WO2009081629A1 - 液晶表示装置及び表示装置用基板 - Google Patents

液晶表示装置及び表示装置用基板 Download PDF

Info

Publication number
WO2009081629A1
WO2009081629A1 PCT/JP2008/066349 JP2008066349W WO2009081629A1 WO 2009081629 A1 WO2009081629 A1 WO 2009081629A1 JP 2008066349 W JP2008066349 W JP 2008066349W WO 2009081629 A1 WO2009081629 A1 WO 2009081629A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
retardation layer
display device
substrate
Prior art date
Application number
PCT/JP2008/066349
Other languages
English (en)
French (fr)
Inventor
Yoshito Hashimoto
Hiroyuki Ohgami
Masayuki Soga
Katsuhiro Kikuchi
Masakazu Shibasaki
Yuichi Iyama
Masumi Kubo
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to CN2008801228963A priority Critical patent/CN101910927B/zh
Priority to US12/810,404 priority patent/US8654286B2/en
Publication of WO2009081629A1 publication Critical patent/WO2009081629A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to a liquid crystal display device and a display device substrate. More specifically, the present invention relates to a liquid crystal display device and a display device substrate suitable for mobile devices such as mobile phones.
  • Liquid crystal display devices are used in a wide range of fields, taking advantage of their thinness, light weight, and low power consumption, and in recent years, they are increasingly installed in mobile devices such as mobile phones. Under such circumstances, since mobile devices are often used outdoors, from the viewpoint of preventing reflections and reducing power consumption, display is performed using both external light and backlight.
  • a transflective liquid crystal display device has been developed. The transflective liquid crystal display device has a function of displaying in both transmissive and reflective modes.
  • a ⁇ / 4 retardation plate is disposed in the reflective display region in order to effectively perform reflective display.
  • the ⁇ / 4 retardation plate gives a ⁇ / 4 retardation (retardation) between two polarization components that vibrate in a direction perpendicular to each other with respect to the transmitted light of wavelength ⁇ , and can be made into circularly polarized light. .
  • a ⁇ / 4 retardation plate is arranged in the reflective display area, and the polarizing plate is arranged in a crossed Nicol arrangement, so that light incident from the observation surface side is reflected from the reflective display area, and then is reflected from the observation surface side by the polarizing plate. In order to prevent emission, a normally black mode can be displayed.
  • the ⁇ / 4 retardation plate when the ⁇ / 4 retardation plate is disposed in a transflective liquid crystal display device, generally, a circularly polarizing plate including a linear polarizer and a ⁇ / 4 retardation plate is provided on the observation surface side of the liquid crystal display panel. It will be pasted on the whole.
  • the ⁇ / 4 retardation plate is disposed not only in the reflective display area but also in the transmissive display area. Therefore, an extra phase difference is imparted to the transmitted light by the ⁇ / 4 phase difference plate arranged in the transmissive display region, which may cause a reduction in contrast ratio and luminance in transmissive display.
  • Patent Document 1 a technique for forming a ⁇ / 4 retardation layer only on the reflection portion of the liquid crystal display device is disclosed (for example, see Patent Document 1).
  • Patent Document 1 since the ⁇ / 4 retardation layer is disposed in the reflection portion and the ⁇ / 4 retardation layer is not disposed in the transmission portion, light does not pass through the ⁇ / 4 retardation layer in the transmission portion. It is possible to prevent the contrast ratio of transmissive display from being lowered.
  • a liquid crystal display device having a structure in which a first substrate having a reflective layer, a liquid crystal layer, a second substrate, and a polarizing plate are laminated in this order from the back surface to the display surface, the liquid crystal is higher than the reflective layer in the first substrate.
  • a technique in which a layer side or a region where no reflective layer is arranged or a retardation layer in the second substrate, and the retardation layer forms a region having two or more different phase differences in the display surface (For example, refer to Patent Document 2). According to this, it is possible to perform phase difference compensation corresponding to each region in regions having different display forms.
  • a ⁇ / 4 retardation layer is formed by patterning after forming a liquid crystalline monomer or the like after curing.
  • the taper of the tapered ⁇ / 4 retardation layer may be reduced.
  • the phase difference of ⁇ / 4 cannot be provided only by the ⁇ / 4 phase difference layer in the region where the taper of the reflecting portion occurs.
  • Patent Document 2 when the ⁇ / 4 retardation layer is used as the retardation layer, similarly, in the region where the taper is generated, the ⁇ / 4 retardation is given only by the ⁇ / 4 retardation layer. You may not be able to do it.
  • Patent Documents 1 and 2 the relationship between the tilt direction of the tilted portion caused by the taper and the slow axis direction of the ⁇ / 4 retardation layer is not considered at all. There is room for improvement in that light leakage may occur in the region where the taper occurs and the contrast ratio may be lowered.
  • the present invention has been made in view of the above-described situation, and a liquid crystal capable of improving a contrast ratio by compensating for a phase difference applied in a region where an inclined portion (inclined portion) of a retardation layer is disposed.
  • An object of the present invention is to provide a display device and a display device substrate.
  • the present inventors have made various studies on improving the contrast ratio in a transflective vertical alignment mode liquid crystal display device, and have focused on the ⁇ / 4 retardation layer disposed in the reflective display region.
  • a ⁇ / 4 retardation layer is formed on one liquid crystal layer side of a pair of substrates sandwiching the liquid crystal layer, and the ⁇ / 4 retardation layer is left only in the reflective display region, patterning is performed.
  • the / 4 retardation layer has an inclined portion inclined with respect to the flat surface of the substrate, and in the region where the inclined portion is formed, a phase difference of ⁇ / 4 can be imparted to the light incident on the liquid crystal display device. It was not possible, and it was found that light leakage may occur during black display, leading to a decrease in contrast ratio.
  • the slow axis orientation of the inclined portion of the ⁇ / 4 retardation layer and the inclined portion are made substantially parallel to the inclined orientation of the inclined portion and the slow axis orientation of the ⁇ / 4 retardation layer. Since the major axis orientation (slow axis orientation) of the liquid crystal molecules in the liquid crystal layer tilted in the vicinity can be aligned, the liquid crystal molecules exhibit a phase difference that cannot be imparted by the tilted portion of the phase difference of ⁇ / 4. I found that I can make up for it.
  • the present invention is a vertical alignment mode liquid crystal display device having a liquid crystal layer between a pair of substrates facing each other and having a transmissive display region and a reflective display region, wherein one of the pair of substrates is
  • the reflective display area includes a ⁇ / 4 retardation layer protruding to the liquid crystal layer side, the ⁇ / 4 retardation layer having an inclined portion inclined with respect to the flat surface of the substrate, and an inclination direction of the inclined portion And the slow axis direction of the ⁇ / 4 retardation layer are substantially parallel (hereinafter also referred to as “first liquid crystal display device”).
  • first liquid crystal display device The present invention is described in detail below.
  • the first liquid crystal display device of the present invention is of a vertical alignment mode having a liquid crystal layer between a pair of substrates facing each other and having a transmissive display region and a reflective display region. That is, the first liquid crystal display device of the present invention is a transflective liquid crystal display device having a transmissive display area and a reflective display area.
  • the transflective liquid crystal display device uses a light source such as a backlight so that it has high visibility even in a dark place, and a reflective type that uses external light and has low power consumption. It has the characteristics of the liquid crystal display device. This is also called a reflection / transmission type liquid crystal display device.
  • the reflective display area In the reflective display area, the light incident from the substrate on the observation surface side passes through the liquid crystal layer, is reflected by the reflection layer provided on the substrate on the back surface side, then passes again through the liquid crystal layer, and then from the substrate on the observation surface side. It is a region where display is performed by emitting light. In the case where reflection is performed by the reflective layer provided on the substrate on the back side, the reflective display region is preferably a region where the reflective layer is provided.
  • the transmissive display area is an area where display is performed by allowing light incident from the substrate on the back surface side to pass through the liquid crystal layer and exit from the substrate on the observation surface side.
  • the transmissive display region is preferably a region other than the reflective display region where a pixel electrode including a transparent conductive film for performing transmissive display is provided.
  • the pair of substrates facing each other is not particularly limited, but is preferably a transparent substrate such as a glass substrate, a quartz substrate, or a plastic substrate. From the viewpoint of cost reduction, a glass substrate or a plastic substrate is more preferable.
  • the liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy
  • each of the pair of substrates includes a vertical alignment film on the surface on the liquid crystal layer side.
  • the major axis of the liquid crystal molecules is aligned perpendicular to the flat surface of the substrate (the surface of the vertical alignment film). be able to.
  • the polarization state of the light incident on the liquid crystal layer can be controlled by tilting the major axis of the liquid crystal molecules.
  • the amount of light transmitted by the polarizer installed in the liquid crystal display device can be controlled.
  • the first liquid crystal display device includes a polarizer on each of the pair of substrates, and the two polarizers provided on each of the pair of substrates are arranged in crossed Nicols when the first liquid crystal display device is viewed in plan view. It is preferred that By arranging the two polarizers in crossed Nicols, display can be performed in a normally black mode (display mode in which black display is performed when the voltage applied to the liquid crystal layer is equal to or lower than the threshold voltage) in the transmissive display region. . In general, by displaying in the normally black mode, the contrast ratio is compared with the display in the normally white mode (display mode in which white display is performed when the voltage applied to the liquid crystal layer is equal to or lower than the threshold voltage). Can be improved.
  • a normally black mode display mode in which black display is performed when the voltage applied to the liquid crystal layer is equal to or lower than the threshold voltage
  • the contrast ratio is compared with the display in the normally white mode (display mode in which white display is performed when the voltage applied to the liquid crystal layer
  • One of the pair of substrates includes a ⁇ / 4 retardation layer that protrudes toward the liquid crystal layer in the reflective display region.
  • the ⁇ / 4 retardation layer gives a retardation of ⁇ / 4 (95 to 195 nm) to visible light (light having a wavelength range of 380 to 780 nm) incident on the ⁇ / 4 retardation layer.
  • the ⁇ / 4 retardation layer adjusts the wavelength of ⁇ to a wavelength of 550 nm, which has high visibility in the visible light wavelength range, and gives a phase difference of 137.5 nm to 550 nm light.
  • the retardation value of the ⁇ / 4 retardation layer arranged in the same region as each color filter can be set according to the color of the color filter.
  • the retardation value of the ⁇ / 4 retardation layer arranged in the same region as the red color filter is set to 162.5 nm, which is a quarter of 650 nm.
  • the retardation value of the ⁇ / 4 retardation layer disposed in the same region as the green color filter is set to 137.5 nm which is a quarter of 550 nm.
  • the retardation value of the ⁇ / 4 retardation layer arranged in the same region as the color filter is preferably set to 112.5 nm which is a quarter of 450 nm.
  • the slow axis of the ⁇ / 4 retardation layer is arranged at an angle of 45 ° with respect to the transmission axis of the polarizer provided on the substrate on the observation surface side.
  • the incident light is reflected on the back side of the first liquid crystal display device in the reflective display region, and between the pair of substrates. Since the display is performed by reciprocating, circularly polarized light can be converted to linearly polarized light when the reflected light passes through the ⁇ / 4 retardation layer again.
  • the ⁇ / 4 retardation layer is used when light enters and exits.
  • the black display can be performed in the normally black mode.
  • the ⁇ / 4 retardation layer has an inclined part inclined with respect to the flat surface of the substrate, and is parallel to a straight line connecting the inclination direction of the inclined part (the apex of the inclined part and the lowest part of the inclined part at the shortest distance).
  • Azimuth) and the slow axis orientation of the ⁇ / 4 retardation layer are substantially parallel.
  • the inclination direction of the inclined portion in the ⁇ / 4 retardation layer may be any one direction or two opposite directions (directions different by 180 °, for example, two opposite directions indicated by white arrows in FIG. 1B) ) Is preferred.
  • “azimuth” refers to a two-dimensional orientation in a plane parallel to the flat surface of the substrate.
  • the “direction” refers to a three-dimensional direction obtained by adding the azimuth and the angle with respect to the flat surface of the substrate.
  • the inclination azimuth of the inclined portion refers to a direction parallel to the flat surface of the substrate in a direction in which the inclined surface of the inclined portion is inclined from a high portion to a low portion.
  • substantially parallel includes not only the case of being completely parallel but also including those that can be regarded as parallel in terms of the effect, for example, ⁇ / 4 phase difference
  • the angle between the tilt direction of the tilted portion and the slow axis direction in the layer may be 5 ° or less.
  • the ⁇ / 4 retardation layer has an inclined portion that is inclined with respect to the flat surface of the substrate on the liquid crystal layer side, so that when the voltage for driving the first liquid crystal display device is less than the threshold voltage, the liquid crystal in the inclined region
  • the molecules can be oriented in a direction perpendicular to the inclined surface of the inclined portion. For this reason, a voltage is applied to the liquid crystal layer with a phase difference imparted by liquid crystal molecules in the tilted region when the tilt direction of the tilted portion and the slow axis direction of the ⁇ / 4 phase difference layer are substantially parallel. It is possible to compensate for the phase difference of light that has passed through the inclined region of the ⁇ / 4 phase difference layer when no voltage is applied to the liquid crystal layer or less than the threshold voltage.
  • the ⁇ / 4 retardation layer is arranged by the orientation in which the major axis of the liquid crystal molecules in the liquid crystal layer tilt-aligned in the vicinity of the inclined portion is substantially parallel to the slow axis orientation of the retardation layer. It is possible to compensate for the difference in the phase difference in the determined region. According to this, light leakage at the time of black display (for example, when the voltage applied to the liquid crystal layer is equal to or lower than the threshold voltage) can be prevented, so that the contrast ratio can be improved.
  • the ⁇ / 4 retardation layer is preferably formed by adjusting the patterning conditions to control the inclination angle of the inclined portion (the angle formed by the flat surface of the substrate and the inclined surface of the inclined portion).
  • the tilt angle can be controlled in accordance with the refractive index of the liquid crystal molecules used in the liquid crystal layer, the configuration of the liquid crystal display device, etc., and the contrast ratio can be further improved.
  • the inclined portion only needs to be inclined with respect to the flat surface of the substrate.
  • the inclined portion may be formed by a plane having a constant angle with respect to the flat surface of the substrate, or on the flat surface of the substrate. Alternatively, it may be formed by a curved surface whose angle of inclination changes.
  • the ⁇ / 4 retardation layer is formed on one liquid crystal side of the pair of substrates by being disposed on the liquid crystal layer side of one of the pair of substrates (the substrate on the back side or the substrate on the observation surface side). Since the ⁇ / 4 retardation layer can be formed in conjunction with a process for forming an object (for example, a color filter, a TFT element, etc.), the manufacturing process can be simplified. In addition, for example, when a ⁇ / 4 retardation layer is also disposed between a pair of substrates in the transmissive display region, a phase difference is given to light incident from the substrate side on the back side, so that black display of transmissive display is performed.
  • the contrast ratio is reduced because it becomes brighter, it is possible to easily and accurately place the ⁇ / 4 phase difference only in the reflective display region by being arranged on one liquid crystal layer side of the pair of substrates. Therefore, display quality such as contrast ratio, luminance, and chromaticity can be improved.
  • the ⁇ / 4 retardation layer may be disposed on the back side of the color filter (on the color filter). Further, it may be arranged between the color filter and the substrate on the observation surface side.
  • the step of each color filter the polymerizability for each color filter
  • the thickness of the ⁇ / 4 retardation layer cannot be made uniform due to the difference in wettability of the resin.
  • the thickness of the ⁇ / 4 retardation layer can be made uniform by forming an overcoat layer or the like after forming the color filter and making it flat.
  • the ⁇ / 4 retardation layer can be formed on a flat substrate. Can be made more uniform.
  • the ⁇ / 4 retardation layer preferably includes a polymerizable liquid crystal (a liquid crystal having a polymerizable functional group) such as a polymerizable nematic liquid crystal. According to this, the ⁇ / 4 retardation layer can be easily formed.
  • the polymerizable liquid crystal include polymers of mesogenic materials.
  • the mesogenic material refers to a compound (monomer) having a mesogenic group
  • the mesogenic group refers to an elongated rod-like or flat plate-like material having a rigid molecular chain.
  • the mesogenic group include those represented by the following general formulas (1) to (3).
  • each R independently represents an atomic group such as an alkyl group, an alkoxyl group, a cyano group, or a nitro group.
  • Examples of the polymerizable functional group include those represented by the following general formulas (4) and (5).
  • the polymerization represented by the general formula (4) is added to the terminal of the compound represented by the general formula (1) or (2) described above.
  • An acrylic bonding material having a functional functional group is preferred.
  • a step of applying a polymerizable liquid crystal As a method for forming the ⁇ / 4 retardation layer, a step of applying a polymerizable liquid crystal, a step of polymerizing and curing the polymerizable liquid crystal while controlling alignment by ultraviolet irradiation or the like, and a step of patterning by a photolithography method or the like And the like methods.
  • the azimuth direction of the polymerizable liquid crystal and the inclination direction of the inclined portion of the ⁇ / 4 retardation layer are made parallel to each other to obtain ⁇ /
  • the slow axis direction of the four retardation layers and the tilt direction of the tilted portion can be made parallel. According to this, the orientation in which the major axis of the liquid crystal molecules in the liquid crystal layer faces in the region where the inclined portion is arranged is parallel to the orientation in which the major axis of the polymerizable liquid crystal in the ⁇ / 4 retardation layer faces. Therefore, the phase difference value provided by the ⁇ / 4 retardation layer in the inclined portion can be compensated by the liquid crystal molecules in the liquid crystal layer in the region where the inclined portion is disposed (inclined region).
  • the first liquid crystal display device preferably has a retardation control alignment film under the ⁇ / 4 retardation layer (on the side opposite to the liquid crystal layer of the ⁇ / 4 retardation layer). Since the retardation layer formed on the retardation controlling alignment film can control the retardation imparted to the light passing through the retardation layer by using the retardation controlling alignment film, ⁇ / 4 A retardation layer can be easily formed.
  • the form of the alignment film for retardation control is not limited to the form in which the rubbing direction and the constituent material are the same in the entire region under the ⁇ / 4 retardation layer, and the rubbing direction varies depending on the region under the ⁇ / 4 retardation layer. The form and the constituent material are different depending on the region under the ⁇ / 4 retardation layer.
  • the alignment film for retardation control is provided for controlling the alignment of the polymerizable liquid crystal constituting the retardation layer such as the ⁇ / 4 retardation layer, and constitutes the liquid crystal layer. It is formed separately from a film (alignment film) provided for controlling the alignment of liquid crystal molecules.
  • the material for the alignment film for phase difference control include polyimide resin, and the same material as that for the alignment film may be used.
  • the method for forming the alignment film for retardation control there are a step of applying a resin composition in which the material of the alignment film for phase difference control is dissolved, a step of drying the applied resin composition, and a dried resin composition. And a method including a step of rubbing a product using a metal roller.
  • the alignment method of the polymerizable liquid crystal constituting the retardation layer is not limited to rubbing treatment, and for example, it may be performed by a method for controlling the alignment of the polymerizable liquid crystal constituting the retardation layer by light irradiation. it can.
  • a reflective layer is disposed in the reflective display region on the rear surface side of the pair of substrates.
  • a material which forms the said reflection layer It is preferable that it is comprised including material with high reflectance, such as aluminum and silver.
  • the reflective layer preferably has an uneven shape.
  • the reflective layer is more preferably a reflective electrode that also serves as an electrode for applying a voltage to the liquid crystal layer.
  • the reflective layer is provided between the back side substrate and the ⁇ / 4 retardation layer.
  • the first liquid crystal display device may include a ⁇ / 2 retardation layer between a pair of substrates.
  • the ⁇ / 2 retardation layer is preferably disposed on the opposite side of the liquid crystal layer of the ⁇ / 4 retardation layer. More preferably, it is disposed between the ⁇ / 4 retardation layer and the observation side polarizer.
  • the ⁇ / 2 retardation layer gives a phase difference of ⁇ / 2 to the light transmitted through the ⁇ / 2 retardation layer. It is preferable that the slow axis of the ⁇ / 2 retardation layer forms an angle of 60 ° with respect to the slow axis of the ⁇ / 4 retardation layer.
  • the first liquid crystal display device may include a retardation layer for expanding the viewing angle, and is not particularly limited. Examples of the retardation layer for enlarging the viewing angle include a negative biaxial retardation layer.
  • one of the pair of substrates includes a ⁇ / 4 retardation layer raised toward the liquid crystal layer in the reflective display region, and the ⁇ / 4 retardation layer includes: As long as it has an inclined part inclined with respect to the flat surface of the substrate and it is essential that the inclined direction of the inclined part and the slow axis direction of the ⁇ / 4 retardation layer are substantially parallel.
  • the other components may or may not be included and are not particularly limited.
  • the first liquid crystal display device preferably includes a backlight for performing display in the transmissive display area. Moreover, it is preferable to provide an electrode for applying a voltage to the liquid crystal layer.
  • Examples of the electrode for applying a voltage to the liquid crystal layer include a common electrode provided on one whole surface of a pair of substrates and a pixel electrode formed for each pixel constituting a display image.
  • the pair of substrates includes a ⁇ / 4 retardation layer raised toward the liquid crystal layer in a reflective display region between the pair of substrates, and the ⁇ / 4 retardation layer is disposed on a flat surface of the substrate. Even in a liquid crystal display device having an inclined portion that is inclined and the inclination direction of the inclined portion is parallel to the slow axis direction of the ⁇ / 4 retardation layer, light leakage during black display is suppressed, It is possible to improve the contrast ratio.
  • the effects of the present invention can also be obtained by forming retardation layers in both reflective display regions of a pair of substrates and setting the sum of retardations provided by both retardation layers to ⁇ / 4.
  • the two retardation layers are collectively referred to as a ⁇ / 4 retardation layer.
  • the preferable form in the 1st liquid crystal display device of this invention is demonstrated in detail below.
  • the ⁇ / 4 retardation layer is preferably about half the thickness of the liquid crystal layer in the transmissive display region. Since the thickness of the ⁇ / 4 retardation layer changes stepwise in the tilted region, the maximum value of the thickness of the ⁇ / 4 retardation layer is about 1 / th of the thickness of the liquid crystal layer in the transmissive display region. A thickness of 2 is preferred. Further, the ⁇ / 4 retardation layer has an inclined portion having an inclined portion whose surface on the liquid crystal layer side is inclined with respect to the flat surface of the substrate, and a flat portion whose surface on the liquid crystal layer side is parallel to the flat surface of the substrate.
  • the thickness of the flat portion of the ⁇ / 4 retardation layer is preferably 1 ⁇ 2 of the thickness of the liquid crystal layer in the transmissive display region.
  • the first liquid crystal display device having a multi-gap structure can be obtained by using the ⁇ / 4 retardation layer. Since the ⁇ / 4 retardation layer is about 1 ⁇ 2 of the thickness of the liquid crystal layer in the transmissive display region, the thickness of the liquid crystal layer in the reflective display region is equal to the thickness of the liquid crystal layer in the transmissive display region. The thickness can be about 1 ⁇ 2, and the phase of light after passing through the liquid crystal layer can be made uniform in the reflective display region and the transmissive display region.
  • the ⁇ / 4 retardation layer also serves as a member for making a multi-gap structure, it is not necessary to separately arrange other members, and the number of manufacturing steps can be reduced.
  • the thickness of the ⁇ / 4 retardation layer is calculated from the thickness of the liquid crystal layer, etc., and is preferably 0.5 to 3.0 ⁇ m from the viewpoint of simplifying the manufacturing process, More preferably, it is -2.0 ⁇ m.
  • the thickness of the liquid crystal layer in the reflective display region is approximately 1 ⁇ 2 the thickness of the liquid crystal layer in the transmissive display region. Is preferred. For example, if the thickness of the liquid crystal layer in the reflective display region is not about 1 ⁇ 2 of the thickness of the liquid crystal layer in the transmissive display region only by the thickness of the ⁇ / 4 retardation layer, the thickness of the color filter layer is set to The thickness of the liquid crystal layer may be adjusted by changing or using a transparent resin to arrange another member.
  • “about 1 ⁇ 2” means not only the case where the thickness of the ⁇ / 4 retardation layer is completely 1 ⁇ 2 of the thickness of the liquid crystal layer in the transmissive display region, As long as it can be regarded as 1/2 in terms of the operational effect, there may be a deviation within 10% with respect to 1/2 of the thickness of the liquid crystal layer in the transmissive display region.
  • the first liquid crystal display device includes a plurality of pixels, and the ⁇ / 4 retardation layer is disposed in a band shape so as to overlap with the plurality of pixels when viewed in plan.
  • the pixel is a minimum unit constituting an image. For example, when displaying in three colors of red, green, and blue, each color is displayed.
  • the ⁇ / 4 retardation layer is patterned for each pixel, the inclination direction of the inclined portion may be formed other than the azimuth direction parallel to the slow axis direction of the ⁇ / 4 retardation layer. .
  • the tilt direction of the tilted portion that is not parallel to the slow axis direction of the ⁇ / 4 retardation layer is in the reflective display region, light leakage occurs in the tilted region having such a tilt direction, and the contrast ratio is lowered. May be incurred. Therefore, for example, as shown in FIG. 1A, when a plurality of rectangular pixels (in the case of FIG. 1A, the pixels are defined by the pixel transmissive electrode 124) are arranged side by side.
  • the ⁇ / 4 retardation layer 111 is preferably arranged in a band shape that overlaps with a plurality of pixels.
  • two inclined portions 11b are formed along two opposing sides of the ⁇ / 4 retardation layer 111 arranged in a band shape, and the inclined directions of the inclined portions 11b are aligned in two opposite directions. Can be made substantially parallel to the slow axis direction of the ⁇ / 4 phase difference layer, it is possible to suppress the occurrence of light leakage in the inclined region, The contrast ratio can be further improved.
  • the two inclined portions 11b are formed along two opposite sides of the ⁇ / 4 retardation layer 111 arranged in a band shape.
  • the present invention is not limited to this, for example, the band-like arrangement is performed.
  • the inclined portion may be formed only on one side of the ⁇ / 4 retardation layer.
  • the ⁇ / 4 retardation layer is preferably provided on the substrate on the observation surface side. According to this, the display quality can be further improved.
  • the surface of the reflective layer may have irregularities in order to uniformly scatter light incident from the observation surface side.
  • the ⁇ / 4 retardation layer is provided on the substrate on the back side, the ⁇ / 4 retardation layer is formed on the reflective layer having irregularities (the liquid crystal layer side). Concavities and convexities are generated in the four phase difference layers, and there is a possibility that the phase difference imparted to the light passing through the ⁇ / 4 phase difference layer is shifted.
  • the ⁇ / 4 retardation layer By providing the ⁇ / 4 retardation layer on the substrate on the observation surface side, the ⁇ / 4 retardation layer can be formed on a relatively flat surface. It is possible to suppress a decrease in contrast ratio.
  • the light incident from the observation surface side may be reflected not only by the reflective layer made of aluminum or the like but also by a transparent electrode or the like, although it is slight. Therefore, from the viewpoint of preventing light reflected by a member other than the reflective layer from leaking during black display, it is preferable that the ⁇ / 4 retardation layer is provided on the substrate on the observation surface side.
  • the substrate on the back side is provided with the ⁇ / 4 retardation layer, for example, the reflective layer, the ⁇ / 4 retardation layer, and the transparent electrode are arranged in this order from the back side and reflected by the transparent electrode. Light does not pass through the ⁇ / 4 retardation layer. For this reason, when performing black display, light reflected by the transparent electrode leaks from the polarizer on the observation surface side, which may reduce the contrast ratio.
  • the ⁇ / 4 retardation layer is provided on the observation surface side substrate, the ⁇ / 4 retardation layer and the transparent electrode are arranged in this order from the observation surface side. Therefore, light incident from the observation surface side passes through the ⁇ / 4 retardation layer and is reflected by the transparent electrode. Thereby, the light reflected by the transparent electrode is also blocked by the polarizer on the observation surface side, so that the contrast ratio can be further improved.
  • the present invention is also a vertical alignment mode liquid crystal display device having a liquid crystal layer between a pair of substrates facing each other and having a transmissive display region and a reflective display region, wherein one of the pair of substrates is a reflective layer.
  • the display area includes a ⁇ / 4 retardation layer that protrudes toward the liquid crystal layer.
  • the ⁇ / 4 retardation layer has an inclined portion that is inclined with respect to the flat surface of the substrate, and the inclined portion is formed.
  • a liquid crystal display device (hereinafter referred to as a “second liquid crystal display device”) in which the tilt azimuth of the liquid crystal molecules in the liquid crystal layer in the region without voltage application and the slow axis azimuth of the ⁇ / 4 retardation layer are substantially parallel.
  • one of the pair of substrates includes a ⁇ / 4 retardation layer protruding toward the liquid crystal layer in the reflective display region, and the ⁇ / 4 retardation layer includes: The tilt direction of the liquid crystal molecules in the liquid crystal layer in the liquid crystal layer in the state where the tilt part is inclined with respect to the flat surface of the substrate, and the slow axis direction of the ⁇ / 4 retardation layer
  • the second liquid crystal display device of the present invention will be described below.
  • the ⁇ / 4 retardation layer is preferably about half the thickness of the liquid crystal layer in the transmissive display region.
  • the second liquid crystal display device preferably includes a plurality of pixels, and the ⁇ / 4 phase difference layer is preferably arranged in a band shape so as to overlap with the plurality of pixels when seen in a plan view.
  • the ⁇ / 4 retardation layer is preferably provided on the substrate on the observation surface side. According to these, it is possible to obtain the same effect as that of the preferred embodiment of the first liquid crystal display device of the present invention.
  • the said 2nd liquid crystal display device may have other components, such as an electrode for applying a voltage to a liquid-crystal layer similarly to a 1st liquid crystal display device, It does not specifically limit. .
  • the present invention further relates to a display device substrate including a retardation layer on the substrate, the retardation layer having an inclined portion inclined with respect to a flat surface of the substrate, and an inclination direction of the inclined portion. It is also a substrate for a display device in which the slow axis direction of the retardation layer is substantially parallel.
  • the retardation layer may be a retardation layer having a slow axis in two directions opposite to each other in the substrate plane, and examples thereof include a ⁇ / 4 retardation layer and a ⁇ / 2 retardation layer. Moreover, you may have another phase difference layer.
  • the effect can be obtained in a positive A plate, a positive biaxial retardation layer, a negative biaxial retardation layer, and the like that are not limited to the ⁇ / 4 retardation layer.
  • the negative biaxial retardation layer it is possible to perform the viewing angle compensation of the liquid crystal display device in the vertical alignment mode.
  • the positive biaxial retardation layer it is possible to obtain the same effect as the ⁇ / 4 retardation layer and the viewing angle compensation effect of the liquid crystal display device in the vertical alignment mode.
  • the display device substrate is provided in a liquid crystal display device, it is possible to suppress light leakage in the reflection region during black display, which may occur in the inclined region, a decrease in reflectance, and the like.
  • the ratio can be improved.
  • the display device substrate is preferably a color filter substrate or a TFT substrate, and more preferably a color filter substrate provided on the observation surface side.
  • a liquid crystal layer is provided between the display device substrate and a counter substrate facing the display device substrate, and the retardation layer is provided on the liquid crystal layer side of the display device substrate.
  • It is also a liquid crystal display device (hereinafter also referred to as “third liquid crystal display device”).
  • the third liquid crystal display device can compensate the phase difference imparted to the light that has passed through the inclined portion of the retardation layer to a desired phase difference by using the display device substrate. For this reason, according to the kind of phase difference layer to be used, the light leakage in the reflection part at the time of the black display which may arise in an inclination area
  • the counter substrate is a substrate facing the display device substrate.
  • the counter substrate is preferably a TFT substrate, and the display device substrate is a TFT.
  • the counter substrate is preferably a color filter substrate.
  • the display mode of the third liquid crystal display device is not limited to the vertical alignment mode.
  • the effect of the present invention can be obtained even in an IPS (In Plane Switching) display mode.
  • IPS In Plane Switching
  • a ⁇ / 2 retardation layer is used as the retardation layer. At this time, the retardation imparted to the light transmitted through the inclined portion of the ⁇ / 2 retardation layer can be compensated by the liquid crystal molecules in the liquid crystal layer.
  • the display device substrate includes a retardation layer on the substrate, and the retardation layer has an inclined portion inclined with respect to the flat surface of the substrate. And the tilt direction of the tilted portion and the slow axis direction of the retardation layer are substantially parallel, and a liquid crystal layer is provided between the display device substrate and the counter substrate facing the display device substrate,
  • the retardation layer may or may not contain other components as long as it is essential to be provided on the liquid crystal layer side of the display device substrate, and is particularly limited. It is not a thing.
  • a preferred embodiment of the third liquid crystal display device of the present invention will be described below.
  • the retardation layer is preferably about 1/2 the thickness of the liquid crystal layer in the transmissive display region.
  • the third liquid crystal display device preferably includes a plurality of pixels, and the retardation layer is disposed in a strip shape so as to overlap with the plurality of pixels when viewed in plan.
  • the retardation layer is preferably provided on a substrate on the observation surface side. According to these, it is possible to obtain the same effect as that of the preferred embodiment of the first liquid crystal display device of the present invention.
  • the said 3rd liquid crystal display device may have other components, such as an electrode for applying a voltage to a liquid crystal layer similarly to a 1st liquid crystal display device, It does not specifically limit. .
  • liquid crystal display device of the present invention light leakage when no voltage is applied to the liquid crystal layer can be suppressed, and a liquid crystal display device with improved contrast ratio can be obtained.
  • FIG. 1 is a schematic diagram illustrating a configuration of a transflective vertical alignment mode liquid crystal display device according to the first embodiment.
  • FIG. 1A is a schematic plan view
  • FIG. 1B is a schematic cross-sectional view.
  • FIG. 1A shows the arrangement relationship of the reflective electrode, the transmissive electrode, the opening provided in the common electrode, and the ⁇ / 4 retardation layer, and the other members are not shown.
  • two double arrows in FIG. 1A indicate the slow axis direction of the ⁇ / 4 retardation layer and the transmission axis direction of the polarizing plate on the observation surface side.
  • the liquid crystal display device 100 includes a rear side polarizing plate 123, a TFT substrate 102, a liquid crystal layer 130, a color filter substrate 101, and an observation surface side polarizing plate 113 arranged in this order. It has the structure made.
  • the liquid crystal layer 130 includes liquid crystal molecules 131 and 132 having negative dielectric anisotropy.
  • MLC-2068 manufactured by Merck
  • a liquid crystal material containing a chiral material is used.
  • a liquid crystal material that does not contain a chiral material may be used as required for the pixel structure and the like.
  • red, green and blue colored layers are arranged on the liquid crystal layer 130 side of the substrate 110 on the observation surface side.
  • a retardation control alignment film (not shown) and a ⁇ / 4 retardation layer 111 made of a polymerizable liquid crystal are arranged in this order.
  • a common electrode 114 is disposed on the entire surface of the substrate 110 on the observation surface above them. Openings 115 a and 115 b are provided in the center of the common electrode 114 in the reflective display region 150 and the transmissive display region 160.
  • Radial orientation is an orientation in which the major axis of the liquid crystal molecules extends radially around a singular point when observed from the normal direction of the substrate and is inclined toward the substrate surface when the liquid crystal display panel is observed from a cross section. State.
  • a photopolymerizable liquid crystal was used as the polymerizable liquid crystal constituting the ⁇ / 4 retardation layer 111.
  • a vertical alignment film 112 is disposed on the common electrode 114 over the entire surface.
  • An observation surface side polarizing plate 113 is provided on the opposite side of the observation surface side substrate 110 from the liquid crystal layer 130.
  • the flat portion 11a of the ⁇ / 4 retardation layer 111 in the flat region 180 is indicated by a hatched portion, and the ⁇ / 4 retardation layer inclined with respect to the flat surface of the substrate 110 on the observation surface side.
  • the inclined portion 11b of the ⁇ / 4 retardation layer 111 in the inclined region 170 where the inclined portion 11b of 111 is formed is indicated by a horizontal line portion.
  • the normal direction of the inclined surface of the inclined portion 11b (the direction into the substrate surface in the direction in which the normal of the inclined surface is directed) and the slow axis direction of the ⁇ / 4 retardation layer 111 are parallel.
  • the liquid crystal molecules 132 in the vicinity of the inclined portion 11b are aligned perpendicular to the inclined surface of the inclined portion 11b by the vertical alignment film 112 formed on the inclined portion 11b.
  • the orientation in which the major axis of the liquid crystal molecules 131 is inclined is parallel to the slow axis orientation of the ⁇ / 4 retardation layer 111.
  • the ⁇ / 4 retardation layer 111 is provided in the reflective display region 150 in a band shape so as to overlap with a plurality of pixels in which the reflective electrode 121 and the pixel transmissive electrode 124 are arranged. They are not arranged in the transmissive display area 160.
  • the width of the ⁇ / 4 retardation layer 111 (the length in the horizontal direction in FIGS. 1A and 1B) is about 40 ⁇ m, and the thickness in the flat region 180 (the thickness of the flat portion 11a) is about The width of the flat portion 11a (the width of the flat region 180) is about 30 ⁇ m.
  • each of the inclined portions 11b of the ⁇ / 4 retardation layer 111 (the width of the inclined region 170) is about 5 ⁇ m.
  • the inclination angle of the inclined surface of the inclined portion 11b with respect to the substrate plane is about 15 °.
  • the direction in which the slow axis of the ⁇ / 4 retardation layer 111 faces is parallel to the direction in which the inclined part 11b is inclined (inclined direction).
  • the observation plane side polarizing plate 113 is arranged such that the transmission axis direction is at an angle of 45 ° with the slow axis direction of the ⁇ / 4 retardation layer 111.
  • FIG. 2 shows the relationship between the tilt direction of the liquid crystal molecules 132, the slow axis direction of the ⁇ / 4 retardation layer 111, and the transmission axis direction of the observation plane side polarizing plate 113 in the liquid crystal display device according to the first embodiment. It is a plane schematic diagram. As shown in FIG. 2, the liquid crystal molecules 132 aligned in the direction perpendicular to the inclined surface of the inclined portion 11 b shown in FIG. It is substantially parallel to the slow axis direction of the retardation layer 111.
  • the transmission axis direction of the observation surface side polarizing plate 113 indicated by the arrow 3 forms an angle of 45 ° with the slow axis direction of the ⁇ / 4 retardation layer 111 indicated by the arrow 1.
  • a photosensitive resin containing red, green, and blue pigments can be used.
  • a colored layer three colors of cyan, magenta and yellow may be used, and a colored layer of four colors may be used, and is not particularly limited.
  • the common electrode 114 can be made of a transparent conductive material made of indium tin oxide (ITO) or the like, but is not limited thereto.
  • a transparent substrate such as a glass substrate, a quartz substrate, or a plastic substrate can be used as the substrate 110 on the observation surface side. From the viewpoint of cost reduction, a glass substrate or a plastic substrate is preferable.
  • the thickness of the liquid crystal layer 130 in the flat region 180 of the reflective display region 150 is 1.5 ⁇ m
  • the thickness of the liquid crystal layer 130 in the transmissive display region 160 is 3.0 ⁇ m.
  • an alignment film for retardation control is formed on the colored layer in order to align the polymerizable liquid crystal constituting the ⁇ / 4 retardation layer 111 in a predetermined direction.
  • the alignment film for phase difference control forms a polyimide film by applying a resin composition in which a polyimide resin is dissolved on a colored layer and drying it. Subsequently, a polyimide film is rubbed in a predetermined direction using a metal roller wound with rayon, thereby forming an alignment film for phase difference control.
  • a polymerizable liquid crystal monomer dissolved in a solvent is applied in a thickness of about 1.5 ⁇ m by a spin coating method or the like, and is exposed and polymerized by ultraviolet irradiation or the like.
  • a polymerized and cured liquid crystal polymer film is obtained.
  • a ⁇ / 4 retardation layer 111 having a slow axis in the direction from the reflective display region 150 toward the transmissive display region 160 can be formed.
  • the orientation in which the major axis of the polymerizable liquid crystal constituting the ⁇ / 4 retardation layer 111 faces and the slow axis orientation of the ⁇ / 4 retardation layer 111 are parallel to each other.
  • the ⁇ / 4 retardation layer 111 is formed by patterning the liquid crystal polymer film and the retardation controlling alignment film by etching using the patterned resist as a mask. Thereby, the ⁇ / 4 retardation layer 111 having the flat portion 11a and the inclined portion 11b is formed.
  • the inclined portion 11b is formed with a width of about 5 ⁇ m
  • the flat portion 11a is formed with a width of about 30 ⁇ m.
  • the angle formed by the inclined surface of the inclined portion 11b and the substrate plane is about 15 °.
  • polymerizable nematic liquid crystals represented by the following general formulas (6) and (7) can be used as a monomer of the polymerizable liquid crystal.
  • the ⁇ / 4 retardation layer 111 is disposed in a region facing the reflective electrode 121 of the TFT substrate 102 (reflective display region 150).
  • the thickness of the ⁇ / 4 retardation layer 111 is about 1.5 ⁇ m
  • the thickness of the liquid crystal layer 130 in the transmissive display region 160 is about 3.0 ⁇ m, so that the liquid crystal layer in the reflective display region 150 is
  • the thickness of 130 is about 1 ⁇ 2 of the thickness of the liquid crystal layer 130 in the transmissive display region 160. By setting the thickness to about 1 ⁇ 2, the optical path length of the liquid crystal layer 130 can be made uniform in the reflective display region 150 and the transmissive display region 160.
  • the thickness of the liquid crystal layer 130 in the reflective display region 150 may be controlled by disposing the phase difference layer 111.
  • a TFT element (not shown) is provided on the liquid crystal layer 130 side of the substrate 120 on the back side.
  • the TFT element is provided at each intersection of a plurality of gate lines (not shown) and a plurality of source lines (not shown) provided so as to extend in parallel to each other in an orthogonal direction.
  • the drain electrode of the TFT element is connected to the pixel transmissive electrode 124 provided across the transmissive display region 160 and the reflective display region 150.
  • a reflective electrode 121 is provided on the pixel transmissive electrode 122 in the reflective display region 150.
  • a vertical alignment film 122 is disposed on the entire surface.
  • a back-side polarizing plate 123 is provided on the opposite side of the back-side substrate 120 from the liquid crystal layer 130.
  • a transparent conductive material such as indium tin oxide (ITO) can be used for the pixel transmission electrode 124.
  • the reflective electrode 121 can be made of a material having a relatively high reflection efficiency such as aluminum.
  • the surface of the reflective electrode 121 preferably has an uneven shape, but may be flat.
  • a transparent substrate such as a glass substrate, a quartz substrate, or a plastic substrate can be used as the back substrate 120 on which the reflective electrodes 121 and the like are formed.
  • an active matrix liquid crystal display device that performs display using TFT elements is used.
  • the liquid crystal display device of the present invention is not limited to the active matrix method, and may be, for example, a passive matrix liquid crystal display device. Can also be applied.
  • FIG. 7 is a schematic plan view showing the orientation of liquid crystal molecules in the reflective display region 150 and the transmissive display region 160 in the liquid crystal display device according to the first embodiment.
  • the reflective display region is displayed.
  • the liquid crystal molecules 133 in the liquid crystal layer 130 can be radially aligned for each of 150 and the transmissive display region 160.
  • the liquid crystal molecules 133 in the liquid crystal layer 130 are aligned radially around the openings 115a and 115b, but when no voltage is applied, the vertical alignment film
  • the liquid crystal molecules in the inclined region 170 are aligned in parallel to the inclination azimuth of the inclined portion 11 b of the ⁇ / 4 retardation layer 111 in order to align perpendicularly to 112.
  • the openings 115a and 115b are provided in the common electrode 114; however, the liquid crystal display device of the present invention is not limited to such a form, and the common electrode 114 is provided with an opening. It may or may not be provided. Further, by forming a structure (so-called rib, rivet, etc.) on the liquid crystal layer side of the common electrode 114 instead of the opening, the alignment direction of the liquid crystal molecules when a voltage higher than the threshold voltage is applied to the liquid crystal layer 130. Can be controlled. In the first embodiment, as shown in FIG. 7, the alignment mode of liquid crystal molecules in the reflective display region 150 and the transmissive display region 160 is controlled. However, the liquid crystal display device of the present invention is limited to such a mode.
  • FIGS. 8A to 8D and 9 are schematic plan views showing modifications of the alignment mode of the liquid crystal molecules in the reflective display region and the transmissive display region.
  • the liquid crystal molecules 302 are radially aligned by a circular opening 316a formed in the central portion of the common electrode 414a.
  • the alignment direction of the liquid crystal molecules 302 is vertically divided (alignment division) by a linear opening 316b formed in the common electrode 414a from the reflective display region side to the transmissive display region direction (lateral direction).
  • the circular opening 316a may be a circular structure provided on the common electrode 414a
  • the linear opening 316b is a linear structure provided on the common electrode 414a. May be.
  • the liquid crystal molecules 303 are radially aligned by a circular opening 317a formed in the central portion of the common electrode 414b.
  • the alignment direction of the liquid crystal molecules 303 is divided in the left-right direction (alignment division) by the linear openings 317b formed in the up-down direction in the common electrode 414b.
  • the circular opening 317a may be a circular structure provided on the common electrode 414b
  • the linear opening 317b is a linear structure provided on the common electrode 414b. May be.
  • liquid crystal is formed by a linear opening 318 formed in the common electrode 414c from the reflective display region side to the transmissive display region direction (lateral direction).
  • the orientation direction of the molecules 304 is divided in the vertical direction (orientation division).
  • the linear opening 318 may be a linear structure provided on the common electrode 414c.
  • the alignment direction of the liquid crystal molecules 305 is set in the horizontal direction by the linear openings 319a and 319b formed in the vertical direction in the common electrode 414d. It is divided (orientation division). Note that the linear openings 319a and 319b may be linear structures provided on the common electrode 414d.
  • the liquid crystal molecules 306 are radially aligned by a circular opening 320 formed in the central portion of the common electrode 414e.
  • the common electrode 414e is formed as a linear fine transparent electrode 314 directed in four directions, so that the orientation in which the liquid crystal molecules 306 are inclined is divided into four directions (upper, lower, left, and right) (alignment division). ing.
  • the circular opening 320 may be a circular structure provided on the common electrode 414e.
  • the inclined surface of the inclined portion 11b of the ⁇ / 4 retardation layer 111 is made flat, but the effect of the present invention is, for example, as shown in FIG. This can also be achieved when the inclined surface of the ⁇ / 4 retardation layer 111a is a curved surface (the cross-sectional shape is a semicircular shape) in which the angle of inclination with respect to the flat surface of the substrate changes.
  • the white arrow in FIG. 3 indicates the inclination direction of the inclined portion, and the double arrows indicate the slow axis direction of the ⁇ / 4 retardation layer 111a.
  • the liquid crystal display device 100a of FIG. 3 has the same configuration as that of FIG.
  • the liquid crystal display device 100a of FIG. 3 has a configuration in which the back side polarizing plate 123a, the TFT substrate 102a, the liquid crystal layer 130a, the color filter substrate 101a, and the observation surface side polarizing plate 113a are arranged in this order.
  • the liquid crystal layer 130a includes liquid crystal molecules 131a having negative dielectric anisotropy. Colored layers (not shown) of red, green, and blue are disposed on the liquid crystal layer 130a side of the substrate 110a on the observation surface side that constitutes the color filter substrate 101a.
  • a phase difference control alignment film (not shown) and a ⁇ / 4 phase difference layer 111a are arranged in this order.
  • a common electrode 114a is disposed on the entire surface of the substrate 110a on the observation surface above them.
  • An opening 116 is provided at the center of the common electrode 114a in the reflective display area 150a (the opening provided in the common electrode 114a in the transmissive display area 160a is not shown).
  • a vertical alignment film 112a is disposed on the entire surface of the common electrode 114a. Further, an observation surface side polarizing plate 113a is provided on the opposite side of the observation surface side substrate 110a from the liquid crystal layer 130a.
  • a TFT element (not shown) is provided on the liquid crystal layer 130a side of the glass substrate constituting the back side substrate 120a. The TFT element is provided at each intersection of a plurality of gate lines and a plurality of source lines provided so as to extend in parallel to each other in an orthogonal direction.
  • An interlayer insulating film 125a is provided on the gate line, the source line, and the TFT element, and the drain electrode of the TFT element is transmitted through a contact hole (not shown) provided in the interlayer insulating film 125a.
  • a reflective electrode 121a is provided on the pixel transmissive electrode 124a in the reflective display region 150a.
  • a vertical alignment film 122a is disposed on the entire surface of the reflective electrode 121a in the reflective display region 150a and the pixel transmissive electrode 124a in the transmissive display region 160a.
  • a back-side polarizing plate 123a is provided on the opposite side of the back-side substrate 120a from the liquid crystal layer 130a.
  • FIG. 3 also shows a spacer 140 that controls the thickness of the liquid crystal layer 130a. Also in the liquid crystal display device 100a of FIG.
  • the slow axis direction of the ⁇ / 4 retardation layer 111a is substantially the same as the direction having an inclination with respect to the semicircular substrate plane (the direction toward the side in FIG. 3). It is parallel.
  • the cross-sectional shape of the ⁇ / 4 retardation layer 111a is semicircular, it has an inclination with respect to the slow axis direction of the ⁇ / 4 retardation layer 111a and the semicircular substrate plane.
  • FIG. 4 is a schematic diagram illustrating a configuration of a transflective vertical alignment mode liquid crystal display device according to Comparative Example 1.
  • 4A is a schematic plan view
  • FIG. 4B is a schematic cross-sectional view.
  • FIG. 4A shows the arrangement relationship of the reflection electrode, the transmission electrode, the opening provided in the common electrode, and the ⁇ / 4 retardation layer, and the other members are not shown.
  • two double arrows in FIG. 4A indicate the slow axis direction of the ⁇ / 4 retardation layer and the transmission axis direction of the polarizing plate on the observation surface side.
  • a white arrow in FIG. 4B indicates the inclination direction of the inclined portion of the ⁇ / 4 retardation layer.
  • the liquid crystal display device 200 according to Comparative Example 1 is implemented except that the slow axis direction of the ⁇ / 4 retardation layer 211 is arranged perpendicular to the inclination direction of the inclined part 21b of the ⁇ / 4 retardation layer 211.
  • the configuration is the same as in the first mode.
  • the liquid crystal display device 200 according to Comparative Example 1 includes a back side polarizing plate 223, a TFT substrate 202, a liquid crystal layer 230, a color filter substrate 201, and an observation surface side polarizing plate 213 in this order. It has the structure made.
  • the liquid crystal layer 230 includes liquid crystal molecules 231 and 232 having negative dielectric anisotropy.
  • MLC-2068 manufactured by Merck
  • As a liquid crystal material constituting the liquid crystal layer 230 MLC-2068 (manufactured by Merck) having a refractive index anisotropy of 0.08 was used.
  • red, green and blue colored layers are arranged on the liquid crystal layer 230 side of the substrate 210 on the observation surface side.
  • a retardation control alignment film (not shown) and a ⁇ / 4 retardation layer 211 made of polymerizable liquid crystal are arranged in this order.
  • the ⁇ / 4 retardation layer 211 includes an inclined portion 21b in the inclined region 270 and a flat portion 21a in the flat region 280.
  • a common electrode 214 is disposed on the entire surface of the substrate 210 on the observation surface above them. Openings 215 a and 215 b are provided in the central portion of the common electrode 214 in the reflective display region 250 and the transmissive display region 260. Thereby, when a voltage equal to or higher than the threshold voltage is applied to the liquid crystal layer 230, the liquid crystal molecules 231 and 232 in the liquid crystal layer 230 can be radially aligned for each of the reflective display region 250 and the transmissive display region 260.
  • a vertical alignment film 212 is disposed on the entire surface of the common electrode 214.
  • An observation surface side polarizing plate 213 is provided on the opposite side of the observation surface side substrate 210 from the liquid crystal layer 230.
  • a TFT element (not shown) is provided on the rear substrate 220 on the liquid crystal layer 230 side.
  • the TFT element is provided at each intersection of a plurality of gate lines (not shown) and a plurality of source lines (not shown) provided so as to extend in parallel to each other in an orthogonal direction.
  • the drain electrode of the TFT element is connected to the pixel transmissive electrode 224 provided over the transmissive display region 260 and the reflective display region 250 and the reflective electrode 221 provided in the reflective display region 270.
  • a vertical alignment film 222 is disposed on the entire surface.
  • FIG. 5 shows the relationship between the tilt orientation of the liquid crystal molecules 232, the slow axis orientation of the ⁇ / 4 retardation layer 211, and the transmission axis orientation of the observation plane side polarizing plate 213 for the liquid crystal display device according to Comparative Example 1. It is a plane schematic diagram. As shown in FIG. 5, the liquid crystal molecules 232 aligned in the direction perpendicular to the inclined surface of the inclined portion 21 b shown in FIG. It becomes substantially perpendicular to the slow axis direction of the retardation layer 211.
  • the transmission axis direction of the observation surface side polarizing plate 213 indicated by the arrow 4 forms an angle of 45 ° with the slow axis direction of the ⁇ / 4 retardation layer indicated by the arrow 2. Even if the tilt orientation of the liquid crystal molecules 232 is controlled in this way, depending on the liquid crystal molecules 232, the phase difference imparted by the tilted portion 21b of the ⁇ / 4 retardation layer 211 to the light incident from the observation surface side is changed. Since it cannot be compensated, the contrast ratio may be reduced.
  • the horizontal axis of the graph indicates the length of the width direction of the ⁇ / 4 retardation layer. That is, reference numeral 70 indicates a region (inclined region) where the inclined portion of the ⁇ / 4 retardation layer is formed, and reference numeral 80 indicates a region (flat region) where the flat portion of the ⁇ / 4 retardation layer is formed. Show. As shown in FIG. 6, when the first embodiment and the first comparative example are compared, the reflectance in the inclined region in the first embodiment is lower than that in the first comparative example. It can be seen that light leakage can be suppressed.
  • FIG. 1 is a schematic diagram illustrating a configuration of a liquid crystal display device according to Embodiment 1.
  • FIG. (A) has shown the plane schematic diagram
  • (b) has shown the cross-sectional schematic diagram.
  • FIG. 3 is a schematic plan view showing the relationship between the tilt direction of liquid crystal molecules, the slow axis direction of the ⁇ / 4 retardation layer, and the transmission axis direction of the observation surface side polarizing plate in the liquid crystal display device according to the first embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a modification of the liquid crystal display device according to Embodiment 1.
  • 6 is a schematic diagram illustrating a configuration of a liquid crystal display device according to Comparative Example 1.
  • FIG. 6 is a schematic plan view showing the relationship between the tilt direction of liquid crystal molecules, the slow axis direction of a ⁇ / 4 retardation layer, and the transmission axis direction of an observation plane side polarizing plate in the liquid crystal display device according to Comparative Example 1.
  • FIG. It is a figure which shows the result of having simulated the reflectance in a reflective display area
  • FIG. ⁇ shows the result of the liquid crystal display device according to Embodiment 1
  • shows the result of the liquid crystal display device according to Comparative Example 1.
  • FIG. 3 is a schematic plan view illustrating the alignment form of liquid crystal molecules in the reflective display region and the transmissive display region in the liquid crystal display device according to the first embodiment. It is a plane schematic diagram which shows the orientation form when the orientation of a liquid crystal molecule is divided into two.
  • A is a radial orientation in the reflective display area, and an upper and lower split orientation in the transmissive display area.
  • B is a radial orientation in the reflective display area and a bifurcated orientation in the transmissive display area.
  • C is a vertically divided orientation in both the reflective display area and the transmissive display area.
  • D is a left and right divided orientation in both the reflective display area and the transmissive display area.
  • region is divided into 4 parts.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、位相差層が傾斜部を有し、該傾斜部で位相差が所望の位相差からずれていたとしても、液晶層で付与される位相差によって補償することで、コントラスト比を向上させることができる液晶表示装置を提供する。本発明は、互いに対向する一対の基板の間に液晶層を備え、かつ透過表示領域と反射表示領域とを有する垂直配向モードの液晶表示装置であって、上記一対の基板の一方は、反射表示領域に、液晶層側へ隆起したλ/4位相差層を備え、該λ/4位相差層は、基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部の傾斜方位とλ/4位相差層の遅相軸方位とが実質的に平行である液晶表示装置である。

Description

液晶表示装置及び表示装置用基板
本発明は、液晶表示装置及び表示装置用基板に関する。より詳しくは、携帯電話等のモバイル機器に好適な液晶表示装置及び表示装置用基板に関するものである。
液晶表示装置は、薄型・軽量・低消費電力といった特長を活かし、幅広い分野で用いられており、近年では、携帯電話等のモバイル機器に搭載されることが多くなっている。そのような中で、モバイル機器は屋外で使用される機会が多いため、映りこみを防止する観点や、低消費電力化を図る観点から、外光とバックライトとの両方を利用して表示を行う半透過型の液晶表示装置が開発されている。半透過型の液晶表示装置は、透過型と反射型との両方のモードで表示する機能を持っている。
半透過型の液晶表示装置において、ノーマリブラックモードの垂直配向(VA)方式で表示を行う場合、効果的に反射表示を行うためλ/4位相差板を反射表示領域に配置する。λ/4位相差板とは、波長λの透過光について互いに垂直な方向に振動する2つの偏光成分間にλ/4の位相差(リタデーション)を与え、円偏光とすることができるものである。反射表示領域にλ/4位相差板を配置し、クロスニコル配置で偏光板を配置することで、観察面側から入射した光が反射表示領域で反射された後に、偏光板により観察面側から出射されることを防ぐため、ノーマリブラックモードの表示が可能となる。
しかしながら、λ/4位相差板を半透過型の液晶表示装置に配置する場合、一般的には、直線偏光子とλ/4位相差板とを含む円偏光板を液晶表示パネルの観察面側全体に貼り付けることになる。この場合、反射表示領域のみならず、透過表示領域にもλ/4位相差板が配置される。したがって、透過表示領域に配置されたλ/4位相差板によって透過光に余分な位相差が付与されるため、透過表示のコントラスト比の低下、輝度の低下等を招くおそれがあった。
そこで、液晶表示装置の背面側にもλ/4位相差板を配置することによって、観察面側に配置したλ/4位相差板により透過光に付与される余分な位相差を打ち消す方式も考えられている。しかしながら、この方式では、それぞれのλ/4位相差板で付与する位相差が正確に一致している必要があるため、製造工程の精度を向上させる必要があり、その結果としてコストの増大につながるという点で改善の余地があった。また、λ/4位相差板を2枚使用する点においてもコスト削減や薄型化の観点から改善の余地があった。
そこで、液晶表示装置の反射部のみにλ/4位相差層を形成する技術が開示されている(例えば、特許文献1参照。)。特許文献1では、反射部にλ/4位相差層を配置し、透過部にλ/4位相差層を配置しないため、透過部においてλ/4位相差層を光が透過することがなく、透過表示のコントラスト比が低下することを防止することができる。
ところで、反射層を有する第1基板、液晶層、第2基板及び偏光板が背面から表示面に向かってこの順に積層された構造を有する液晶表示装置において、第1基板内の反射層よりも液晶層側若しくは反射層が配置されていない領域又は第2基板内に位相差層を有し、位相差層が、表示面内に2以上の位相差が異なる領域を形成する技術も開示されている(例えば、特許文献2参照。)。これによれば、表示形態が異なる領域においてそれぞれの領域に応じた位相差補償を行うことができる。
特開2003-322857号公報 国際公開第2007/063629号パンフレット
しかしながら、特許文献1のように反射部にのみλ/4位相差層を配置する場合、液晶性のモノマー等を成膜し、硬化させた後、パターニングすることでλ/4位相差層を形成するが、このとき、パターニングされたλ/4位相差層の先が細くなるテーパだれが生じるおそれがある。テーパだれが生じると、反射部のテーパだれが生じた領域ではλ/4の位相差をλ/4位相差層のみでは付与することができなくなるおそれがある。また、特許文献2において、位相差層としてλ/4位相差層を使用した場合にも同様に、テーパだれが生じた領域では、λ/4の位相差をλ/4位相差層のみでは付与することができなくなるおそれがある。そして、特許文献1及び2では、テーパだれによって生じた傾斜部の傾斜方位とλ/4位相差層の遅相軸方位との関係については全く考慮されていないため、黒表示を行ったときにテーパだれが生じた領域で光漏れが生じ、コントラスト比を低下させるおそれがある点で改善の余地があった。
本発明は、上記現状に鑑みてなされたものであり、位相差層の傾斜を有する部分(傾斜部)が配置された領域で付与する位相差を補償し、コントラスト比を向上させることができる液晶表示装置及び表示装置用基板を提供することを目的とするものである。
本発明者らは、半透過型の垂直配向モードの液晶表示装置においてコントラスト比を向上させることについて種々検討したところ、反射表示領域に配置されるλ/4位相差層に着目した。そして、液晶層を挟む一対の基板の一方の液晶層側にλ/4位相差層を形成し、該λ/4位相差層を反射表示領域のみに残してパターニングを行う場合、パターニング後のλ/4位相差層には基板の平坦面に対して傾斜した傾斜部が形成され、該傾斜部が形成された領域では液晶表示装置に入射した光にλ/4の位相差を付与することができず、黒表示時に光漏れが生じてコントラスト比の低下を引き起こすおそれがあることを見いだした。そこで、上記傾斜部の傾斜方位とλ/4位相差層の遅相軸方位とを実質的に平行とすることにより、上記λ/4位相差層の傾斜部の遅相軸方位と上記傾斜部付近で傾斜配向する液晶層中の液晶分子の長軸の方位(遅相軸方位)とを揃えることができるため、λ/4の位相差のうち上記傾斜部によって付与できない位相差を上記液晶分子によって補填することができることを見いだした。その結果、液晶層に電圧を印加していないときに傾斜部が形成された領域(以下「傾斜領域」ともいう。)で生じるおそれのある光漏れを抑制できる(黒表示の輝度を低減できる)ため、コントラスト比を向上させることができることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、互いに対向する一対の基板の間に液晶層を備え、かつ透過表示領域と反射表示領域とを有する垂直配向モードの液晶表示装置であって、上記一対の基板の一方は、反射表示領域に、液晶層側へ隆起したλ/4位相差層を備え、上記λ/4位相差層は、基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部の傾斜方位とλ/4位相差層の遅相軸方位とが実質的に平行である液晶表示装置(以下、「第一液晶表示装置」ともいう。)である。
以下に本発明を詳述する。
本発明の第一液晶表示装置は、互いに対向する一対の基板の間に液晶層を備え、かつ透過表示領域と反射表示領域とを有する垂直配向モードのものである。すなわち、本発明の第一液晶表示装置は、透過表示領域と反射表示領域とを有する半透過型の液晶表示装置である。半透過型の液晶表示装置は、バックライト等の光源を利用するため暗い場所でも高い視認性を有する透過型の液晶表示装置の特徴と、外部の光を利用するため低消費電力である反射型の液晶表示装置の特徴とを併せ持っている。別名、反射透過両用型の液晶表示装置とも呼ばれる。反射表示領域は、観察面側の基板から入射した光を、液晶層を通過させ、背面側の基板に備えられた反射層で反射した後、液晶層を再度通過させ、観察面側の基板から出射させることで表示を行う領域のことである。背面側の基板に備えられた反射層で反射を行う場合、反射表示領域は、反射層が設けられた領域であることが好ましい。透過表示領域は、背面側の基板から入射した光を液晶層を通過させ観察面側の基板から出射させて表示を行う領域のことである。透過表示領域は、透過表示を行うための透明導電膜を含んで構成される画素電極が設けられた、反射表示領域以外の領域であることが好ましい。上記互いに対向する一対の基板は、特に限定されないが、ガラス基板、石英基板、プラスチック基板等の透明基板であることが好ましい。また、コスト削減の観点からは、ガラス基板又はプラスチック基板であることがより好ましい。
上記垂直配向モードの液晶表示装置は、液晶層が負の誘電率異方性を有する液晶分子を含んでなり、上記一対の基板のそれぞれが、液晶層側の表面に垂直配向膜を備えることが好ましい。これにより、例えば、液晶層に電圧を印加しない、又は、閾値電圧未満の電圧を印加するときには、液晶分子の長軸を基板の平坦面(垂直配向膜の膜面)に対して垂直に配向させることができる。また、液晶層に閾値電圧以上の電圧を印加するときには、液晶分子の長軸を傾斜させることで液晶層に入射した光の偏光状態を制御することができる。また、液晶層に入射した光の偏光状態を制御するため、液晶表示装置に設置する偏光子によって透過する光の量を制御することができる。
上記第一液晶表示装置は、一対の基板のそれぞれに偏光子を備え、一対の基板のそれぞれに備えられた2つの偏光子は、第一液晶表示装置を平面視したときに、クロスニコルで配置されることが好ましい。2つの偏光子がクロスニコルで配置されることによって、透過表示領域においてノーマリブラックモード(液晶層に印加する電圧が閾値電圧以下のときに黒表示を行う表示モード)で表示を行うことができる。一般的に、ノーマリブラックモードで表示を行うことにより、ノーマリホワイトモード(液晶層に印加する電圧が閾値電圧以下のときに白表示を行う表示モード)による表示の場合と比較してコントラスト比を向上させることができる。
上記一対の基板の一方は、反射表示領域に、液晶層側へ隆起したλ/4位相差層を備える。λ/4位相差層は、λ/4位相差層に入射した可視光(380~780nmの波長範囲の光)に対し、λ/4(95~195nm)の位相差を付与するものである。本発明においては、λ/4位相差層は、λの波長を可視光の波長範囲の中でも視感度の高い550nmの波長に合わせ、550nmの光に対し、137.5nmの位相差を付与するものであることが好ましい。また、液晶表示装置に複数色のカラーフィルタを用いる場合には、カラーフィルタの色に応じて、各カラーフィルタと同じ領域に配置されるλ/4位相差層の位相差値を設定することが好ましい。例えば、赤、緑及び青のカラーフィルタを用いる場合、赤のカラーフィルタと同じ領域に配置されるλ/4位相差層の位相差値は、650nmの4分の1である162.5nmに設定されることが好ましく、緑のカラーフィルタと同じ領域に配置されるλ/4位相差層の位相差値は、550nmの4分の1である137.5nmに設定されることが好ましく、青のカラーフィルタと同じ領域に配置されるλ/4位相差層の位相差値は、450nmの4分の1である112.5nmに設定されることが好ましい。そして、第一液晶表示装置を平面視したときに、λ/4位相差層の遅相軸が、観察面側の基板に備えられた偏光子の透過軸に対して45°の角度で配置されることによって、該偏光子によって直線偏光となった光をλ/4位相差層によって円偏光に変換することができる。例えば黒表示を行う場合(液晶層中の液晶分子が垂直に配向している場合)、反射表示領域では、入射された光が第一液晶表示装置の背面側で反射され、一対の基板の間を往復することで表示を行うため、反射された光がλ/4位相差層を再度通過するときに、円偏光を直線偏光に変換することができる。このように、反射表示領域にλ/4位相差層を配置し、液晶層中の液晶分子が垂直に配向している場合、光が入射するときと出射するときとでλ/4位相差層を通過することによって、ノーマリブラックモードで黒表示を行うことができる。
上記λ/4位相差層は、基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部の傾斜方位(傾斜部の頂点と傾斜部の最下部とを最短距離で結ぶ直線と平行な方位)とλ/4位相差層の遅相軸方位とが実質的に平行である。λ/4位相差層における傾斜部の傾斜方位は、任意の一方位又は逆向きの二方位(180°異なる方位、例えば、図1(b)中の白抜きの矢印で示す逆向きの二方位)を向いていることが好ましい。なお、本明細書で「方位」とは、基板の平坦面と平行な面内における二次元的な向きを指す。「方向」とは、方位と、基板の平坦面に対する角度とを足し合わせた三次元的な向きを指す。例えば、傾斜部の傾斜方位は、該傾斜部の傾斜面において高い部分から低い部分へ傾斜する方向における基板の平坦面に平行な向きを指す。また、本発明において「実質的に平行」とは、完全に平行である場合のみならず、作用効果の面で平行と同視することができるものも含むものであり、例えば、λ/4位相差層において傾斜部の傾斜方位と遅相軸方位とのなす角度が5°以下であればよい。
上記λ/4位相差層は、液晶層側が基板の平坦面に対して傾斜した傾斜部を有することで、第一液晶表示装置を駆動させる電圧が閾値電圧未満である場合に、傾斜領域における液晶分子を傾斜部の傾斜面に対して垂直な方向に配向させることができる。そのため、傾斜部の傾斜方位とλ/4位相差層の遅相軸方位とが実質的に平行であることによって、傾斜領域における液晶分子が付与する位相差で、液晶層に電圧を印加していない、又は、液晶層に閾値電圧未満の電圧を印加している状態におけるλ/4位相差層の傾斜領域を通過した光の位相差を補償することができる。つまり、傾斜部付近で傾斜配向する液晶層中の液晶分子の長軸が傾斜する方位と位相差層の遅相軸方位とが実質的に平行であることにより、λ/4位相差層が配置された領域における位相差の相違を補償することができる。これによれば、黒表示時(例えば、液晶層に印加する電圧が閾値電圧以下のとき)の光漏れを防止することができるため、コントラスト比の向上を図ることができる。また、λ/4位相差層は、パターニング条件を調整することで、傾斜部の傾斜角(基板の平坦面と傾斜部の傾斜面とがなす角度)が制御されて形成されることが好ましい。これによれば、液晶層に用いる液晶分子の屈折率、液晶表示装置の構成等に適応させて傾斜角を制御することができ、よりコントラスト比の向上を図ることができる。また、傾斜部は、基板の平坦面に対して傾斜していればよく、例えば、基板の平坦面に対して傾斜する角度が一定な平面により形成されていてもよいし、基板の平坦面に対して傾斜する角度が変化していく曲面により形成されていてもよい。
上記λ/4位相差層は、一対の基板の一方(背面側の基板又は観察面側の基板)の液晶層側に配置されることによって、一対の基板の一方の液晶側に形成される構造物(例えば、カラーフィルタ、TFT素子等)の形成工程と連動してλ/4位相差層を形成することができるため、製造工程を簡略化することができる。また、例えば、透過表示領域の一対の基板の間にもλ/4位相差層が配置されると、背面側の基板側から入射した光に位相差を付与するため、透過表示の黒表示が明るくなることからコントラスト比が低下するが、一対の基板の一方の液晶層側に配置されることで、反射表示領域のみにλ/4位相差を配置することを容易、かつ正確に行うことができるため、コントラスト比、輝度、色度等の表示品位の向上を図ることができる。なお、λ/4位相差層がカラーフィルタを有する観察面側の基板に配置される場合、λ/4位相差層は、カラーフィルタの背面側(カラーフィルタ上)に配置されていてもよいし、カラーフィルタと観察面側の基板との間に配置されていてもよい。例えば、複数色のカラーフィルタ上に位相差層を配置する、すなわち、複数色のカラーフィルタを形成した後に位相差層をパターニングして形成する場合、各カラーフィルタの段差、各カラーフィルタに対する重合性樹脂の濡れ性の違い等によって、λ/4位相差層の厚みを均一にすることができなくなるおそれがある。その場合、カラーフィルタを形成した後にオーバーコート層等を形成し、平坦な状態にすることによって、λ/4位相差層の厚みを均一にすることができる。また、カラーフィルタと観察面側の基板との間にλ/4位相差層を形成する場合、平坦な基板上にλ/4位相差層を形成することができるため、λ/4位相差層の厚みをより均一にすることができる。
上記λ/4位相差層は、重合性ネマチック液晶等の重合性液晶(重合性官能基を有する液晶)を含んで構成されることが好ましい。これによれば、λ/4位相差層を簡便に形成することができる。また、重合性液晶としては、メソゲン材料の重合体等が挙げられる。メソゲン材料とは、メソゲン基を有する化合物(モノマー)のことであり、メソゲン基とは、細長い棒状又は平板状であり、剛性の分子鎖を有するものをいう。上記メソゲン基としては、下記一般式(1)~(3)で表されるもの等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
上記一般式(1)~(3)中、Rは、それぞれ独立に、アルキル基、アルコシキル基、シアノ基、ニトロ基等の原子団を表す。また、上記重合性官能基としては、下記一般式(4)及び(5)で表されるもの等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
上記λ/4位相差層を形成する重合性液晶としては、信頼性の観点から、上述した一般式(1)又は(2)で示される化合物の末端に、一般式(4)で示される重合性官能基を有するアクリル結合材料(いわゆるアクリレート、メタクリレート)が好ましい。
上記λ/4位相差層の形成方法としては、重合性液晶を塗布する工程と、紫外線照射等により配向を制御しつつ該重合性液晶を重合硬化させる工程と、フォトリソグラフィ法等によりパターニングする工程とを含む方法等が挙げられる。
上記λ/4位相差層が重合性液晶で形成される場合、該重合性液晶の長軸が向く方位とλ/4位相差層の傾斜部の傾斜方位とを平行にすることによって、λ/4位相差層の遅相軸方位と傾斜部の傾斜方位とを平行にすることができる。これによれば、傾斜部が配置された領域における液晶層中の液晶分子の長軸が向く方位とλ/4位相差層中の重合性液晶の長軸が向く方位とが平行になる。そのため、傾斜部が配置された領域(傾斜領域)における液晶層中の液晶分子によって、傾斜部におけるλ/4位相差層が付与する位相差値を補償することができる。
上記第一液晶表示装置は、λ/4位相差層下(λ/4位相差層の液晶層と反対側)に位相差制御用配向膜を有することが好ましい。上記位相差制御用配向膜を用いることにより、位相差制御用配向膜上に形成した位相差層が該位相差層を通過する光に付与する位相差を制御することができることから、λ/4位相差層を簡便に形成することができる。上記位相差制御用配向膜の形態としては、ラビング方向及び構成材料がλ/4位相差層下全域で同一である形態に限定されず、ラビング方向がλ/4位相差層下において領域によって異なる形態、構成材料がλ/4位相差層下において領域によって異なる形態等が挙げられる。なお、本明細書において、位相差制御用配向膜とは、λ/4位相差層等の位相差層を構成する重合性液晶の配向を制御するために設けられるものであり、液晶層を構成する液晶分子の配向を制御するために設けられた膜(配向膜)とは別に形成される。上記位相差制御用配向膜の材質としては、ポリイミド樹脂等が挙げられ、上記配向膜の材質と同一であってもよい。上記位相差制御用配向膜の形成方法としては、位相差制御用配向膜の材質を溶解した樹脂組成物を塗布する工程と、塗布された樹脂組成物を乾燥する工程と、乾燥された樹脂組成物に対して金属ローラを用いてラビング処理を行う工程とを含む方法等が挙げられる。また、位相差層を構成する重合性液晶の配向方法としては、ラビング処理に限定されず、例えば、光照射により位相差層を構成する重合性液晶の配向を制御する方法等によっても行うことができる。
上記一対の基板の背面側の基板には、観察面側の基板から入射した光を用いて反射表示を行うために、反射表示領域に反射層が配置されることが好ましい。上記反射層を形成する材料としては特に限定されないが、アルミニウム、銀等の反射率の高い材料を含んで構成されていることが好ましい。また、反射層に照射された光を均一に散乱させて反射させるため、反射層は、凹凸形状を有することが好ましい。更に、反射層は、液晶層に電圧を印加する電極を兼ねた反射電極であることがより好ましい。なお、λ/4位相差層が背面側の基板に配置される場合には、反射層は、背面側の基板とλ/4位相差層との間に備えられる。
上記第一液晶表示装置は、λ/2位相差層を一対の基板の間に備えていてもよい。λ/2位相差層を一対の基板の間の反射表示領域に備える場合には、λ/2位相差層は、λ/4位相差層の液晶層とは反対側に配置されることが好ましく、λ/4位相差層と観察側偏光子との間に配置されることがより好ましい。λ/2位相差層は、λ/2位相差層を透過した光にλ/2の位相差を付与するものである。λ/2位相差層の遅相軸は、λ/4位相差層の遅相軸に対して60°の角度をなすことが好ましい。また、第一液晶表示装置は、視野角を拡大するための位相差層等を備えていてもよく、特に限定されるものではない。視野角を拡大するための位相差層としては、負の2軸性位相差層等が挙げられる。
本発明の第一液晶表示装置の構成としては、上記一対の基板の一方が、反射表示領域に、液晶層側へ隆起したλ/4位相差層を備え、該λ/4位相差層は、基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部の傾斜方位とλ/4位相差層の遅相軸方位とが実質的に平行であることを必須とするものである限り、その他の構成要素を含んでいても含んでいなくてもよく、特に限定されるものではない。例えば、第一液晶表示装置は、透過表示領域で表示を行うためのバックライトを備えることが好ましい。また、液晶層に電圧を印加するための電極を備えていることが好ましい。液晶層に電圧を印加する電極としては、一対の基板の一方の全面に備えられる共通電極、表示画像を構成する画素毎に形成された画素電極が挙げられる。なお、上記一対の基板は、該一対の基板の間の反射表示領域に、液晶層側へ隆起したλ/4位相差層を備え、該λ/4位相差層は、基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部の傾斜方位とλ/4位相差層の遅相軸方位とが平行である液晶表示装置であっても、黒表示時の光漏れを抑制し、コントラスト比の向上を図ることが可能である。例えば、一対の基板の両方の反射表示領域に位相差層を形成し、両方の位相差層が付与する位相差の合計をλ/4とすることでも本発明の効果を得ることができる。この場合、2つの位相差層を包括してλ/4位相差層という。
本発明の第一液晶表示装置における好ましい形態について以下に詳しく説明する。
上記λ/4位相差層は、透過表示領域における液晶層の厚さの約1/2の厚さであることが好ましい。傾斜領域においてはλ/4位相差層の厚さが段階的に変化していくため、λ/4位相差層の厚さの最大値が、透過表示領域における液晶層の厚さの約1/2の厚さであることが好ましい。また、λ/4位相差層は、液晶層側の表面が基板の平坦面に対して傾斜した傾斜部を有する傾斜部と、液晶層側の表面が基板の平坦面と平行な平坦部とを含む場合、λ/4位相差層の平坦部の厚さが、透過表示領域における液晶層の厚さの1/2であることが好ましい。これによれば、λ/4位相差層を用いて、マルチギャップ構造の第一液晶表示装置とすることができる。そして、λ/4位相差層が透過表示領域における液晶層の厚さの約1/2の厚さであるため、反射表示領域における液晶層の厚さを透過表示領域における液晶層の厚さの約1/2の厚さとすることができ、反射表示領域と透過表示領域とで液晶層を通過した後の光の位相を揃えることができる。このため、明暗あらゆる環境下における透過率及び/又は反射率の向上、コントラスト比の向上、反転現象の抑制等の効果を得ることができる。また、λ/4位相差層がマルチギャップ構造にするための部材を兼ねるため、他の部材を別途配置する必要がなくなり、製造工程数の削減を図ることができる。λ/4位相差層の厚さは、液晶層の厚さ等から算出されるが、製造プロセスを簡易なものとする観点からは0.5~3.0μmであることが好ましく、1.0~2.0μmであることがより好ましい。また、反射表示領域にλ/4位相差層以外の部材を備える場合、反射表示領域における液晶層の厚さが、透過表示領域における液晶層の厚さの約1/2の厚さであることが好ましい。例えば、λ/4位相差層の厚さのみで、反射表示領域における液晶層の厚さが透過表示領域における液晶層の厚さの約1/2にならない場合は、カラーフィルタ層の厚さを変える、又は、透明樹脂を用いる等のことによって他の部材を配置して液晶層の厚さを調整してもよい。なお、本発明において「約1/2」とは、λ/4位相差層の厚さが、透過表示領域における液晶層の厚さに対して完全に1/2である場合のみならず、その作用効果の面で1/2と同視することができればよく、透過表示領域における液晶層の厚さの1/2に対して10%以内のずれがあってもよい。
上記第一液晶表示装置は、複数の画素を有し、上記λ/4位相差層は、平面視したときに、複数の画素と重なって帯状に配置されることが好ましい。上記画素は、画像を構成する最小の単位となるものであり、例えば、赤、緑及び青の3色で表示を行う場合には、各色を表示するものである。一つの画素毎にλ/4位相差層のパターニングを行う場合には、傾斜部の傾斜方位が、λ/4位相差層の遅相軸方位と平行な方位以外にも形成されるおそれがある。そして、λ/4位相差層の遅相軸方位と平行でない傾斜部の傾斜方位が反射表示領域内にある場合、そのような傾斜方位を有する傾斜領域で光漏れ等が生じ、コントラスト比の低下を招くおそれがある。そこで、例えば、図1(a)に示すように、複数の長方形状の画素(図1(a)の場合、画素は画素透過電極124によって規定される。)が並んで配置されている場合、平面視したときに、λ/4位相差層111を複数の画素と重なって配置される帯状で配置することが好ましい。これにより、帯状に配置されたλ/4位相差層111の対向する二辺に沿って2つの傾斜部11bを形成し、該傾斜部11bの傾斜方位を互いに逆向きの二方位に揃えることができ、すべての傾斜部11bの傾斜方位をλ/4位相差層の遅相軸方位と実質的に平行とすることができるため、傾斜領域で光漏れ等が生じることを抑制することができ、更なるコントラスト比の向上を図ることができる。なお、図1(a)では、帯状に配置されたλ/4位相差層111の対向する二辺に沿って2つの傾斜部11bを形成したが、これに限定されず、例えば、帯状に配置されたλ/4位相差層の一辺にのみ傾斜部を形成してもよい。
上記λ/4位相差層は、観察面側の基板に備えられることが好ましい。これによれば、より表示品位の向上を図ることができる。例えば、背面側の基板に光を反射するための反射層が備えられるときには、観察面側から入射した光を均一に散乱させるため、反射層の表面が凹凸を有する場合がある。このような場合において、背面側の基板にλ/4位相差層を設けると、凹凸を有する反射層の上(液晶層側)にλ/4位相差層を形成することとなるため、λ/4位相差層に凹凸が生じ、λ/4位相差層を通過する光に付与される位相差にずれが生じるおそれがある。観察面側の基板にλ/4位相差層を設けることによって、比較的平坦な面にλ/4位相差層を形成することができるため、位相差にずれが生じることを抑制することができ、コントラスト比が低下することを抑制することができる。また、観察面側から入射した光は、アルミニウム等で構成される反射層だけでなく、僅かではあるが透明電極等においても反射されるおそれがある。そのため、反射層以外の部材によって反射した光が黒表示時に漏れることを防ぐ観点からも、λ/4位相差層が観察面側の基板に備えられることが好ましい。背面側の基板にλ/4位相差層が備えられる場合には、例えば、背面側から、反射層、λ/4位相差層及び透明電極の順に配置されることとなり、透明電極により反射された光はλ/4位相差層を透過しない。そのため、黒表示を行うときに、観察面側の偏光子から透明電極により反射した光が漏れることとなり、コントラスト比を低下させるおそれがある。観察面側の基板にλ/4位相差層を備える場合には、観察面側から、λ/4位相差層、透明電極の順に配置される。そのため、観察面側から入射した光は、λ/4位相差層を通過して透明電極により反射される。これにより、透明電極により反射された光も観察面側の偏光子で遮断されるため、コントラスト比の向上をより図ることができる。
本発明はまた、互いに対向する一対の基板の間に液晶層を備え、かつ透過表示領域と反射表示領域とを有する垂直配向モードの液晶表示装置であって、上記一対の基板の一方は、反射表示領域に、液晶層側へ隆起したλ/4位相差層を備え、該λ/4位相差層は、基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部が形成された領域における液晶層中の液晶分子の電圧無印加状態の傾斜方位とλ/4位相差層の遅相軸方位とが実質的に平行である液晶表示装置(以下、「第二液晶表示装置」ともいう。)でもある。これによれば、液晶層へ電圧を印加していない状態のとき又は液晶層へ印加する電圧が閾値電圧未満のときの光漏れを防止することができるため、コントラスト比の向上を図ることができ、第一液晶表示装置と同様の効果を得ることができる。
本発明の第二液晶表示装置の構成としては、上記一対の基板の一方が、反射表示領域に、液晶層側へ隆起したλ/4位相差層を備え、該λ/4位相差層は、基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部が形成された領域における液晶層中の液晶分子の電圧無印加状態の傾斜方位とλ/4位相差層の遅相軸方位とが実質的に平行であることを必須とするものである限り、その他の構成要素を含んでいても含んでいなくてもよく、特に限定されるものではない。
本発明の第二液晶表示装置における好ましい形態について以下に説明する。
上記λ/4位相差層は、透過表示領域における液晶層の厚さの約1/2の厚さであることが好ましい。
上記第二液晶表示装置は、複数の画素を有し、上記λ/4位相差層は、平面視したときに、複数の画素と重なって帯状に配置されることが好ましい。
上記λ/4位相差層は、観察面側の基板に備えられることが好ましい。
これらによれば、本発明の第一液晶表示装置における好ましい形態と同様の効果を得ることができる。また、上記第二液晶表示装置は、第一液晶表示装置と同様に、液晶層に電圧を印加するための電極等の他の構成要素を有していてもよく、特に限定されるものではない。
本発明は更に、基板上に位相差層を備える表示装置用基板であって、上記位相差層は、該基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部の傾斜方位と位相差層の遅相軸方位とが実質的に平行である表示装置用基板でもある。上記位相差層としては、基板平面内の互いに逆向きの二方位に遅相軸を有する位相差層であればよく、λ/4位相差層、λ/2位相差層等が挙げられる。また、その他の位相差層を有していてもよい。例えば、λ/4位相差層に限られないポジティブAプレート、ポジティブ2軸性位相差層、ネガティブ2軸性位相差層等においても効果を得ることができる。ネガティブ2軸性位相差層を用いることによって、垂直配向モードの液晶表示装置の視野角補償を行うことができる。また、ポジティブ2軸性位相差層を用いることによって、λ/4位相差層と同様の効果及び垂直配向モードの液晶表示装置の視野角補償の効果を得ることができる。これによれば、上記表示装置用基板を液晶表示装置に備えたときに、傾斜領域で生じるおそれのある黒表示時の反射領域における光漏れ、反射率の低下等を抑制することができ、コントラスト比を向上させたものとすることができる。なお、液晶表示装置に備えられる観点から、上記表示装置用基板は、カラーフィルタ基板又はTFT基板であることが好ましく、観察面側に備えられるカラーフィルタ基板であることがより好ましい。
本発明はそして、上記表示装置用基板と該表示装置用基板に対向する対向基板との間に液晶層を備え、上記位相差層は、上記表示装置用基板の液晶層側に備えられている液晶表示装置(以下「第三液晶表示装置」ともいう。)でもある。上記第三液晶表示装置は、上記表示装置用基板を用いることで、位相差層の傾斜部を通過した光に付与する位相差を所望の位相差に補償することができる。このため、用いる位相差層の種類に応じて、傾斜領域で生じるおそれのある黒表示時の反射部における光漏れ、反射率の低下等を抑制することができる。また、コントラスト比の低下、色づき等を抑制することができる。上記対向基板は、表示装置用基板に対向する基板であり、例えば、表示装置用基板がカラーフィルタ基板である場合には、対向基板は、TFT基板であることが好ましく、表示装置用基板がTFT基板である場合には、対向基板は、カラーフィルタ基板であることが好ましい。なお、上記第三液晶表示装置の表示モードは、垂直配向モードに限られず、例えば、IPS(In Plane Switching)方式の表示モードにおいても本発明の効果を得ることができる。IPS方式による液晶表示装置で反射表示を行う場合には、位相差層としてλ/2位相差層を使用する。このとき、λ/2位相差層の傾斜部を透過した光に付与する位相差を、液晶層中の液晶分子で補償することができる。
本発明の第三液晶表示装置の構成としては、上記表示装置用基板が、基板上に位相差層を備え、該位相差層は、該基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部の傾斜方位と位相差層の遅相軸方位とが実質的に平行であり、上記表示装置用基板と該表示装置用基板に対向する対向基板との間に液晶層を備え、上記位相差層は、表示装置用基板の液晶層側に備えられていることを必須とするものである限り、その他の構成要素を含んでいても含んでいなくてもよく、特に限定されるものではない。
本発明の第三液晶表示装置における好ましい形態について以下に説明する。
上記位相差層は、透過表示領域における液晶層の厚さの約1/2の厚さであることが好ましい。
上記第三液晶表示装置は、複数の画素を有し、上記位相差層は、平面視したときに、複数の画素と重なって帯状に配置されることが好ましい。
上記位相差層は、観察面側の基板に備えられることが好ましい。
これらによれば、本発明の第一液晶表示装置における好ましい形態と同様の効果を得ることができる。また、上記第三液晶表示装置は、第一液晶表示装置と同様に、液晶層に電圧を印加するための電極等の他の構成要素を有していてもよく、特に限定されるものではない。
本発明の液晶表示装置によれば、液晶層に電圧を印加していないときの光漏れを抑制することができ、コントラスト比を向上させた液晶表示装置とすることができる。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
(実施形態1)
図1は、実施形態1に係る半透過型の垂直配向モードの液晶表示装置の構成を示す模式図である。図1(a)は、平面模式図であり、図1(b)は、断面模式図である。なお、図1(a)では、反射電極、透過電極、共通電極に設けられた開口、及び、λ/4位相差層の配置関係を示しており、その他の部材については図示を省略している。また、図1(a)中の2本の両矢印は、λ/4位相差層の遅相軸方位、及び、観察面側の偏光板の透過軸方位を示している。図1(b)中の両矢印は、λ/4位相差層の遅相軸方位を示しており、白抜きの矢印は、λ/4位相差層の傾斜部の傾斜方位を示している。
実施形態1に係る液晶表示装置100は、図1(b)に示すように、背面側偏光板123、TFT基板102、液晶層130、カラーフィルタ基板101及び観察面側偏光板113がこの順に配置された構成を有する。液晶層130は、負の誘電率異方性を有する液晶分子131及び132を含んで構成されている。液晶層130を構成する液晶材料としては、屈折率異方性が0.08であるMLC-2068(メルク社製)を用いた。なお、本実施形態では、カイラル材が含まれる液晶材料を用いているが、画素構造等の必要に応じて、カイラル材が入っていない液晶材料を用いてもよい。
まず、カラーフィルタ基板101の構成について説明する。
図1(b)に示すように、観察面側の基板110の液晶層130側には、赤、緑及び青の着色層(図示せず)が配置されている。反射表示領域150における着色層上には、位相差制御用配向膜(図示せず)、重合性液晶からなるλ/4位相差層111がこの順に配置されている。それらの上の観察面側の基板110の全面には、共通電極114が配置されている。反射表示領域150及び透過表示領域160における共通電極114の中央部には開口115a、115bが設けられている。これにより、液晶層130に閾値電圧以上の電圧を印加したときに、反射表示領域150及び透過表示領域160毎に、液晶層130中の液晶分子131、132を放射状配向させることができる。放射状配向とは、液晶分子の長軸が、基板法線方向から観察したときに特異点を中心として放射状に広がり、かつ液晶表示パネルを断面から観察したときに基板面方向へ傾斜している配向状態をいう。λ/4位相差層111を構成する重合性液晶としては、光重合性液晶を用いた。共通電極114上には、全面に垂直配向膜112が配置されている。また、観察面側の基板110の液晶層130とは反対側には、観察面側偏光板113が設けられている。
図1(a)では、平坦領域180におけるλ/4位相差層111の平坦部11aを斜線部で示しており、観察面側の基板110の平坦面に対して傾斜したλ/4位相差層111の傾斜部11bが形成された傾斜領域170におけるλ/4位相差層111の傾斜部11bを横線部で示している。このとき、傾斜部11bの傾斜面の垂線方位(傾斜面の垂線が向いている方向の基板面内への方位)とλ/4位相差層111の遅相軸方位とは平行である。また、傾斜部11b付近の液晶分子132は、傾斜部11b上に形成された垂直配向膜112によって、傾斜部11bの傾斜面に対して垂直に配向している。その結果、液晶分子131の長軸が傾斜する方位は、λ/4位相差層111の遅相軸方位と平行になっている。
λ/4位相差層111は、図1(a)に示すように、反射表示領域150に、反射電極121及び画素透過電極124が配置された複数の画素と重なって帯状に設けられており、透過表示領域160には配置されていない。また、λ/4位相差層111の幅(図1(a)及び(b)における横方向の長さ)は約40μmであり、平坦領域180における厚さ(平坦部11aの厚さ)は約1.5μmであり、平坦部11aの幅(平坦領域180の幅)は約30μmである。λ/4位相差層111の傾斜部11bの1つあたりの幅(傾斜領域170の幅)は約5μmである。傾斜部11bの傾斜面の基板平面に対する傾斜角度は約15°である。このとき、λ/4位相差層111の遅相軸が向く方位は、傾斜部11bが傾斜する方位(傾斜方位)と平行である。また、観察面側偏光板113は、透過軸方位がλ/4位相差層111の遅相軸方位と45°の角度で配置されている。また、背面側偏光板123の透過軸は、観察面側偏光板113の透過軸方位に垂直な方位に設けられている。
図2は、実施形態1に係る液晶表示装置について、液晶分子132の傾斜方位、λ/4位相差層111の遅相軸方位、及び、観察面側偏光板113の透過軸方位の関係を示す平面模式図である。
図1(b)中で示す、傾斜部11bの傾斜面に対して垂直に配向する液晶分子132は、図2で示すように、その長軸が傾斜する方位が、矢印1で示すλ/4位相差層111の遅相軸方位と実質的に平行になる。なお、矢印3で示す観察面側偏光板113の透過軸方位は、矢印1で示すλ/4位相差層111の遅相軸方位と45°の角度をなす。このように液晶分子132の傾斜方位を制御することで、液晶分子132によって観察面側から入射した光に位相差を付与することができ、黒表示時に傾斜領域170においてλ/4位相差層111の傾斜部11bによって付与される位相差を補償することができ、コントラスト比を向上させることができる。
着色層(図示せず)には、赤、緑及び青の顔料を含有した感光性樹脂等を用いることができる。また、着色層としては、シアン、マゼンダ及びイエローの3色を用いてもよいし、4色の着色層を用いてもよく特に限定されない。共通電極114には、酸化インジウム錫(ITO)等から構成される透明導電性材料を用いることができるが、それに限定されるものではない。また、観察面側の基板110としては、ガラス基板、石英基板、プラスチック基板等の透明基板を用いることができる。コスト削減の観点からは、ガラス基板又はプラスチック基板であることが好ましい。反射表示領域150の平坦領域180における液晶層130の厚さは1.5μmであり、透過表示領域160における液晶層130の厚さは3.0μmである。
ここで、λ/4位相差層111を形成する方法について説明する。
λ/4位相差層111を形成する方法としては、まず、λ/4位相差層111を構成する重合性液晶を所定の方向に配列させるため、着色層上に位相差制御用配向膜を形成する。位相差制御用配向膜は、ポリイミド樹脂を溶解した樹脂組成物を着色層上に塗布し、乾燥させることにより、ポリイミド膜を形成する。続いて、レーヨンを巻き付けた金属ローラを用いて、ポリイミド膜を所定の方向にラビング処理を行うことにより、位相差制御用配向膜を形成する。次に、溶剤で溶解した重合性液晶のモノマーをスピンコーティング法等により約1.5μmの厚さで塗布し、紫外線照射等により露光して重合させる。これにより、重合硬化した液晶ポリマー膜とする。これにより、図1(a)及び(b)に示すように、反射表示領域150から透過表示領域160に向かう方位に遅相軸を有するλ/4位相差層111を形成することができる。このとき、λ/4位相差層111を構成する重合性液晶の長軸が向く方位とλ/4位相差層111の遅相軸方位とは平行になる。その後、レジストを液晶ポリマー膜上に塗布し、レジストのパターニングを行う。そして、パターニングしたレジストをマスクとして、エッチングによって液晶ポリマー膜及び位相差制御用配向膜をパターニングすることでλ/4位相差層111が形成される。これにより、平坦部11aと傾斜部11bとを有するλ/4位相差層111が形成される。上述したように、傾斜部11bは、約5μmの幅で形成され、平坦部11aは、約30μmの幅で形成されている。このときの、傾斜部11bの傾斜面と基板平面とがなす角度は約15°である。また、重合性液晶のモノマーとしては、例えば、下記一般式(6)及び(7)の重合性ネマチック液晶を用いることができる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
λ/4位相差層111は、TFT基板102の反射電極121に対向する領域(反射表示領域150)に配置される。実施形態1では、λ/4位相差層111の厚さを約1.5μmとし、透過表示領域160における液晶層130の厚さを約3.0μmとすることで、反射表示領域150における液晶層130の厚さを透過表示領域160における液晶層130の厚さに対して約1/2の厚さとしている。約1/2の厚さとすることによって、反射表示領域150と透過表示領域160とで、液晶層130の光路長を揃えることができる。なお、λ/4位相差層111のみで、反射表示領域150における液晶層130の厚さを制御する必要はなく、例えば、反射表示領域150に透明樹脂を配置し、その上にλ/4位相差層111を配置することによって反射表示領域150と透過表示領域160とおける液晶層130の厚さを制御してもよい。
次に、TFT基板102の構成について説明する。
背面側の基板120の液晶層130側には、TFT素子(図示せず)が設けられている。TFT素子は、直交する方位に相互に平行に延びるように設けられた複数のゲート線(図示せず)と複数のソース線(図示せず)との各交差部分に設けられている。そして、TFT素子のドレイン電極が、透過表示領域160及び反射表示領域150に渡って設けられる画素透過電極124と接続される。反射表示領域150における画素透過電極122上には、反射電極121が設けられている。反射表示領域150における反射電極121上、及び、透過表示領域160における画素透過電極124上には、全面に垂直配向膜122が配置されている。背面側の基板120の液晶層130とは反対側には、背面側偏光板123が設けられている。
画素透過電極124には酸化インジウム錫(ITO)等の透明導電性材料を用いることができる。反射電極121にはアルミニウム等の比較的反射効率が高い材料を用いることができる。反射電極121の表面は、凹凸形状を有していることが好ましいが、平坦であってもよい。反射電極121等が形成される背面側の基板120としては、ガラス基板、石英基板、プラスチック基板等の透明基板を用いることができる。
なお、背面側偏光板123及び観察面側偏光板113に含まれる偏光子としては、ヨウ素をポリビニルアルコール(PVA)フィルムに吸着させ、延伸させたもの等を用いることができる。
実施形態1では、TFT素子を用いて表示を行うアクティブマトリクス方式の液晶表示装置としているが、本発明の液晶表示装置は、アクティブマトリクス方式に限定されず、例えば、パッシブマトリクス方式の液晶表示装置にも適用することができる。
図7は、実施形態1に係る液晶表示装置について、反射表示領域150及び透過表示領域160における液晶分子の配向形態を示す平面模式図である。
実施形態1に係る液晶表示装置の構成では、図7に示すように、共通電極114に設けられた開口115a、115bによって、液晶層130に閾値電圧以上の電圧を印加したときに、反射表示領域150及び透過表示領域160毎に、液晶層130中の液晶分子133を放射状配向させることができる。この場合、液晶層130に閾値電圧以上の電圧を印加したときには、液晶層130中の液晶分子133は、開口115a、115bを中心として放射状に配向するが、電圧無印加時においては、垂直配向膜112に対して垂直に配向するため、傾斜領域170における液晶分子は、λ/4位相差層111の傾斜部11bの傾斜方位に平行に配向している。
なお、実施形態1では、共通電極114に開口115a、115bが設けられているが、本発明の液晶表示装置は、このような形態に限定されるものではなく、共通電極114には開口が設けられていても、設けられていなくてもよい。また、開口の代わりに、共通電極114の液晶層側に構造物(いわゆるリブ、リベット等)を形成することによっても、液晶層130に閾値電圧以上の電圧を印加したときの液晶分子の配向方向を制御することができる。
また、実施形態1では、図7に示すように、反射表示領域150及び透過表示領域160における液晶分子の配向形態を制御しているが、本発明の液晶表示装置は、このような形態に限定されるものではなく、図8(a)~(d)及び9に示すように、反射表示領域及び透過表示領域における液晶分子の配向形態を制御してもよい。
図8(a)~(d)及び9は、反射表示領域と透過表示領域とにおける液晶分子の配向形態の変形例を示す平面模式図である。
図8(a)においては、反射表示領域352では、共通電極414aの中央部に形成された円状の開口316aにより、液晶分子302の放射状配向を行っている。また、透過表示領域362では、共通電極414aにおいて反射表示領域側から透過表示領域方向(横方向)に形成された直線状の開口316bにより、液晶分子302の配向方向を上下方向に分割(配向分割)している。なお、円状の開口316aは、共通電極414a上に設けられた円状の構造物であってもよく、直線状の開口316bは、共通電極414a上に設けられた直線状の構造物であってもよい。
図8(b)においては、反射表示領域353では、共通電極414bの中央部に形成された円状の開口317aにより、液晶分子303の放射状配向を行っている。また、透過表示領域363では、共通電極414bにおいて上下方向に形成された直線状の開口317bにより、液晶分子303の配向方向を左右方向に分割(配向分割)している。なお、円状の開口317aは、共通電極414b上に設けられた円状の構造物であってもよく、直線状の開口317bは、共通電極414b上に設けられた直線状の構造物であってもよい。
図8(c)においては、反射表示領域354及び透過表示領域364の両方において、共通電極414cにおいて反射表示領域側から透過表示領域方向(横方向)に形成された直線状の開口318により、液晶分子304の配向方向を上下方向に分割(配向分割)している。なお、直線状の開口318は、共通電極414c上に設けられた直線状の構造物であってもよい。
図8(d)においては、反射表示領域355及び透過表示領域365の両方において、共通電極414dにおいて上下方向に形成された直線状の開口319a、319bにより、液晶分子305の配向方向を左右方向に分割(配向分割)している。なお、直線状の開口319a、319bは、共通電極414d上に設けられた直線状の構造物であってもよい。
図9においては、反射表示領域356では、共通電極414eの中央部に形成された円状の開口320により、液晶分子306の放射状配向を行っている。また、透過表示領域366では、共通電極414eを4方に向かう直線状の微細な透明電極314として形成することにより、液晶分子306が傾斜する方位を上下左右の4方位に分割(配向分割)している。なお、円状の開口320は、共通電極414e上に設けられた円状の構造物であってもよい。
実施形態1では、図1(b)に示すように、λ/4位相差層111の傾斜部11bの傾斜面を平面にしているが、本発明の効果は、例えば、図3に示すように、λ/4位相差層111aの傾斜面が、基板の平坦面に対して傾斜する角度が変化していく曲面(断面形状が半円形状)の場合にも奏することができる。図3中の白抜きの矢印は傾斜部の傾斜方位を示しており、両矢印はλ/4位相差層111aの遅相軸方位を示している。
図3の液晶表示装置100aは、λ/4位相差層111aの傾斜部の傾斜面が曲面であること以外は、図1(b)と同様の構成を有する。
すなわち、図3の液晶表示装置100aは、背面側偏光板123a、TFT基板102a、液晶層130a、カラーフィルタ基板101a及び観察面側偏光板113aがこの順に配置された構成を有する。液晶層130aは、負の誘電率異方性を有する液晶分子131aを含んで構成されている。カラーフィルタ基板101aを構成する観察面側の基板110aの液晶層130a側には、赤、緑及び青の着色層(図示せず)が配置されている。反射表示領域150aにおける着色層上には、位相差制御用配向膜(図示せず)、λ/4位相差層111aがこの順に配置されている。それらの上の観察面側の基板110aの全面には、共通電極114aが配置されている。反射表示領域150aにおける共通電極114aの中央部には開口116が設けられている(透過表示領域160aにおける共通電極114aに設けられた開口は図示していない。)。これにより、液晶層130aに閾値電圧以上の電圧を印加したときに、反射表示領域150a及び透過表示領域160a毎に、液晶層130a中の液晶分子131aを放射状配向させることができる。共通電極114a上には、全面に垂直配向膜112aが配置されている。また、観察面側の基板110aの液晶層130aとは反対側には、観察面側偏光板113aが設けられている。
背面側の基板120aを構成するガラス基板の液晶層130a側には、TFT素子(図示せず)が設けられている。TFT素子は、直交する方位に相互に平行に延びるように設けられた複数のゲート線と複数のソース線との各交差部分に設けられている。そして、ゲート線、ソース線及びTFT素子上には層間絶縁膜125aが設けられ、TFT素子のドレイン電極が、層間絶縁膜125aに設けられたコンタクトホール(図示せず)を介して、透過表示領域160及び反射表示領域150に渡って設けられる画素透過電極124aと接続される。反射表示領域150aにおける画素透過電極124a上には、反射電極121aが設けられている。反射表示領域150aにおける反射電極121a上、及び、透過表示領域160aにおける画素透過電極124a上には、全面に垂直配向膜122aが配置されている。背面側の基板120aの液晶層130aとは反対側には、背面側偏光板123aが設けられている。なお、図3では、液晶層130aの厚みを制御するスペーサ140も図示されている。
図3の液晶表示装置100aにおいても、λ/4位相差層111aの遅相軸方位は、半円形状の基板平面に対して傾斜を有する方位(図3において横に向かう方位)と実質的に平行にされている。このように、λ/4位相差層111aの断面形状が半円形状となっていても、λ/4位相差層111aの遅相軸方位と、半円形状の基板平面に対して傾斜を有する方位(図3において横に向かう方位)と実質的に平行とすることにより、図1(a)及び(b)に示す実施形態1に係る形態と同様の効果を得ることができる。
(比較例1)
図4は、比較例1に係る半透過型の垂直配向モードの液晶表示装置の構成を示す模式図である。図4(a)は、平面模式図であり、図4(b)は、断面模式図である。なお、図4(a)では、反射電極、透過電極、共通電極に設けられた開口、及び、λ/4位相差層の配置関係を示しており、その他の部材については図示を省略している。また、図4(a)中の2本の両矢印は、λ/4位相差層の遅相軸方位、及び、観察面側の偏光板の透過軸方位を示している。図4(b)中の白抜きの矢印は、λ/4位相差層の傾斜部の傾斜方位を示している。
比較例1に係る液晶表示装置200は、λ/4位相差層211の遅相軸方位がλ/4位相差層211の傾斜部21bの傾斜方位と垂直に配置されていること以外は、実施形態1と同様の構成である。
比較例1に係る液晶表示装置200は、図4(b)に示すように、背面側偏光板223、TFT基板202、液晶層230、カラーフィルタ基板201及び観察面側偏光板213がこの順に配置された構成を有する。液晶層230は、負の誘電率異方性を有する液晶分子231及び232を含んで構成されている。液晶層230を構成する液晶材料としては、屈折率異方性が0.08であるMLC-2068(メルク社製)を用いた。
まず、カラーフィルタ基板201の構成について説明する。
図4(b)に示すように、観察面側の基板210の液晶層230側には、赤、緑及び青の着色層(図示せず)が配置されている。反射表示領域250における着色層上には、位相差制御用配向膜(図示せず)、重合性液晶からなるλ/4位相差層211がこの順に配置されている。λ/4位相差層211は、傾斜領域270における傾斜部21bと平坦領域280における平坦部21aとで構成されている。λ/4位相差層211を構成する重合性液晶としては、実施形態1におけるλ/4位相差層111と同じ光重合性液晶を用いた。それらの上の観察面側の基板210の全面には、共通電極214が配置されている。反射表示領域250及び透過表示領域260における共通電極214の中央部には開口215a、215bが設けられている。これにより、液晶層230に閾値電圧以上の電圧を印加したときに、反射表示領域250及び透過表示領域260毎に、液晶層230中の液晶分子231、232を放射状配向させることができる。共通電極214上には、全面に垂直配向膜212が配置されている。また、観察面側の基板210の液晶層230とは反対側には、観察面側偏光板213が設けられている。
次に、TFT基板202の構成について説明する。
背面側の基板220の液晶層230側には、TFT素子(図示せず)が設けられている。TFT素子は、直交する方位に相互に平行に延びるように設けられた複数のゲート線(図示せず)と複数のソース線(図示せず)との各交差部分に設けられている。そして、TFT素子のドレイン電極が、透過表示領域260及び反射表示領域250に渡って設けられる画素透過電極224、及び、反射表示領域270に設けられる反射電極221と接続されている。反射表示領域250における反射電極221上、及び、透過表示領域260における画素透過電極224上には、全面に垂直配向膜222が配置されている。背面側の基板220の液晶層230とは反対側には、背面側偏光板223が設けられている。
図5は、比較例1に係る液晶表示装置について、液晶分子232の傾斜方位、λ/4位相差層211の遅相軸方位、及び、観察面側偏光板213の透過軸方位の関係を示す平面模式図である。
図4(b)中で示す、傾斜部21bの傾斜面に対して垂直に配向する液晶分子232は、図5で示すように、その長軸が傾斜する方位が、矢印2で示すλ/4位相差層211の遅相軸方位と実質的に垂直になる。このとき、矢印4で示す観察面側偏光板213の透過軸方位は、矢印2で示すλ/4位相差層の遅相軸方位と45°の角度をなす。このように液晶分子232の傾斜方位を制御したとしても、液晶分子232によっては、観察面側から入射した光に対して、λ/4位相差層211の傾斜部21bによって付与される位相差を補償することができないため、コントラスト比を低下させるおそれがある。
(実施形態1と比較例1との反射率の比較)
実施形態1に係る液晶表示装置と比較例1に係る液晶表示装置とで、液晶層に電圧を印加していないときの反射表示領域近傍の反射率をシミュレーションした。結果を図6に示す。反射率のシミュレーションにはLCDmaster(シンテック社製)を用いた。なお、シミュレーションにおいては実施形態1における図1の形態と比較例1における図4の形態とで比較を行った。シミュレーションでは、λ/4位相差層の平坦部の厚さを1.7μmと設定し、傾斜部の1つあたりの幅を3.4μmと設定している。また、λ/4位相差層の傾斜部が形成された領域(傾斜領域)においては、液晶分子が該傾斜部の傾斜面に対して垂直に配向しているとし、λ/4位相差層の平坦部が形成された領域(平坦領域)及び背面側の基板側では、液晶分子は基板の平坦面に対して垂直に配向しているとして、シミュレーションを行っている。液晶分子の長軸方向の屈折率は1.60であり、短軸方向の屈折率は1.47として設定している。
図6中の●が実施形態1の結果を示しており、○が比較例1の結果を示している。また、グラフの横軸は、λ/4位相差層の幅方位の長さを示している。すなわち、符号70が、λ/4位相差層の傾斜部が形成された領域(傾斜領域)を示し、符号80が、λ/4位相差層の平坦部が形成された領域(平坦領域)を示している。
図6で示すように、実施形態1と比較例1とを比較した場合、実施形態1の場合の傾斜領域における反射率が比較例1の場合と比較して低下しており、黒表示時の光漏れを抑制することができることがわかる。
本願は、2007年12月25日に出願された日本国特許出願2007-332995号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
実施形態1に係る液晶表示装置の構成を示す模式図である。(a)は、平面模式図を示し、(b)は、断面模式図を示している。 実施形態1に係る液晶表示装置について、液晶分子の傾斜方位、λ/4位相差層の遅相軸方位、及び観察面側偏光板の透過軸方位の関係を示す平面模式図である。 実施形態1に係る液晶表示装置の変形例を示す断面模式図である。 比較例1に係る液晶表示装置の構成を示す模式図である。(a)は、平面模式図を示し、(b)は、断面模式図を示している。 比較例1に係る液晶表示装置について、液晶分子の傾斜方位、λ/4位相差層の遅相軸方位、及び、観察面側偏光板の透過軸方位の関係を示す平面模式図である。 実施形態1及び比較例1に係る液晶表示装置について、反射表示領域における反射率をシミュレーションした結果を示す図である。●は、実施形態1に係る液晶表示装置の結果について示しており、○は、比較例1に係る液晶表示装置の結果について示している。 実施形態1に係る液晶表示装置について、反射表示領域及び透過表示領域における液晶分子の配向形態を示す平面模式図である。 液晶分子の配向を2分割したときの配向形態を示す平面模式図である。(a)は、反射表示領域では放射状配向、透過表示領域では上下2分割の配向である。(b)は、反射表示領域では放射状配向、透過表示領域では左右2分割の配向である。(c)は、反射表示領域及び透過表示領域の両方で上下2分割の配向である。(d)は、反射表示領域及び透過表示領域の両方で左右2分割の配向である。 透過表示領域における液晶分子の配向を4分割したときの配向形態を示す平面模式図である。
符号の説明
1、2:λ/4位相差層の遅相軸方位
3、4:観察面側偏光板の透過軸方位
11a、21a:λ/4位相差層の平坦部
11b、21b:λ/4位相差層の傾斜部
70、170、270:傾斜領域
80、180、280:平坦領域
100、100a、200:液晶表示装置
101、101a、201:カラーフィルタ基板
102、102a、202:TFT基板
110、110a、210:観察面側の基板(ガラス基板等)
120、120a、220:背面側の基板(ガラス基板等)
111、111a、211:λ/4位相差層
112、112a、122、122a、212、222:垂直配向膜
113、113a、213:観察面側偏光板
114、114a、214、414a~414e:共通電極
115a、115b、116、215a、215b、316a、316b、317a、317b、318、319a、319b、320:共通電極の開口
121、121a、221:反射電極
123、123a、223:背面側偏光板
124、124a、224:画素透過電極
125a:層間絶縁膜
130、130a、230:液晶層
131、131a、132、133、231、232、302~306:液晶分子
140:スペーサ
150、150a、250、352~356:反射表示領域
160、160a、260、362~366:透過表示領域
314:微細な透明電極

Claims (7)

  1. 互いに対向する一対の基板の間に液晶層を備え、かつ透過表示領域と反射表示領域とを有する垂直配向モードの液晶表示装置であって、
    該一対の基板の一方は、反射表示領域に、液晶層側へ隆起したλ/4位相差層を備え、
    該λ/4位相差層は、基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部の傾斜方位とλ/4位相差層の遅相軸方位とが実質的に平行であることを特徴とする液晶表示装置。
  2. 前記λ/4位相差層は、透過表示領域における液晶層の厚さの約1/2の厚さであることを特徴とする請求項1記載の液晶表示装置。
  3. 前記液晶表示装置は、複数の画素を有し、
    前記λ/4位相差層は、平面視したときに、複数の画素と重なって帯状に配置されることを特徴とする請求項1又は2記載の液晶表示装置。
  4. 前記λ/4位相差層は、観察面側の基板に備えられることを特徴とする請求項1~3のいずれかに記載の液晶表示装置。
  5. 互いに対向する一対の基板の間に液晶層を備え、かつ透過表示領域と反射表示領域とを有する垂直配向モードの液晶表示装置であって、
    該一対の基板の一方は、反射表示領域に、液晶層側へ隆起したλ/4位相差層を備え、
    該λ/4位相差層は、基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部が形成された領域における液晶層中の液晶分子の電圧無印加状態の傾斜方位とλ/4位相差層の遅相軸方位とが実質的に平行であることを特徴とする液晶表示装置。
  6. 基板上に位相差層を備える表示装置用基板であって、
    該位相差層は、該基板の平坦面に対して傾斜した傾斜部を有し、かつ傾斜部の傾斜方位と位相差層の遅相軸方位とが実質的に平行であることを特徴とする表示装置用基板。
  7. 請求項6記載の表示装置用基板と該表示装置用基板に対向する対向基板との間に液晶層を備え、
    前記位相差層は、表示装置用基板の液晶層側に備えられていることを特徴とする液晶表示装置。
PCT/JP2008/066349 2007-12-25 2008-09-10 液晶表示装置及び表示装置用基板 WO2009081629A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008801228963A CN101910927B (zh) 2007-12-25 2008-09-10 液晶显示装置和显示装置用基板
US12/810,404 US8654286B2 (en) 2007-12-25 2008-09-10 Liquid crystal display device and display device substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007332995 2007-12-25
JP2007-332995 2007-12-25

Publications (1)

Publication Number Publication Date
WO2009081629A1 true WO2009081629A1 (ja) 2009-07-02

Family

ID=40800945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066349 WO2009081629A1 (ja) 2007-12-25 2008-09-10 液晶表示装置及び表示装置用基板

Country Status (3)

Country Link
US (1) US8654286B2 (ja)
CN (1) CN101910927B (ja)
WO (1) WO2009081629A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130258250A1 (en) * 2012-04-03 2013-10-03 Samsung Electronics Co., Ltd. Display panel and display apparatus having the same
KR20140013211A (ko) * 2012-07-20 2014-02-05 삼성디스플레이 주식회사 표시 장치
CN105223744B (zh) * 2015-10-29 2016-11-30 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
WO2017199948A1 (ja) * 2016-05-20 2017-11-23 シャープ株式会社 液晶表示パネル、及び、液晶表示装置
CN107102470A (zh) * 2017-06-12 2017-08-29 京东方科技集团股份有限公司 反射式液晶显示器及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154583A (ja) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd 半透過型カラー液晶表示装置及びその製造方法
WO2007063629A1 (ja) * 2005-12-02 2007-06-07 Sharp Kabushiki Kaisha 液晶表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873869B2 (ja) 2002-02-26 2007-01-31 ソニー株式会社 液晶表示装置及びその製造方法
JP3788421B2 (ja) * 2002-04-02 2006-06-21 セイコーエプソン株式会社 液晶表示装置およびその製造方法ならびに電子機器
US7719646B2 (en) * 2002-11-15 2010-05-18 Sharp Kabushiki Kaisha Liquid crystal display device
JP2007156085A (ja) * 2005-12-05 2007-06-21 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
JP2007212498A (ja) * 2006-02-07 2007-08-23 Epson Imaging Devices Corp 液晶表示装置、液晶表示装置の製造方法及び電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154583A (ja) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd 半透過型カラー液晶表示装置及びその製造方法
WO2007063629A1 (ja) * 2005-12-02 2007-06-07 Sharp Kabushiki Kaisha 液晶表示装置

Also Published As

Publication number Publication date
CN101910927B (zh) 2012-01-25
US20110007252A1 (en) 2011-01-13
US8654286B2 (en) 2014-02-18
CN101910927A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
KR101438989B1 (ko) 액정 표시 장치용 기판 및 액정 표시 장치
JP4651791B2 (ja) 反射型液晶表示装置、その製造方法、及びその駆動方法
US7907241B2 (en) Liquid crystal display device
JP5659768B2 (ja) 斜め電界液晶表示装置
US8319921B2 (en) Liquid crystal display device
US20040156001A1 (en) Liquid crystal display-specific substrate having a phase difference control function, and liquid crystal display using the same
JP4641162B2 (ja) 位相差層付カラーフィルタおよび液晶表示素子
JP5083467B2 (ja) 液晶表示装置用カラーフィルタ基板および液晶表示装置
US8405806B2 (en) Liquid crystal display device that includes both a transmissive portion and a reflective portion
JP2007212498A (ja) 液晶表示装置、液晶表示装置の製造方法及び電子機器
US20100026937A1 (en) Viewing angle control device and display provided with the same
JP2008310064A (ja) 液晶表示装置
WO2009081629A1 (ja) 液晶表示装置及び表示装置用基板
US20050140870A1 (en) Liquid crystal display device
JP5332548B2 (ja) カラーフィルタ及びそれを備えた液晶表示装置
JP5107366B2 (ja) 液晶表示装置
KR100663074B1 (ko) 위상차층을 포함하는 반사투과형 액정표시장치
JP2007240726A (ja) 液晶表示装置および液晶表示装置の製造方法
US20110019136A1 (en) Liquid crystal display device
US20190302520A1 (en) Color filter substrate and liquid crystal display device
JP2008242001A (ja) 位相差制御機能を有する光学部材、半透過半反射型用液晶装置及び位相差制御機能を有する光学部材の製造方法
JP2007102161A (ja) 液晶表示装置
JP2008299290A (ja) 液晶表示装置
JP3074123B2 (ja) 液晶表示素子
JP2009210591A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122896.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12810404

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08865224

Country of ref document: EP

Kind code of ref document: A1