WO2009081515A1 - Process for production of hard polyurethane foam - Google Patents
Process for production of hard polyurethane foam Download PDFInfo
- Publication number
- WO2009081515A1 WO2009081515A1 PCT/JP2008/003043 JP2008003043W WO2009081515A1 WO 2009081515 A1 WO2009081515 A1 WO 2009081515A1 JP 2008003043 W JP2008003043 W JP 2008003043W WO 2009081515 A1 WO2009081515 A1 WO 2009081515A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- isocyanate
- polyurethane foam
- catalyst
- foam
- rigid polyurethane
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4205—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
- C08G18/4208—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
- C08G18/4211—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4829—Polyethers containing at least three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0025—Foam properties rigid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/005—< 50kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0083—Foam properties prepared using water as the sole blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2115/00—Oligomerisation
- C08G2115/02—Oligomerisation to isocyanurate groups
Definitions
- the present invention relates to a method for producing a rigid polyurethane foam. More specifically, the present invention relates to a method for producing a rigid polyurethane foam in which a rigid polyurethane foam excellent in flame retardancy having an oxygen index of 30 or more is obtained by using no polyol.
- Rigid urethane foam is particularly useful for interior and exterior use in buildings, because it provides properties such as heat insulation, lightness, strength, fire resistance, and adhesion to face materials. It is provided in the form of a sandwich panel for layer material applications.
- rigid urethane foam as a core layer material has poor fire resistance against fire, heat, etc., and has insufficient fire resistance as a sandwich panel due to defects such as high smoke generation.
- phenol foam having excellent fire resistance for the core material, but there is a problem in the corrosion resistance against metal, in which the adhesion between the metal plate and phenol foam is poor.
- Polyisocyanurate foams obtained by increasing the isocyanate index when reacting and foaming organic polyisocyanates and polyols and using an isocyanurate catalyst as a catalyst are heat insulating materials, lightweight structural materials, and sound absorbing materials. It is widely used as an isocyanurate ring in the polyurethane cross-linking, and exhibits high heat resistance, hydrolysis resistance, and dimensional stability. However, it emits a large amount of smoke during combustion at high temperature heating. Since there are few inspections and there are also few carbonization formation layers, since sufficient fire prevention performance is not obtained, the use is restricted.
- the oxygen index is still about 22 to 25 and the flame retardancy is insufficient.
- the object of the present invention is to provide a rigid polyurethane foam having good physical properties, a high oxygen index (30 or more), and capable of achieving a quasi-incombustible standard.
- the present invention comprises an organic polyisocyanate (A) and water (B) in an amount of 10 to 70% by mass of flame retardant (C), foam stabilizer (D), and isocyanurate reaction catalyst based on the total formulation.
- the catalyst (E) containing and in the presence or absence of a polyol of 5 mol% or less of the total isocyanate-reactive groups, the isocyanate index (total isocyanate)
- the present invention is the method for producing a rigid polyurethane foam, wherein the organic polyisocyanate (A) is polymeric MDI.
- the method for producing a rigid polyurethane foam of the present invention comprises organic polyisocyanate (A) and water (B), 10 to 70% by mass of flame retardant (C), foam stabilizer (D),
- the isocyanate reactive equivalent of water is calculated as 9 in the presence of the catalyst (E) containing the isocyanuration reaction catalyst and in the presence or absence of a polyol of 5 mol% or less of all isocyanate-reactive groups.
- E organic polyisocyanate
- C flame retardant
- D foam stabilizer
- the isocyanate reactive equivalent of water is calculated as 9 in the presence of the catalyst (E) containing the isocyanuration reaction catalyst and in the presence or absence of a polyol of 5 mol% or less of all isocyanate-reactive groups.
- the organic polyisocyanate (A) used in the present invention is most preferably polymeric MDI having one benzene ring per isocyanate group.
- This polymeric MDI is a mixture of organic isocyanate compounds with different degrees of condensation obtained by converting and isomerizing an amino group to an isocyanate group by phosgenation or the like of a condensation mixture (polyamine) obtained by the condensation reaction of aniline and formalin.
- the composition of the finally obtained polymeric MDI can be changed by changing the raw material composition ratio and reaction conditions during the condensation.
- the polymeric MDI used in the present invention has different numbers of reaction liquids after conversion to isocyanate groups, or removal of the solvent from the reaction liquids, or bottoms obtained by distilling and separating part of the MDI, reaction conditions and separation conditions, etc. It may be a mixture of seeds. Further, a part of the isocyanate group may be modified to biuret, allophanate, carbodiimide, oxazolidone, amide, imide or the like.
- Polymeric MDI has an average functional group number of 2.3 or more, and preferably has a functional group number of 2.3 to 3.1.
- the isocyanate content is 28 to 33% by mass, preferably 28.5 to 32.5% by mass.
- Polymeric MDI contains diphenylmethane diisocyanate (MDI) having two benzene rings and two isocyanate groups in one molecule, a so-called dinuclear component.
- MDI diphenylmethane diisocyanate
- the isomers constituting MDI are 2,2'-diphenylmethane diisocyanate (hereinafter abbreviated as 2,2'-MDI), 2,4'-diphenylmethane diisocyanate (hereinafter abbreviated as 2,4'-MDI), There are three types of 4,4'-diphenylmethane diisocyanate (hereinafter abbreviated as 4,4'-MDI).
- the isomer composition ratio of MDI is not particularly limited, but the 4,4′-MDI content is 70% by mass or more, preferably 90 to 99.9% by mass. Is more preferable because the strength of the foam obtained is improved.
- the MDI content of polymeric MDI and the isomer composition ratio of MDI can be determined from a calibration curve based on the area percentage of each peak obtained by GPC or gas chromatography (hereinafter abbreviated as GC).
- the polymeric MDI used in the present invention has a peak area ratio of 20 to 70% of a dinuclear component (having two benzene rings in one molecule) component in gel permeation chromatography (hereinafter abbreviated as GPC). Preferably, it is 25 to 65%.
- GPC gel permeation chromatography
- the peak area ratio of the binuclear body exceeds 70%, the strength of the obtained rigid polyurethane foam is lowered and the brittle body tends to become brittle.
- it is less than 20% the viscosity of the resulting polyisocyanate increases, and the filling property into the mold tends to decrease.
- a polyisocyanate other than the above-described polymeric MDI can be used as necessary.
- examples include MDI isocyanurate-modified products, uretonimine-modified products, allophanate-modified products, and the like.
- Aromatic diisocyanate Aromatic diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, 3-methyl-1,5-pentane diisocyanate, lysine diisocyanate and other aliphatic diisocyanates, isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, etc. And alicyclic diisocyanates.
- these polymeric materials urethanized products, ureaated products, allophanated products, biuretized products, carbodiimidized products, uretoniminate products, uretdioneized products, isocyanurated products, and the like, and a mixture of two or more of these may be mentioned.
- an active hydrogen group-containing compound when used as a modifying agent, the oxygen index is lowered, and therefore, a type that is not modified with an active hydrogen group-containing compound is preferable.
- Water (B) used in the present invention serves as a foaming agent and an isocyanate group reactive substance. That is, when water and an isocyanate group react, an amino group and carbon dioxide gas are generated. This carbon dioxide gas causes the reaction system to foam. The amino group is polymerized by reacting with an isocyanate group present in the reaction system to form a urea group.
- the isocyanate index (isocyanate group / active hydrogen ⁇ 100) is preferably 300 to 600, and most preferably 350 to 500. If the isocyanate index is too low, the amount of isocyanurate groups present in the resulting rigid polyurethane foam is reduced, resulting in insufficient flame retardancy. If it is too high, the resulting rigid polyurethane foam tends to be brittle.
- the present invention does not intentionally add a polyol as an isocyanate-reactive compound, but it does not prevent mixing from a catalyst solvent or a foam stabilizer having an isocyanate-reactive group.
- the number of moles of isocyanate-reactive groups entering should not exceed 5% of the number of moles of total isocyanate-reactive groups.
- the flame retardant (C) is essential. This is because only the isocyanurate group has insufficient flame retardancy.
- Examples of the flame retardant (C) used in the present invention include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, diethylphenyl phosphate , Dimethylphenyl phosphate, resorcinol diphenyl phosphate, tris (chloropropyl) phosphate, tris (dichloropropyl) phosphate, tris (tribromoneopentyl) phosphate, etc., ethyl phosphite, diethyl phosphite, etc. Phosphate compounds of phosphites, aluminum hydroxide, magnesium hydroxide, calcium hydroxide
- the flame retardant (C) is preferably a phosphoric ester-based room temperature liquid.
- the amount of (C) used is 10 to 70% by mass, preferably 15 to 50% by mass, based on the total formulation.
- foam stabilizer (D) used in the present invention examples include known silicone surfactants such as L-5340, L-5420, L-5421, L-5740, L-manufactured by Toray Dow Corning. 580, SZ-1142, SZ-1642, SZ-1605, SZ-1649, SZ-1675, SH-190, SH-192, SH-193, SF-2945F, SF-2940F, SF-2936F, SF-2937F, SRX-294A, F-305, F-341, F-343, F-374, F-345, F-348 made by Shin-Etsu Chemical, B-8404, B-8407, B-8465, B made by Goldschmidt -8444, B-8467, B-8462, B-8433, B-8466, B-8870, B-8450 and the like.
- the amount of (D) used is suitably 0.1 to 5% by weight based on the organic polyisocyanate (A).
- the catalyst (E) used in the present invention must contain an isocyanuration reaction catalyst.
- the isocyanuration reaction catalyst include triazines such as 2,4,6-tris (dimethylaminomethyl) phenol and 1,3,5-tris (dimethylaminopropyl) hexahydro-s-triazine, 2,4-bis ( Amine compounds such as dimethylaminomethyl) phenol, potassium 2-ethylhexanoate, sodium 2-ethylhexanoate, potassium acetate, sodium acetate, 2-ethylaziridine and the like, tertiary amine carboxylates, etc.
- Examples include quaternary ammonium compounds, diazabicycloundecene, lead compounds such as lead naphthenate and lead octylate, alcoholate compounds such as sodium methoxide, phenolate compounds such as potassium phenoxide, and the like.
- catalysts can be used in combination.
- a urethanization catalyst N-methylimidazole, trimethylaminoethylpiperazine, tripropylamine, tetramethylhexamethylenediamine, triethylenediamine, triethylamine, N-methylmorpholine, dimethylcyclohexylamine, dibutyltin diacetate, dibutyltin dilaurate, etc.
- metal complex compounds such as acetylacetone metal salts.
- the amount of the catalyst (E) used is suitably 0.01 to 15% by mass relative to the organic polyisocyanate (A).
- carbonate compounds such as ethylene carbonate and propylene carbonate can be used as a co-catalyst for promoting the reaction.
- additives can be used.
- the additive include plasticizers, fillers, colorants, organic or inorganic fillers, antioxidants, ultraviolet absorbers, plasticizers, pigments / dyes, antibacterial agents / antifungal agents, and the like.
- the specific steps in the method for producing the rigid polyurethane foam of the present invention include adding an organic polyisocyanate, water, a flame retardant, a foam stabilizer, and a catalyst to adjust the isocyanate index to 300.
- an organic polyisocyanate In the range of ⁇ 600, preferably 350 ⁇ 500, stirring and mixing at 10 ⁇ 40 ° C. and 2,000 ⁇ 8000 rpm for 3 ⁇ 10 seconds, and immediately pouring into a mold, or low pressure generally used in urethane foam production equipment
- foaming can be performed using a high-pressure foaming machine. In this case, if the mold or the free-foaming container is heated to 40 ° C. or higher, the foaming time can be shortened.
- the rigid polyurethane foam obtained in this way has a foam core density of 15 to 45 kg / m 3 in the method prescribed in JIS A9526. Is preferred.
- the core density (heart density) is less than 15 kg / m 3 , the strength is significantly reduced and shrinks.
- the core density exceeds 45 kg / m 3 the amount of combustion of the rigid polyurethane foam increases to increase the density and flame retardancy. Is significantly reduced. Accordingly, the core density is 15 to 45 kg / m 3, preferably 20 to 40 kg / m 3 .
- the rigid polyurethane foam obtained in this way is particularly excellent in flame retardancy, and can also be produced that satisfies the quasi-incombustible standard.
- the rigid polyurethane foam obtained by the present invention can be applied to fields such as building materials, household goods, leisure goods, such as refrigerators, freezers, cooler boxes, vending machines, showcases and the like.
- ⁇ Change rate of less than 1% ⁇ to ⁇ : Change rate of 1% to less than 2% ⁇ : Change rate of 2% to less than 5% ⁇ to ⁇ : Change rate of 5% to less than 10%
- ⁇ Compression of 10% or more Strength: For the sample [100 mm (width direction) ⁇ 60 mm (thickness direction) ⁇ 100 mm (foaming direction)], the compressive stress at 10% compression in the thickness direction was measured in accordance with JIS K 7220. ⁇ : Abnormality is not confirmed in appearance ⁇ : Depression or contraction is confirmed
- the rigid polyurethane foam according to the present invention exhibited excellent flame retardancy, and had good appearance and compressive strength.
- the oxygen index was as high as 30 or more.
- the comparative example by the conventional prescription was poor in moldability because the comparative example 2 was confirmed to be depressed, and in the comparative examples 1 and 3, the total calorific value was particularly large.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
[PROBLEMS] To provide a hard polyurethane foam which has good physical properties and a high oxygen index (30 or greater), and which meets the requirements of the standards for semi-non-combustible materials. [MEANS FOR SOLVING PROBLEMS] Disclosed is a process for producing a hard polyurethane foam, which comprises: subjecting an organic polyisocyanate (A) and water (B) to the urea-forming reaction and the isocyanurate-forming reaction in the presence of a flame-retardant agent (C) in an amount of 10 to 70 mass% relative to the total amount of the blend components, a foam-controlling agent (D) and a catalyst (E) comprising an isocyanurate-forming reaction catalyst, and in the presence or absence of a polyol in an amount of 5 mol% or less relative to the total amount of isocyanate reactive groups, under such conditions that the isocyanate index becomes 150 or greater as calculated by defining the isocyanate reactivity equivalence of water as 9, thereby expanding and curing the blended product.
Description
本発明は、硬質ポリウレタンフォームの製造方法に関する。更に詳細には、ポリオールを用いないことで、酸素指数が30以上という難燃性に優れた硬質ポリウレタンフォームが得られる該硬質ポリウレタンフォームの製造方法に関する。
The present invention relates to a method for producing a rigid polyurethane foam. More specifically, the present invention relates to a method for producing a rigid polyurethane foam in which a rigid polyurethane foam excellent in flame retardancy having an oxygen index of 30 or more is obtained by using no polyol.
建築物の内装用、外装用に、硬質ウレタンフォームが特に、断熱性、軽量性、強度、防火性、面材との接着性等の特性を付与するため、各種面材との複合化により芯層材用途にサンドイッチパネルの形状で提供されている。しかしながら、芯層材としての硬質ウレタンフォームは火や熱等に対する耐火性能が乏しく、また発煙性が高い等の欠点によりサンドイッチパネルとしての十分な耐火性能が得られていない。このことから芯材に耐火性能に優れたフェノールフォームを使用することが検討されているが、金属板とフェノールフォームとの密着性が悪い、金属に対する耐腐食性に問題がある。フェノールフォームを金属板等の面材と挟み込んでサンドイッチパネルを製造したとしてもパネルとしての強度が弱い。また強度を高めるため密度を上げると軽量性が損なわれる等の問題点が指摘されている。
Rigid urethane foam is particularly useful for interior and exterior use in buildings, because it provides properties such as heat insulation, lightness, strength, fire resistance, and adhesion to face materials. It is provided in the form of a sandwich panel for layer material applications. However, rigid urethane foam as a core layer material has poor fire resistance against fire, heat, etc., and has insufficient fire resistance as a sandwich panel due to defects such as high smoke generation. For this reason, it has been studied to use phenol foam having excellent fire resistance for the core material, but there is a problem in the corrosion resistance against metal, in which the adhesion between the metal plate and phenol foam is poor. Even when a sandwich panel is manufactured by sandwiching phenol foam with a face material such as a metal plate, the strength as a panel is weak. In addition, it has been pointed out that when the density is increased to increase the strength, the lightness is impaired.
有機ポリイソシアネートとポリオールを反応・発泡させる際、イソシアネートインデックスを高くして、触媒にイソシアヌレート化触媒を用いて得られるポリイソシアヌレートフォームは、その優れた特性によって断熱材、軽量構造材、吸音材として広く利用されており、ポリウレタン架橋中にイソシアヌレート環を導入することによって高耐熱性、耐加水分解性、更に寸法安定性を示すが、しかしながら高温加熱時における燃焼時に発煙量が多い、燃焼残査が少なく、炭化形成層も少ないため十分な防火性能が得られないために、その用途に制限を受けている。
Polyisocyanurate foams obtained by increasing the isocyanate index when reacting and foaming organic polyisocyanates and polyols and using an isocyanurate catalyst as a catalyst are heat insulating materials, lightweight structural materials, and sound absorbing materials. It is widely used as an isocyanurate ring in the polyurethane cross-linking, and exhibits high heat resistance, hydrolysis resistance, and dimensional stability. However, it emits a large amount of smoke during combustion at high temperature heating. Since there are few inspections and there are also few carbonization formation layers, since sufficient fire prevention performance is not obtained, the use is restricted.
この改善方法として例えば、ポリリン酸アンモニウム、リン酸エステル、パラニトロアニリンスルホン酸、水酸化アルミニウム、水酸化マグネシウム等を添加し、火炎に接触したとき、これらの添加物がフォームを炭化促進させる事によって発煙量を少なくする方法がある(特許文献1等)。また耐熱性の無機粉末を添加して燃焼性を抑制することにより発煙性を低下する方法として例えば、炭酸カルシウム、硫酸アンモニウム等を添加し、熱分解により発生した不活性ガス(CO2、NH3等)によってフォームから発生する可燃性ガスを希釈し、燃焼を抑制して燃焼性を低下させる方法等が試みられている(特許文献2等)。
As an improvement method, for example, when ammonium polyphosphate, phosphate ester, paranitroaniline sulfonic acid, aluminum hydroxide, magnesium hydroxide, etc. are added and contacted with a flame, these additives promote carbonization of the foam. There is a method for reducing the amount of smoke generated (Patent Document 1, etc.). Further, as a method for reducing smoke generation by adding refractory inorganic powder to suppress flammability, for example, calcium carbonate, ammonium sulfate or the like is added, and an inert gas (CO 2 , NH 3, etc.) generated by thermal decomposition is added. ), A method of diluting the combustible gas generated from the foam and suppressing combustion to reduce combustibility has been attempted (Patent Document 2 and the like).
しかしながら、このような方法であっても、まだ酸素指数が22~25程度であり、難燃性が不十分である。
However, even with such a method, the oxygen index is still about 22 to 25 and the flame retardancy is insufficient.
本発明は、物性が良好であり、酸素指数が高く(30以上)、準不燃規格をも達成できる硬質ポリウレタンフォームの提供を目的とする。
The object of the present invention is to provide a rigid polyurethane foam having good physical properties, a high oxygen index (30 or more), and capable of achieving a quasi-incombustible standard.
すなわち本発明は、有機ポリイソシアネート(A)と水(B)とを、全配合物に対して
10~70質量%の難燃剤(C)、整泡剤(D)、イソシアヌレート化反応触媒を含む触媒(E)の存在下、かつ、全イソシアネート反応性基の5モル%以下のポリオールの存在下又は不存在下で、水のイソシアネート反応性当量を9として計算したときのイソシアネートインデックス(全イソシアネート基/全イソシアネート反応性基のモル比の100倍)が150以上の条件下で、ウレア化反応及びイソシアヌレート化反応により発泡・硬化させることを特徴とする硬質ポリウレタンフォームの製造方法である。 That is, the present invention comprises an organic polyisocyanate (A) and water (B) in an amount of 10 to 70% by mass of flame retardant (C), foam stabilizer (D), and isocyanurate reaction catalyst based on the total formulation. In the presence of the catalyst (E) containing and in the presence or absence of a polyol of 5 mol% or less of the total isocyanate-reactive groups, the isocyanate index (total isocyanate) This is a method for producing a rigid polyurethane foam, which is foamed and cured by a urea-forming reaction and an isocyanurate-forming reaction under a condition that the molar ratio of groups / total isocyanate-reactive groups is 100 times or more.
10~70質量%の難燃剤(C)、整泡剤(D)、イソシアヌレート化反応触媒を含む触媒(E)の存在下、かつ、全イソシアネート反応性基の5モル%以下のポリオールの存在下又は不存在下で、水のイソシアネート反応性当量を9として計算したときのイソシアネートインデックス(全イソシアネート基/全イソシアネート反応性基のモル比の100倍)が150以上の条件下で、ウレア化反応及びイソシアヌレート化反応により発泡・硬化させることを特徴とする硬質ポリウレタンフォームの製造方法である。 That is, the present invention comprises an organic polyisocyanate (A) and water (B) in an amount of 10 to 70% by mass of flame retardant (C), foam stabilizer (D), and isocyanurate reaction catalyst based on the total formulation. In the presence of the catalyst (E) containing and in the presence or absence of a polyol of 5 mol% or less of the total isocyanate-reactive groups, the isocyanate index (total isocyanate) This is a method for producing a rigid polyurethane foam, which is foamed and cured by a urea-forming reaction and an isocyanurate-forming reaction under a condition that the molar ratio of groups / total isocyanate-reactive groups is 100 times or more.
また、本発明は、有機ポリイソシアネート(A)が、ポリメリックMDIであることを特徴とする、前記の硬質ポリウレタンフォームの製造方法である。
Also, the present invention is the method for producing a rigid polyurethane foam, wherein the organic polyisocyanate (A) is polymeric MDI.
本発明により、酸素指数が高く(30以上)、準不燃規格をも達成できる硬質ポリウレタンフォームの提供が可能となった。
According to the present invention, it has become possible to provide a rigid polyurethane foam having a high oxygen index (30 or more) and capable of achieving a quasi-incombustible standard.
本発明の硬質ポリウレタンフォームの製造方法は、有機ポリイソシアネート(A)と水(B)とを、全配合物に対して10~70質量%の難燃剤(C)、整泡剤(D)、イソシアヌレート化反応触媒を含む触媒(E)の存在下、かつ、全イソシアネート反応性基の5モル%以下のポリオールの存在下又は不存在下で、水のイソシアネート反応性当量を9として計算したときのイソシアネートインデックス(全イソシアネート基/全イソシアネート反応性基のモル比の100倍)が150以上の条件下で、ウレア化反応及びイソシアヌレート化反応により発泡・硬化させることを特徴とするものである。ポリオールを用いると、難燃性を付与させるイソシアヌレート基の生成が少なくなるため難燃性が不十分となりやすい。
The method for producing a rigid polyurethane foam of the present invention comprises organic polyisocyanate (A) and water (B), 10 to 70% by mass of flame retardant (C), foam stabilizer (D), When the isocyanate reactive equivalent of water is calculated as 9 in the presence of the catalyst (E) containing the isocyanuration reaction catalyst and in the presence or absence of a polyol of 5 mol% or less of all isocyanate-reactive groups. Is characterized by being foamed and cured by a urea-forming reaction and an isocyanurate-forming reaction under a condition where the isocyanate index (100 times the molar ratio of all isocyanate groups / all isocyanate-reactive groups) is 150 or more. When a polyol is used, the production of isocyanurate groups imparting flame retardancy is reduced, so that the flame retardancy tends to be insufficient.
得られる硬質ポリウレタンフォームにおける難燃性付与の観点から、本発明に用いる有機ポリイソシアネート(A)は、イソシアネート基1個当たり1個のベンゼン環を有するポリメリックMDIが最も好ましい。
From the viewpoint of imparting flame retardancy in the resulting rigid polyurethane foam, the organic polyisocyanate (A) used in the present invention is most preferably polymeric MDI having one benzene ring per isocyanate group.
このポリメリックMDIは、アニリンとホルマリンとの縮合反応によって得られる縮合混合物(ポリアミン)をホスゲン化等によりアミノ基をイソシアネート基に転化・異性化することによって得られる、縮合度の異なる有機イソシアネート化合物の混合物を意味し、縮合時の原料組成比や反応条件を変えることによって、最終的に得られるポリメリックMDIの組成を変えることができる。本発明に用いられるポリメリックMDIは、イソシアネート基への転化後の反応液、又は反応液から溶媒の除去、又は一部MDIを留出分離した缶出液、反応条件や分離条件等の異なった数種の混合物であってもよい。また、イソシアネート基の一部をビウレット、アロファネート、カルボジイミド、オキサゾリドン、アミド、イミド等に変性したものであってもよい。
This polymeric MDI is a mixture of organic isocyanate compounds with different degrees of condensation obtained by converting and isomerizing an amino group to an isocyanate group by phosgenation or the like of a condensation mixture (polyamine) obtained by the condensation reaction of aniline and formalin. The composition of the finally obtained polymeric MDI can be changed by changing the raw material composition ratio and reaction conditions during the condensation. The polymeric MDI used in the present invention has different numbers of reaction liquids after conversion to isocyanate groups, or removal of the solvent from the reaction liquids, or bottoms obtained by distilling and separating part of the MDI, reaction conditions and separation conditions, etc. It may be a mixture of seeds. Further, a part of the isocyanate group may be modified to biuret, allophanate, carbodiimide, oxazolidone, amide, imide or the like.
ポリメリックMDIの平均官能基数は2.3以上であり、好ましくは官能基数が2.3~3.1である。イソシアネート含量は、28~33質量%であり、好ましくは28.5~32.5質量%である。
Polymeric MDI has an average functional group number of 2.3 or more, and preferably has a functional group number of 2.3 to 3.1. The isocyanate content is 28 to 33% by mass, preferably 28.5 to 32.5% by mass.
ポリメリックMDI中には、1分子中にベンゼン環及びイソシアネート基を各2個有するジフェニルメタンジイソシアネート(MDI)、いわゆる二核体と言われている成分を含有する。MDIを構成する異性体は、2,2′-ジフェニルメタンジイソシアネート(以後、2,2′-MDIと略称する)、2,4′-ジフェニルメタンジイソシアネート(以後、2,4′-MDIと略称する)、4,4′-ジフェニルメタンジイソシアネート(以後、4,4′-MDIと略称する)の3種類である。MDIの異性体構成比は特に限定はないが、4,4′-MDI含有量が70質量%以上、好ましくは90~99.9質量%
であるほうが、得られるフォームの強度が向上するので好ましい。なお、ポリメリックMDIのMDI含有量や、MDIの異性体構成比は、GPCやガスクロマトグラフィー(以下、GCと略記する)によって得られる各ピークの面積百分率を基に検量線から求めることができる。 Polymeric MDI contains diphenylmethane diisocyanate (MDI) having two benzene rings and two isocyanate groups in one molecule, a so-called dinuclear component. The isomers constituting MDI are 2,2'-diphenylmethane diisocyanate (hereinafter abbreviated as 2,2'-MDI), 2,4'-diphenylmethane diisocyanate (hereinafter abbreviated as 2,4'-MDI), There are three types of 4,4'-diphenylmethane diisocyanate (hereinafter abbreviated as 4,4'-MDI). The isomer composition ratio of MDI is not particularly limited, but the 4,4′-MDI content is 70% by mass or more, preferably 90 to 99.9% by mass.
Is more preferable because the strength of the foam obtained is improved. The MDI content of polymeric MDI and the isomer composition ratio of MDI can be determined from a calibration curve based on the area percentage of each peak obtained by GPC or gas chromatography (hereinafter abbreviated as GC).
であるほうが、得られるフォームの強度が向上するので好ましい。なお、ポリメリックMDIのMDI含有量や、MDIの異性体構成比は、GPCやガスクロマトグラフィー(以下、GCと略記する)によって得られる各ピークの面積百分率を基に検量線から求めることができる。 Polymeric MDI contains diphenylmethane diisocyanate (MDI) having two benzene rings and two isocyanate groups in one molecule, a so-called dinuclear component. The isomers constituting MDI are 2,2'-diphenylmethane diisocyanate (hereinafter abbreviated as 2,2'-MDI), 2,4'-diphenylmethane diisocyanate (hereinafter abbreviated as 2,4'-MDI), There are three types of 4,4'-diphenylmethane diisocyanate (hereinafter abbreviated as 4,4'-MDI). The isomer composition ratio of MDI is not particularly limited, but the 4,4′-MDI content is 70% by mass or more, preferably 90 to 99.9% by mass.
Is more preferable because the strength of the foam obtained is improved. The MDI content of polymeric MDI and the isomer composition ratio of MDI can be determined from a calibration curve based on the area percentage of each peak obtained by GPC or gas chromatography (hereinafter abbreviated as GC).
本発明に用いられるポリメリックMDIは、ゲルパーミエーションクロマトグラフィー(以下、GPCと略記する)における二核体(1分子中にベンゼン環を2個有するもの)成分のピーク面積比が20~70%となるものであり、好ましくは25~65%となるものである。二核体のピーク面積比が70%を越えると、得られる硬質ポリウレタンフォームの強度が低下し、かつ、脆くなりやすくなる。一方20%未満の場合は、得られるポリイソシアネートの粘度が高くなり、金型への充填性が低下しやすい。
The polymeric MDI used in the present invention has a peak area ratio of 20 to 70% of a dinuclear component (having two benzene rings in one molecule) component in gel permeation chromatography (hereinafter abbreviated as GPC). Preferably, it is 25 to 65%. When the peak area ratio of the binuclear body exceeds 70%, the strength of the obtained rigid polyurethane foam is lowered and the brittle body tends to become brittle. On the other hand, when it is less than 20%, the viscosity of the resulting polyisocyanate increases, and the filling property into the mold tends to decrease.
本発明では必要に応じて、前述のポリメリックMDI以外のポリイソシアネートを用いることができる。例えば、MDIのイソシアヌレート変性物、ウレトンイミン変性物、アロファネート変性物等が挙げられる。また、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシレン-1,4-ジイソシアネート、キシレン-1,3-ジイソシアネート、テトラメチルキシレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート等の芳香族ジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、3-メチル-1,5-ペンタンジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート等の脂環族ジイソシアネート等が挙げられる。また、これらのポリメリック体やウレタン化物、ウレア化物、アロファネート化物、ビウレット化物、カルボジイミド化物、ウレトンイミン化物、ウレトジオン化物、イソシアヌレート化物等が挙げられ、更にこれらの2種以上の混合物が挙げられる。但し、活性水素基含有化合物を変成剤に用いると酸素指数が低下するので、活性水素基含有化合物で変成しないタイプのものが好ましい。
In the present invention, a polyisocyanate other than the above-described polymeric MDI can be used as necessary. Examples include MDI isocyanurate-modified products, uretonimine-modified products, allophanate-modified products, and the like. 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylene-1,4-diisocyanate, xylene-1,3-diisocyanate, tetramethylxylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, etc. Aromatic diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, 3-methyl-1,5-pentane diisocyanate, lysine diisocyanate and other aliphatic diisocyanates, isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, etc. And alicyclic diisocyanates. In addition, these polymeric materials, urethanized products, ureaated products, allophanated products, biuretized products, carbodiimidized products, uretoniminate products, uretdioneized products, isocyanurated products, and the like, and a mixture of two or more of these may be mentioned. However, when an active hydrogen group-containing compound is used as a modifying agent, the oxygen index is lowered, and therefore, a type that is not modified with an active hydrogen group-containing compound is preferable.
本発明に用いられる水(B)は、発泡剤とイソシアネート基反応性物質の役割を果たすものである。すなわち、水とイソシアネート基が反応すると、アミノ基と炭酸ガスが生成する。この炭酸ガスは、反応系を発泡させるものである。アミノ基は、反応系内に存在するイソシアネート基と反応してウレア基となることで、高分子化を果たすことになる。
Water (B) used in the present invention serves as a foaming agent and an isocyanate group reactive substance. That is, when water and an isocyanate group react, an amino group and carbon dioxide gas are generated. This carbon dioxide gas causes the reaction system to foam. The amino group is polymerized by reacting with an isocyanate group present in the reaction system to form a urea group.
反応の際のイソシアネートインデックス(イソシアネート基/活性水素×100)は、300~600が好ましく、特に350~500が最も好ましい。イソシアネートインデックスが低すぎる場合は、得られる硬質ポリウレタンフォーム中に存在するイソシアヌレート基の量が少なくなるため、難燃性が不十分となる。高すぎる場合は、得られる硬質ポリウレタンフォームが脆くなりやすい。
In the reaction, the isocyanate index (isocyanate group / active hydrogen × 100) is preferably 300 to 600, and most preferably 350 to 500. If the isocyanate index is too low, the amount of isocyanurate groups present in the resulting rigid polyurethane foam is reduced, resulting in insufficient flame retardancy. If it is too high, the resulting rigid polyurethane foam tends to be brittle.
本発明は、イソシアネート反応性化合物としてのポリオールを意図して添加はしないが、触媒の溶剤あるいはイソシアネート反応性基を有する整泡剤から混入することを妨げるものではない。混入してくるイソシアネート反応性基のモル数は、全イソシアネート反応性基のモル数の5%を超えてはならない。
The present invention does not intentionally add a polyol as an isocyanate-reactive compound, but it does not prevent mixing from a catalyst solvent or a foam stabilizer having an isocyanate-reactive group. The number of moles of isocyanate-reactive groups entering should not exceed 5% of the number of moles of total isocyanate-reactive groups.
本発明においては、難燃剤(C)が必須となる。イソシアヌレート基だけでは、難燃性が不十分であるためである。本発明に用いられる難燃剤(C)としては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、ジエチルフェニルホスフォネート、ジメチルフェニルホスフォネート、レゾルシノールジフェニルホスフェート、トリス(クロロプロピル
)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等のリン酸エステル類、亜リン酸エチル、亜リン酸ジエチル等の亜リン酸エステル類のリン酸エステル系化合物、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、メラミン樹脂、クレー、三酸化アンチモン、亜鉛華、炭酸カルシウム等が挙げられる。 In the present invention, the flame retardant (C) is essential. This is because only the isocyanurate group has insufficient flame retardancy. Examples of the flame retardant (C) used in the present invention include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, diethylphenyl phosphate , Dimethylphenyl phosphate, resorcinol diphenyl phosphate, tris (chloropropyl) phosphate, tris (dichloropropyl) phosphate, tris (tribromoneopentyl) phosphate, etc., ethyl phosphite, diethyl phosphite, etc. Phosphate compounds of phosphites, aluminum hydroxide, magnesium hydroxide, calcium hydroxide and other metal hydroxides, melamine resins, Chromatography, antimony trioxide, zinc oxide, calcium carbonate, and the like.
)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等のリン酸エステル類、亜リン酸エチル、亜リン酸ジエチル等の亜リン酸エステル類のリン酸エステル系化合物、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、メラミン樹脂、クレー、三酸化アンチモン、亜鉛華、炭酸カルシウム等が挙げられる。 In the present invention, the flame retardant (C) is essential. This is because only the isocyanurate group has insufficient flame retardancy. Examples of the flame retardant (C) used in the present invention include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, diethylphenyl phosphate , Dimethylphenyl phosphate, resorcinol diphenyl phosphate, tris (chloropropyl) phosphate, tris (dichloropropyl) phosphate, tris (tribromoneopentyl) phosphate, etc., ethyl phosphite, diethyl phosphite, etc. Phosphate compounds of phosphites, aluminum hydroxide, magnesium hydroxide, calcium hydroxide and other metal hydroxides, melamine resins, Chromatography, antimony trioxide, zinc oxide, calcium carbonate, and the like.
混合の容易さから難燃剤(C)は、リン酸エステル系の常温液状のものが好ましい。(C)の使用量は、全配合物に対する含有量で、10~70質量%であり、好ましくは15~50質量%である。
From the viewpoint of ease of mixing, the flame retardant (C) is preferably a phosphoric ester-based room temperature liquid. The amount of (C) used is 10 to 70% by mass, preferably 15 to 50% by mass, based on the total formulation.
本発明に用いられる整泡剤(D)としては、公知のシリコーン系界面活性剤が挙げられ、例えば東レ・ダウコーニング製のL-5340、L-5420、L-5421、L-5740、L-580、SZ-1142、SZ-1642、SZ-1605、SZ-1649、SZ-1675、SH-190、SH-192、SH-193、SF-2945F、SF-2940F、SF-2936F、SF-2938F、SRX-294A、信越化学工業製のF-305、F-341、F-343、F-374、F-345、F-348、ゴールドシュミット製のB-8404、B-8407、B-8465、B-8444、B-8467、B-8462、B-8433、B-8466、B-8870、B-8450等が挙げられる。(D)の使用量は、有機ポリイソシアネート(A)に対して、0.1~5質量%となる量が適当である。
Examples of the foam stabilizer (D) used in the present invention include known silicone surfactants such as L-5340, L-5420, L-5421, L-5740, L-manufactured by Toray Dow Corning. 580, SZ-1142, SZ-1642, SZ-1605, SZ-1649, SZ-1675, SH-190, SH-192, SH-193, SF-2945F, SF-2940F, SF-2936F, SF-2937F, SRX-294A, F-305, F-341, F-343, F-374, F-345, F-348 made by Shin-Etsu Chemical, B-8404, B-8407, B-8465, B made by Goldschmidt -8444, B-8467, B-8462, B-8433, B-8466, B-8870, B-8450 and the like. The amount of (D) used is suitably 0.1 to 5% by weight based on the organic polyisocyanate (A).
本発明に用いられる触媒(E)は、イソシアヌレート化反応触媒を含むことが必須となる。イソシアヌレート化反応触媒としては、2,4,6-トリス(ジメチルアミノメチル)フェノール、1,3,5-トリス(ジメチルアミノプロピル)ヘキサヒドロ-s-トリアジン等のトリアジン類、2,4-ビス(ジメチルアミノメチル)フェノール、2-エチルヘキサン酸カリウム、2-エチルヘキサン酸ナトリウム、酢酸カリウム、酢酸ナトリウム、2-エチルアジリジン等のアジリジン類等のアミン系化合物、3級アミンのカルボン酸塩等の第四級アンモニウム化合物、ジアザビシクロウンデセン、ナフテン酸鉛、オクチル酸鉛等の鉛化合物、ナトリウムメトキシド等のアルコラート化合物、カリウムフェノキシド等のフェノラート化合物等を挙げることができる。
The catalyst (E) used in the present invention must contain an isocyanuration reaction catalyst. Examples of the isocyanuration reaction catalyst include triazines such as 2,4,6-tris (dimethylaminomethyl) phenol and 1,3,5-tris (dimethylaminopropyl) hexahydro-s-triazine, 2,4-bis ( Amine compounds such as dimethylaminomethyl) phenol, potassium 2-ethylhexanoate, sodium 2-ethylhexanoate, potassium acetate, sodium acetate, 2-ethylaziridine and the like, tertiary amine carboxylates, etc. Examples include quaternary ammonium compounds, diazabicycloundecene, lead compounds such as lead naphthenate and lead octylate, alcoholate compounds such as sodium methoxide, phenolate compounds such as potassium phenoxide, and the like.
また、その他触媒を併用することができる。例えば、ウレタン化触媒として、N-メチルイミダゾール、トリメチルアミノエチルピペラジン、トリプロピルアミン、テトラメチルヘキサメチレンジアミン、トリエチレンジアミン、トリエチルアミン、N-メチルモルホリン、ジメチルシクロヘキシルアミン、ジブチル錫ジアセテート、ジブチル錫ジラウレート等の錫化合物、アセチルアセトン金属塩等の金属錯化合物等が挙げられる。これらの触媒は、1種又は2種以上併用して用いることができる。
Also, other catalysts can be used in combination. For example, as a urethanization catalyst, N-methylimidazole, trimethylaminoethylpiperazine, tripropylamine, tetramethylhexamethylenediamine, triethylenediamine, triethylamine, N-methylmorpholine, dimethylcyclohexylamine, dibutyltin diacetate, dibutyltin dilaurate, etc. And metal complex compounds such as acetylacetone metal salts. These catalysts can be used alone or in combination of two or more.
触媒(E)の使用量は、有機ポリイソシアネート(A)に対して、0.01~15質量%となる量が適当である。
The amount of the catalyst (E) used is suitably 0.01 to 15% by mass relative to the organic polyisocyanate (A).
更に、反応促進のための助触媒として、例えばエチレンカーボネート、プロピレンカーボネート等のカーボネート化合物を使用することができる。
Furthermore, carbonate compounds such as ethylene carbonate and propylene carbonate can be used as a co-catalyst for promoting the reaction.
本発明ではその他の添加剤を用いることができる。この添加剤としては、可塑剤、充填剤、着色剤、有機又は無機の充填剤、酸化防止剤、紫外線吸収剤、可塑剤、顔料・染料、抗菌剤・抗カビ剤等が挙げられる。
In the present invention, other additives can be used. Examples of the additive include plasticizers, fillers, colorants, organic or inorganic fillers, antioxidants, ultraviolet absorbers, plasticizers, pigments / dyes, antibacterial agents / antifungal agents, and the like.
本発明の硬質ポリウレタンフォームの製造方法における具体的な工程は、有機ポリイソシアネート、水、難燃剤、整泡剤、触媒を加えて、イソシアネートインデックスを300
~600、好ましくは350~500の範囲で、10~40℃、2000~8000rpmで3~10秒間攪拌、混合して直ちに成形型に流し込む方法、あるいは、一般にウレタンフォーム製造設備で使用されている低圧、又は高圧発泡機を使用して発泡することもできる。この場合、成形型又は自由発泡容器は、40℃以上に加温しておくと発泡時間を短縮できる。 The specific steps in the method for producing the rigid polyurethane foam of the present invention include adding an organic polyisocyanate, water, a flame retardant, a foam stabilizer, and a catalyst to adjust the isocyanate index to 300.
In the range of ˜600, preferably 350˜500, stirring and mixing at 10˜40 ° C. and 2,000˜8000 rpm for 3˜10 seconds, and immediately pouring into a mold, or low pressure generally used in urethane foam production equipment Alternatively, foaming can be performed using a high-pressure foaming machine. In this case, if the mold or the free-foaming container is heated to 40 ° C. or higher, the foaming time can be shortened.
~600、好ましくは350~500の範囲で、10~40℃、2000~8000rpmで3~10秒間攪拌、混合して直ちに成形型に流し込む方法、あるいは、一般にウレタンフォーム製造設備で使用されている低圧、又は高圧発泡機を使用して発泡することもできる。この場合、成形型又は自由発泡容器は、40℃以上に加温しておくと発泡時間を短縮できる。 The specific steps in the method for producing the rigid polyurethane foam of the present invention include adding an organic polyisocyanate, water, a flame retardant, a foam stabilizer, and a catalyst to adjust the isocyanate index to 300.
In the range of ˜600, preferably 350˜500, stirring and mixing at 10˜40 ° C. and 2,000˜8000 rpm for 3˜10 seconds, and immediately pouring into a mold, or low pressure generally used in urethane foam production equipment Alternatively, foaming can be performed using a high-pressure foaming machine. In this case, if the mold or the free-foaming container is heated to 40 ° C. or higher, the foaming time can be shortened.
このようにして得られた硬質ポリウレタンフォーム、特に成型された層厚30~50mmの硬質ポリウレタンフォームは、フォームのコア密度が、JIS A9526に規定される方法において、15~45kg/m3 であることが好ましい。コア密度(心密度)が15kg/m3 未満であると強度が著しく低下して収縮し、45kg/m3 を超えると、高密度化のために硬質ポリウレタンフォームの燃焼量が増えて難燃性が著しく低下する。従って、コア密度は15~45kg/m3 好ましくは20~40kg/m3 である。
The rigid polyurethane foam obtained in this way, particularly the molded rigid polyurethane foam having a layer thickness of 30 to 50 mm, has a foam core density of 15 to 45 kg / m 3 in the method prescribed in JIS A9526. Is preferred. When the core density (heart density) is less than 15 kg / m 3 , the strength is significantly reduced and shrinks. When the core density exceeds 45 kg / m 3 , the amount of combustion of the rigid polyurethane foam increases to increase the density and flame retardancy. Is significantly reduced. Accordingly, the core density is 15 to 45 kg / m 3, preferably 20 to 40 kg / m 3 .
このようにして得られる硬質ポリウレタンフォームは、特に難燃性に優れたものであり、準不燃規格をも満たすものも製造可能である。本発明によって得られた硬質ポリウレタンフォームは建築材料、家庭用品類、レジャー用品類等の分野、例えば冷蔵庫、冷凍庫、クーラーボックス、自動販売機、ショーケース等に応用することができる。
The rigid polyurethane foam obtained in this way is particularly excellent in flame retardancy, and can also be produced that satisfies the quasi-incombustible standard. The rigid polyurethane foam obtained by the present invention can be applied to fields such as building materials, household goods, leisure goods, such as refrigerators, freezers, cooler boxes, vending machines, showcases and the like.
以下、本発明を実施例により更に詳しく説明するが、本発明はこれらに限定されるものではない。なお、実施例及び比較例中において、「%」は「質量%」を示す。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In Examples and Comparative Examples, “%” indicates “mass%”.
〔硬質ポリウレタンフォームの製造・評価〕
実施例1~5、比較例1~2
表1に示す原料を用いて、硬質ポリウレタンフォームを製造した。
ラボミキサーにより攪拌混合されて得られた発泡性の混合物を、幅=500mm、厚さ=60mm、深さ=500mmの内部寸法を有する天面開放型のモールドに上方から注入して、発泡・硬化させた。注型を開始してから10分間経過後に脱型し、500mm(幅方向)×60mm(厚み方向)×500mm(組成物の流れ方向=発泡方向)の寸法を有する成形品を得た。 [Production and evaluation of rigid polyurethane foam]
Examples 1-5, Comparative Examples 1-2
A rigid polyurethane foam was produced using the raw materials shown in Table 1.
The foamable mixture obtained by stirring and mixing with a lab mixer is injected from above into a top open mold having internal dimensions of width = 500 mm, thickness = 60 mm, depth = 500 mm, and foaming and curing. I let you. The mold was removed after 10 minutes from the start of casting to obtain a molded product having dimensions of 500 mm (width direction) × 60 mm (thickness direction) × 500 mm (composition flow direction = foaming direction).
実施例1~5、比較例1~2
表1に示す原料を用いて、硬質ポリウレタンフォームを製造した。
ラボミキサーにより攪拌混合されて得られた発泡性の混合物を、幅=500mm、厚さ=60mm、深さ=500mmの内部寸法を有する天面開放型のモールドに上方から注入して、発泡・硬化させた。注型を開始してから10分間経過後に脱型し、500mm(幅方向)×60mm(厚み方向)×500mm(組成物の流れ方向=発泡方向)の寸法を有する成形品を得た。 [Production and evaluation of rigid polyurethane foam]
Examples 1-5, Comparative Examples 1-2
A rigid polyurethane foam was produced using the raw materials shown in Table 1.
The foamable mixture obtained by stirring and mixing with a lab mixer is injected from above into a top open mold having internal dimensions of width = 500 mm, thickness = 60 mm, depth = 500 mm, and foaming and curing. I let you. The mold was removed after 10 minutes from the start of casting to obtain a molded product having dimensions of 500 mm (width direction) × 60 mm (thickness direction) × 500 mm (composition flow direction = foaming direction).
表1において
MR-200 :ミリオネート(登録商標)MR-200
ポリメリックMDI
日本ポリウレタン工業(株)製
イソシアネート含量=31.0%
二核体含有量=41%
二核体中の4,4′-MDI含有量=99%
TCPP :トリス(β-クロロプロピル)ホスフェート
CR530 :含ハロゲン縮合リン酸エステル
CR733S :非ハロゲン縮合リン酸エステル
※難燃剤は全て大八化学工業(株)製
B-8462 :シリコン整泡剤
ゴールドシュミット製
P15 :商品名DABCO(登録商標)P15
三級アミン触媒
エアープロダクツ製
TR20 :商品名TOYOCAT(登録商標)-TR20
三級アミン触媒
東ソー(株)製
DT :TOYOCAT-DT
ペンタメチルジエチレントリアミン
三級アミン触媒
東ソー(株)製
NMM :N-メチルモルフォリン
ポリオール-1:ジエチレングリコール/フタル酸系ポリエステルポリオール
水酸基価=210mgKOH/g
ポリオール-2:ポリ(オキシプロピレン)ポリオール
開始剤=シュークローズとグリセリン混合物
水酸基価=375mgKOH/g In Table 1, MR-200: Millionate (registered trademark) MR-200
Polymeric MDI
Nippon Polyurethane Industry Co., Ltd. Isocyanate content = 31.0%
Dinuclear content = 41%
4,4'-MDI content in dinuclear body = 99%
TCPP: Tris (β-chloropropyl) phosphate CR530: Halogen-containing condensed phosphate ester CR733S: Non-halogen condensed phosphate ester * All flame retardants are manufactured by Daihachi Chemical Industry Co., Ltd. B-8462: Silicon foam stabilizer Gold Schmidt P15: Product name DABCO (registered trademark) P15
Tertiary amine catalyst TR20 manufactured by Air Products: Trade name TOYOCAT (registered trademark) -TR20
Tertiary amine catalyst DT manufactured by Tosoh Corporation: TOYOCAT-DT
Pentamethyldiethylenetriamine Tertiary amine catalyst Tosoh Co., Ltd. NMM: N-methylmorpholine polyol-1: Diethylene glycol / phthalic acid polyester polyol Hydroxyl value = 210 mgKOH / g
Polyol-2: Poly (oxypropylene) polyol Initiator = Shoeclose and glycerin mixture Hydroxyl value = 375 mgKOH / g
MR-200 :ミリオネート(登録商標)MR-200
ポリメリックMDI
日本ポリウレタン工業(株)製
イソシアネート含量=31.0%
二核体含有量=41%
二核体中の4,4′-MDI含有量=99%
TCPP :トリス(β-クロロプロピル)ホスフェート
CR530 :含ハロゲン縮合リン酸エステル
CR733S :非ハロゲン縮合リン酸エステル
※難燃剤は全て大八化学工業(株)製
B-8462 :シリコン整泡剤
ゴールドシュミット製
P15 :商品名DABCO(登録商標)P15
三級アミン触媒
エアープロダクツ製
TR20 :商品名TOYOCAT(登録商標)-TR20
三級アミン触媒
東ソー(株)製
DT :TOYOCAT-DT
ペンタメチルジエチレントリアミン
三級アミン触媒
東ソー(株)製
NMM :N-メチルモルフォリン
ポリオール-1:ジエチレングリコール/フタル酸系ポリエステルポリオール
水酸基価=210mgKOH/g
ポリオール-2:ポリ(オキシプロピレン)ポリオール
開始剤=シュークローズとグリセリン混合物
水酸基価=375mgKOH/g In Table 1, MR-200: Millionate (registered trademark) MR-200
Polymeric MDI
Nippon Polyurethane Industry Co., Ltd. Isocyanate content = 31.0%
Dinuclear content = 41%
4,4'-MDI content in dinuclear body = 99%
TCPP: Tris (β-chloropropyl) phosphate CR530: Halogen-containing condensed phosphate ester CR733S: Non-halogen condensed phosphate ester * All flame retardants are manufactured by Daihachi Chemical Industry Co., Ltd. B-8462: Silicon foam stabilizer Gold Schmidt P15: Product name DABCO (registered trademark) P15
Tertiary amine catalyst TR20 manufactured by Air Products: Trade name TOYOCAT (registered trademark) -TR20
Tertiary amine catalyst DT manufactured by Tosoh Corporation: TOYOCAT-DT
Pentamethyldiethylenetriamine Tertiary amine catalyst Tosoh Co., Ltd. NMM: N-methylmorpholine polyol-1: Diethylene glycol / phthalic acid polyester polyol Hydroxyl value = 210 mgKOH / g
Polyol-2: Poly (oxypropylene) polyol Initiator = Shoeclose and glycerin mixture Hydroxyl value = 375 mgKOH / g
〔評価方法〕
発泡状態:
目視観察にて評価
○:外観に異常が確認されない
×:陥没や収縮が確認される
酸素指数:
JIS K7201に準拠
コーンカロリー試験:
ISO5660に準拠
コーンカロリメーター(アトラス社製「CONE2A」)
寸法安定性:
試料〔100mm(幅方向)×60mm(厚み方向)×100mm(発泡方向)〕を、温度25℃×湿度50RH%の雰囲気下に48時間放置し、放置前後の寸法(発泡方向・幅方向・厚み方向)からその変化率を測定した。
○ :変化率1%未満
○~△:変化率1%以上~2%未満
△ :変化率2%以上~5%未満
△~×:変化率5%以上~10%未満
× :10%以上
圧縮強度:
試料〔100mm(幅方向)×60mm(厚み方向)×100mm(発泡方向)〕について、JIS K 7220に準拠して、厚み方向における10%圧縮時の圧縮応力を測定した。
○:外観に異常が確認されない
×:陥没や収縮が確認される 〔Evaluation methods〕
Foamed state:
Evaluation by visual observation ○: Abnormality is not confirmed in appearance ×: Oxygen index in which depression or shrinkage is confirmed:
Corn calorie test according to JIS K7201:
Conforms to ISO 5660 Cone calorimeter ("CONE2A" manufactured by Atlas)
Dimensional stability:
A sample [100 mm (width direction) × 60 mm (thickness direction) × 100 mm (foaming direction)] is left in an atmosphere of temperature 25 ° C. × humidity 50 RH% for 48 hours, and dimensions before and after being left (foaming direction, width direction, thickness) The change rate was measured from (direction).
○: Change rate of less than 1% ○ to △: Change rate of 1% to less than 2% △: Change rate of 2% to less than 5% △ to ×: Change rate of 5% to less than 10% ×: Compression of 10% or more Strength:
For the sample [100 mm (width direction) × 60 mm (thickness direction) × 100 mm (foaming direction)], the compressive stress at 10% compression in the thickness direction was measured in accordance with JIS K 7220.
○: Abnormality is not confirmed in appearance ×: Depression or contraction is confirmed
発泡状態:
目視観察にて評価
○:外観に異常が確認されない
×:陥没や収縮が確認される
酸素指数:
JIS K7201に準拠
コーンカロリー試験:
ISO5660に準拠
コーンカロリメーター(アトラス社製「CONE2A」)
寸法安定性:
試料〔100mm(幅方向)×60mm(厚み方向)×100mm(発泡方向)〕を、温度25℃×湿度50RH%の雰囲気下に48時間放置し、放置前後の寸法(発泡方向・幅方向・厚み方向)からその変化率を測定した。
○ :変化率1%未満
○~△:変化率1%以上~2%未満
△ :変化率2%以上~5%未満
△~×:変化率5%以上~10%未満
× :10%以上
圧縮強度:
試料〔100mm(幅方向)×60mm(厚み方向)×100mm(発泡方向)〕について、JIS K 7220に準拠して、厚み方向における10%圧縮時の圧縮応力を測定した。
○:外観に異常が確認されない
×:陥没や収縮が確認される 〔Evaluation methods〕
Foamed state:
Evaluation by visual observation ○: Abnormality is not confirmed in appearance ×: Oxygen index in which depression or shrinkage is confirmed:
Corn calorie test according to JIS K7201:
Conforms to ISO 5660 Cone calorimeter ("CONE2A" manufactured by Atlas)
Dimensional stability:
A sample [100 mm (width direction) × 60 mm (thickness direction) × 100 mm (foaming direction)] is left in an atmosphere of temperature 25 ° C. × humidity 50 RH% for 48 hours, and dimensions before and after being left (foaming direction, width direction, thickness) The change rate was measured from (direction).
○: Change rate of less than 1% ○ to △: Change rate of 1% to less than 2% △: Change rate of 2% to less than 5% △ to ×: Change rate of 5% to less than 10% ×: Compression of 10% or more Strength:
For the sample [100 mm (width direction) × 60 mm (thickness direction) × 100 mm (foaming direction)], the compressive stress at 10% compression in the thickness direction was measured in accordance with JIS K 7220.
○: Abnormality is not confirmed in appearance ×: Depression or contraction is confirmed
表1より、本発明による硬質ポリウレタンフォームは、優れた難燃性を示し、また外観や圧縮強度も良好なものであった。特に酸素指数が30以上と非常に高いものであった。一方、従来処方による比較例は、比較例2は陥没が確認されたため成形性が悪く、比較例1、3では、特に総発熱量が大きいものであった。
From Table 1, the rigid polyurethane foam according to the present invention exhibited excellent flame retardancy, and had good appearance and compressive strength. In particular, the oxygen index was as high as 30 or more. On the other hand, the comparative example by the conventional prescription was poor in moldability because the comparative example 2 was confirmed to be depressed, and in the comparative examples 1 and 3, the total calorific value was particularly large.
Claims (2)
- 有機ポリイソシアネート(A)と水(B)とを、全配合物に対して10~70質量%の難燃剤(C)、整泡剤(D)、イソシアヌレート化反応触媒を含む触媒(E)の存在下、かつ、全イソシアネート反応性基の5モル%以下のポリオールの存在下又は不存在下で、水のイソシアネート反応性当量を9として計算したときのイソシアネートインデックス(全イソシアネート基/全イソシアネート反応性基のモル比の100倍)が150以上の条件下で、ウレア化反応及びイソシアヌレート化反応により発泡・硬化させることを特徴とする硬質ポリウレタンフォームの製造方法。 A catalyst (E) comprising an organic polyisocyanate (A) and water (B) in an amount of 10 to 70% by mass of a flame retardant (C), a foam stabilizer (D) and an isocyanuration reaction catalyst based on the total formulation. And in the presence or absence of a polyol of 5 mol% or less of all isocyanate-reactive groups, the isocyanate index (total isocyanate groups / total isocyanate reaction) when the isocyanate-reactive equivalent of water is calculated as 9 A method for producing a rigid polyurethane foam, comprising foaming and curing by a urea reaction and an isocyanurate reaction under a condition where the molar ratio of the functional group is 100 times or more.
- 有機ポリイソシアネート(A)が、ポリメリックMDIであることを特徴とする、請求項1記載の硬質ポリウレタンフォームの製造方法。 The method for producing a rigid polyurethane foam according to claim 1, wherein the organic polyisocyanate (A) is polymeric MDI.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008801192783A CN101889038B (en) | 2007-12-20 | 2008-10-27 | Process for production of hard polyurethane foam |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007-328557 | 2007-12-20 | ||
JP2007328557A JP5294137B2 (en) | 2007-12-20 | 2007-12-20 | Method for producing rigid polyurethane foam |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009081515A1 true WO2009081515A1 (en) | 2009-07-02 |
Family
ID=40800834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/003043 WO2009081515A1 (en) | 2007-12-20 | 2008-10-27 | Process for production of hard polyurethane foam |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5294137B2 (en) |
CN (1) | CN101889038B (en) |
WO (1) | WO2009081515A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013044474A1 (en) * | 2011-09-29 | 2013-04-04 | Dow Global Technologies Llc | Use of trialkyl phosphate as a smoke suppressant in polyurethane foam |
CN103742186B (en) * | 2014-01-21 | 2016-08-17 | 山东科技大学 | A kind of gel foam for coal bed fire hazard treating |
WO2016017797A1 (en) * | 2014-08-01 | 2016-02-04 | 積水化学工業株式会社 | Flame-retardant polyurethane resin composition |
JP7340345B2 (en) * | 2019-03-26 | 2023-09-07 | フジモリ産業株式会社 | air conditioning components |
WO2021255958A1 (en) * | 2020-06-17 | 2021-12-23 | 旭有機材株式会社 | Foam composition for flame-retardant polyisocyanurate foam and method for producing flame-retardant polyisocyanurate foam using said foam |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08100041A (en) * | 1994-09-29 | 1996-04-16 | Nippon Polyurethane Ind Co Ltd | Production of modified polyisocyanurate foam |
JP2002145982A (en) * | 2000-11-08 | 2002-05-22 | Nippon Polyurethane Ind Co Ltd | Impregnant composition for interior material and method for producing the interior material |
JP2002155125A (en) * | 2000-11-20 | 2002-05-28 | Sumika Bayer Urethane Kk | Process for producing polyurethane-modified polyisocyanurate foam |
WO2002077053A1 (en) * | 2001-03-16 | 2002-10-03 | Hodogaya Chemical Co., Ltd. | Process for producing urethane-modified polyisocyanurate foam |
JP2005501941A (en) * | 2001-08-30 | 2005-01-20 | ハンツマン・インターナショナル・エルエルシー | Method for producing urethane-modified rigid polyisocyanurate foam |
JP2007277295A (en) * | 2006-04-03 | 2007-10-25 | Toyo Tire & Rubber Co Ltd | Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5241697A (en) * | 1975-09-30 | 1977-03-31 | Sanyo Chem Ind Ltd | Process for producing low-density rigid polyisocyanurate foams |
JPS5247898A (en) * | 1975-10-15 | 1977-04-16 | Sanyo Chem Ind Ltd | Process for preparing heat resistant rigid polyisocyanurate foams |
BE883775A (en) * | 1979-06-11 | 1980-12-11 | Upjohn Co | CELL POLYMERS AND THEIR PREPARATION |
JPS59210925A (en) * | 1983-05-17 | 1984-11-29 | Inoue Mtp Co Ltd | Production of polyisocyanurate foam |
JPS6099120A (en) * | 1983-11-04 | 1985-06-03 | Asahi Glass Co Ltd | Production of polyisocyanurate foam |
JP3948014B2 (en) * | 2002-02-26 | 2007-07-25 | 日本ポリウレタン工業株式会社 | Method for producing rigid polyisocyanurate foam |
CN100560628C (en) * | 2004-10-29 | 2009-11-18 | 厦门市富晟防水保温技术开发有限公司 | Modified polyurethane rigid foam and compound method thereof |
-
2007
- 2007-12-20 JP JP2007328557A patent/JP5294137B2/en not_active Expired - Fee Related
-
2008
- 2008-10-27 WO PCT/JP2008/003043 patent/WO2009081515A1/en active Application Filing
- 2008-10-27 CN CN2008801192783A patent/CN101889038B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08100041A (en) * | 1994-09-29 | 1996-04-16 | Nippon Polyurethane Ind Co Ltd | Production of modified polyisocyanurate foam |
JP2002145982A (en) * | 2000-11-08 | 2002-05-22 | Nippon Polyurethane Ind Co Ltd | Impregnant composition for interior material and method for producing the interior material |
JP2002155125A (en) * | 2000-11-20 | 2002-05-28 | Sumika Bayer Urethane Kk | Process for producing polyurethane-modified polyisocyanurate foam |
WO2002077053A1 (en) * | 2001-03-16 | 2002-10-03 | Hodogaya Chemical Co., Ltd. | Process for producing urethane-modified polyisocyanurate foam |
JP2005501941A (en) * | 2001-08-30 | 2005-01-20 | ハンツマン・インターナショナル・エルエルシー | Method for producing urethane-modified rigid polyisocyanurate foam |
JP2007277295A (en) * | 2006-04-03 | 2007-10-25 | Toyo Tire & Rubber Co Ltd | Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam |
Also Published As
Publication number | Publication date |
---|---|
JP2009149760A (en) | 2009-07-09 |
CN101889038A (en) | 2010-11-17 |
JP5294137B2 (en) | 2013-09-18 |
CN101889038B (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1735365B1 (en) | Process for making rigid polyurethane foams | |
JP5333981B2 (en) | Method for producing rigid polyurethane foam | |
WO2018167220A1 (en) | Hydroxyl-terminated polyurethane prepolymer and preparation method thereof | |
MXPA05010514A (en) | Molded flexible polyurethane foams with reduced flammability and superior durability. | |
US9745408B2 (en) | Rigid foam | |
JP5294137B2 (en) | Method for producing rigid polyurethane foam | |
US11434320B2 (en) | Long term improvement of thermal insulation values in rigid polyisocyanurate/polyurethane comprising insulation foams | |
US20200239621A1 (en) | Production of polyurethane foam | |
JP2003089714A (en) | Composition for rigid polyisocyanurate foam and method for producing the rigid polyisocyanurate foam | |
JP3906479B2 (en) | Polyisocyanate composition for rigid polyurethane foam and method for producing rigid polyurethane foam using the same | |
JP2009084411A (en) | Method for producing rigid polyurethane foam | |
JP3817726B2 (en) | Modified polyisocyanate composition and method for producing rigid polyurethane foam or isocyanurate modified polyurethane foam using the same | |
JP2008260842A (en) | Polyisocyanate composition for rigid polyurethane foam made by foaming using cyclopentane, and method for producing rigid polyurethane foam by using the same | |
JP3689903B2 (en) | Modified polyisocyanate composition and method for producing rigid polyurethane foam or isocyanurate modified polyurethane foam using the same | |
JP2001316443A (en) | Method for manufacturing hard polyurethane foam | |
JP5311267B2 (en) | Polyisocyanate composition for rigid polyurethane foam for foaming cyclopentane and method for producing rigid polyurethane foam using the same | |
JP4207220B2 (en) | Polyisocyanate composition for rigid polyurethane foam, method for producing the composition, and method for producing rigid polyurethane foam using the same | |
JP2002322231A (en) | Polyisocyanate composition for hard polyurethane foam and method for producing hard polyurethane foam by using the same composition | |
JP3837735B2 (en) | Polyisocyanate composition for rigid polyurethane foam and method for producing rigid polyurethane foam using the same | |
JP2002128850A (en) | Polyisocyanate composition for hard polyurethane foam and method of manufacturing hard polyurethane foam using the same | |
US4036792A (en) | Polyisocyanurate foams prepared by a cocatalyst system | |
JP3879111B2 (en) | Polyisocyanate composition for rigid polyurethane foam and method for producing rigid polyurethane foam using the same | |
EP3867291B1 (en) | Formulated polyol compositions | |
JP2002356534A (en) | Polyisocyanate composition for rigid polyurethane foam and method for producing rigid polyurethane foam using the same | |
AU2008209665B2 (en) | Process for making rigid urethane-modified polyisocyanurate foams |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880119278.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08865214 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08865214 Country of ref document: EP Kind code of ref document: A1 |