCO Corporation), it was found that the reflectance in the wavelength band of 600 nm to 750 nm was 50%. . Moreover, the reflectance in the wavelength band of 400 nm or more and less than 600 nm was 10% on average, and the wavelength band in which the reflectance exceeded 20% did not exist in the region of 400 nm or more and less than 600 nm.
 製造例2:円偏光分離シートの調製(2)
 製造例1において液晶化合物を下記重合性液晶化合物(1)を95.1部を使用した以外は 同様にして円偏光分離シートを作製した。なお、化合物(1)は特開2008-291218に記載の方法にて製造することができる。得られた円偏光分離シートの反射スペクトルを分光光度計(日本分光社製JASCO V-550)を用いて測定したところ、600nm以上750nm以下の波長帯域における反射率が50%であることが分かった。また、400nm以上600nm未満の波長帯域における反射率は平均して10%であり、反射率が20%を超える波長帯域は400nm以上600nm未満の領域中に存在しなかった。
Production Example 2: Preparation of circularly polarized light separating sheet (2)
A circularly polarized light separating sheet was prepared in the same manner as in Production Example 1 except that 95.1 parts of the following polymerizable liquid crystal compound (1) was used as the liquid crystal compound. Compound (1) can be produced by the method described in JP-A-2008-291218. When the reflection spectrum of the obtained circularly polarized light separating sheet was measured using a spectrophotometer (JASCO V-550 manufactured by JASCO Corporation), it was found that the reflectance in the wavelength band of 600 nm to 750 nm was 50%. . Moreover, the reflectance in the wavelength band of 400 nm or more and less than 600 nm was 10% on average, and the wavelength band in which the reflectance exceeded 20% did not exist in the region of 400 nm or more and less than 600 nm.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 製造例3:位相差フィルムの調製
 メタクリル酸メチル97.8重量%とアクリル酸メチル2.2重量%とからなるモノマー組成物を、バルク重合法により重合させ、樹脂ペレットを得た。
Production Example 3: Preparation of Retardation Film A monomer composition composed of 97.8% by weight of methyl methacrylate and 2.2% by weight of methyl acrylate was polymerized by a bulk polymerization method to obtain resin pellets.
 特公昭55-27576号公報の実施例3に準じて、ゴム粒子を製造した。このゴム粒子は、球形3層構造を有し、芯内層が、メタクリル酸メチル及び少量のメタクリル酸アリルの架橋重合体であり、内層が、主成分としてのアクリル酸ブチルとスチレン及び少量のアクリル酸アリルとを架橋共重合させた軟質の弾性共重合体であり、外層が、メタクリル酸メチル及び少量のアクリル酸エチルの硬質重合体である。また、内層の平均粒子径は0.19μmであり、外層をも含めた粒径は0.22μmであった。 Rubber particles were produced according to Example 3 of JP-B-55-27576. This rubber particle has a spherical three-layer structure, the core inner layer is a crosslinked polymer of methyl methacrylate and a small amount of allyl methacrylate, and the inner layer is composed of butyl acrylate and styrene as main components and a small amount of acrylic acid. It is a soft elastic copolymer obtained by crosslinking and copolymerizing allyl, and the outer layer is a hard polymer of methyl methacrylate and a small amount of ethyl acrylate. The average particle size of the inner layer was 0.19 μm, and the particle size including the outer layer was 0.22 μm.
 上記樹脂ペレット70重量部と、上記ゴム粒子30重量部とを混合し、二軸押出機で溶融混練して、メタクリル酸エステル重合体組成物A(ガラス転移温度105℃)を得た。 70 parts by weight of the resin pellets and 30 parts by weight of the rubber particles were mixed and melt kneaded with a twin screw extruder to obtain a methacrylic acid ester polymer composition A (glass transition temperature 105 ° C.).
 上記メタクリル酸エステル重合体組成物A(b層)、及びスチレン無水マレイン酸共重合体(ガラス転移温度130℃)(a層)を温度280℃で共押出成形することにより、b層/a層/b層の三層構造で、各層が45/70/45(μm)の平均厚みを有する複層フィルムを得た。この積層フィルムを、テンター延伸機で、遅相軸がMD方向に対して45度傾いた方向になるように、延伸温度134℃、延伸倍率1.8倍で斜め延伸し、光学異方性層を得た。 By coextruding the methacrylic ester polymer composition A (b layer) and the styrene maleic anhydride copolymer (glass transition temperature 130 ° C.) (a layer) at a temperature of 280 ° C., a b layer / a layer A multilayer film having an average thickness of 45/70/45 (μm) with a three-layer structure of / b layers was obtained. The laminated film is stretched obliquely at a stretching temperature of 134 ° C. and a stretching ratio of 1.8 times so that the slow axis is in a direction inclined by 45 degrees with respect to the MD direction by a tenter stretching machine. Got.
 光学異方性層の正面方向のリターデーションは、140nm、厚み方向のリターデーションは-85nm(各数値は延伸後の測定値である。)であった。さらにこの光学異方性層の片面を、濡れ指数が56dyne/cmになるようにコロナ放電処理を施した。この光学異方性層を、下記において位相差フィルムとして用いた。 The retardation in the front direction of the optically anisotropic layer was 140 nm, and the retardation in the thickness direction was −85 nm (each numerical value is a measured value after stretching). Further, one side of the optically anisotropic layer was subjected to corona discharge treatment so that the wetting index was 56 dyne / cm. This optically anisotropic layer was used as a retardation film in the following.
 実施例1:選択反射素子及び液晶表示装置の作製及び評価
 (1-a:選択反射素子の作製)
 製造例1で得た円偏光分離シートと、製造例3で得た位相差フィルムとを、接着剤にて貼り合わせ、選択反射素子を得た。
 ここで、接着剤については、まずエチレン-酢酸ビニル共重合体エマルジョン(不揮発分40重量%、酢酸ビニル含有率40重量%)40重量部、石油樹脂エマルジョン(不揮発分40重量%、樹脂軟化点85℃)35重量部、及びパラフィンワックスエマルジョン(不揮発分40重量%、樹脂軟化点64℃)10重量部からなる、23℃における剪断貯蔵弾性率が10MPaである接着剤組成物を調製し、この接着剤組成物に直径4μmの微粒子(形状:球状、材料:ポリスチレン、屈折率:1.59)を混合したものを用いた。この接着剤を、前記円偏光分離シートの硬化液晶層上に乾燥後の平均厚みが20μmとなるように積層し、ヘイズ(ヘイズガードII(東洋精機社製)を用いて、JIS K7136に準拠して測定したところ、60%であった。この面と、前記位相差フィルムのコロナ処理面とをラミネーターを用いて、80℃、2kgf/50mmのニップ圧にて貼り合わせを行い、選択反射素子を得た。
Example 1: Production and evaluation of selective reflection element and liquid crystal display device (1-a: Production of selective reflection element)
The circularly polarized light separating sheet obtained in Production Example 1 and the retardation film obtained in Production Example 3 were bonded together with an adhesive to obtain a selective reflection element.
Here, with respect to the adhesive, first, ethylene-vinyl acetate copolymer emulsion (non-volatile content 40% by weight, vinyl acetate content 40% by weight) 40 parts by weight, petroleum resin emulsion (non-volatile content 40% by weight, resin softening point 85). C.) and 35 parts by weight of a paraffin wax emulsion (non-volatile content: 40% by weight, resin softening point: 64 ° C.), and an adhesive composition having a shear storage modulus of 10 MPa at 23 ° C. was prepared. The agent composition was mixed with fine particles having a diameter of 4 μm (shape: spherical, material: polystyrene, refractive index: 1.59). This adhesive was laminated on the cured liquid crystal layer of the circularly polarized light separating sheet so that the average thickness after drying was 20 μm, and using haze (Hazeguard II (manufactured by Toyo Seiki Co., Ltd.), in accordance with JIS K7136. The surface of this film and the corona-treated surface of the retardation film were bonded to each other at 80 ° C. and a nip pressure of 2 kgf / 50 mm using a laminator to obtain a selective reflection element. Obtained.
 (1-b:液晶表示装置の作製)
 光源として4CCFLを搭載する市販の液晶表示装置(i)を分解し、上記(1-a)で得た選択反射素子を、バックライトの出射面上に装着し、組み立て直し、液晶表示装置(ii)を得た。液晶表示装置(ii)は、主要な構成要素として、バックライト装置(4CCFL、反射板、光拡散板、拡散シート、及び上で装着した選択反射素子を含む)、偏光板、液晶パネル及び偏光板をこの順で有していた。
 液晶表示装置(i)及び(ii)の光源である4CCFLは、ピーク波長約430nm~500nmの範囲の青色輝線、ピーク波長約540nmの緑色輝線に加えて、ピーク波長約611nm及び約658nmに、2本の赤色輝線を有していた。
(1-b: Production of liquid crystal display device)
A commercially available liquid crystal display device (i) equipped with 4CCFL as a light source is disassembled, and the selective reflection element obtained in the above (1-a) is mounted on the emission surface of the backlight, reassembled, and the liquid crystal display device (ii) ) The liquid crystal display device (ii) includes, as main components, a backlight device (including 4CCFL, a reflection plate, a light diffusion plate, a diffusion sheet, and a selective reflection element mounted thereon), a polarizing plate, a liquid crystal panel, and a polarizing plate In this order.
4CCFL which is a light source of the liquid crystal display devices (i) and (ii) has a peak wavelength of about 611 nm and a wavelength of about 658 nm in addition to a blue emission line with a peak wavelength of about 430 nm to 500 nm and a green emission line with a peak wavelength of about 540 nm. It had a red bright line of books.
 (1-c:評価)
 上記(1-b)で得た液晶表示装置(ii)を青、緑、赤の各画素における光の透過率を100%となるように電圧調整した後、赤画面表示時の正面輝度、及び白画面表示時の正面輝度と色度座標(x,y)を、視野角測定装置(Autronic Melchers社製 ERGOSCOPE)により測定した。結果を表1に示す。
(1-c: Evaluation)
After adjusting the voltage of the liquid crystal display device (ii) obtained in (1-b) above so that the light transmittance in each of the blue, green, and red pixels is 100%, the front brightness when displaying the red screen, and The front luminance and chromaticity coordinates (x, y) at the time of displaying a white screen were measured with a viewing angle measuring device (ERGSCOPE manufactured by Autronic Melchers). The results are shown in Table 1.
 比較例1
 前記液晶表示装置(i)について、実施例1の(1-c)と同様の測定を実施した。結果を表1に示す。
Comparative Example 1
For the liquid crystal display device (i), the same measurement as in (1-c) of Example 1 was performed. The results are shown in Table 1.
実施例2:
 液晶表示装置(i)に代えて、光源として長波長3CCFLを搭載する市販の液晶表示装置(iii)を用いた他は、実施例1と同様に操作し、液晶表示装置(iv)を作製し、測定を行った。結果を表1に示す。
 液晶表示装置(iv)は、主要な構成要素として、バックライト装置(長波長3CCFL、反射板、光拡散板、拡散シート、及び上で装着した選択反射素子を含む)、液晶表示装置に元々組み込まれていた、偏光板、液晶パネル及び偏光板をこの順で有していた。
 液晶表示装置(iii)及び(iv)の光源である長波長3CCFLは、ピーク波長約430nm以上500nm以下の範囲の青色輝線、ピーク波長約540nmの緑色輝線に加えて、ピーク波長約658nmに、1本の赤色輝線を有していた。
Example 2:
A liquid crystal display device (iv) was manufactured in the same manner as in Example 1 except that a commercially available liquid crystal display device (iii) equipped with a long wavelength 3CCFL was used as a light source instead of the liquid crystal display device (i). The measurement was performed. The results are shown in Table 1.
The liquid crystal display device (iv) is originally incorporated in a backlight device (including a long wavelength 3CCFL, a reflection plate, a light diffusion plate, a diffusion sheet, and a selective reflection element mounted thereon) and a liquid crystal display device as main components. It had a polarizing plate, a liquid crystal panel, and a polarizing plate in this order.
The long wavelength 3CCFL which is the light source of the liquid crystal display devices (iii) and (iv) has a peak wavelength of about 658 nm, a blue emission line having a peak wavelength of about 430 nm to 500 nm, and a peak wavelength of about 658 nm. It had a red bright line of books.
実施例3
 製造例2で得た円偏光分離シートを使用した以外は実施例1と同様に液晶表示装置を作製し、実施例1と同様の測定をした、結果を表1に示す。
Example 3
A liquid crystal display device was produced in the same manner as in Example 1 except that the circularly polarized light separating sheet obtained in Production Example 2 was used, and the same measurement as in Example 1 was performed. The results are shown in Table 1.
実施例4
 製造例2で得た円偏光分離シートを使用した以外は実施例2と同様に液晶表示装置を作製し、実施例1と同様の測定をした、結果を表1に示す。
Example 4
A liquid crystal display device was produced in the same manner as in Example 2 except that the circularly polarized light separating sheet obtained in Production Example 2 was used, and the same measurement as in Example 1 was performed. The results are shown in Table 1.
 比較例2
 前記液晶表示装置(iii)について、実施例1の(1-c)と同様に、測定を実施した。結果を表1に示す。
Comparative Example 2
The liquid crystal display device (iii) was measured in the same manner as (1-c) in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1中のホワイトバランスの評価方法について以下に示す。
・実施例1、実施例3及び比較例1
 光源として4CCFLを搭載する市販の液晶表示装置(i)を白画面表示で測定した色度座標(x,y)と、前記液晶表示装置(i)において、青、緑、赤の各画素における光の透過率を100%となるように電圧調整した後、この液晶表表示装置(i)に上記(1-a)で得た選択反射素子をバックライトの出射面上に装着して組み立て直し、白画面表示で測定した色度座標(x,y)との差(実施例1)、又は選択反射素子を装着せずに白画面表示で測定した色度座標(x,y)との差(比較例1)が、±0.002以下の場合を良、±0.002を超える場合を不良とした。
・実施例2、実施例4及び比較例2
 光源として長波長3CCFLを搭載する市販の液晶表示装置(iii)を白画面表示で測定した色度座標(x,y)と、前記液晶表示装置(iii)において青、緑、赤の各画素における光の透過率を100%となるように電圧調整した後、この液晶表表示装置(iii)に上記(1-a)で得た選択反射素子をバックライトの出射面上に装着して組み立て直し、白画面表示で測定した色度座標(x,y)との差(実施例2)、又は選択反射素子を装着せずに白画面表示で測定した色度座標(x,y)との差(比較例2)が、±0.002以下の場合を良、±0.002を超える場合を不良とした。
 なお、色度座標(x,y)は、視野角測定装置(Autronic Melchers社製 ERGOSCOPE)により測定した。
The white balance evaluation method in Table 1 is shown below.
Example 1, Example 3 and Comparative Example 1
Chromaticity coordinates (x, y) measured on a white screen display of a commercially available liquid crystal display device (i) equipped with 4CCFL as a light source, and light in each of blue, green, and red pixels in the liquid crystal display device (i) After adjusting the voltage so that the transmittance of the liquid crystal becomes 100%, the liquid crystal display device (i) is reassembled by mounting the selective reflection element obtained in (1-a) above on the emission surface of the backlight, Difference from chromaticity coordinates (x, y) measured in white screen display (Example 1) or difference from chromaticity coordinates (x, y) measured in white screen display without wearing a selective reflection element ( In Comparative Example 1), the case where it was ± 0.002 or less was judged good, and the case where it exceeded ± 0.002 was judged as bad.
Example 2, Example 4 and Comparative Example 2
The chromaticity coordinates (x, y) of a commercially available liquid crystal display device (iii) equipped with a long wavelength 3CCFL as a light source measured on a white screen display, and each of blue, green, and red pixels in the liquid crystal display device (iii) After adjusting the voltage so that the light transmittance is 100%, the liquid crystal display device (iii) is reassembled by mounting the selective reflection element obtained in (1-a) above on the emission surface of the backlight. Difference from chromaticity coordinates (x, y) measured in white screen display (Example 2), or difference from chromaticity coordinates (x, y) measured in white screen display without wearing a selective reflection element The case where (Comparative Example 2) was ± 0.002 or less was judged good, and the case where it exceeded ± 0.002 was judged as poor.
Note that the chromaticity coordinates (x, y) were measured with a viewing angle measuring device (ERGOSCOPE manufactured by Atlantic Melchers).
 表1に示す結果より、特定の選択反射素子を有する実施例の液晶表示装置で赤色正面輝度、白色正面輝度及び白画面表示時のホワイトバランスが良好であるのに対し、比較例の液晶表示装置においては、赤色正面輝度、白色正面輝度及び白画面表示時のホワイトバランスが劣っていた。 From the results shown in Table 1, in the liquid crystal display device of the example having a specific selective reflection element, the red front luminance, the white front luminance, and the white balance during white screen display are good, whereas the liquid crystal display device of the comparative example , The red front luminance, the white front luminance, and the white balance when displaying a white screen were inferior.

Claims (6)

  1.  400nm以上600nm未満の波長帯域における一以上の発光領域及び600nm以上700nm以下の波長帯域における一以上の発光領域を有する光源、並びに前記光源の出光面側に設けられた選択反射素子を備え、
     前記選択反射素子の選択反射波長帯域が、前記600nm以上700nm以下の波長帯域における発光領域の少なくとも一部を含むことを特徴とするバックライト装置。
    A light source having one or more light emitting regions in a wavelength band of 400 nm or more and less than 600 nm and one or more light emitting regions in a wavelength band of 600 nm or more and 700 nm or less, and a selective reflection element provided on the light exit surface side of the light source,
    The backlight device, wherein the selective reflection wavelength band of the selective reflection element includes at least a part of a light emitting region in the wavelength band of 600 nm to 700 nm.
  2.  前記光源が、前記発光領域として640nm以上700nm以下の波長帯域において一以上の長波長側赤色輝線を有し、前記選択反射素子の前記選択反射帯域が、前記長波長側赤色輝線の少なくとも一つのピーク波長を含む、請求項1に記載のバックライト装置。 The light source has one or more long-wavelength red bright lines in the wavelength band of 640 nm to 700 nm as the light emitting region, and the selective reflection band of the selective reflection element is at least one peak of the long-wavelength red bright line. The backlight apparatus of Claim 1 containing a wavelength.
  3.  前記光源が、前記発光領域としてさらに、600nm以上640nm未満の波長帯域において一以上の短波長側赤色輝線を有し、前記選択反射素子の前記選択反射帯域が、前記短波長側赤色輝線の少なくとも一つのピーク波長を含む、請求項2に記載のバックライト装置。 The light source further has one or more short wavelength red emission lines in the wavelength band of 600 nm or more and less than 640 nm as the light emitting region, and the selective reflection band of the selective reflection element is at least one of the short wavelength side red emission lines. The backlight device according to claim 2, comprising two peak wavelengths.
  4.  前記選択反射素子が、400nm以上600nm未満の波長帯域において、実質的に選択反射帯域を有さない、請求項1に記載のバックライト装置。 The backlight device according to claim 1, wherein the selective reflection element has substantially no selective reflection band in a wavelength band of 400 nm or more and less than 600 nm.
  5.  前記光源が、冷陰極管又は発光ダイオードを含む請求項1に記載のバックライト装置。 The backlight device according to claim 1, wherein the light source includes a cold cathode tube or a light emitting diode.
  6.  請求項1に記載のバックライト装置、及び液晶パネルを備えることを特徴とする液晶表示装置。 A liquid crystal display device comprising the backlight device according to claim 1 and a liquid crystal panel.
PCT/JP2008/072423 2007-12-26 2008-12-10 Backlight device and liquid crystal display device WO2009081735A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009547023A JP5195765B2 (en) 2007-12-26 2008-12-10 Backlight device and liquid crystal display device
TW097149112A TWI465807B (en) 2007-12-26 2008-12-17 A backlight device and a liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007335085 2007-12-26
JP2007-335085 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081735A1 true WO2009081735A1 (en) 2009-07-02

Family

ID=40801043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072423 WO2009081735A1 (en) 2007-12-26 2008-12-10 Backlight device and liquid crystal display device

Country Status (3)

Country Link
JP (1) JP5195765B2 (en)
TW (1) TWI465807B (en)
WO (1) WO2009081735A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3330079A4 (en) * 2015-07-28 2019-03-27 Zeon Corporation Cholesteric resin laminate, production method, and use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294948A (en) * 2002-04-08 2003-10-15 Nitto Denko Corp Band filter and surface light source device using the same
JP2007059372A (en) * 2005-07-27 2007-03-08 Sharp Corp Fluorescence tube unit, fluorescence tube, backlight device and liquid crystal display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316372A (en) * 1998-04-30 1999-11-16 Seiko Epson Corp Liquid crystal device and electronic equipment
JP4293888B2 (en) * 2003-03-31 2009-07-08 日東電工株式会社 Broadband cholesteric liquid crystal film manufacturing method, circularly polarizing plate, linearly polarizing element, illumination device, and liquid crystal display device
JP4251483B2 (en) * 2003-06-24 2009-04-08 日東電工株式会社 Optical element, condensing backlight system, and liquid crystal display device
JP2007052398A (en) * 2005-07-22 2007-03-01 Sony Corp Light source apparatus and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294948A (en) * 2002-04-08 2003-10-15 Nitto Denko Corp Band filter and surface light source device using the same
JP2007059372A (en) * 2005-07-27 2007-03-08 Sharp Corp Fluorescence tube unit, fluorescence tube, backlight device and liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3330079A4 (en) * 2015-07-28 2019-03-27 Zeon Corporation Cholesteric resin laminate, production method, and use
US10689574B2 (en) 2015-07-28 2020-06-23 Zeon Corporation Cholesteric resin laminate, production method, and use

Also Published As

Publication number Publication date
JP5195765B2 (en) 2013-05-15
TW200951572A (en) 2009-12-16
TWI465807B (en) 2014-12-21
JPWO2009081735A1 (en) 2011-05-06

Similar Documents

Publication Publication Date Title
US8048495B2 (en) Cholesteric liquid crystal composition, circular polarization separator sheet and use thereof
JP5532974B2 (en) Composition for forming liquid crystal layer, circularly polarized light separating sheet and method for producing the same, brightness enhancement film, and liquid crystal display device
JP2011161887A (en) Roll body of long film
JP2017015897A (en) Image projection system and projection surface member
JP2011186158A (en) Film, film roll and method for manufacturing film
JP2010107902A (en) Optical member and liquid crystal display device
JP5151228B2 (en) Method for producing circularly polarized light separating sheet and liquid crystal display device using circularly polarized light separating sheet produced by the method
JP2009104065A (en) Luminance enhancing film and liquid crystal display device
JP2008250187A (en) Cholesteric liquid crystal composition, and circularly polarized light separation sheet and manufacturing method
JP2009180830A (en) Luminance improving film and liquid crystal display
JP2009175550A (en) Luminance improving film and liquid crystal display device
JP5540630B2 (en) Composition for forming liquid crystal layer, circularly polarized light separating sheet and method for producing the same, brightness enhancement film, and liquid crystal display device
JP2010091616A (en) Luminance improvement film, composite laminated body and liquid crystal display
JP4883033B2 (en) Brightness enhancement film, method for producing the same, and liquid crystal display device
JP5195765B2 (en) Backlight device and liquid crystal display device
JP2009192983A (en) Selective reflection element and liquid crystal display device
JP2010107958A (en) Luminance-enhanced film, composite layered product, and liquid crystal display
JP2008225225A (en) Luminance-enhancing film
JP2011112720A (en) Reflection type circular polarized light separation element and liquid crystal display device
KR102030270B1 (en) Method of manufacturing organic el image display device
JP4877160B2 (en) Circularly polarized light separating sheet, method for producing the same, and liquid crystal display device using the same
JP2008233189A (en) Optical composite element
JP5773029B2 (en) Composition for forming liquid crystal layer, circularly polarized light separating sheet and method for producing the same, brightness enhancement film, and liquid crystal display device
JP2008242094A (en) Circular polarized light separation sheet, manufacturing method and liquid crystal display device
WO2011013492A1 (en) Brightness-improving film, composite polarizer, and liquid-crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864379

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547023

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864379

Country of ref document: EP

Kind code of ref document: A1