WO2009081555A1 - 有機性廃液の処理方法及び再生燃料炭 - Google Patents

有機性廃液の処理方法及び再生燃料炭 Download PDF

Info

Publication number
WO2009081555A1
WO2009081555A1 PCT/JP2008/003845 JP2008003845W WO2009081555A1 WO 2009081555 A1 WO2009081555 A1 WO 2009081555A1 JP 2008003845 W JP2008003845 W JP 2008003845W WO 2009081555 A1 WO2009081555 A1 WO 2009081555A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
treatment
biological
organic wastewater
iron oxide
Prior art date
Application number
PCT/JP2008/003845
Other languages
English (en)
French (fr)
Inventor
Toshikazu Iida
Nanao Horiishi
Original Assignee
Toda Kogyo Corporation
Fujikasui Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corporation, Fujikasui Engineering Co., Ltd. filed Critical Toda Kogyo Corporation
Publication of WO2009081555A1 publication Critical patent/WO2009081555A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/363Pellets or granulates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention solves the problem of surplus sludge treatment, which was a heavy burden, by regenerating and recovering the surplus surplus sludge discharged from the biological treatment process into fuel coal.
  • the present invention relates to an organic wastewater treatment system and regenerated fuel charcoal characterized in that the biological treatment apparatus is miniaturized by promoting the growth of sludge in the biological treatment process.
  • the activated sludge method using aerobic microorganisms is as follows. That is, it can be defined as a treatment method in which floc-like biological growth bodies constantly circulate and come into contact with organic wastewater in the presence of oxygen (Non-patent Document 1).
  • the activated sludge method using aerobic active microorganisms refers to aerobic microorganisms that feed on wastewater (referred to as aeration) and eat soluble organic matter (referred to as BOD) in the wastewater as a nutrient source.
  • BOD soluble organic matter
  • microorganisms grow while eating BOD to become biological sludge.
  • BOD in wastewater is converted to sludge to purify wastewater, and surplus activated sludge is excess sludge. It is a method for treating organic wastewater to be removed.
  • Non-Patent Document 2 biological sludge is propagated using a logarithmic growth phase (ab in FIG. 1) in which the amount of sludge is exponentially increased. It is necessary to maintain conditions that promote However, it is described that if the grown sludge is left as it is, it shifts to the decaying growth phase (b to c in FIG. 1) where the supply of usable biological sludge begins to run out and the sludge growth decreases. . Therefore, in order to maintain the logarithmic growth phase and promote the growth of biological sludge, it is necessary to quickly take out the excess surplus sludge from the system and treat it.
  • Non-Patent Document 3 As mentioned above, there were environmental and economic problems such as a shortage of land for disposal of surplus sludge, incineration facilities and their fuel costs. Organic wastewater is being treated in the growth phase. As a result, the processing facilities are becoming larger.
  • these surplus sludge treatment methods include a method of recycling for animal feed or agricultural fertilizer, a method of directly burning and treating solution or slurry sludge waste liquid (Non-patent Document 4), etc. There is a processing method. Further, as a method of utilizing the excess sludge to be discharged, there is a method of drying and fueling, steaming and charcoal, or dry distillation and gasification (Patent Document 1). However, it has not been solved yet to reduce the size of the wastewater treatment apparatus that is becoming larger or to efficiently treat and effectively utilize the excess surplus sludge generated in large quantities. There is a strong demand for the development of small-scale wastewater treatment equipment and the effective utilization of surplus breeding sludge.
  • this invention makes it a subject to accelerate
  • the present invention for solving the above problems is a method for treating organic wastewater using aerobic microorganisms, the treatment method comprising biological treatment steps for biologically treating organic wastewater using aerobic microorganisms, and the biological treatment It consists of a regenerated fuel coal recovery process that regenerates surplus sludge generated and propagated in the process into fuel charcoal, and the regenerated fuel coal recovery process is linked to the biological treatment process.
  • Organic wastewater treatment method characterized by promoting sludge growth in biological treatment process by regenerating to fuel coal using iron oxide powder, improving BOD removal rate and downsizing biological treatment equipment It is.
  • the present invention provides the regenerated fuel charcoal recovery step in a heat decomposition step of heating and drying excess sludge in a temperature range of 80 to 200 ° C. to decompose and remove malodorous components in the sludge, and the heat decomposition step. Obtained by adding 0.5 to 5% by weight of iron oxide powder to the dried sludge, mixing, granulating and / or molding the mixture obtained in the mixing process, and the molding process. And a step of recovering fuel charcoal having good combustibility in a high yield by heating the molded product in a non-oxidizing atmosphere at a temperature range of 300 to 400 ° C. for carbonization. It has the recovery fuel coal recovery process which consists of.
  • the biological treatment step is configured such that the biological sludge concentration is a logarithmic growth phase having an MLSS concentration of 5000 to 10000 mg / L, whereby a BOD removal rate is 80% or more of waste water.
  • the biological sludge concentration in the wastewater obtained in the removal step and the first BOD removal step is set to a decaying growth phase of 1000 to 3000 mg / L in the MLSS concentration, so that the BOD removal rate is 98% with respect to the raw water.
  • the biological treatment process consists of the two-stage process of making the discharged water with a BOD removal rate of 98% or more with respect to the raw water.
  • the organic wastewater treatment method comprises a biological treatment process in which a biological treatment facility is miniaturized.
  • the iron oxide powder added to the dried sludge is hematite ⁇ -Fe 2 O 3 , magnetite Fe 3 O 4 , maghemite ⁇ -Fe 2 O 3 , goethite ⁇
  • hematite ⁇ -Fe 2 O 3 magnetite Fe 3 O 4
  • maghemite ⁇ -Fe 2 O 3 maghemite ⁇ -Fe 2 O 3
  • goethite ⁇ One kind or a mixture of two or more kinds selected from -FeOOH, akagenite ⁇ -FeOOH, and lipidocrosite ⁇ -FeOOH can be used.
  • the present invention is a regenerated fuel coal obtained by the organic wastewater treatment method, and the regenerated fuel coal contains iron oxide.
  • the activated sludge treatment system of the present invention recovers the generated surplus surplus sludge as regenerated fuel charcoal, the biological treatment is aerated in the logarithmic growth phase to promote sludge growth, and this step increases the BOD removal rate.
  • the organic wastewater treatment device was solved while the excess sludge treatment problem was solved by aeration of the wastewater treated in step 1 in the decaying growth phase and purification of the BOD into effluent water of 20 mg / L or less. It can be downsized.
  • the iron oxide powder added to the sludge increases the carbonization efficiency when the sludge is heated and carbonized and regenerated into fuel charcoal due to the redox catalytic action of the iron oxide, and the generated regenerated fuel containing iron oxide powder Since the combustion efficiency of charcoal is increased and complete combustion is performed at the time of combustion, there are effects such as exerting a safety and health effect that suppresses the generation of carbon monoxide.
  • FIG. 2 shows an organic waste liquid treatment system according to the present invention, wherein (I) is a biological treatment process, and comprises the primary treatment (A), secondary treatment (B), and tertiary treatment (C) steps. .
  • (II) is a regenerated fuel coal recovery process that regenerates and recovers the excess surplus sludge discharged from the process of (I) into fuel coal using iron oxide powder, and (II) is for drying and deodorizing.
  • a process comprising a thermal decomposition process [HT1] and an exhaust gas deodorization device [GT], a process [MIX] (mixing process) of adding iron oxide powder to dry sludge, a process of granulating and molding the mixture [MOD] ] (Molding step) and a step [HT2] (heat carbonization step) of heating and carbonizing the molded product.
  • HT1 thermal decomposition process
  • GT exhaust gas deodorization device
  • the primary treatment step (A) solid waste mixed in the organic waste water W0 is separated from the primary treatment water W1 in the sedimentation tank D1, and the solid waste is separated from the waste storage tank ST1.
  • the primary treated water W1 is transferred to the secondary treatment step (B) by a liquid feed pump.
  • the organic matter contained in the primary treated water W1 (hereinafter referred to as “BOD”) is eaten in the activated biological sludge by aeration in the aeration tank B1.
  • BOD organic matter contained in the primary treated water W1
  • the conversion of BOD to biological sludge is promoted, and the biological sludge concentration is aerated in a logarithmic growth phase preferably having an MLSS concentration of 5000 to 10000 mg / L (first BOD removal step).
  • the grown biological sludge slurry S1 flows into the sedimentation tank D2 through the communication pipe.
  • the secondary treated water W2 is settled and separated into the biological sludge slurry S2, and the secondary treated water W2 flows into the tertiary treatment step (C) through the communication pipe.
  • the biological sludge By increasing the biological sludge concentration to a high concentration of 5000 to 10,000 mg / L as the MLSS concentration, the biological sludge can be promoted to increase the BOD removal rate, and the waste liquid treatment apparatus can be downsized.
  • the MLSS concentration exceeds 10,000 mg / L, it may be difficult to settle and separate the breeding sludge in the sedimentation tank. If it is less than 5000 mg / L, the BOD removal rate may be low. A more preferred range is 5000 to 8000 mg / L.
  • a part of the surplus sludge slurry S2 that has settled and separated is transferred to the stabilization tank RC1, and the biological sludge that has been fed up and proliferated is revitalized in a poor food state.
  • the reactivated biological sludge S3 is mixed with the primary treated water W1 and returned to the aeration tank B1, thereby maintaining the biological sludge concentration in the aeration tank B1 at an MLSS concentration of 5000 to 10,000 mg / L.
  • the remaining surplus sludge slurry S2 is separated in the solid-liquid separation step PF, the waste liquid is returned to the primary treated water W1, and the paste surplus sludge is stored in the storage tank ST2.
  • the BOD remaining in the secondary treated water W2 is aerated in the aeration tank B2, and the biological sludge concentration is preferably attenuated growth phase having an MLSS concentration of 1000 to 3000 mg / L.
  • Slightly grown biological sludge slurry S4 is transferred to settling tank D3 (second BOD removal step).
  • the purified waste water W3 and the biological sludge slurry S5 are settled and separated, and the purified waste water W3 is sterilized and discharged out of the system.
  • a part of the slurry S5 is mixed with the secondary treated water W2.
  • the biological sludge concentration in the aeration tank B2 is preferably maintained at an MLSS concentration of 2000 to 3000 mg / L.
  • the remaining surplus sludge slurry S5 is transferred to the solid-liquid separation step PF of the secondary treatment step (B) for solid-liquid separation, and the waste liquid is returned to the primary treatment water W1, and the paste-like surplus sludge is stored.
  • tank ST2 the biological sludge concentration in the aeration tank B2 is preferably maintained at an MLSS concentration of 2000 to 3000 mg / L.
  • the biological sludge concentration can be reduced to a low concentration of 1000 to 3000 mg / L in terms of MLSS concentration, and discharged water with a low BOD concentration in the wastewater can be obtained. If it exceeds 3000 mg / L, it may be difficult to reduce the BOD concentration in the effluent water. If it is less than 1000 mg / L, purification of wastewater may not proceed because the BOD removal rate is too low. A more preferred range is 1000 to 2000 mg / L.
  • the paste-like excess sludge is taken out from the surplus sludge storage tank [ST2] of the biological treatment step (I), and the heat decomposition step HT1.
  • the cracked gas is deodorized by the deodorizer GT through the exhaust pipe, and then released into the atmosphere.
  • the surplus sludge discharged from the biological treatment process is heated at a temperature of 80 to 200 ° C. because the surplus sludge in the form of a water-containing paste is dried and hydrogen sulfide contained in the sludge, This is for deodorizing treatment by decomposing malodorous components such as methyl sulfide, methyl mercaptan and ammonia.
  • the heating temperature is less than 80 ° C., the drying rate is slow and the decomposition of malodorous components is insufficient.
  • the temperature exceeds 200 ° C. the drying rate is large and the effect of decomposing the malodorous component is large, but it is not preferable because sludge gasification occurs.
  • a more preferable heating temperature is 100 to 180 ° C.
  • the cracked gas is preferably treated using a known deodorization apparatus.
  • the deodorized and dried sludge obtained in the heat decomposition step is added with 0.5 to 5% by weight of iron oxide powder in the next mixing step MIX and mixed with a mix muller, V-type mixer or the like.
  • the carbon component can be efficiently recovered from the organic sludge, and the combustibility of the regenerated fuel coal can be enhanced.
  • the iron oxide powder added to the dried sludge is less than 0.5% by weight, the effect of the redox catalyst may be reduced. If it exceeds 5.0% by weight, the redox catalyst effect is sufficient, but the purity of the regenerated coal may be reduced, and the heat generation may be reduced.
  • a more preferable addition amount is 1.0 to 3.0% by weight.
  • the iron oxide powder is not particularly limited, and examples thereof include hematite ⁇ -Fe 2 O 3 , magnetite Fe 3 O 4 , maghemite ⁇ -Fe 2 O 3 , goethite ⁇ -FeOOH, agagenite ⁇ -FeOOH, and lepidocrotite ⁇ -FeOOH. 1 type, or 2 or more types can be mixed and used.
  • the mixture obtained in the mixing step is granulated and / or molded into an appropriate shape for use in the next molding step MOD using an extrusion molding machine, a compression molding machine or the like.
  • the mixture of the dried sludge and the iron oxide powder is formed in order to obtain a uniform regenerated fuel char by performing carbonization uniformly during the heating carbonization, and to obtain an easy-to-use fuel char Because.
  • various shapes such as pellets, rods, plates, bean charcoal and briquettes can be used by using molding equipment such as casting machines and extrusion molding machines. Can be molded. Moreover, a shaping
  • molding adjuvant can be used suitably.
  • Molding aids include starch, molasses, dextrin, polyvinyl alcohol and the like.
  • the molding obtained in the molding step is preferably used in a non-oxidizing atmosphere in a non-oxidizing atmosphere using a heating furnace such as an electric furnace.
  • a heating furnace such as an electric furnace.
  • the heating carbonization apparatus uses a heating furnace in which the gas atmosphere in the furnace can be controlled, and in order to obtain a non-oxidizing atmosphere, a method using an inert gas such as nitrogen or a method in which mixing of air is cut off is used. Can be implemented.
  • Comparative Example 1 The organic wastewater discharged from the legume processed food factory has an average concentration of BOD of 1000 mg / L, the amount of drainage is 100 m 3 per day, and the total amount of BOD discharged is 100 kg per day.
  • Wastewater treatment process in the beans processed food plant the volume consists of a settling tank in the aeration tank and 18m 3 of 250 meters 3.
  • waste water with a BOD concentration of 1000 mg / L was introduced into an aeration tank, and aerated in an attenuated growth phase with an MLSS concentration of 2000 mg / L.
  • the BOD volume load at this time was 0.4 Kg / m 3 ⁇ day, and the BOD-MLSS load was 0.2 Kg / Kg ⁇ day.
  • Slightly grown biological sludge slurry was transferred to a sedimentation tank through a communication pipe, where it settled and separated into purified waste water and biological sludge slurry.
  • the separated purified wastewater was sterilized and released into the river, and excess sludge was taken out of the system and disposed of in landfills.
  • the amount of excess sludge produced was 5 kg / day in terms of dry weight, and the BOD sludge conversion rate was 5%.
  • the quality of the purified waste water was 98% in total BOD removal from the raw water, and the BOD concentration was 20 mg / L, which satisfied the discharged water standard.
  • the aeration tank must use a large aeration tank having a volume of 250 m 3 that is 2.5 times the volume of wastewater having a daily volume of 100 m 3 .
  • the reason is that surplus sludge was landfilled, so there was a problem with land shortage and environmental conservation, so it was necessary to suppress the generation of surplus breeding sludge, and the BOD sludge conversion rate was attenuated by 5%. It was because it aerated in the growth phase.
  • the amount of surplus sludge produced was a small amount of 5 kg / day as a dry product.
  • Example 1 (I) Biological treatment process: The bean processed food factory waste liquid of Comparative Example 1 was purified in the biological treatment step (I) in FIG. 2 of the present invention.
  • the waste water W0 having an average BOD concentration of 1000 mg / L is received in a sedimentation tank D1 having a volume of 18 m 3 in the primary treatment step (A), and solid waste in the waste water W0 is settled and separated into the storage tank ST1, and the primary treatment water W1.
  • a liquid feed pump was a liquid feed pump, and transferred to the aeration tank B1 having a volume of the secondary treatment step (B) of 60 m 3 .
  • the primary treated water W1 with a BOD concentration of 1000 mg / L is received into the aeration tank B1, and aerated in a logarithmic growth phase with an MLSS concentration of 8000 mg / L to activate sludge. Increased the sludge conversion rate of BOD and propagated biological sludge.
  • the BOD volumetric load at this time was 1.67 Kg / m 3 ⁇ day, and the BOD-MLSS load was 0.21 Kg / Kg ⁇ day.
  • the grown biological sludge slurry S1 was transferred to a sedimentation tank D2 having a volume of 18 m 3 through a communication pipe.
  • the secondary treated water W2 and the biological sludge slurry S2 were settled and separated, and the secondary treated water W2 was transferred to the aeration tank B2 having a volume of 60 m 3 in the tertiary treatment step (C) through the communication pipe.
  • the water quality of the secondary treated water W2 was a BOD of 200 mg / L (BOD removal rate was 80%).
  • the biological sludge slurry S2 separated and separated was transferred to a stabilization tank RC1 having a volume of 10 m 3 , and the appetite was reactivated by bringing the saturated biological sludge into a poor diet state. .
  • the biological sludge S3 reactivated in this way was mixed with the primary treated water W1 and returned to the aeration tank B1, thereby maintaining the amount of microorganisms at a high activity with an MLSS concentration of 8000 mg / L.
  • the residue of the sludge slurry S2, that is, the generated surplus sludge was transferred to a solid-liquid separation step PF using a press filter and separated into solid and liquid.
  • the wastewater was returned to the primary treated water W1, and the paste-like surplus sludge was collected in a surplus sludge storage tank ST2 having a volume of 20 m 3 .
  • the amount of excess sludge generated was 27 kg / day in terms of dry weight, and the BOD sludge conversion rate was 27%.
  • the secondary treated water W2 was aerated in an aeration tank B2 in an attenuated growth phase with an MLSS concentration of 2000 mg / L.
  • the BOD volume load at this time was 0.33 Kg / m 3 ⁇ day, and the BOD-MLSS load was 0.17 Kg / Kg ⁇ day.
  • the biological sludge slurry S4 was transferred to a sedimentation tank D3 having a volume of 18 m 3 through a communication pipe.
  • the purified waste water W3 and the biological sludge slurry S5 were settled and separated, and the purified waste water W3 was sterilized and then discharged out of the system.
  • the water quality of this purified waste water W3 satisfied the discharge water standard with a BOD concentration of 20 mg / L.
  • the BOD removal rate in the tertiary treatment step (C) was 90%, and the total BOD removal rate from the raw water was 98%.
  • the biological sludge slurry S5 separated and separated was mixed with the secondary treated water W2 and returned to the aeration tank B2, thereby maintaining the amount of microorganisms at 2000 mg / L in the MLSS concentration. Moreover, the remainder of the sludge slurry S5, that is, the generated surplus sludge is transferred to the solid-liquid separation step PF of the secondary treatment step (B), separated into solid and liquid, and the wastewater is discharged from the secondary treatment step (B). It returned to the primary treated water W1, and the paste surplus sludge was collect
  • the amount of excess sludge generated was 1 kg / day in terms of dry weight, and the BOD sludge conversion rate was 5%.
  • the total amount of excess sludge recovered in ST2 was 140 kg and the water content was 80%. This was a dry matter weight of 28 kg per day.
  • the first aeration tank B1 is aerated in the logarithmic growth phase to remove BOD by 80% or more, and the second aeration tank B1 is aerated in the decaying growth phase, and the remaining 20% BOD is contained in the BOD.
  • the amount was purified to waste water of 20 mg / L or less.
  • the aeration tank was able to be reduced to 60 m 3 , which is about a quarter of the conventional 250 m 3 device.
  • ⁇ 3-2> The sludge was heated and carbonized in the same manner as in 3-1, except that the heating temperature was 350 ° C. and the heating time was changed.
  • the residual amount was 7.66 g (carbonization rate 92%) when the heating time was 1 hour, and 7.32 g (carbonization rate 99%) when the heating time was 3 hours.
  • the remaining amount when the heating time was 4 hours was 7.08 g, and it was confirmed that it was partially gasified.
  • Example 2 In FIG. 2, 140 kg of paste-like surplus sludge is taken out from the surplus sludge storage tank [ST2] in the organic wastewater treatment step (I) and put into a 500 L rotary drum container equipped with an exhaust pipe in the thermal decomposition step HT1. The container was dried and deodorized by heating to a temperature of 150 ° C. while rotating in an electric furnace. 28 kg of deodorized dry product was obtained. The generated odorous gas was processed by a deodorizer GT and released to the atmosphere. A deodorizing device “Bioforest” manufactured by Fuji Kasui Kogyo Co., Ltd. was used as the deodorizing device.
  • the mixing step MIX 560 g (2% by weight) of iron oxide (goethite) powder having a specific surface area of 80 m 2 / g is added to 28 kg of the dried deodorized sludge obtained in the above step and mixed with a mix muller. After mixing uniformly, the mixture was stirred and mixed while adding a small amount of water, and granulated to 0.5 mm ⁇ . This granulated product was formed into a 10 mm ⁇ 10 mm ⁇ 100 mm rod shape by an extrusion molding machine in the molding step MOD.
  • the heating carbonization step HT2 After drying the molded product obtained in the above step, in the heating carbonization step HT2, 40 pieces of molded products are put in one koji bowl using a square-shaped koji bowl (120W x 120D x 50Hmm) made of alumina, Using a stationary electric furnace with an internal volume of 36 liters and internal dimensions (300W x 600D x 200Hmm), the koji bowls are stacked in three stages, a total of 24 bowls are inserted in 4 rows and 2 rows, and the interior of the furnace is A non-oxidizing atmosphere in which the circulation of the outside air was blocked, heated at a temperature of 350 ° C. for 3 hours, cooled to room temperature, and taken out from the furnace.
  • a square-shaped koji bowl 120W x 120D x 50Hmm
  • the koji bowls are stacked in three stages, a total of 24 bowls are inserted in 4 rows and 2 rows, and the interior of the furnace is A non-oxidizing atmosphere in
  • the black product was iron oxide-containing regenerated fuel coal, the total weight of the product was 14.5 kg, and the carbonization rate of sludge was 98%.
  • the iron oxide-containing regenerated fuel charcoal had good ignitability, burned smokelessly and odorlessly, and combustibility was good.
  • the present invention is a heavy burden on the treatment of the generated excess sludge, but the excess sludge is made combustible by adding iron oxide powder to the excess sludge and carbonizing it by heating. It could be recovered and recovered into an excellent iron oxide-containing fuel coal.
  • the biological treatment conditions are implemented in the attenuated growth phase in order to reduce the load of surplus sludge treatment, the biological treatment equipment has been enlarged.
  • the recycled fuel coal recovery process Since the conditions were the logarithmic growth phase, the BOD removal rate was increased, and the biological treatment apparatus could be miniaturized, it can be easily implemented as an environment-friendly system that is excellent in economic efficiency.
  • the present invention can be implemented in accordance with the demands of the times from the present background where the problem of depletion of energy resources is screamed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Treatment Of Sludge (AREA)
  • Activated Sludge Processes (AREA)
  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

本発明は、小型の生物処理装置で、有機性廃水を大量に処理することができる有機性廃水処理システム及び再生燃料炭を提供することを目的とする。本発明の処理方法は、好気性微生物を用いる有機性廃水の処理方法であって、当該処理方法は、好気性微生物を用いて有機性廃水を生物処理する生物処理工程と、当該生物処理工程において生じ、増殖した余剰汚泥を燃料炭に再生する再生燃料炭回収工程とから成り、生物処理工程に再生燃料炭回収工程が連結されており、再生燃料炭回収工程において、増殖した余剰汚泥を酸化鉄粉を用いて燃料炭に再生する。

Description

有機性廃液の処理方法及び再生燃料炭
 本発明は、有機性廃水を浄化処理する活性汚泥法において、生物処理工程から排出する増殖余剰汚泥を、燃料炭に再生して回収することにより、大きな負担であった余剰汚泥処理問題を解決しつつ、生物処理工程における汚泥の増殖を促進して生物処理装置を小型化したことを特徴とする有機性廃水処理システムおよび再生燃料炭に関する。
 有機性廃水の処理には、微生物を利用して廃水を浄化する生物処理法が広く実用化されている。好気性微生物を用いる好気性処理方法、および嫌気性微生物を用いる嫌気性処理方法があるが、何れの方法も余剰汚泥を発生する。本発明は、前者に属する。
 好気性微生物を用いる活性汚泥法とは次のようである。即ち、「フロック状の生物性増殖体が絶えず循環し、これらが酸素の存在のもとに有機性廃水と接触するような処理法であると定義することができる」(非特許文献1)と記載されているように、好気性活性微生物を用いる活性汚泥法とは、廃水に空気を吹き込んで(曝気という)、廃水中の可溶性有機物(BODと言う)を栄養源として食する好気性微生物を活性化させ、微生物はBODを食しながら増殖して生物性汚泥になり、この生物性汚泥を循環させることにより廃水中のBODを汚泥に転換して廃水を浄化し、余剰の活性汚泥は余剰汚泥として除去する有機性廃水の処理法である。
 廃水処理効率を高めるためには、図1(非特許文献2)によれば、汚泥量が幾何級数的に増殖する対数増殖相(図1のa~b)を利用して生物性汚泥の増殖を促進する条件を維持することが必要である。しかし、増殖した汚泥をそのまま放置すれば、利用し得る生物性汚泥の供給が尽き始める減衰増殖相(図1のb~c)に移行して、汚泥の増殖が低下することが記述されている。そこで、対数増殖相を維持し、生物性汚泥の増殖を促進するためには増殖余剰汚泥を速やかに系外に取り出して処理することが必要である。
 しかしながら、「これら余剰汚泥は多大な手間とエネルギーを消費して、濃縮、脱水、焼却を経て最終処分されているが、最終処分場の不足も深刻な問題となっている」(非特許文献3)といわれているように、余剰汚泥を廃棄する用地の不足、焼却施設とその燃料費など環境上および経済上に問題があったので、現状では止む無く、生物性汚泥の増殖を抑制する減衰増殖相で有機性廃水の処理が行われている。その結果、処理設備が大型化している。
 一方、これら発生した余剰汚泥の処理法には、動物の飼料や農業用肥料などに再生利用する方法、溶液状またはスラリ-状汚泥廃液を直接燃焼して処理する方法(非特許文献4)などの処理法がある。また、排出する余剰汚泥の活用法として、乾燥して燃料に、蒸し焼きして炭に、または、乾留してガス化する方法(特許文献1)などがある。しかしながら、大型化する廃水処理装置を小型化することや、大量に発生する増殖余剰汚泥を効率良く処理して有効に活用すること、などについては未だ解決されていない。小規模な廃水処理装置の開発と増殖余剰汚泥の有効な活用法の開発が強く求められている。
W.W.ECKENFELDER,Jr D.J.O’CONNR著、岩井 重久 訳、廃水の生物学的処理、コロナ社、(昭和45年)198頁 同上、15頁 半田 宏、阿部正紀、野田 紘喜、磁気ビーズのバイオ・環境技術への応用展開、シーエムシー出版、(2006)201頁 公害防止の技術と法規編集委員会編、五訂・公害防止の技術と法規[水質編]、(社)産業環境管理協会発行 (1995)186~188頁 特開2004-115576号公報
 有機性廃水を処理する活性汚泥工程において、微生物を活性化して活性汚泥を増殖することは、生物処理の効率向上のために必須であることが知られている。しかしながら、活性汚泥が増殖して余剰汚泥が増加すると、微生物の活性が低下するため、BOD処理能力も低下するという矛盾があった。これを解決するためには、余剰汚泥を系外に取り出して処分することが必要であり、焼却や埋立てなどの方法で処理している。しかしながら、これらの処理方法は、廃棄する用地の不足や、悪臭による環境汚染など二次公害を発生するので経済上、環境保全上に困難な問題があった。そこで止む無く、余剰汚泥の発生を抑制する減衰増殖相において、生物処理効率の低い条件下で、有機性廃水を処理せざるを得ないために、処理装置の大型化が避けられないのが現状である。
 そこで、本発明は、有機性廃水の生物処理工程から排出する増殖余剰汚泥の処理問題を解決しつつ、生物処理工程における汚泥の増殖を促進して生物処理装置を小型化することを課題とする。
 前記技術的課題は、次の通りの本発明によって達成できる。
 上記課題を解決する本発明は、好気性微生物を用いる有機性廃水の処理方法であって、当該処理方法は、好気性微生物を用いて有機性廃水を生物処理する生物処理工程と、当該生物処理工程において生じ、増殖した余剰汚泥を燃料炭に再生する再生燃料炭回収工程とから成り、生物処理工程に再生燃料炭回収工程が連結されており、再生燃料炭回収工程において、増殖した余剰汚泥を酸化鉄粉を用いて燃料炭に再生することにより、生物処理工程における汚泥の増殖を促進し、BOD除去率を向上して生物処理装置を小型化したことを特徴とする有機性廃水の処理方法である。
 また、本発明は、前記再生燃料炭回収工程が、余剰汚泥を80~200℃の温度範囲で加熱乾燥して汚泥中の悪臭成分を分解除去する加熱分解工程と、当該加熱分解工程で得られた乾燥汚泥に0.5~5重量%の酸化鉄粉を添加混合する混合工程と、当該混合工程で得られた混合物を造粒及び/又は成形加工する成形工程と、当該成形工程で得られた成形加工物を非酸化性雰囲気中300~400℃の温度範囲で加熱して炭素化する加熱炭素化工程とから成ることにより、燃焼性が良好な燃料炭を収率良く回収する工程とから成る再生燃料炭回収工程を有することを特徴とする。
 また、本発明は、前記生物処理工程が、生物性汚泥濃度を、MLSS濃度で5000~10000mg/Lの対数増殖相とすることにより、BOD除去率を80%以上の排水とする第1のBOD除去工程と、第1のBOD除去工程で得られた排水中の生物性汚泥濃度を、MLSS濃度で1000~3000mg/Lの減衰増殖相とすることにより、原水に対してBOD除去率を98%以上の放流水とする第2のBOD除去工程との2段の工程からなることにより、原水に対してBOD除去率を98%以上の放流水とする工程の2段の工程から成る生物処理工程としたことにより、生物処理設備を小型化した生物処理工程とから成る有機性廃水の処理方法である。
 また、本発明は、前記再生燃料炭回収工程の混合工程において、乾燥汚泥に添加する酸化鉄粉がヘマタイトα-Fe、マグネタイトFe、マグヘマイトγ-Fe、ゲータイトα-FeOOH、アカゲナイトβ-FeOOH、レピドクロサイトγ-FeOOHから選ばれる1種または2種以上を混合して用いることができる。
 また、本発明は、前記有機性排水の処理方法によって得られた再生燃料炭であり、前記再生燃料炭には、酸化鉄を含有するものである。
 本発明の活性汚泥処理システムは、発生した増殖余剰汚泥を再生燃料炭として回収するので、生物処理を対数増殖相で曝気して汚泥の増殖を促進し、BOD除去率を高める工程と、この工程で処理した排水を減衰増殖相で曝気して、BODを20mg/L以下の放流水に浄化する工程の2段工程としたことにより、余剰汚泥処理問題を解決しつつ、有機性廃水処理装置を小型化することができる。
 一方、汚泥に添加する酸化鉄粉は、酸化鉄の酸化還元触媒作用により、汚泥を加熱炭化して燃料炭に再生する際には炭素化効率を高め、また、生成した酸化鉄粉含有再生燃料炭の燃焼効率を高めて燃焼時には完全燃焼するので、一酸化炭素の発生を抑制する安全衛生上の効果を発揮する、等の効果がある。
 即ち、従来の加熱炭素化方法では、余剰汚泥を蒸し焼きして炭素化する過程で炭酸ガスが発生するので生成率が低く、また、生成した炭を燃焼した際には、酸素不足が生じると、不完全燃焼により一酸化炭素ガスが発生し易いなどの問題があった。そこで、酸化鉄粉が有する酸化還元触媒作用、即ち、酸化鉄を300℃以上の温度で加熱したとき、雰囲気が不完全燃焼ガスにより還元性雰囲気になると、酸化鉄中のFe(III)はFe(II)に還元され、酸化鉄は酸素を放出して雰囲気を酸化性雰囲気に変える。そして、酸化性雰囲気中ではFe(II)は酸素により酸化されて再びFe(III)になるという酸化還元触媒作用に注目して種々検討した。その結果、酸化鉄粉を混合した汚泥を300℃以上の温度で加熱炭素化すると、炭酸ガスの生成が抑制され、炭の生成率が向上し、さらに、生成した酸化鉄粉含有炭は、燃焼性が良好で不完全燃焼が起こり難いという効果が確認された。
BODの除去と汚泥の増殖との関係図 本発明方法の工程フロー図
符号の説明
 a~b:対数増殖相領域
 b~c:減衰増殖相領域
 (I):有機性廃水処理工程
 (A):一次処理工程
 W0:有機性廃水
 D1:一次沈殿槽
 ST1:W0中の固形ゴミ貯槽
 (B):二次処理工程
 W1:一次処理水
 B1:曝気処理槽
 S1:増殖生物性汚泥スラリー
 D2:二次沈殿槽
 S2:余剰汚泥スラリー
 RC1:安定化槽
 S3:再活性化汚泥
 PF 固液分離装置
 ST2:余剰汚泥貯槽
 (C):三次処理工程
 W2:二次処理水
 B2:曝気処理槽
 S4:増殖生物性汚泥スラリー
 D3:三次沈殿槽
 W3:浄化排水
 S5:余剰汚泥スラリー
 (II):再生燃料炭回収工程
 HT1:加熱分解工程
 GT:脱臭装置
 MIX:混合工程
 MOD:成形工程
 HT2:加熱炭素化工程
 ST3:再生燃料炭貯槽
 本発明の構成をより詳しく説明すれば次の通りである。
 本発明の実施形態を図2により説明する。
 図2は本発明の有機性廃液処理システムを示すものであり、(I)は生物処理工程であり、一次処理(A)、二次処理(B)及び三次処理(C)の各工程から成る。また、(II)は(I)の工程から排出する増殖余剰汚泥を酸化鉄粉を用いて燃料炭に再生して回収する再生燃料炭回収工程であり、(II)は乾燥、脱臭のための加熱分解工程[HT1]と排ガスの脱臭装置[GT]から成る工程と、乾燥汚泥に酸化鉄粉を添加混合する工程[MIX](混合工程)と、混合物を造粒・成形加工する工程[MOD](成形工程)と、成形物を加熱炭化する工程[HT2](加熱炭素化工程)とから成る。
 まず、生物処理工程(I)について述べる。
 先ず、生物処理工程(I)において、一次処理工程(A)では、有機性廃水W0に混在している固体ゴミを沈殿槽D1で、一次処理水W1と沈降分離し、固体ゴミはゴミ貯槽ST1へ、一次処理水W1は液送ポンプで二次処理工程(B)へ移送する。
 次に、二次処理工程(B)では、一次処理水W1中に含有している有機物(以下、「BOD」という)を、曝気槽B1で曝気して活性化した生物性汚泥に食させ、BODの生物汚泥転換を促進し、生物性汚泥濃度を、好ましくはMLSS濃度5000~10000mg/Lの対数増殖相で曝気する(第1のBOD除去工程)。増殖した生物性汚泥スラリーS1は連通管を通って沈殿槽D2に流入する。沈殿槽D2では、二次処理水W2と生物性汚泥スラリーS2に沈降分離し、二次処理水W2は連通管を通って三次処理工程(C)へ流入する。
 生物性汚泥濃度をMLSS濃度で5000~10000mg/Lの高濃度にすることにより、生物性汚泥の増殖を促進してBOD除去率を高めることができ、廃液処理装置を小型化することができる。MLSS濃度が10000mg/Lを超える場合には、増殖汚泥の沈降槽での沈降分離が困難となる場合がある。5000mg/L未満では、BOD除去率が低い場合がある。より好ましい範囲は5000~8000mg/Lである。
 一方、沈降分離した余剰汚泥スラリーS2は、その一部を安定化槽RC1へ移送し、飽食して増殖した生物性汚泥を貧食状態にして再活生化する。再活性化した生物性汚泥S3は、一次処理水W1と混合して曝気槽B1へ返送することにより、曝気槽B1における生物性汚泥濃度をMLSS濃度5000~10000mg/Lに維持する。また、残りの余剰汚泥スラリーS2は固液分離工程PFで分離して、排液は一次処理水W1に返送し、ペースト状の余剰汚泥は貯蔵槽ST2に貯蔵する。
 さらに、三次処理工程(C)では、二次処理水W2中に残留しているBODを曝気槽B2で、生物性汚泥濃度を、好ましくはMLSS濃度1000~3000mg/Lの減衰増殖相で曝気し、僅かに増殖した生物性汚泥スラリーS4は沈殿槽D3へ移送する(第2のBOD除去工程)。沈殿槽D3では、浄化排水W3と生物性汚泥スラリーS5に沈降分離して、浄化排水W3は滅菌処理して系外へ放流し、スラリーS5は、その一部を二次処理水W2と混合して曝気槽B2へ返送することにより、曝気槽B2における生物性汚泥濃度を好ましくはMLSS濃度2000~3000mg/Lに維持する。また、残りの余剰汚泥スラリーS5は、二次処理工程(B)の固液分離工程PFに移送して固液分離し、排液は一次処理水W1に返送し、ペースト状の余剰汚泥は貯蔵槽ST2に貯蔵する。
 減衰増殖相で曝気する工程において、生物性汚泥濃度をMLSS濃度で1000~3000mg/Lの低濃度にすることにより、排水中のBOD濃度の低い放流水とすることができる。3000mg/Lを超える場合には、放流水中のBOD濃度を低くすることが困難な場合があり、1000mg/L未満ではBOD除去率が低く過ぎるため廃水の浄化が進まない場合がある。より好ましい範囲は1000~2000mg/Lである。
 次に、増殖余剰汚泥を再生燃料炭として回収する工程(II)について述べる。
 増殖余剰汚泥を再生燃料炭として回収する再生燃料炭回収工程(II)の加熱分解工程において、生物処理工程(I)の余剰汚泥貯槽[ST2]からペースト状の余剰汚泥を取出し、加熱分解工程HT1の排気パイプを備えた密閉ドラム容器中に投入し、この容器を電気炉中で回転しながら好ましくは80~200℃の温度で加熱して乾燥し、悪臭成分を分解して脱臭して乾燥汚泥を生成する。また、分解ガスは排気パイプを通じて脱臭装置GTで脱臭処理した後、大気中に放出する。
 本発明の再生燃料炭回収工程において、生物処理工程から排出する余剰汚泥を80~200℃の温度で加熱するのは、含水ペースト状の余剰汚泥を乾燥し、汚泥に含有している硫化水素、硫化メチル、メチルメルカプタンやアンモニア等の悪臭成分を分解して脱臭処理するためである。加熱温度が80℃未満では、乾燥速度が遅く、また、悪臭成分の分解も不十分となる。200℃を超える場合は、乾燥速度が大きく、悪臭成分の分解の効果も大きいが、汚泥のガス化が生起するので好ましくない。より好ましい加熱温度は100~180℃である。分解ガスは公知の脱臭装置を用いて処理することが好ましい。
 前記加熱分解工程で得られた脱臭乾燥汚泥は、次の混合工程MIXで酸化鉄粉を好ましくは0.5~5重量%添加してミックスマーラー、V型ミキサー等で混合する。
 本発明において、乾燥汚泥に酸化鉄粉を添加することにより、有機性汚泥から炭素成分を効率良く回収でき、そして、再生燃料炭の燃焼性を高めることができる。乾燥汚泥に添加する酸化鉄粉が0.5重量%未満では、酸化還元触媒の効果が小さくなる場合がある。5.0重量%を超える場合には、酸化還元触媒効果は十分であるが再生炭の純度が低下し、発熱量が減少する場合がある。より好ましい添加量は1.0~3.0重量%である。酸化鉄粉としては、特に制限無く、例えば、ヘマタイトα-Fe、マグネタイトFe、マグヘマイトγ-Fe、ゲータイトα-FeOOH、アカゲナイトβ-FeOOH、レピドクロサイトγ-FeOOH等の1種または2種以上を混合して用いることができる。
 前記混合工程で得られた混合物は、次の成形工程MODで、使途に適した形状に、押出し成形機、圧縮成形機等を用いて、造粒および/または成形加工する。
 本発明において、乾燥汚泥と酸化鉄粉の混合物を成形するのは、加熱炭素化する際に、炭素化を均一に行い均質な再生燃料炭を得るためであり、そして、使い易い燃料炭を得るためである。乾燥汚泥と酸化鉄粉の混合物を成形するには、鋳込み成形機や押出し成形機などの成形加工装置を用いて、ペレット状、棒状、板状、豆炭や練炭状など使途に合せて種々の形状に成形することができる。また、成形助剤は適宜使用することができる。
 成形助剤としては、でんぷん、廃糖蜜、デキストリン、ポリビニルアルコール等が挙げられる。
 前記成形工程で得られた成形物を炭素化する加熱炭素化工程HT2では、前記成形工程で得られた成形物を、電気炉等の加熱炉を用いて、好ましくは非酸化性雰囲気下300~400℃の温度で加熱することにより、酸化鉄含有燃料炭を生成し、室温まで冷却した後、生成物は再生燃料炭貯槽ST3に貯蔵する。
 本発明において、造粒物または成形物を、非酸化性雰囲気中で、300~400℃の温度で加熱して炭素化する際に、非酸化性雰囲気とすることにより、余剰汚泥が燃焼するのを防止して効率良く炭素化することができる。加熱炭素化温度が300℃未満では、酸化鉄の酸化還元触媒作用が生起し難い場合がある。また、400℃を超える場合には、炭素化と同時にガス化が促進する場合がある。また、加熱炭素化装置には炉内ガス雰囲気が制御できる加熱炉を用い、非酸化性雰囲気とするには、窒素等の不活性ガスを用いる方法や空気の混入を遮断して行う方法等で実施することができる。
 次に実施例により詳細に説明する。
(I)生物処理工程:
 廃水および処理水の水質検査は(社)日本下水協会発行(1984年版)「下水試験方法、第4章活性汚泥試験」に記載の方法で行った。
 先ず、豆類加工食品工場の廃水処理工程における従来法を示す。
 比較例1:
 豆類加工食品工場から排出する有機性廃水は、BODの平均濃度が1000mg/Lで、排水量は日量100mであり、BODの排出総量は日量100Kgである。
 前記の豆類加工食品工場における廃水処理工程は、容積が250mの曝気槽と18mの沈殿槽とから成る。先ず、BOD濃度が1000mg/Lの廃水を曝気槽に導入し、MLSS濃度で2000mg/Lの減衰増殖相で曝気した。このときのBOD容積負荷は0.4Kg/m・日で、BOD-MLSS負荷は0.2Kg/Kg・日であった。僅かに増殖した生物性汚泥スラリーは連通管を通して沈殿槽に移送し、沈殿槽では、浄化排水と生物性汚泥スラリーに沈降分離した。分離した浄化排水は滅菌処理して河川に放流し、余剰汚泥は系外に取り出して埋立て廃棄した。余剰汚泥の生成量は乾燥重量で5kg/日で、BODの汚泥転換率は5%であった。
 また、浄化排水の水質は、原水からの総BOD除去率が98%で、BOD濃度が20mg/Lであり、放流水基準を満足していた。しかしながら、曝気槽は日量100mの廃水に対して、容積が2.5倍の250mという大型の曝気槽を使用しなければならない。その理由は、余剰汚泥を埋立て処理していたので、土地の不足や環境保全に問題があったので、増殖余剰汚泥の発生を抑制する必要があり、BODの汚泥転換率が5%の減衰増殖相で曝気したからであった。生成した余剰汚泥量は、乾燥物で5kg/日と少量であった。
実施例1:
(I)生物処理工程:
 比較例1の豆類加工食品工場廃液を、本発明の図2における(I)の生物処理工程で浄化処理した。
 平均BOD濃度が1000mg/Lの廃水W0は、一次処理工程(A)の容積が18mの沈殿槽D1に受け入れ、廃水W0中の固体ゴミを沈降分離して貯槽ST1に取り出し、一次処理水W1は液送ポンプで、二次処理工程(B)の容積が60mの曝気槽B1へ移送した。
 二次処理工程(B)では、BOD濃度が1000mg/Lの一次処理水W1を、曝気槽B1へ受け入れて、MLSS濃度が8000mg/Lの対数増殖相で曝気して、汚泥を活性化することによりBODの汚泥転換率を高めて、生物性汚泥を増殖した。このときのBOD容積負荷は1.67Kg/m・日であり、BOD-MLSS負荷は0.21Kg/Kg・日であった。増殖した生物性汚泥スラリーS1は、連通管を通して容積18mの沈殿槽D2に移送した。沈殿槽D2では、二次処理水W2と生物性汚泥スラリーS2に沈降分離し、二次処理水W2は、連通管を通して三次処理工程(C)の容積60mの曝気槽B2へ移送した。二次処理水W2の水質は、BODが200mg/L(BOD除去率は80%)であった。
 一方、沈降分離した生物性汚泥スラリーS2は、その一部を、容積が10mの安定化槽RC1へ移送し、飽食した生物性汚泥を、貧食状態にすることにより食欲を再活性させた。このようにして再活性化した生物性汚泥S3は、一次処理水W1と混合して曝気槽B1へ返送することにより、微生物量をMLSS濃度が8000mg/Lの高活性度に維持した。また、汚泥スラリーS2の残分、即ち、発生した余剰汚泥はプレスフィルターによる固液分離工程PFに移送し、固液分離した。排水は一次処理水W1に返送し、ペースト状余剰汚泥は容積が20mの余剰汚泥貯槽ST2に回収した。余剰汚泥の発生量は乾燥重量で27kg/日で、BODの汚泥転換率は27%であった。
 また、三次処理工程(C)へ移送した二次処理水W2には、200mg/LのBODが残留していた。二次処理水W2は曝気槽B2で、MLSS濃度が2000mg/Lの減衰増殖相で曝気した。このときのBOD容積負荷は0.33Kg/m・日で、BOD-MLSS負荷は0.17Kg/Kg・日であった。生物性汚泥スラリーS4は連通管を通して容積が18mの沈殿槽D3に移送した。沈殿槽D3では、浄化排水W3と生物性汚泥スラリーS5に沈降分離して、浄化排水W3は滅菌処理した後、系外へ放流した。この浄化排水W3の水質は、BOD濃度が20mg/Lで放流水基準を満足していた。三次処理工程(C)でのBOD除去率は90%であり、原水からの総BOD除去率は98%であった。
 一方、沈降分離した生物性汚泥スラリーS5は、その一部を二次処理水W2と混合して曝気槽B2へ返送することにより、微生物量をMLSS濃度で2000mg/Lに維持した。また、汚泥スラリーS5の残分、即ち、発生した余剰汚泥は、二次処理工程(B)の固液分離工程PFに移送し、固液分離して、排水は二次処理工程(B)の一次処理水W1に返送し、ペースト状余剰汚泥は貯蔵槽ST2に回収した。余剰汚泥の発生量は乾燥重量で1kg/日で、BODの汚泥転換率は5%であった。ST2に回収した余剰汚泥の総量は140kgで含水率は80%であった。これは乾燥物重量で日量28kgであった。
 本発明方法では、乾燥物重量で28kg/日と多量の余剰汚泥を生成した。その理由は、余剰汚泥を燃料炭に再生する再生燃料炭回収工程を、生物処理工程に連結したことにより、BODの汚泥転換率が大きい対数増殖相で曝気して汚泥の増殖を促進したからである。
 即ち、第1の曝気槽B1では対数増殖相で曝気して、BODを80%以上除去し、第2の曝気槽B1では減衰増殖相で曝気して、残余20%のBODを、BODの含有量が20mg/L以下の排水に浄化した。その結果、曝気槽を従来の250mの装置より、約4分の1の60mに小型化することができた。
(II)余剰汚泥を燃料炭に再生する工程:
 汚泥再生炭の生成率は、加熱炭素化処理前後の重量変化を測定して求めた。汚泥中の炭素量の基準は、標準とされる汚泥組成式CNOから算出した53重量%とした。また、灰分は温度800℃で3時間燃焼して残量を測定した。汚泥の灰分は21.5重量%であった。
 <予備実験1>汚泥の乾燥・脱臭処理について:
 図2における有機性廃水処理工程(I)の余剰汚泥貯蔵槽[ST2]からペースト状の率余剰汚泥1kgをシャーレーに取出した。次に、汚泥100gを加熱用試料皿に取り、管状炉に挿入して加熱した。温度の上昇に伴う排気ガスの臭気発生状況を観測した。その結果、加熱温度が80℃近辺から臭気性ガスが出始め、130~170℃の間で激しく発生し、200℃を越えると臭気ガスの発生は無くなった。
 <予備実験2>加熱炭素化条件(酸化鉄粉なし)について:
 <2-1>
 150℃で脱臭乾燥した汚泥を仁丹粒状に造粒した粉体10gを、ルツボに入れ蓋をして、マッフル電気炉を用いて、空気の通気を遮断して200℃で加熱した。3時間加熱してデシケーターに取り出して冷却した。室温に冷却後の重量を測定した結果、生成した炭の重量は9.1gであった。乾燥汚泥10g中の炭素量が基準量53%であるから炭素は5.3gであり、灰分が21.5%であるから2.15gである。従って、加熱後の重量がこの合計7.45gであるとき、炭素化率は100%となる。生成した炭が9.1gの場合では、1.65gが未炭化であり、炭素化率は69%であった。
 <2-2>
 上記2-1と同様にして、汚泥を200℃の温度で24時間加熱した。残存量は
8.55gであった。これは、未生成の炭であり、加熱温度が200℃では炭素化が不十分であった。
 <2-3>
 加熱温度を250℃とし、加熱時間を変化させた以外は、前記2-1と同様にして汚泥を加熱炭素化した。残存量は、加熱時間が3時間のときは7.88g(炭素化率92%)、6時間のときは7.65g(炭素化率96%)で、8時間では炭素化率が98%であった。
 <2-4>
 加熱温度を300℃とし、加熱時間を変化させた以外は上記2-1と同様にして汚泥を加熱炭素化した。残存量は、加熱時間が1時間のときは7.26gであり、一部ガス化しており、汚泥の炭素化は1時間以内に完了していることを示唆していた。また、これより高い温度で加熱すると汚泥のガス化がさらに促進した。
 <予備実験3>添加物と加熱炭素化条件について:
 <3-1>
 150℃で加熱脱臭した乾燥汚泥に、比表面積が80m/gの酸化鉄(ゲータイト)粉を3重量%添加混合して仁丹粒状に造粒した。この造粒粉10gを、ルツボに入れ蓋をして、マッフル電気炉を用いて、空気の通気を遮断して300℃で加熱した。3時間加熱後、デシケーターに取り出して冷却した。室温に冷却後の重量を測定した結果7.85gであった。乾燥汚泥10g中には酸化鉄を3%含有しているので正味の汚泥量は9.7gである。この含有炭素量は基準量53%であるから炭素は5.14gであり、灰分は21.5%であるから2.13gである。従って、加熱後の重量がこの合計7.27gであるとき、炭素化率は100%である。よって、生成した炭が7.85gの場合は、0.58gが未生成の炭であり、炭素化率は89%であった。加熱時間が4時間のとき、汚泥の炭化率は98%であった。
<3-2>
 加熱温度を350℃とし、加熱時間を変化させた以外は上記3-1と同様にして汚泥を加熱炭素化した。残存量は、加熱時間が1時間のときは7.66g(炭素化率92%)、加熱時間が3時間のとき7.32g(炭素化率99%)であった。加熱時間が4時間のときの残存量は7.08gであり、一部ガス化していることが確認された。
 <3-3>
 比表面積が28m/gの酸化鉄(マグネタイト)粉を用い、添加量を1重量%とした以外は上記3-1と同様にして汚泥を加熱炭素化した。加熱時間が3時間の時、汚泥の炭素化率は98%であった。
 予備実験2と予備実験3の結果から、乾燥汚泥に酸化鉄粉を添加すると、汚泥中の炭素成分をガス化させることなく加熱炭素化を促進させることができることが判明した。
 実施例2:
 図2において、有機性廃水処理工程(I)の余剰汚泥貯蔵槽[ST2]からペースト状の余剰汚泥140kgを取出し、加熱分解工程HT1の排気パイプを備えた容積500Lの回転ドラム容器中に投入し、この容器を電気炉中で回転しながら150℃の温度に加熱して乾燥・脱臭処理した。脱臭乾燥物28kgを得た。発生した臭気性ガスは脱臭装置GTにより処理して大気へ放出した。脱臭装置には富士化水工業(株)製脱臭装置「バイオフォレスト」を用いた。
 次に、上記工程で得た脱臭汚泥の乾燥物28kgに、混合工程MIXにおいて、比表面積が80m/gの酸化鉄(ゲータイト)粉560g(2重量%)を添加してミックスマーラーで混合し、均一に混合した後、少量の水を加えながら撹拌混合して0.5mmΦに造粒した。この造粒物を成形工程MODにおいて、押出し成形機で10mm×10mm×100mmの棒状に成形した。
 上記工程で得られた成形物を乾燥後、加熱炭素化工程HT2において、アルミナ製の蓋付き角コウ鉢(120W×120D×50Hmm)を用いて、1コウ鉢に成形物を40個入れて、内容積が36リットルで内寸法(300W×600D×200Hmm)の静置型電気炉を用いて、コウ鉢を3段に重ねて、4列、2行で、合計24鉢を挿入し、炉内部を外気の流通を遮断した非酸化性雰囲気とし、350℃の温度で3時間加熱し、室温まで冷却して炉から取出した。この操作を6回行って全成形物を加熱炭素化した。黒色生成物は、酸化鉄含有再生燃料炭で、生成物の全重量は14.5kg、汚泥の炭素化率は98%であった。また、酸化鉄含有再生燃料炭は着火性が良好で、無煙無臭で燃焼し、燃焼性は良好であった。
 本発明は、有機性廃水の生物処理法において、発生する余剰汚泥の処理が大きな負担であったが、余剰汚泥に酸化鉄粉を添加して加熱炭素化することにより、余剰汚泥を燃焼性に優れた酸化鉄含有燃料炭に再生回収することができた。また、余剰汚泥処理の負荷を低減するために生物処理条件を減衰増殖相で実施するので生物処理装置が大型化していたが、再生燃料炭回収工程を生物処理工程に連結したことにより、生物処理条件を対数増殖相とし、BOD除去率を増大して生物処理装置を小型化することができたので、経済性にも優れた環境対応型システムとして容易に実施することができる。さらに、汚泥に添加する酸化鉄粉には酸化還元触媒作用があるので、汚泥を加熱炭素化して燃料炭に再生する際には、炭素化効率が良く高収率であり、また、生成した酸化鉄粉含有再生燃料炭を燃焼する際には、燃焼効率が良く完全燃焼するので一酸化炭素の発生を抑制して安全衛生上の効果を発揮する等の燃焼性に優れている。そのため、エネルギー資源の枯渇問題が叫ばれている今日的背景からも、本発明は、時代の要請に則して実施することができる。

Claims (6)

  1.  好気性微生物を用いる有機性廃水の処理方法であって、当該処理方法は、好気性微生物を用いて有機性廃水を生物処理する生物処理工程と、当該生物処理工程において生じ、増殖した余剰汚泥を燃料炭に再生する再生燃料炭回収工程とから成り、生物処理工程に再生燃料炭回収工程が連結されており、再生燃料炭回収工程において、増殖した余剰汚泥を酸化鉄粉を用いて燃料炭に再生することを特徴とする有機性廃水の処理方法。
  2.  前記再生燃料炭回収工程が、余剰汚泥を80~200℃の温度範囲で加熱乾燥して汚泥中の悪臭成分を分解除去する加熱分解工程と、当該加熱分解工程で得られた乾燥汚泥に0.5~5重量%の酸化鉄粉を添加混合する混合工程と、当該混合工程で得られた混合物を造粒及び/又は成形加工する成形工程と、当該成形工程で得られた成形加工物を非酸化性雰囲気中300~400℃の温度範囲で加熱して炭素化する加熱炭素化工程とから成る請求項1記載の有機性廃水の処理方法。
  3.  前記生物処理工程が、生物性汚泥濃度を、MLSS濃度で5000~10000mg/Lの対数増殖相とすることにより、BOD除去率を80%以上の排水とする第1のBOD除去工程と、第1のBOD除去工程で得られた排水中の生物性汚泥濃度を、MLSS濃度で1000~3000mg/Lの減衰増殖相とすることにより、原水に対してBOD除去率を98%以上の放流水とする第2のBOD除去工程との2段の工程からなる請求項1又は2記載の有機性廃水の処理方法
  4.  前記再生燃料炭回収工程の混合工程において、乾燥汚泥に添加する酸化鉄粉が、ヘマタイトα-Fe、マグヘマイトγ-Fe、マグネタイトFe、ゲータイトα-FeOOH、アカゲナイトβ-FeOOH、レピドクロサイトγ-FeOOHの何れか一種または二種以上である請求項2記載の有機性廃水の処理方法。
  5.  請求項1~4のいずれかの有機性廃水の処理方法によって得られた再生燃料炭。
  6.  再生燃料炭が酸化鉄を含有している請求項5記載の再生燃料炭。
PCT/JP2008/003845 2007-12-20 2008-12-18 有機性廃液の処理方法及び再生燃料炭 WO2009081555A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-329325 2007-12-20
JP2007329325A JP2009148710A (ja) 2007-12-20 2007-12-20 有機性廃液の処理方法及び再生燃料炭

Publications (1)

Publication Number Publication Date
WO2009081555A1 true WO2009081555A1 (ja) 2009-07-02

Family

ID=40800873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003845 WO2009081555A1 (ja) 2007-12-20 2008-12-18 有機性廃液の処理方法及び再生燃料炭

Country Status (2)

Country Link
JP (1) JP2009148710A (ja)
WO (1) WO2009081555A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671628A (zh) * 2015-02-09 2015-06-03 谭修光 一种利用太阳能热解碳化技术处理污泥的方法
CN112410047A (zh) * 2020-10-27 2021-02-26 山东省科学院新材料研究所 一种载铁污泥生物炭及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000660A (zh) * 2015-07-18 2015-10-28 东北电力大学 一种同步实现石化废水深度处理和剩余污泥减量的方法
CN106006950B (zh) * 2016-07-13 2019-04-23 沈阳大学 一种菌丝球促进好氧污泥颗粒化的方法
CN116162476B (zh) * 2023-03-27 2024-04-23 华中科技大学 一种利用污泥制备低灰有机炭的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147441A (ja) * 2001-11-09 2003-05-21 Nippon Steel Corp 余剰活性汚泥の有効利用方法
JP2007146130A (ja) * 2005-10-28 2007-06-14 Electric Power Dev Co Ltd 固形燃料の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147441A (ja) * 2001-11-09 2003-05-21 Nippon Steel Corp 余剰活性汚泥の有効利用方法
JP2007146130A (ja) * 2005-10-28 2007-06-14 Electric Power Dev Co Ltd 固形燃料の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671628A (zh) * 2015-02-09 2015-06-03 谭修光 一种利用太阳能热解碳化技术处理污泥的方法
CN112410047A (zh) * 2020-10-27 2021-02-26 山东省科学院新材料研究所 一种载铁污泥生物炭及其制备方法和应用

Also Published As

Publication number Publication date
JP2009148710A (ja) 2009-07-09

Similar Documents

Publication Publication Date Title
CN101274331B (zh) 生活垃圾处理方法
CN111437825B (zh) 一种铁锰生物炭催化剂及调理污泥脱水的应用
CN108927109B (zh) 一种磷石膏改性生物炭方法及其应用
CN110451743B (zh) 一种市政污水厂剩余污泥资源化方法
JP2007260538A (ja) 有機性廃棄物処理システム
CN102276237A (zh) 凹凸棒石基碳复合陶粒、其制备方法及其用途
CN113371941A (zh) 一种微生物炭载金属氨氮氧化臭氧催化剂在降解高浓度氨氮废水中的应用
WO2009081555A1 (ja) 有機性廃液の処理方法及び再生燃料炭
KR20130123276A (ko) 유기성 폐기물의 폐수처리와 퇴비화하는 방법
CN103492538A (zh) 一种利用畜粪或畜粪污泥的畜粪硬固燃料及其制备方法
CN106215878B (zh) 一种餐厨垃圾除臭过程的特种脱硫剂及除臭工艺
CN116332680A (zh) 餐厨垃圾沼渣堆肥-热解协同处置方法
CN115301236A (zh) 一种原位铁改性制备铁泥基催化活性颗粒生物炭的方法
CN111269729A (zh) 一种利用污泥和废轮胎共热解制备生物炭的方法及系统
KR100741696B1 (ko) 음식물 쓰레기를 이용한 유기질 비료 제조방법
KR20240032800A (ko) 수열탄화 반응을 이용하여 악취가 저감되는 고형연료의 제조방법 및 고형연료
KR102199095B1 (ko) 악취 저감 및 부피 감량을 위한 생활 폐기물의 처리 방법
CN115010237A (zh) 铁基生物炭耦合过碳酸盐联用去除河道中黑臭水体底泥的方法
KR101544519B1 (ko) 유기폐기물이 포함된 첨가제를 활용한 생활폐기물 고형연료 제조방법
CN211078842U (zh) 一种污泥资源化处理系统
JP4288714B2 (ja) 有機汚泥より肥料を製造する方法
KR20130123799A (ko) 유기성 폐기물을 처리하는 방법
KR100661624B1 (ko) 폐기물 처리방법 및 이를 통해 제조된 고형연료
JP2010084078A (ja) 固形燃料及びその製造方法
CN104891776A (zh) 一种适应剩余污泥进行焚烧处理工艺的污泥脱水复合调理剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864781

Country of ref document: EP

Kind code of ref document: A1