WO2016017797A1 - Flame-retardant polyurethane resin composition - Google Patents

Flame-retardant polyurethane resin composition Download PDF

Info

Publication number
WO2016017797A1
WO2016017797A1 PCT/JP2015/071780 JP2015071780W WO2016017797A1 WO 2016017797 A1 WO2016017797 A1 WO 2016017797A1 JP 2015071780 W JP2015071780 W JP 2015071780W WO 2016017797 A1 WO2016017797 A1 WO 2016017797A1
Authority
WO
WIPO (PCT)
Prior art keywords
urethane resin
flame retardant
resin composition
component
parts
Prior art date
Application number
PCT/JP2015/071780
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 岡田
岡田 和廣
康成 日下
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2015540946A priority Critical patent/JPWO2016017797A1/en
Publication of WO2016017797A1 publication Critical patent/WO2016017797A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • Concrete reinforced with reinforcing bars or the like is used as a structural material to enhance the strength of buildings, such as condominiums, detached houses, various facilities of schools, and outer walls of commercial buildings.
  • a rigid polyurethane foam having flame resistance against fire is used as a heat insulating layer.
  • Patent Document 1 describes a polyol composition for rigid polyurethane foam containing a polyol compound, a water-soluble organic solvent, a catalyst, a flame retardant, a foaming agent and a polyisocyanate compound. It is described that a rigid polyurethane foam formed by mixing and foaming these components is excellent in flame retardancy.
  • Patent Document 2 describes a polyol composition for polyurethane foam containing 100 parts by weight of a polyol compound, 10-30 parts by weight of a phosphate ester flame retardant, a foaming agent, a foam stabilizer and a catalyst.
  • Patent Document 3 describes a flame-retardant rigid polyurethane foam obtained by reacting and curing a polyhydroxyl compound, a polyisocyanate, a urethanization catalyst, a flame retardant, a foam stabilizer and a foaming agent.
  • Patent Document 4 describes a catalyst composition for producing a rigid polyurethane foam and / or isocyanurate-modified rigid polyurethane foam comprising a quaternary ammonium salt and a heterocyclic tertiary amine compound.
  • Patent Documents 1 to 4 discloses anything about solving the problem of easy shape change when polyurethane foam is affected by heat such as fire.
  • An object of the present invention is to provide a flame retardant polyurethane composition having excellent flame retardancy and shape retention during heating.
  • the flame retardant urethane resin composition according to the present invention is as follows.
  • a flame retardant urethane resin composition comprising a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent, a foam stabilizer, and an additive, wherein a pulse NMR is measured in a cured product of the flame retardant urethane resin composition.
  • the spin-spin relaxation time (T2S) of the first component measured at 150 ° C. by the solid echo method and the observation nucleus at 1 H is between 0.01 ms and 0.1 ms, and the second component
  • the spin-spin relaxation time (T2L) is between 0.1 ms and 1.0 ms, and the signal intensity fraction of the first component is greater than the signal intensity fraction of the second component.
  • Flammable urethane resin composition Flammable urethane resin composition.
  • Item 2. The flame retardancy according to Item 1, wherein the additive includes at least one selected from red phosphorus, phosphate ester, phosphate-containing flame retardant, bromine-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. Urethane resin composition.
  • Item 3. Item 2. The flame retardant urethane resin composition according to Item 1, wherein the additive is in the range of 4.5 to 70 parts by weight based on 100 parts by weight of the urethane resin comprising the polyisocyanate compound and the polyol compound.
  • Item 4. Item 2.
  • the flame retardant urethane resin composition according to Item 1 wherein the trimerization catalyst is in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the urethane resin comprising the polyisocyanate compound and the polyol compound.
  • Item 5. The flame retardant according to any one of Items 1 to 4, wherein the foaming agent is in a range of 0.1 to 30 parts by weight based on 100 parts by weight of a urethane resin composed of the polyisocyanate compound and the polyol compound. Urethane resin composition.
  • Item 7. Item 7. The flame retardant urethane resin composition according to any one of Items 1 to 6, wherein the isocyanate index is 125 or more.
  • Item 8. (A) 1st liquid containing polyisocyanate compound, (B) 2nd liquid containing polyol compound, (C) trimerization catalyst, (D) foaming agent, (E) foam stabilizer and (F) additive In the cured product of the flame retardant urethane resin composition, the spin-spin relaxation time (T2S) of the first component measured at 150 ° C.
  • T2S spin-spin relaxation time
  • the second component spin-spin relaxation time (T2L) is between 0.1 ms to 1.0 ms
  • a flame retardant urethane resin composition excellent in flame retardancy and shape retention during heating is provided.
  • Urethane resin consists of a polyisocyanate compound as a main agent and a polyol compound as a curing agent.
  • polyisocyanate compound examples include aromatic polyisocyanate, alicyclic polyisocyanate, and aliphatic polyisocyanate.
  • aromatic polyisocyanate examples include phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, dimethyldiphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, polymethylene polyphenyl polyisocyanate, and the like.
  • alicyclic polyisocyanate examples include cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and dimethyldicyclohexylmethane diisocyanate.
  • aliphatic polyisocyanate examples include methylene diisocyanate, ethylene diisocyanate, propylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, and the like.
  • the polyisocyanate compound can be used alone or in combination of two or more.
  • the main component of the urethane resin is preferably diphenylmethane diisocyanate for reasons such as ease of use and availability.
  • polyol compound that is a curing agent for the urethane resin examples include polylactone polyol, polycarbonate polyol, aromatic polyol, alicyclic polyol, aliphatic polyol, polyester polyol, polymer polyol, polyether polyol, and the like. Are preferred, and aromatic polyester polyols are more preferred.
  • polylactone polyol examples include polypropiolactone glycol, polycaprolactone glycol, and polyvalerolactone glycol.
  • polycarbonate polyol examples include a polyol obtained by a dealcoholization reaction of a hydroxyl group-containing compound such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, and nonanediol with diethylene carbonate, dipropylene carbonate, and the like. Etc.
  • aromatic polyols examples include bisphenol A, bisphenol F, phenol novolac, and cresol novolac.
  • Examples of the alicyclic polyol include cyclohexanediol, methylcyclohexanediol, isophoronediol, dicyclohexylmethanediol, dimethyldicyclohexylmethanediol, and the like.
  • Examples of the aliphatic polyol include ethylene glycol, propylene glycol, butanediol, pentanediol, and hexanediol.
  • polyester polyol examples include a polymer obtained by dehydration condensation of a polybasic acid and a polyhydric alcohol, a polymer obtained by ring-opening polymerization of a lactone such as ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, Examples thereof include condensates of hydroxycarboxylic acid and the above polyhydric alcohol.
  • polybasic acid examples include adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, and succinic acid.
  • polyhydric alcohol examples include bisphenol A, ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexane glycol, neopentyl glycol, and the like.
  • hydroxycarboxylic acid examples include castor oil, a reaction product of castor oil and ethylene glycol, and the like.
  • polymer polyol examples include a polymer obtained by graft polymerization of an ethylenically unsaturated compound such as acrylonitrile, styrene, methyl acrylate, and methacrylate on an aromatic polyol, alicyclic polyol, aliphatic polyol, polyester polyol, or the like, polybutadiene Examples thereof include polyols, modified polyols of polyhydric alcohols, and hydrogenated products thereof.
  • modified polyol of a polyhydric alcohol examples include those obtained by reacting a raw material polyhydric alcohol with an alkylene oxide.
  • polyhydric alcohol examples include trihydric alcohols such as glycerin and trimethylolpropane; pentaerythritol, sorbitol, mannitol, sorbitan, diglycerin, dipentaerythritol, etc., sucrose, glucose, mannose, fructose, methylglucoside and Tetravalent to octavalent alcohols such as derivatives thereof; phenol, phloroglucin, cresol, pyrogallol, catechol, hydroquinone, bisphenol A, bisphenol F, bisphenol S, 1-hydroxynaphthalene, 1,3,6,8-tetrahydroxynaphthalene , Anthrol, 1,4,5,8-tetrahydroxyanthracene, 1-hydroxypyrene and other phenol polybutadiene polyols; castor oil polyol; hydroxyalkyl (meth) Polyfunctional (e.g. functionality 2-100) polyols such as (co) polymers and poly
  • the method for modifying the polyhydric alcohol is not particularly limited, but a method of adding alkylene oxide (hereinafter abbreviated as AO) is preferably used.
  • AO alkylene oxide
  • AO includes 2 to 6 carbon atoms such as ethylene oxide (hereinafter abbreviated as EO), 1,2-propylene oxide (hereinafter abbreviated as PO), 1,3-propyloxide, 1,2- Examples include butylene oxide and 1,4-butylene oxide.
  • EO ethylene oxide
  • PO 1,2-propylene oxide
  • PO 1,3-propyloxide
  • 1,2- Examples include butylene oxide and 1,4-butylene oxide.
  • PO, EO and 1,2-butylene oxide are preferable from the viewpoint of properties and reactivity, and PO and EO are more preferable.
  • block addition or random addition may be used, or a combination thereof may be used.
  • polyether polyol examples include ring-opening polymerization of at least one alkylene oxide such as ethylene oxide, propylene oxide, and tetrahydrofuran in the presence of at least one low molecular weight active hydrogen compound having two or more active hydrogens.
  • alkylene oxide such as ethylene oxide, propylene oxide, and tetrahydrofuran
  • the polymer obtained by making it contain is mentioned.
  • Examples of the low molecular weight active hydrogen compound having two or more active hydrogens include diols such as bisphenol A, ethylene glycol, propylene glycol, butylene glycol, and 1,6-hexanediol, and triols such as glycerin and trimethylolpropane. And amines such as ethylenediamine and butylenediamine.
  • the polyol used in the present invention is preferably a polyester polyol or a polyether polyol because the effect of reducing the total calorific value upon combustion is great.
  • the isocyanate index is a percentage of the equivalent ratio of the isocyanate group of the polyisocyanate compound to the hydroxyl group of the polyol compound. The value exceeding 100 indicates that the isocyanate group is in excess of the hydroxyl group. means.
  • the lower limit of the range of the isocyanate index of the urethane resin used in the present invention is preferably 125 or more, and more preferably 200 or more. Although an upper limit is not specifically limited, Usually, it is 1000 or less.
  • the isocyanate index (INDEX) is calculated by the following method.
  • the unit of the number of parts used is weight (g), the molecular weight of NCO is 42, the NCO content is the percentage of NCO groups in the polyisocyanate compound in mass%, and the molecular weight of KOH is 56100, the molecular weight of water is 18, and the number of OH groups in water is 2.
  • the flame retardant urethane resin composition contains a catalyst, a foaming agent and a foam stabilizer.
  • the catalyst examples include triethylamine, N-methylmorpholine bis (2-dimethylaminoethyl) ether, N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, N, N, N′-trimethylaminoethyl- Nitrogen atom-containing catalysts such as ethanolamine, bis (2-dimethylaminoethyl) ether, N-methyl, N'-dimethylaminoethylpiperazine, imidazole compounds in which the secondary amine functional group in the imidazole ring is substituted with a cyanoethyl group, etc. Is mentioned.
  • the addition amount of the catalyst used in the flame retardant urethane resin composition is preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the urethane resin, preferably 0.1 to 8 parts by weight. More preferably, the range is from 0.1 parts by weight to 6 parts by weight, and most preferably from 0.1 parts by weight to 3.0 parts by weight.
  • the amount is 0.1 parts by weight or more, there is no problem that the formation of urethane bonds is hindered.
  • the amount is 10 parts by weight or less, an appropriate foaming rate can be maintained and the handling is easy.
  • a preferred catalyst includes a trimerization catalyst that causes the isocyanate group contained in the polyisocyanate compound, which is the main component of the polyurethane resin, to react and trimerize to promote the formation of an isocyanurate ring.
  • the addition amount of the trimerization catalyst used in the flame retardant urethane resin composition is preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the urethane resin, and 0.1 to 8 parts by weight. More preferably, it is in the range of parts by weight, more preferably in the range of 0.1 to 6 parts by weight, and most preferably in the range of 0.1 to 3.0 parts by weight.
  • the amount is 0.1 parts by weight or more, there is no problem that the trimerization of the isocyanate is inhibited.
  • the amount is 10 parts by weight or less, an appropriate foaming rate can be maintained and the handling is easy.
  • the foaming agent used in the flame retardant urethane resin composition promotes foaming of the urethane resin.
  • blowing agent examples include, for example, water; hydrocarbons having a low boiling point such as propane, butane, pentane, hexane, heptane, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane; dichloroethane, propyl chloride, isopropyl chloride, Chlorinated aliphatic hydrocarbon compounds such as butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride; fluorine compounds such as trichloromonofluoromethane, trichlorotrifluoroethane, CHF 3 , CH 2 F 2 , CH 3 F; dichloromono Hydrochlorofluorocarbons such as fluoroethane (for example, HCFC141b (1,1-dichloro-1-fluoroethane), HCFC22 (chlorodifluo
  • the range of the foaming agent is preferably in the range of 0.1 to 30 parts by weight with respect to 100 parts by weight of the urethane resin.
  • the foaming agent is more preferably in the range of 0.1 to 18 parts by weight, still more preferably in the range of 0.5 to 18 parts by weight with respect to 100 parts by weight of the urethane resin.
  • the most preferred range is 5 to 10 parts by weight.
  • the water range is 0.1 parts by weight or more, foaming is promoted and the density of the obtained molded product can be reduced.
  • the water range is 30 parts by weight or less, the foam does not foam and no foam is formed. Can be prevented.
  • foam stabilizer used in the flame-retardant urethane resin composition examples include surfactants such as polyoxyalkylene foam stabilizers such as polyoxyalkylene alkyl ether, silicone foam stabilizers such as organopolysiloxane, and the like. .
  • the amount of the foam stabilizer used for the urethane resin cured by the chemical reaction is appropriately set depending on the urethane resin cured by the chemical reaction used. For example, for 100 parts by weight of the urethane resin, A range of 0.1 to 10 parts by weight is preferable.
  • Catalyst, foaming agent and foam stabilizer can be used alone or in combination of two or more.
  • the flame retardant urethane resin composition contains an additive.
  • the additive includes at least one selected from the group consisting of red phosphorus, phosphate ester, phosphate-containing flame retardant, bromine-containing flame retardant, antimony-containing flame retardant, and metal hydroxide.
  • the additive comprises red phosphorus and at least one selected from the group consisting of phosphate esters, phosphate-containing flame retardants, bromine-containing flame retardants, antimony-containing flame retardants and metal hydroxides.
  • the additive includes at least one selected from the group consisting of phosphate esters, phosphate-containing flame retardants, bromine-containing flame retardants, antimony-containing flame retardants, and metal hydroxides.
  • the additive preferably comprises phosphorus.
  • examples of preferable combinations of additives to be used include any of the following (a) to (i).
  • (a) Red phosphorus and phosphate (b) Red phosphorus and phosphate containing flame retardant (c) Red phosphorus and bromine containing flame retardants (d) Red phosphorus and antimony containing flame retardant (e) Red phosphorus and metal hydroxide (f) Red phosphorus, phosphate ester and phosphate containing flame retardant (g) Red phosphorus, phosphate ester and bromine containing flame retardant (h) Red phosphorus, phosphate-containing flame retardant and bromine-containing flame retardant (i) Red phosphorus, phosphate ester, phosphate-containing flame retardant and bromine-containing flame retardant
  • the additive amount used in the present invention is the total amount of additives other than urethane resin with respect to 100 parts by weight of urethane resin. The range is preferably in the range of 4.5 to 70 parts
  • the molded product made of the flame retardant urethane resin composition can prevent the dense residue formed by the heat of the fire from cracking, and when the additive is 70 parts by weight or less Does not inhibit foaming of the flame retardant urethane resin composition.
  • the red phosphorus used in the present invention is not limited, and a commercially available product can be appropriately selected and used.
  • the amount of red phosphorus used in the refractory urethane resin composition according to the present invention is in the range of 3.0 to 18 parts by weight with respect to 100 parts by weight of the urethane resin. Preferably there is.
  • the range of red phosphorus is 3.0 parts by weight or more, the self-extinguishing property of the flame retardant urethane resin composition is maintained, and when it is 18 parts by weight or less, foaming of the flame retardant urethane resin composition is inhibited. Not.
  • the phosphate ester used in the present invention is not particularly limited, but it is preferable to use a monophosphate ester, a condensed phosphate ester, or the like.
  • the monophosphate is not particularly limited, and examples thereof include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylyl phosphate, Tris (isopropylphenyl) phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl acid phosphate, 2-methacryloyloxyethyl acid phosphate, Diphenyl-2-acryloyloxye
  • the condensed phosphate ester is not particularly limited, and examples thereof include trialkyl polyphosphate, resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate (trade name PX-200, manufactured by Daihachi Chemical Industry Co., Ltd.). ), Hydroquinone poly (2,6-xylyl) phosphate, and condensed phosphates such as condensates thereof.
  • condensed phosphate esters examples include resorcinol polyphenyl phosphate (trade name CR-733S), bisphenol A polycresyl phosphate (trade name CR-741), aromatic condensed phosphate ester (trade name CR747), and resorcinol.
  • examples thereof include polyphenyl phosphate (trade name ADEKA STAB PFR, manufactured by ADEKA), bisphenol A polycresyl phosphate (trade names FP-600, FP-700, manufactured by ADEKA), and the like.
  • a monophosphate ester because it is highly effective in reducing the viscosity of the composition before curing and in reducing the initial calorific value, and it is preferable to use tris ( ⁇ -chloropropyl) phosphate. Is more preferable.
  • ⁇ Phosphate ester can be used alone or in combination of two or more.
  • the addition amount of the phosphate ester is preferably in the range of 1.5 to 52 parts by weight, more preferably in the range of 1.5 to 20 parts by weight with respect to 100 parts by weight of the urethane resin.
  • the range is preferably 2.0 parts by weight to 15 parts by weight, and more preferably 2.0 parts by weight to 10 parts by weight.
  • the molded product made of the flame retardant urethane resin composition can prevent the dense residue formed by the heat of the fire from cracking, and the case of 52 parts by weight or less
  • the foaming of the flame retardant urethane resin composition is not hindered.
  • the phosphate-containing flame retardant used in the present invention contains phosphoric acid.
  • the phosphoric acid used for the phosphate-containing flame retardant is not particularly limited, and examples thereof include various phosphoric acids such as monophosphoric acid, pyrophosphoric acid, polyphosphoric acid, and combinations thereof.
  • phosphate-containing flame retardant examples include phosphorus containing salts of various phosphoric acids and at least one metal or compound selected from metals of Group IA to IVB of the periodic table, ammonia, aliphatic amines, and aromatic amines. There may be mentioned acid salts.
  • metals of Groups IA to IVB of the periodic table include lithium, sodium, calcium, barium, iron (II), iron (III), and aluminum.
  • aliphatic amine examples include methylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, piperazine and the like.
  • aromatic amines include pyridine, triazine, melamine, ammonium and the like.
  • the phosphate-containing flame retardant may be subjected to a known water resistance improving treatment such as silane coupling agent treatment or coating with a melamine resin, and a known foaming aid such as melamine or pentaerythritol may be added. May be.
  • phosphate-containing flame retardant examples include monophosphate, pyrophosphate, polyphosphate, and the like.
  • the monophosphate is not particularly limited.
  • ammonium salts such as ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, phosphoric acid-sodium, disodium phosphate, trisodium phosphate, phosphorous acid -Sodium salts such as sodium, disodium phosphite, sodium hypophosphite, monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, monopotassium phosphite, dipotassium phosphite, hypophosphorous acid Potassium salts such as potassium, lithium salts such as phosphoric acid-lithium phosphate, dilithium phosphate, trilithium phosphate, phosphorous acid-lithium, dilithium phosphite, lithium hypophosphite, barium dihydrogen phosphate, phosphorus Barium salts such as barium oxyhydrogen, tribarium phosphate, and barium hypophosphi
  • the polyphosphate is not particularly limited, and examples thereof include ammonium polyphosphate, piperazine polyphosphate, melamine polyphosphate, ammonium amide polyphosphate, and aluminum polyphosphate.
  • the self-extinguishing property of the phosphate-containing flame retardant is improved, it is preferable to use a monophosphate, and it is more preferable to use ammonium dihydrogen phosphate.
  • the phosphate-containing flame retardant can be used alone or in combination of two or more.
  • the amount of the phosphate-containing flame retardant used in the present invention is preferably in the range of 1.5 to 52 parts by weight with respect to 100 parts by weight of the urethane resin, and 1.5 to 20 parts by weight. More preferably, it is in the range of 2.0 parts by weight to 15 parts by weight, and most preferably in the range of 2.0 parts by weight to 10 parts by weight.
  • the range of the phosphate-containing flame retardant is 1.5 parts by weight or more, the self-extinguishing property of the flame retardant urethane resin composition is maintained, and when it is 52 parts by weight or less, the flame retardant urethane resin composition Foaming is not hindered.
  • the bromine-containing flame retardant used in the present invention is not particularly limited as long as it is a compound containing bromine in the molecular structure, and examples thereof include aromatic brominated compounds.
  • aromatic brominated compound examples include, for example, hexabromobenzene, pentabromotoluene, hexapromobiphenyl, decapromobiphenyl, hexapromocyclodecane, decapromodiphenyl ether, octabromodiphenyl ether, hexapromodiphenyl ether, bis (pentabromo Monomeric organic bromine compounds such as phenoxy) ethane, ethylene-bis (tetraprophtalimide), tetraprobisbisphenol A; polycarbonate oligomers produced from brominated bisphenol A as raw materials, copolymer of polycarbonate oligomer and bisphenol A Brominated polycarbonate such as diepoxy compounds produced by the reaction of brominated bisphenol A and epichlorohydrin, brominated phenols and epichlorohydride Brominated epoxy compounds such as monoepoxy compounds obtained by reaction with styrene; poly(
  • brominated polystyrene, hexabromobenzene and the like are preferable, and hexabromobenzene is more preferable.
  • One or more bromine-containing flame retardants can be used.
  • the addition amount of the bromine-containing flame retardant used in the present invention is preferably in the range of 1.5 to 52 parts by weight with respect to 100 parts by weight of the urethane resin, and 1.5 to 20 parts by weight. More preferred is a range of 2.0 parts by weight to 15 parts by weight, still more preferred is a range of 2.0 parts by weight to 10 parts by weight.
  • the range of the bromine-containing flame retardant is 0.1 part by weight or more, the self-extinguishing property of the flame retardant urethane resin composition is maintained, and when the range is 52 parts by weight or less, foaming of the flame retardant urethane resin composition Is not disturbed.
  • antimony-containing flame retardant used in the present invention examples include antimony oxide, antimonate, pyroantimonate, and the like.
  • antimony oxide examples include antimony trioxide and antimony pentoxide.
  • antimonate examples include sodium antimonate and potassium antimonate.
  • pyroantimonate examples include sodium pyroantimonate and potassium pyroantimonate.
  • the antimony-containing flame retardant used in the present invention is preferably antimony oxide.
  • Antimony-containing flame retardants can be used alone or in combination of two or more.
  • the addition amount of the antimony-containing flame retardant is preferably in the range of 1.5 to 52 parts by weight and more preferably in the range of 1.5 to 20 parts by weight with respect to 100 parts by weight of the urethane resin. More preferably, the range is from 2.0 parts by weight to 15 parts by weight, still more preferably from 2.0 parts by weight to 10 parts by weight.
  • the range of the antimony-containing flame retardant is 1.5 parts by weight or more, the self-extinguishing property of the flame retardant urethane resin composition is maintained, and when it is 52 parts by weight or less, foaming of the flame retardant urethane resin composition Is not disturbed.
  • metal hydroxide used in the present invention examples include magnesium hydroxide, calcium hydroxide, aluminum hydroxide, iron hydroxide, nickel hydroxide, zirconium hydroxide, titanium hydroxide, zinc hydroxide, copper hydroxide. , Vanadium hydroxide, tin hydroxide and the like.
  • the addition amount of the metal hydroxide is preferably in the range of 1.5 to 52 parts by weight and preferably in the range of 1.5 to 20 parts by weight with respect to 100 parts by weight of the urethane resin. More preferably, the range is from 2.0 parts by weight to 15 parts by weight, still more preferably from 2.0 parts by weight to 10 parts by weight.
  • the range of the metal hydroxide is 1.5 parts by weight or more, the self-extinguishing property of the flame retardant urethane resin composition is maintained, and when it is 52 parts by weight or less, the foam of the flame retardant urethane resin composition is maintained. Is not disturbed.
  • the flame retardant urethane resin composition can be used in combination with an inorganic filler.
  • the inorganic filler is not particularly limited.
  • Inorganic fillers can be used alone or in combination of two or more.
  • the flame retardant urethane resin composition is within a range that does not impair the object of the present invention, as necessary, such as phenol-based, amine-based, sulfur-based antioxidants, heat stabilizers, metal harm-preventing agents, charging agents.
  • An inhibitor, a stabilizer, a crosslinking agent, a lubricant, a softener, a pigment, an auxiliary component such as a tackifier resin, and a tackifier such as polybutene and a petroleum resin can be included.
  • the flame retardant urethane resin composition reacts and cures, its viscosity changes over time. Therefore, before using the flame retardant urethane resin composition, the flame retardant urethane resin composition is divided into two or more to prevent the flame retardant urethane resin composition from reacting and curing. And when using a flame-retardant urethane resin composition, a flame-retardant urethane resin composition is obtained by putting together the flame-retardant urethane resin composition divided
  • each component of the flame retardant urethane resin composition divided into two or more does not start to cure, and each of the flame retardant urethane resin composition
  • Each component may be divided so that the curing reaction starts after the components are mixed.
  • the present invention includes (A) a first liquid containing a polyisocyanate compound, (B) a second liquid containing a polyol compound, (C) a trimerization catalyst, (D) a foaming agent, (E) a foam stabilizer and ( F) A system that is a combination or reaction system for forming a flame retardant urethane resin composition, including an additive, comprising a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent, a foam stabilizer, and an additive
  • the intensity ratio of the peak of the carbonyl group of the isocyanurate to the peak of the carbonyl group of the urethane as measured by 13 C NMR in the cured product of the flame retardant urethane resin composition produced by mixing 0.3 to 3.
  • a system for forming a flame retardant urethane resin composition that is between 5.
  • a system for forming a flame retardant urethane resin composition includes a first container that contains the first liquid and a second container that contains the second liquid, such as a caulking gun or a spray-type container. Provided.
  • the method for producing the flame retardant urethane resin composition is not particularly limited.
  • a flame-retardant urethane resin composition can be obtained by methods, such as melting a flame-retardant urethane resin composition under heating.
  • the flame retardant urethane resin composition is a known component such as a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader mixer, a kneading roll, a laika machine, a planetary stirring machine, etc. It can be obtained by kneading using an apparatus.
  • the urethane resin main component and the curing agent can be kneaded separately with a filler and the like, and kneaded with a static mixer, a dynamic mixer or the like immediately before injection.
  • the components of the flame retardant urethane resin composition excluding the catalyst and the catalyst can be kneaded in the same manner immediately before injection.
  • a flame-retardant urethane resin composition can be obtained by the method described above.
  • the molded body made of the flame retardant urethane resin composition can be obtained as a foam by injecting the flame retardant urethane resin composition into a container such as a mold or a frame material and curing it.
  • the solid-state 13 C NMR shows the peak of the carbonyl group of isocyanurate and the peak of the carbonyl group of urethane in the obtained flame-retardant urethane resin composition after curing, that is, a sample of the cured product of the flame-retardant urethane resin composition.
  • the molded body made of the flame retardant urethane resin composition preferably has a specific gravity in the range of 0.020-0.130 because it is easy to handle, and more preferably in the range of 0.030-0.100. , 0.030-0.080 is more preferable, and 0.040-0.060 is most preferable.
  • the cured flame retardant urethane resin composition of the present invention after curing is characterized by a specific spin-spin relaxation time.
  • the spin-spin relaxation time (T2) obtained by the solid echo method using pulsed NMR is a measure representing the molecular mobility of a substance, and the larger the value, the higher the mobility.
  • the solid echo method is already well known and will not be described in detail, but is mainly used for measurement of samples with a short relaxation time such as glassy and crystalline polymers.
  • a short relaxation time such as glassy and crystalline polymers.
  • T2 which is the T2 relaxation time can be obtained from this.
  • the measurement of the spin-spin relaxation time by pulse NMR for example, J. et al. Chem. Phys. 82, 4327 (1985).
  • a method of analyzing the relationship between physical properties, phase separation structure and composition from the analysis result of pulse NMR is well known, and spin-spin relaxation time T2 is obtained by free induction decay (FID) signal obtained by pulse NMR by the least square method.
  • FID free induction decay
  • three components that is, a first component having a short relaxation time (T2S), a first component having a relaxation time, It can be divided into a second component having a longer spin-spin relaxation time (T2L), a third component that is an intermediate component between the first component and the second component, and a Gaussian function and a Lorentz type
  • the amount of each component can be determined using a calculation formula using a function or exponential function (for example, “polyurethane by solid-state NMR (high resolution NMR and pulsed NMR) Phase separation structure analysis of fat "(DIC Technical Review N.12, pp.7 ⁇ 12,2006) see).
  • the pulse NMR measurement will be described in detail as follows. First, when a sample of a powder sample that has been frozen and crushed to a height of 1 to 2 cm is placed in a magnetic field in a glass tube having a diameter of 1 cm, the relaxation behavior of the macroscopic magnetization after applying a high-frequency pulsed magnetic field is measured. A free induction decay (FID) signal is obtained (horizontal axis: time (msec), vertical axis: free induction decay signal intensity). The initial value of the obtained FID signal is proportional to the number of protons in the measurement sample, and when the measurement sample has three components, the FID signal appears as the sum of response signals of the three components.
  • FID free induction decay
  • each component contained in the sample has a difference in mobility, the speed of decay of the response signal differs among the components, and the spin-spin relaxation time T2 differs. Therefore, it can be divided into three components by the method of least squares. For example, in the case of a crystalline polymer, an amorphous phase (L component), an interface phase (M component), a crystal, respectively, in order from the longer spin-spin relaxation time T2. It becomes a phase (S component).
  • the attenuation curve obtained by measurement is regarded as the sum of two Gaussian functions and simplified to two components, a hard component and a soft component. Since it was found that there is a correlation between the T2 value of the component and the signal intensity fraction of the two components and the physical property value such as the shape retention of the flame retardant urethane resin composition of the present invention, it is analyzed as two components. . Also in the flame-retardant urethane resin composition of the present invention, the lower the T2 and the lower the proportion of the amorphous phase, the harder the polyurethane.
  • the spin-spin relaxation time (T2S) of the hard component (first component) measured at 150 ° C. using pulsed NMR at 1 ° C. and the observation nucleus is 0.01 ms to 0.1 ms. It is assumed that the spin-spin relaxation time (T2L) of the soft component (second component) is between 0.1 ms and 1.0 ms.
  • the spin-spin relaxation time (T2S) of the first component is shorter than 0.01 milliseconds, and if the spin-spin relaxation time (T2S) of the first component is longer than 0.1 milliseconds, The flame retardant urethane resin composition becomes too soft and it becomes difficult to maintain a certain shape by heat such as flame, resulting in poor shape retention. If the spin-spin relaxation time (T2L) of the second component is longer than 1.0 milliseconds, it is not practical.
  • the fraction of the signal intensity in the spin-spin relaxation time (T2S) of the first component measured at 150 ° C. using pulsed NMR and the observation nucleus is 1 H is the second. More than the fraction of the signal intensity in the component spin-spin relaxation time (T2L).
  • the pulse NMR measurement of the flame retardant urethane resin composition of the present invention is performed after the temperature is stabilized after heating. In one embodiment, the flame retardant urethane resin composition of the present invention performs a pulse NMR measurement 10 minutes after the composition sample is charged, that is, after heating at 150 ° C. is started.
  • the spin-spin relaxation time slightly changes depending on the magnetic field strength used, but is included in the present invention regardless of the magnitude of the magnetic field strength.
  • the flame retardant urethane resin composition comprises a trimerization catalyst in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the urethane resin composed of the polyisocyanate compound and the polyol compound; 1 to 30 parts by weight of a foaming agent, 0.1 to 10 parts by weight of a foam stabilizer, and 4.5 to 70 parts by weight of an additive, using pulsed NMR
  • the spin-spin relaxation time (T2S) of the first component measured at 150 ° C. and the observation nucleus at 1 H is between 0.01 milliseconds and 0.1 milliseconds, and the observation nucleus is measured at 1 H.
  • the component spin-spin relaxation time (T2L) is between 0.1 ms and 1.0 ms, in particular between 0.1 ms and 0.95 ms, and the signal strength of the first component is The fraction is greater than the fraction of signal strength in the second component.
  • the spin-spin relaxation time (T2L) of the second component measured at 1 H for the observation nucleus is between 0.15 ms and 1 ms, and in yet another embodiment 0.15 Between seconds and 0.95 milliseconds.
  • the signal strength fraction in the first component is greater than 70% (the signal strength fraction in the second component is less than 30%), more preferably greater than 75% (the signal strength in the second component. Is less than 25%), more preferably more than 80% (the signal intensity fraction in the second component is less than 20%).
  • the flame retardant urethane resin composition is divided into a polyisocyanate compound and other components, mixed while spraying both, and sprayed onto the surface of the structure, the polyisocyanate compound, Examples thereof include a method of spraying the surface of the structure after mixing with other components. By the above method, a foam layer can be formed on the surface of the structure.
  • a molded product made of a flame retardant urethane resin composition is cut into a length of 10 cm, a width of 10 cm, and a thickness of 5 cm to prepare a sample for a corn calorimeter test.
  • the total calorific value by the corn calorimeter test when heated at a radiant heat intensity of 50 kW / m 2 for 20 minutes can be measured according to the test method of ISO-5660.
  • the polyol compound, foam stabilizer, various catalysts, the foaming agent excluding the HFC component, and additives were weighed into a 1000 mL polypropylene beaker and stirred by hand mixing at 25 ° C. for 1 minute.
  • a polyisocyanate compound and HFC were added to the kneaded material after stirring, and a foam was made by worshiping with a hand mixer for about 10 seconds.
  • the obtained flame-retardant urethane resin composition lost its fluidity with time, and the foams of the cured flame-retardant urethane resin compositions of Examples 1 to 3 and Comparative Example 1 were obtained. 2.
  • This measurement method is a test method stipulated as corresponding to the standard by the corn calorimeter method at the Building Research Institute, which is a public institution prescribed in Article 108-2 of the Building Standard Law Enforcement Order, It conforms to the test method of ISO-5660.
  • Example 1-6 expansion, deformation, and contraction were all acceptable, and in Comparative Examples 1 and 2, at least one of expansion, deformation, and contraction was unacceptable. 4).
  • Measurement by Pulsed NMR The cured material samples of each flame retardant polyurethane resin composition of Examples 1 to 6 and Comparative Examples 1 and 2 were measured by solid echo method using pulsed NMR. In this measurement, a freeze-pulverized powdery sample was packed in a glass tube having a diameter of 1 cm to a height of 1 to 2 cm, and a solid-echo method was used using a pulse NMR measurement apparatus (MINISPEC mq20, 25 MHz, manufactured by Bruker BioSpin). Then, the repetition time: 4 s, the number of integration: 256 times, the temperature: 150 ° C., the measurement start time: (until the temperature stabilizes) Measurement is performed at the start of measurement 10 minutes after the sample is charged.
  • MINISPEC mq20 25 MHz
  • the obtained attenuation curve is calculated from T2 (spin-spin relaxation time) by the least square method, from the spin-spin relaxation time (T2S) of the first component of the sample and the spin-spin relaxation time (T2L) of the second component. And asked.
  • the measurement results are shown in Table 2.
  • the spin-spin relaxation time (T2S) of the first component is between 0.01 milliseconds and 0.1 milliseconds
  • the spin relaxation time (T2L) was between 0.1 ms and 0.95 ms.
  • the flame retardant polyurethane resin compositions of Examples 1 to 6 and the flame retardant polyurethane resin compositions of Comparative Examples 1 and 2 were clearly distinguished by measurement at 150 ° C.

Abstract

Provided is a flame-retardant urethane resin composition comprising a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent, a foam stabilizer, and an additive. The spin-spin relaxation time (T2S) of a first component in a cured product of the flame-retardant urethane resin composition as measured by a solid echo method in which pulsed NMR is used is 0.01-0.1 milliseconds at 150 °C when the observed nucleus is 1H, the spin-spin relaxation time (T2L) of a second component is 0.1-1.0 milliseconds, and the signal intensity fraction of the first component is greater than the signal intensity fraction of the second component.

Description

難燃性ポリウレタン樹脂組成物Flame retardant polyurethane resin composition
(関連分野の相互参照)
 本願は、2014年8月1日に出願した特願2014-157994号明細書の優先権の利益を主張するものであり、当該明細書はその全体が参照により本明細書中に援用される。
(技術分野)
 本発明は、難燃性ポリウレタン樹脂組成物に関する。
(Cross-reference of related fields)
This application claims the benefit of priority of Japanese Patent Application No. 2014-157994 filed on Aug. 1, 2014, which is hereby incorporated by reference in its entirety.
(Technical field)
The present invention relates to a flame retardant polyurethane resin composition.
 マンション等の集合住宅、戸建住宅、学校の各種施設、商業ビル等の外壁等に、建物の強度を高める構造材料として、鉄筋等により補強されたコンクリートが使用されている。 Concrete reinforced with reinforcing bars or the like is used as a structural material to enhance the strength of buildings, such as condominiums, detached houses, various facilities of schools, and outer walls of commercial buildings.
 一方、コンクリートは蓄熱性および蓄冷性があるため、夏場に蓄積された熱により建物内部が加熱されたり、冬場の寒い時期にコンクリートが冷卸される結果、建物内部が冷却されたりする短所がある。このようなコンクリートを通じて外温が長時間にわたり建物内部に与える影響を軽減するために、通常はコンクリートに対して断熱加工が施される。 On the other hand, since concrete has heat storage and cold storage properties, there is a disadvantage that the inside of the building is heated by the heat accumulated in the summer, or the inside of the building is cooled as a result of the concrete being cooled in the cold season in winter. . In order to reduce the influence of the outside temperature on the interior of the building through such concrete for a long time, the concrete is usually insulated.
 そこで断熱層として、火災に対する難燃性を備えた硬質ポリウレタンフォームが用いられている。 Therefore, a rigid polyurethane foam having flame resistance against fire is used as a heat insulating layer.
 特許文献1は、ポリオール化合物、水溶性有機溶剤、触媒、難燃剤、発泡剤およびポリイソシアネート化合物を含む硬質ポリウレタンフォーム用ポリオール組成物について記載している。これらの成分を混合、発泡させて形成した硬質ポリウレタンフォームは難燃性に優れることが記載されている。  Patent Document 1 describes a polyol composition for rigid polyurethane foam containing a polyol compound, a water-soluble organic solvent, a catalyst, a flame retardant, a foaming agent and a polyisocyanate compound. It is described that a rigid polyurethane foam formed by mixing and foaming these components is excellent in flame retardancy.
 特許文献2は、ポリオール化合物 100重量部、リン酸エステル系難燃剤10-30重量部、発泡剤、整泡剤および触媒を含むポリウレタンフォーム用ポリオール組成物について記載している。 Patent Document 2 describes a polyol composition for polyurethane foam containing 100 parts by weight of a polyol compound, 10-30 parts by weight of a phosphate ester flame retardant, a foaming agent, a foam stabilizer and a catalyst.
 特許文献3は、ポリヒドロキシル化合物、ポリイソシアネート、ウレタン化触媒、難燃剤、整泡剤および発泡剤を反応、硬化させて得られる難燃性硬質ポリウレタンフォームについて記載している。 Patent Document 3 describes a flame-retardant rigid polyurethane foam obtained by reacting and curing a polyhydroxyl compound, a polyisocyanate, a urethanization catalyst, a flame retardant, a foam stabilizer and a foaming agent.
 特許文献4は、4級アンモニウム塩と複素環式第三級アミン化合物とを含んでなる硬質ポリウレタンフォームおよび/またはイソシアヌレート変性硬質ポリウレタンフォーム製造用の触媒組成物について記載している。 Patent Document 4 describes a catalyst composition for producing a rigid polyurethane foam and / or isocyanurate-modified rigid polyurethane foam comprising a quaternary ammonium salt and a heterocyclic tertiary amine compound.
特開2010-053267号公報JP 2010-053267 A 特開2002-338651号公報JP 2002-338651 A 特開2001-200027号公報Japanese Patent Laid-Open No. 2001-200027 特開2010-7079号公報JP 2010-7079 A
 ポリウレタンフォームが火災等の熱により変形すると、ポリウレタンフォームが設置されていた場所と変形後のポリウレタンフォームとの間に隙間が生じ、この隙間を通じて火災等により発生した煙等が拡散する等の問題が生じる。しかし、上記の特許文献1~4はいずれも、ポリウレタンフォームが火災等の熱の影響を受けた場合の形状の変化し易さという問題を解決する点について何も開示していない。 When polyurethane foam deforms due to heat such as fire, there is a gap between the location where the polyurethane foam was installed and the polyurethane foam after deformation, and there is a problem that smoke etc. generated by fire etc. diffuses through this gap. Arise. However, none of the above-mentioned Patent Documents 1 to 4 discloses anything about solving the problem of easy shape change when polyurethane foam is affected by heat such as fire.
 本発明の目的は、難燃性および加熱時の形状保持性に優れた難燃性ポリウレタン組成物を提供することにある。 An object of the present invention is to provide a flame retardant polyurethane composition having excellent flame retardancy and shape retention during heating.
 本発明にかかる難燃性ウレタン樹脂組成物は以下の通りである。 The flame retardant urethane resin composition according to the present invention is as follows.
 項1.ポリイソシアネート化合物、ポリオール化合物、三量化触媒、発泡剤、整泡剤、および添加剤を含む難燃性ウレタン樹脂組成物であって、該難燃性ウレタン樹脂組成物の硬化物における、パルスNMRを用いてソリッドエコー法によって150℃、観測核が1Hで測定した第1成分のスピン-スピン緩和時間(T2S)が0.01ミリ秒~0.1ミリ秒の間であり、第2成分のスピン-スピン緩和時間(T2L)が0.1ミリ秒~1.0ミリ秒の間であり、かつ第1成分の信号強度の分率が第2成分の信号強度の分率よりも多い、難燃性ウレタン樹脂組成物。 Item 1. A flame retardant urethane resin composition comprising a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent, a foam stabilizer, and an additive, wherein a pulse NMR is measured in a cured product of the flame retardant urethane resin composition. The spin-spin relaxation time (T2S) of the first component measured at 150 ° C. by the solid echo method and the observation nucleus at 1 H is between 0.01 ms and 0.1 ms, and the second component The spin-spin relaxation time (T2L) is between 0.1 ms and 1.0 ms, and the signal intensity fraction of the first component is greater than the signal intensity fraction of the second component. Flammable urethane resin composition.
 項2.前記添加剤が赤リン、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、アンチモン含有難燃剤、および金属水酸化物から選ばれる少なくとも1つを含む、項1に記載の難燃性ウレタン樹脂組成物。
 項3.前記添加剤が、前記ポリイソシアネート化合物および前記ポリオール化合物からなるウレタン樹脂100重量部を基準として4.5重量部~70重量部の範囲である、項1に記載の難燃性ウレタン樹脂組成物。
 項4.前記三量化触媒が、前記ポリイソシアネート化合物および前記ポリオール化合物からなるウレタン樹脂100重量部を基準として0.1~10重量部の範囲である、項1に記載の難燃性ウレタン樹脂組成物。
 項5.前記発泡剤が、前記ポリイソシアネート化合物および前記ポリオール化合物からなるウレタン樹脂100重量部を基準として0.1~30重量部の範囲である、項1~4のいずれか一項に記載の難燃性ウレタン樹脂組成物。
 項6.第1成分における信号強度の分率が80%を超え、第2成分における信号強度の分率が20%未満である、請求項1~5のいずれか一項に記載の難燃性ウレタン樹脂組成物。
 項7.イソシアネートインデックスが125以上である項1~6のいずれか一項に記載の難燃性ウレタン樹脂組成物。
 項8.(A)ポリイソシアネート化合物を含有する第1液、(B)ポリオール化合物を含有する第2液、(C)三量化触媒、(D)発泡剤、(E)整泡剤および(F)添加剤を含む、該難燃性ウレタン樹脂組成物の硬化物における、パルスNMRを用いてソリッドエコー法によって150℃、観測核が1Hで測定した第1成分のスピン-スピン緩和時間(T2S)が0.01ミリ秒~0.1ミリ秒の間であり、第2成分のスピン-スピン緩和時間(T2L)が0.1ミリ秒~1.0ミリ秒の間であり、かつ第1成分の信号強度の分率が第2成分の信号強度の分率よりも多い、難燃性ウレタン樹脂組成物を形成するための組み合わせ。
Item 2. Item 2. The flame retardancy according to Item 1, wherein the additive includes at least one selected from red phosphorus, phosphate ester, phosphate-containing flame retardant, bromine-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. Urethane resin composition.
Item 3. Item 2. The flame retardant urethane resin composition according to Item 1, wherein the additive is in the range of 4.5 to 70 parts by weight based on 100 parts by weight of the urethane resin comprising the polyisocyanate compound and the polyol compound.
Item 4. Item 2. The flame retardant urethane resin composition according to Item 1, wherein the trimerization catalyst is in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the urethane resin comprising the polyisocyanate compound and the polyol compound.
Item 5. Item 5. The flame retardant according to any one of Items 1 to 4, wherein the foaming agent is in a range of 0.1 to 30 parts by weight based on 100 parts by weight of a urethane resin composed of the polyisocyanate compound and the polyol compound. Urethane resin composition.
Item 6. The flame retardant urethane resin composition according to any one of claims 1 to 5, wherein a fraction of the signal intensity in the first component exceeds 80% and a fraction of the signal intensity in the second component is less than 20%. object.
Item 7. Item 7. The flame retardant urethane resin composition according to any one of Items 1 to 6, wherein the isocyanate index is 125 or more.
Item 8. (A) 1st liquid containing polyisocyanate compound, (B) 2nd liquid containing polyol compound, (C) trimerization catalyst, (D) foaming agent, (E) foam stabilizer and (F) additive In the cured product of the flame retardant urethane resin composition, the spin-spin relaxation time (T2S) of the first component measured at 150 ° C. by solid echo method using pulsed NMR and the observed nucleus at 1 H is 0. .01 ms to 0.1 ms, the second component spin-spin relaxation time (T2L) is between 0.1 ms to 1.0 ms, and the first component signal A combination for forming a flame-retardant urethane resin composition having a strength fraction greater than the signal strength fraction of the second component.
 本発明によれば、難燃性および加熱時の形状保持性に優れた難燃性ウレタン樹脂組成物が提供される。 According to the present invention, a flame retardant urethane resin composition excellent in flame retardancy and shape retention during heating is provided.
 本発明に係る難燃性ウレタン樹脂組成物について説明する。 The flame retardant urethane resin composition according to the present invention will be described.
 最初に、難燃性ウレタン樹脂組成物に使用するウレタン樹脂について説明する。 First, the urethane resin used for the flame retardant urethane resin composition will be described.
 ウレタン樹脂は、主剤としてのポリイソシアネート化合物と硬化剤としてのポリオール化合物とからなる。 Urethane resin consists of a polyisocyanate compound as a main agent and a polyol compound as a curing agent.
 ポリイソシアネート化合物としては、例えば、芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート等が挙げられる。  Examples of the polyisocyanate compound include aromatic polyisocyanate, alicyclic polyisocyanate, and aliphatic polyisocyanate.
 芳香族ポリイソシアネートとしては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジメチルジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、ナフタレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート等が挙げられる。 Examples of the aromatic polyisocyanate include phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, dimethyldiphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, polymethylene polyphenyl polyisocyanate, and the like.
 脂環族ポリイソシアネートとしては、例えば、シクロへキシレンジイソシアネート、メチルシクロへキシレンジイソシアネート、イソホロンジイソシアネート、ジシクロへキシルメタンジイソシアネート、ジメチルジシクロへキシルメタンジイソシアネート等が挙げられる。 Examples of the alicyclic polyisocyanate include cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and dimethyldicyclohexylmethane diisocyanate.
 脂肪族ポリイソシアネートとしては、例えば、メチレンジイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。 Examples of the aliphatic polyisocyanate include methylene diisocyanate, ethylene diisocyanate, propylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, and the like.
 ポリイソシアネート化合物は一種もしくは二種以上を使用することができる。ウレタン樹脂の主剤は、使い易いこと、入手し易いこと等の理由から、ジフェニルメタンジイソシアネートが好ましい。  The polyisocyanate compound can be used alone or in combination of two or more. The main component of the urethane resin is preferably diphenylmethane diisocyanate for reasons such as ease of use and availability.
 ウレタン樹脂の硬化剤であるポリオール化合物としては、例えばポリラクトンポリオール、ポリカーボネートポリオール、芳香族ポリオール、脂環族ポリオール、脂肪族ポリオール、ポリエステルポリオール、ポリマーポリオール、ポリエーテルポリオール等が挙げられ、中でもポリエステルポリオールが好ましく、芳香族ポリエステルポリオールがより好ましい。  Examples of the polyol compound that is a curing agent for the urethane resin include polylactone polyol, polycarbonate polyol, aromatic polyol, alicyclic polyol, aliphatic polyol, polyester polyol, polymer polyol, polyether polyol, and the like. Are preferred, and aromatic polyester polyols are more preferred.
 ポリラクトンポリオールとしては、例えば、ポリプロピオラクトングリコール、ポリカプロラクトングリコール、ポリバレロラクトングリコールなどが挙げられる。 Examples of the polylactone polyol include polypropiolactone glycol, polycaprolactone glycol, and polyvalerolactone glycol.
 ポリカーボネートポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオールなどの水酸基含有化合物と、ジエチレンカーボネート、ジプロピレンカーボネートなどとの脱アルコール反応により得られるポリオール等が挙げられる。 Examples of the polycarbonate polyol include a polyol obtained by a dealcoholization reaction of a hydroxyl group-containing compound such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, and nonanediol with diethylene carbonate, dipropylene carbonate, and the like. Etc.
 芳香族ポリオールとしては、例えば、ビスフェノールA、ビスフェノールF、フェノールノボラック、クレゾールノボラック等が挙げられる。 Examples of aromatic polyols include bisphenol A, bisphenol F, phenol novolac, and cresol novolac.
 脂環族ポリオールとしては、例えばシクロヘキサンジオール、メチルシクロヘキサンジオール、イソホロンジオール、ジシクロへキシルメタンジオール、ジメチルジシクロへキシルメタンジオール等が挙げられる。 Examples of the alicyclic polyol include cyclohexanediol, methylcyclohexanediol, isophoronediol, dicyclohexylmethanediol, dimethyldicyclohexylmethanediol, and the like.
 脂肪族ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール等が挙げられる。 Examples of the aliphatic polyol include ethylene glycol, propylene glycol, butanediol, pentanediol, and hexanediol.
 ポリエステルポリオールとしては、例えば、多塩基酸と多価アルコールとを脱水縮合して得られる重合体、ε-カプロラクトン、α-メチル-ε-カプロラクトン等のラクトンを開環重合して得られる重合体、ヒドロキシカルボン酸と上記多価アルコール等との縮合物が挙げられる。 Examples of the polyester polyol include a polymer obtained by dehydration condensation of a polybasic acid and a polyhydric alcohol, a polymer obtained by ring-opening polymerization of a lactone such as ε-caprolactone, α-methyl-ε-caprolactone, Examples thereof include condensates of hydroxycarboxylic acid and the above polyhydric alcohol.
 ここで多塩基酸としては、具体的には、例えば、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、コハク酸等が挙げられる。また多価アルコールとしては、具体的には、例えば、ビスフェノールA、エチレングリコール、1,2-プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,6-ヘキサングリコール、ネオペンチルグリコール等が挙げられる。 Here, specific examples of the polybasic acid include adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, and succinic acid. Specific examples of the polyhydric alcohol include bisphenol A, ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexane glycol, neopentyl glycol, and the like. .
 またヒドロキシカルボン酸としては、具体的には、例えば、ひまし油、ひまし油とエチレングリコールの反応生成物等が挙げられる。 Specific examples of the hydroxycarboxylic acid include castor oil, a reaction product of castor oil and ethylene glycol, and the like.
 ポリマーポリオールとしては、例えば、芳香族ポリオール、脂環族ポリオール、脂肪族ポリオール、ポリエステルポリオール等に対し、アクリロニトリル、スチレン、メチルアクリレート、メタクリレート等のエチレン性不飽和化合物をグラフト重合させた重合体、ポリブタジエンポリオール、多価アルコールの変性ポリオールまたは、これらの水素添加物等が挙げられる。 Examples of the polymer polyol include a polymer obtained by graft polymerization of an ethylenically unsaturated compound such as acrylonitrile, styrene, methyl acrylate, and methacrylate on an aromatic polyol, alicyclic polyol, aliphatic polyol, polyester polyol, or the like, polybutadiene Examples thereof include polyols, modified polyols of polyhydric alcohols, and hydrogenated products thereof.
 多価アルコールの変性ポリオールとしては、例えば、原料の多価アルコールにアルキレンオキサイドを反応させて変性したもの等が挙げられる。 Examples of the modified polyol of a polyhydric alcohol include those obtained by reacting a raw material polyhydric alcohol with an alkylene oxide.
 多価アルコールとしては、例えば、グリセリンおよびトリメチロールプロパン等の三価アルコール;ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジグリセリン、ジペンタエリスリトール等、ショ糖、グルコース、マンノース、フルクト-ス、メチルグルコシドおよびその誘導体等の四~八価のアルコール;フェノール、フロログルシン、クレゾール、ピロガロール、カテコ-ル、ヒドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、1-ヒドロキシナフタレン、1,3,6,8-テトラヒドロキシナフタレン、アントロール、1,4,5,8-テトラヒドロキシアントラセン、1-ヒドロキシピレン等のフェノールポリブタジエンポリオール;ひまし油ポリオール;ヒドロキシアルキル(メタ)アクリレートの(共)重合体およびポリビニルアルコール等の多官能(例えば官能基数2~100)ポリオール、フェノールとホルムアルデヒドとの縮合物(ノボラック)が挙げられる。 Examples of the polyhydric alcohol include trihydric alcohols such as glycerin and trimethylolpropane; pentaerythritol, sorbitol, mannitol, sorbitan, diglycerin, dipentaerythritol, etc., sucrose, glucose, mannose, fructose, methylglucoside and Tetravalent to octavalent alcohols such as derivatives thereof; phenol, phloroglucin, cresol, pyrogallol, catechol, hydroquinone, bisphenol A, bisphenol F, bisphenol S, 1-hydroxynaphthalene, 1,3,6,8-tetrahydroxynaphthalene , Anthrol, 1,4,5,8-tetrahydroxyanthracene, 1-hydroxypyrene and other phenol polybutadiene polyols; castor oil polyol; hydroxyalkyl (meth) Polyfunctional (e.g. functionality 2-100) polyols such as (co) polymers and polyvinyl alcohol acrylate include condensates of phenol and formaldehyde (novolac) it is.
 多価アルコールの変性方法は特に限定されないが、アルキレンオキサイド(以下、AOと略す)を付加させる方法が好適に用いられる。 The method for modifying the polyhydric alcohol is not particularly limited, but a method of adding alkylene oxide (hereinafter abbreviated as AO) is preferably used.
 AOとしては、炭素数2~6のAO、例えば、エチレンオキサイド(以下、EOと略す)、1,2-プロピレンオキサイド(以下、POと略す)、1,3-プロピレオキサイド、1,2-ブチレンオキサイド、1,4-ブチレンオキサイド等が挙げられる。
これらの中でも性状や反応性の観点から、PO、EOおよび1,2-ブチレンオキサイドが好ましく、POおよびEOがより好ましい。AOを二種以上使用する場合(例えば、POおよびEO)の付加方法としては、ブロック付加であってもランダム付加であってもよく、これらの併用であってもよい。
AO includes 2 to 6 carbon atoms such as ethylene oxide (hereinafter abbreviated as EO), 1,2-propylene oxide (hereinafter abbreviated as PO), 1,3-propyloxide, 1,2- Examples include butylene oxide and 1,4-butylene oxide.
Among these, PO, EO and 1,2-butylene oxide are preferable from the viewpoint of properties and reactivity, and PO and EO are more preferable. When two or more types of AO are used (for example, PO and EO), block addition or random addition may be used, or a combination thereof may be used.
 ポリエーテルポリオ-ルとしては、例えば、活性水素を2個以上有する低分子量活性水素化合物等の少なくとも一種の存在下に、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等のアルキレンオキサイドの少なくとも1種を開環重合させて得られる重合体が挙げられる。 Examples of the polyether polyol include ring-opening polymerization of at least one alkylene oxide such as ethylene oxide, propylene oxide, and tetrahydrofuran in the presence of at least one low molecular weight active hydrogen compound having two or more active hydrogens. The polymer obtained by making it contain is mentioned.
 活性水素を2個以上有する低分子量活性水素化合物としては、例えば、ビスフェノールA、エチレングリコール、プロピレングリコール、ブチレングリコール、1,6-ヘキサンジオ-ル等のジオール類、グリセリン、トリメチロールプロパン等のトリオール類、エチレンジアミン、ブチレンジアミン等のアミン類等が挙げられる。 Examples of the low molecular weight active hydrogen compound having two or more active hydrogens include diols such as bisphenol A, ethylene glycol, propylene glycol, butylene glycol, and 1,6-hexanediol, and triols such as glycerin and trimethylolpropane. And amines such as ethylenediamine and butylenediamine.
 本発明に使用するポリオールは、燃焼した際の総発熱量の低減効果が大きいことからポリエステルポリオール、またはポリエーテルポリオールを使用することが好ましい。 The polyol used in the present invention is preferably a polyester polyol or a polyether polyol because the effect of reducing the total calorific value upon combustion is great.
 その中でも分子量200~800のポリエステルポリオールを用いることがより好ましく、分子量300~500のポリエステルポリオールを用いることがさらに好ましい。 またイソシアネートインデックスは、ポリオ-ル化合物の水酸基に対するポリイソシアネート化合物のイソシアネート基の当量比を百分率で表したものであるが、その値が100を越えるということはイソシアネート基が水酸基より過剰であることを意味する。 Among them, it is more preferable to use a polyester polyol having a molecular weight of 200 to 800, and it is more preferable to use a polyester polyol having a molecular weight of 300 to 500. The isocyanate index is a percentage of the equivalent ratio of the isocyanate group of the polyisocyanate compound to the hydroxyl group of the polyol compound. The value exceeding 100 indicates that the isocyanate group is in excess of the hydroxyl group. means.
 本発明に使用するウレタン樹脂のイソシアネートインデックスの範囲は、下限値が125以上であれば好ましく、200以上であればより好ましい。上限値は特に限定されないが、通常1000以下である。 The lower limit of the range of the isocyanate index of the urethane resin used in the present invention is preferably 125 or more, and more preferably 200 or more. Although an upper limit is not specifically limited, Usually, it is 1000 or less.
 イソシアネートインデックス(INDEX)は、以下の方法にて算出される。 The isocyanate index (INDEX) is calculated by the following method.
 INDEX=イソシアネートの当量数÷(ポリオールの当量数+水の当量数)×100
 ここで、
 イソシアネートの当量数=ポリイソシアネートの使用部数×NCO含有率(%)×100/NCO分子量
 ポリオールの当量数=OHV×ポリオールの使用部数÷KOHの分子量、OHVはポリオールの水酸基価(mg KOH/g)、
 水の当量数=水の使用部数×水のOH基の数/水の分子量
である。なお上記式において、使用部数の単位は重量(g)であり、NCOの分子量は42、NCO含有率はポリイソシアネート化合物中のNCO基の割合を質量%で表したものであり、KOHの分子量は56100、水の分子量は18、水のOH基の数は2とする。
INDEX = isocyanate equivalent number / (polyol equivalent number + water equivalent number) × 100
here,
Equivalent number of isocyanate = number of parts used of polyisocyanate × NCO content (%) × 100 / NCO molecular weight Number of equivalents of polyol = OHV × number of parts used of polyol ÷ molecular weight of KOH, OHV is hydroxyl value of polyol (mg KOH / g) ,
Equivalent number of water = number of used parts of water × number of OH groups of water / molecular weight of water. In the above formula, the unit of the number of parts used is weight (g), the molecular weight of NCO is 42, the NCO content is the percentage of NCO groups in the polyisocyanate compound in mass%, and the molecular weight of KOH is 56100, the molecular weight of water is 18, and the number of OH groups in water is 2.
 また難燃性ウレタン樹脂組成物は、触媒、発泡剤および整泡剤を含む。 The flame retardant urethane resin composition contains a catalyst, a foaming agent and a foam stabilizer.
 触媒としては、例えば、トリエチルアミン、N-メチルモルホリンビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N”, N”-ペンタメチルジエチレントリアミン、N, N, N’-トリメチルアミノエチル-エタノールアミン、ビス(2-ジメチルアミノエチル)エーテル、N-メチル, N’-ジメチルアミノエチルピペラジン、イミダゾール環中の第2級アミン官能基をシアノエチル基で置換したイミダゾール化合物等の窒素原子含有触媒等が挙げられる。 Examples of the catalyst include triethylamine, N-methylmorpholine bis (2-dimethylaminoethyl) ether, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, N, N, N′-trimethylaminoethyl- Nitrogen atom-containing catalysts such as ethanolamine, bis (2-dimethylaminoethyl) ether, N-methyl, N'-dimethylaminoethylpiperazine, imidazole compounds in which the secondary amine functional group in the imidazole ring is substituted with a cyanoethyl group, etc. Is mentioned.
 難燃性ウレタン樹脂組成物に使用する触媒の添加量は、ウレタン樹脂100重量部に対して、0.1重量部~10重量部の範囲であることが好ましく、0.1重量部~8部の範囲であることがより好ましく、0.1重量部~6重量部の範囲であることが更に好ましく、0.1重量部~3.0重量部の範囲であることが最も好ましい。 The addition amount of the catalyst used in the flame retardant urethane resin composition is preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the urethane resin, preferably 0.1 to 8 parts by weight. More preferably, the range is from 0.1 parts by weight to 6 parts by weight, and most preferably from 0.1 parts by weight to 3.0 parts by weight.
 0.1重量部以上の場合はウレタン結合の形成が阻害される不具合が生じず、10重量部以下の場合は適切な発泡速度を維持することができ、取扱いやすい。 When the amount is 0.1 parts by weight or more, there is no problem that the formation of urethane bonds is hindered. When the amount is 10 parts by weight or less, an appropriate foaming rate can be maintained and the handling is easy.
 好ましい触媒としては、ポリウレタン樹脂の主剤であるポリイソシアネート化合物に含まれるイソシアネート基を反応させて三量化させ、イソシアヌレート環の生成を促進する三量化触媒を含む。 A preferred catalyst includes a trimerization catalyst that causes the isocyanate group contained in the polyisocyanate compound, which is the main component of the polyurethane resin, to react and trimerize to promote the formation of an isocyanurate ring.
 イソシアヌレート環の生成を促進するためには、例えば、触媒として、トリス(ジメチルアミノメチル)フェノール、2,4-ビス(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジアルキルアミノアルキル)ヘキサヒドロ-S-トリアジン等の窒素含有芳香族化合物;酢酸カリウム、2-エチルヘキサン酸カリウム等のカルボン酸アルカリ金属塩;トリメチルアンモニウム塩、トリエチルアンモニウム塩、トリフェニルアンモニウム塩等の3級アンモニウム塩;テトラメチルアンモニウム塩、テトラエチルアンモニウム、テトラフェニルアンモニウム塩等の4級アンモニウム塩等を使用することができる。 In order to promote the formation of the isocyanurate ring, for example, as a catalyst, tris (dimethylaminomethyl) phenol, 2,4-bis (dimethylaminomethyl) phenol, 2,4,6-tris (dialkylaminoalkyl) hexahydro -Nitrogen-containing aromatic compounds such as S-triazine; carboxylic acid alkali metal salts such as potassium acetate and potassium 2-ethylhexanoate; tertiary ammonium salts such as trimethylammonium salt, triethylammonium salt and triphenylammonium salt; tetramethyl Quaternary ammonium salts such as ammonium salt, tetraethylammonium, and tetraphenylammonium salt can be used.
 難燃性ウレタン樹脂組成物に使用する三量化触媒の添加量はウレタン樹脂100重量部に対して、0.1重量部~10重量部の範囲であることが好ましく、0.1重量部~8重量部の範囲であることがより好ましく、0.1重量部~6重量部の範囲であることが更に好ましく、0.1重量部~3.0重量部の範囲であることが最も好ましい。0.1重量部以上の場合にイソシアネートの三量化が阻害される不具合が生じず、10重量部以下の場合は適切な発泡速度を維持することができ、取り扱いやすい。 The addition amount of the trimerization catalyst used in the flame retardant urethane resin composition is preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the urethane resin, and 0.1 to 8 parts by weight. More preferably, it is in the range of parts by weight, more preferably in the range of 0.1 to 6 parts by weight, and most preferably in the range of 0.1 to 3.0 parts by weight. When the amount is 0.1 parts by weight or more, there is no problem that the trimerization of the isocyanate is inhibited. When the amount is 10 parts by weight or less, an appropriate foaming rate can be maintained and the handling is easy.
 また難燃性ウレタン樹脂組成物に使用する発泡剤は、ウレタン樹脂の発泡を促進する。 Also, the foaming agent used in the flame retardant urethane resin composition promotes foaming of the urethane resin.
 発泡剤の具体例としては、例えば、水;プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン等の低沸点の炭化水素;ジクロロエタン、プロピルクロリド、イソプロピルクロリド、ブチルクロリド、イソブチルクロリド、ペンチルクロリド、イソペンチルクロリド等の塩素化脂肪族炭化水素化合物;トリクロルモノフルオロメタン、トリクロルトリフルオロエタン、CHF3、CH22、CH3F等のフッ素化合物;ジクロロモノフルオロエタン(例えば、HCFC141b (1,1-ジクロロ-1-フルオロエタン)、HCFC22 (クロロジフルオロメタン)、HCFC142b(1-クロロ-1,1-ジフルオロエタン))等のハイドロクロロフルオロカーボン化合物、HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン)、HFC-365mfc(1,1,1,3,3-ペンタフルオロブタン)等のハイドロフルオロカーボン化合物;ジイソプロピルエーテル等のエーテル化合物、あるいはこれらの化合物の混合物等の有機系物理発泡剤、窒素ガス、酸素ガス、アルゴンガス、二酸化炭素ガス等の無機系物理発泡剤等が挙げられる。 Specific examples of the blowing agent include, for example, water; hydrocarbons having a low boiling point such as propane, butane, pentane, hexane, heptane, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane; dichloroethane, propyl chloride, isopropyl chloride, Chlorinated aliphatic hydrocarbon compounds such as butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride; fluorine compounds such as trichloromonofluoromethane, trichlorotrifluoroethane, CHF 3 , CH 2 F 2 , CH 3 F; dichloromono Hydrochlorofluorocarbons such as fluoroethane (for example, HCFC141b (1,1-dichloro-1-fluoroethane), HCFC22 (chlorodifluoromethane), HCFC142b (1-chloro-1,1-difluoroethane)) Compounds, hydrofluorocarbon compounds such as HFC-245fa (1,1,1,3,3-pentafluoropropane) and HFC-365mfc (1,1,1,3,3-pentafluorobutane); Examples thereof include organic physical foaming agents such as ether compounds or mixtures of these compounds, and inorganic physical foaming agents such as nitrogen gas, oxygen gas, argon gas, and carbon dioxide gas.
 発泡剤の範囲は、ウレタン樹脂100重量部に対して、0.1重量部~30重量部の範囲であることが好ましい。発泡剤は、ウレタン樹脂100重量部に対して、0.1重量部~18重量部の範囲であることがより好ましく、0.5重量部~18重量部の範囲であることが更に好ましく、0.5重量部~10重量部の範囲であることが最も好ましい。 The range of the foaming agent is preferably in the range of 0.1 to 30 parts by weight with respect to 100 parts by weight of the urethane resin. The foaming agent is more preferably in the range of 0.1 to 18 parts by weight, still more preferably in the range of 0.5 to 18 parts by weight with respect to 100 parts by weight of the urethane resin. The most preferred range is 5 to 10 parts by weight.
 水の範囲が0.1重量部以上の場合は発泡が促進され、得られる成形品の密度を低減することができ、30重量部以下の場合は、発泡体が発泡せず発泡体が形成されないことを防ぐことができる。 When the water range is 0.1 parts by weight or more, foaming is promoted and the density of the obtained molded product can be reduced. When the water range is 30 parts by weight or less, the foam does not foam and no foam is formed. Can be prevented.
 難燃性ウレタン樹脂組成物に使用する整泡剤としては、例えば、ポリオキシアルキレンアルキルエーテル等のポリオキシアルキレン整泡剤、オルガノポリシロキサン等のシリコーン整泡剤等の界面活性剤等が挙げられる。 Examples of the foam stabilizer used in the flame-retardant urethane resin composition include surfactants such as polyoxyalkylene foam stabilizers such as polyoxyalkylene alkyl ether, silicone foam stabilizers such as organopolysiloxane, and the like. .
 化学反応により硬化するウレタン樹脂に対する整泡剤の使用量は、使用する化学反応により硬化するウレタン樹脂により適宜設定されるが、一例を示すとすれば、例えば、ウレタン樹脂100重量部に対して、0.1重量部~10重量部の範囲であれば好ましい。 The amount of the foam stabilizer used for the urethane resin cured by the chemical reaction is appropriately set depending on the urethane resin cured by the chemical reaction used. For example, for 100 parts by weight of the urethane resin, A range of 0.1 to 10 parts by weight is preferable.
 触媒、発泡剤および整泡剤はそれぞれ一種もしくは二種以上を使用することができる。 Catalyst, foaming agent and foam stabilizer can be used alone or in combination of two or more.
 次に本発明に使用する添加剤について説明する。 Next, the additive used in the present invention will be described.
 難燃性ウレタン樹脂組成物は、添加剤を含む。 The flame retardant urethane resin composition contains an additive.
 一実施形態において、添加剤は、赤リン、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、アンチモン含有難燃剤および金属水酸化物からなる群より選ばれる少なくとも一つを含む。別の実施形態において、添加剤は、赤リンと、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、アンチモン含有難燃剤および金属水酸化物からなる群より選ばれる少なくとも一つとを含む。また別の実施形態において、添加剤は、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、アンチモン含有難燃剤および金属水酸化物からなる群より選ばれる少なくとも一つを含む。 In one embodiment, the additive includes at least one selected from the group consisting of red phosphorus, phosphate ester, phosphate-containing flame retardant, bromine-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. In another embodiment, the additive comprises red phosphorus and at least one selected from the group consisting of phosphate esters, phosphate-containing flame retardants, bromine-containing flame retardants, antimony-containing flame retardants and metal hydroxides. . In another embodiment, the additive includes at least one selected from the group consisting of phosphate esters, phosphate-containing flame retardants, bromine-containing flame retardants, antimony-containing flame retardants, and metal hydroxides.
 添加剤は好ましくはリンを含む。使用する添加剤の好ましい組み合わせとしては、例えば、下記の(a)~ (i)のいずれか等が挙げられる。
(a)赤リンおよびリン酸エステル
(b)赤リンおよびリン酸塩含有難燃剤
(c)赤リンおよび臭素含有難燃剤
(d)赤リンおよびアンチモン含有難燃剤
(e)赤リンおよび金属水酸化物
(f)赤リン、リン酸エステルおよびリン酸塩含有難燃剤
(g)赤リン、リン酸エステルおよび臭素含有難燃剤
(h)赤リン、リン酸塩含有難燃剤および臭素含有難燃剤
(i)赤リン、リン酸エステル、リン酸塩含有難燃剤および臭素含有難燃剤
 本発明に使用する添加剤の添加量はウレタン樹脂100重量部に対して、ウレタン樹脂以外の添加剤の全量の範囲は4.5重量部~70重量部の範囲であることが好ましく、4.5重量部~40重量部の範囲であることがより好ましく、4.5重量部~30重量部の範囲であることが更に好ましく、4.5重量部~20重量部の範囲であることが最も好ましい。
The additive preferably comprises phosphorus. Examples of preferable combinations of additives to be used include any of the following (a) to (i).
(a) Red phosphorus and phosphate
(b) Red phosphorus and phosphate containing flame retardant
(c) Red phosphorus and bromine containing flame retardants
(d) Red phosphorus and antimony containing flame retardant
(e) Red phosphorus and metal hydroxide
(f) Red phosphorus, phosphate ester and phosphate containing flame retardant
(g) Red phosphorus, phosphate ester and bromine containing flame retardant
(h) Red phosphorus, phosphate-containing flame retardant and bromine-containing flame retardant
(i) Red phosphorus, phosphate ester, phosphate-containing flame retardant and bromine-containing flame retardant The additive amount used in the present invention is the total amount of additives other than urethane resin with respect to 100 parts by weight of urethane resin. The range is preferably in the range of 4.5 to 70 parts by weight, more preferably in the range of 4.5 to 40 parts by weight, and in the range of 4.5 to 30 parts by weight. More preferably, the range is 4.5 to 20 parts by weight.
 添加剤の範囲が4.5重量部以上の場合には難燃性ウレタン樹脂組成物からなる成形品が火災の熱により形成される緻密残渣が割れることを防止でき、70重量部以下の場合には難燃性ウレタン樹脂組成物の発泡が阻害されない。 When the range of the additive is 4.5 parts by weight or more, the molded product made of the flame retardant urethane resin composition can prevent the dense residue formed by the heat of the fire from cracking, and when the additive is 70 parts by weight or less Does not inhibit foaming of the flame retardant urethane resin composition.
 本発明に使用する赤リンに限定はなく、市販品を適宜選択して使用することができる。 The red phosphorus used in the present invention is not limited, and a commercially available product can be appropriately selected and used.
 添加剤として赤リンが含まれる場合、本発明に係る耐火ウレタン樹脂組成物に使用する赤リンの添加量は、ウレタン樹脂100重量部に対して、3.0重量部~18重量部の範囲であることが好ましい。 When red phosphorus is included as an additive, the amount of red phosphorus used in the refractory urethane resin composition according to the present invention is in the range of 3.0 to 18 parts by weight with respect to 100 parts by weight of the urethane resin. Preferably there is.
 赤リンの範囲が3.0重量部以上の場合は、難燃性ウレタン樹脂組成物の自己消火性が保持され、また18重量部以下の場合には難燃性ウレタン樹脂組成物の発泡が阻害されない。 When the range of red phosphorus is 3.0 parts by weight or more, the self-extinguishing property of the flame retardant urethane resin composition is maintained, and when it is 18 parts by weight or less, foaming of the flame retardant urethane resin composition is inhibited. Not.
 また本発明に使用するリン酸エステルは特に限定されないが、モノリン酸エステル、縮合リン酸エステル等を使用することが好ましい。 The phosphate ester used in the present invention is not particularly limited, but it is preferable to use a monophosphate ester, a condensed phosphate ester, or the like.
 モノリン酸エステルとしては、特に限定はないが、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレ二ルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(フェニルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレ二ルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、メラミンピロホスフェート、トリフェニルホスフィンオキサイド、トリクレジルホスフィンオキサイド、メタンホスホン酸ジフェニル、フェニルホスホン酸ジエチル、レジルシノールビス(ジフェニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)、ホスフアフエナンスレン、トリス(β-クロロプロピル)ホスフェート等が挙げられる。 The monophosphate is not particularly limited, and examples thereof include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylyl phosphate, Tris (isopropylphenyl) phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl acid phosphate, 2-methacryloyloxyethyl acid phosphate, Diphenyl-2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, melamine phosphate, dimelamine phosphate, melamine pyrophosphate, triphenylphosphine oxide, tricresylphosphine oxide, diphenyl methanephosphonate, diethyl phenylphosphonate, Resylcinol bis (diphenyl phosphate), bisphenol A bis (diphenyl phosphate), phosphaphenanthrene, tris (β-chloropropyl) phosphate, and the like.
 縮合リン酸エステルとしては、特に限定はないが、例えば、トリアルキルポリホスフェート、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート(大八化学工業社製、商品名PX-200)、ハイドロキノンポリ(2,6-キシリル)ホスフェートならびにこれらの縮合物等の縮合リン酸エステルを挙げられる。 The condensed phosphate ester is not particularly limited, and examples thereof include trialkyl polyphosphate, resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate (trade name PX-200, manufactured by Daihachi Chemical Industry Co., Ltd.). ), Hydroquinone poly (2,6-xylyl) phosphate, and condensed phosphates such as condensates thereof.
 市販の縮合リン酸エステルとしては、例えば、レゾルシノールポリフェニルホスフェート(商品名CR-733S)、ビスフェノールAポリクレジルホスフェート(商品名CR-741)、芳香族縮合リン酸エステル(商品名CR747)、レゾルシノールポリフェニルホスフェート(ADEKA社製、商品名アデカスタブPFR)、ビスフェノールAポリクレジルホスフエ-ト(ADEKA社製、商品名FP-600、FP-700)等を挙げることができる。 Examples of commercially available condensed phosphate esters include resorcinol polyphenyl phosphate (trade name CR-733S), bisphenol A polycresyl phosphate (trade name CR-741), aromatic condensed phosphate ester (trade name CR747), and resorcinol. Examples thereof include polyphenyl phosphate (trade name ADEKA STAB PFR, manufactured by ADEKA), bisphenol A polycresyl phosphate (trade names FP-600, FP-700, manufactured by ADEKA), and the like.
 上記の中でも、硬化前の組成物中の粘度の低下させる効果と初期の発熱量を低減させる効果が高いためモノリン酸エステルを使用することが好ましく、トリス(β-クロロプロピル)ホスフェートを使用することがより好ましい。 Among these, it is preferable to use a monophosphate ester because it is highly effective in reducing the viscosity of the composition before curing and in reducing the initial calorific value, and it is preferable to use tris (β-chloropropyl) phosphate. Is more preferable.
 リン酸エステルは一種もしくは二種以上を使用することができる。 は Phosphate ester can be used alone or in combination of two or more.
 リン酸エステルの添加量は、ウレタン樹脂100重量部に対して、1.5重量部~52重量部の範囲であることが好ましく、1.5重量部~20重量部の範囲であることがより好ましく、2.0重量部~15重量部の範囲であることが更に好ましく、2.0重量部~10重量部の範囲であることが最も好ましい。 The addition amount of the phosphate ester is preferably in the range of 1.5 to 52 parts by weight, more preferably in the range of 1.5 to 20 parts by weight with respect to 100 parts by weight of the urethane resin. The range is preferably 2.0 parts by weight to 15 parts by weight, and more preferably 2.0 parts by weight to 10 parts by weight.
 リン酸エステルの範囲が1.5重量部以上の場合には難燃性ウレタン樹脂組成物からなる成形品が火災の熱により形成される緻密残渣が割れることを防止でき、52重量部以下の場合には難燃性ウレタン樹脂組成物の発泡が阻害されない。 When the range of the phosphate ester is 1.5 parts by weight or more, the molded product made of the flame retardant urethane resin composition can prevent the dense residue formed by the heat of the fire from cracking, and the case of 52 parts by weight or less The foaming of the flame retardant urethane resin composition is not hindered.
 また本発明に使用するリン酸塩含有難燃剤はリン酸を含むものである。
リン酸塩含有難燃剤に使用されるリン酸は特に限定はないが、モノリン酸、ピロリン酸、ポリリン酸、およびそれらの組み合わせ等の各種リン酸が挙げられる。
The phosphate-containing flame retardant used in the present invention contains phosphoric acid.
The phosphoric acid used for the phosphate-containing flame retardant is not particularly limited, and examples thereof include various phosphoric acids such as monophosphoric acid, pyrophosphoric acid, polyphosphoric acid, and combinations thereof.
 リン酸塩含有難燃剤としては、例えば、各種リン酸と周期律表IA族~IVB族の金属、アンモニア、脂肪族アミン、芳香族アミンから選ばれる少なくとも一種の金属または化合物との塩からなるリン酸塩を挙げることができる。周期律表IA族~IVB族の金属として、リチウム、ナトリウム、カルシウム、バリウム、鉄(II)、鉄(III)、アルミニウム等が挙げられる。 Examples of the phosphate-containing flame retardant include phosphorus containing salts of various phosphoric acids and at least one metal or compound selected from metals of Group IA to IVB of the periodic table, ammonia, aliphatic amines, and aromatic amines. There may be mentioned acid salts. Examples of metals of Groups IA to IVB of the periodic table include lithium, sodium, calcium, barium, iron (II), iron (III), and aluminum.
 また脂肪族アミンとして、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、ピペラジン等が挙げられる。 Examples of the aliphatic amine include methylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, piperazine and the like.
 また芳香族アミンとして、ピリジン、トリアジン、メラミン、アンモニウム等が挙げられる。 Also, aromatic amines include pyridine, triazine, melamine, ammonium and the like.
 なお、上記のリン酸塩含有難燃剤は、シランカップリング剤処理、メラミン樹脂で被覆する等の公知の耐水性向上処理を加えてもよく、メラミン、ペンタエリスリトール等の公知の発泡助剤を加えても良い。 The phosphate-containing flame retardant may be subjected to a known water resistance improving treatment such as silane coupling agent treatment or coating with a melamine resin, and a known foaming aid such as melamine or pentaerythritol may be added. May be.
 リン酸塩含有難燃剤の具体例としては、例えば、モノリン酸塩、ピロリン酸塩、ポリリン酸塩等が挙げられる。 Specific examples of the phosphate-containing flame retardant include monophosphate, pyrophosphate, polyphosphate, and the like.
 モノリン酸塩としては特に限定されないが、例えば、リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のアンモニウム塩、リン酸-ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、亜リン酸-ナトリウム、亜リン酸二ナトリウム、次亜リン酸ナトリウム等のナトリウム塩、リン酸一カリウム、リン酸二カリウム、リン酸三カリウム、亜リン酸一カリウム、亜リン酸二カリウム、次亜リン酸カリウム等のカリウム塩、リン酸-リチウム、リン酸二リチウム、リン酸三リチウム、亜リン酸-リチウム、亜リン酸二リチウム、次亜リン酸リチウム等のリチウム塩、リン酸二水素バリウム、リン酸水素バリウム、リン酸三バリウム、次亜リン酸バリウム等のバリウム塩、リン酸一水素マグネシウム、リン酸水素マグネシウム、リン酸三マグネシウム、次亜リン酸マグネシウム等のマグネシウム塩、リン酸二水素カルシウム、リン酸水素カルシウム、リン酸三カルシウム、次亜リン酸カルシウム等のカルシウム塩、リン酸亜鉛、亜リン酸亜鉛、次亜リン酸亜鉛等の亜鉛塩等が挙げられる。 The monophosphate is not particularly limited. For example, ammonium salts such as ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, phosphoric acid-sodium, disodium phosphate, trisodium phosphate, phosphorous acid -Sodium salts such as sodium, disodium phosphite, sodium hypophosphite, monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, monopotassium phosphite, dipotassium phosphite, hypophosphorous acid Potassium salts such as potassium, lithium salts such as phosphoric acid-lithium phosphate, dilithium phosphate, trilithium phosphate, phosphorous acid-lithium, dilithium phosphite, lithium hypophosphite, barium dihydrogen phosphate, phosphorus Barium salts such as barium oxyhydrogen, tribarium phosphate, and barium hypophosphite, magnesium monohydrogen phosphate, phosphoric acid water Magnesium salts such as magnesium, trimagnesium phosphate, magnesium hypophosphite, calcium salts such as calcium dihydrogen phosphate, calcium hydrogen phosphate, tricalcium phosphate, calcium hypophosphite, zinc phosphate, zinc phosphite, Examples thereof include zinc salts such as zinc hypophosphite.
 またポリリン酸塩としては特に限定されないが、例えば、ポリリン酸アンモニウム、ポリリン酸ピペラジン、ポリリン酸メラミン、ポリリン酸アンモニウムアミド、ポリリン酸アルミニウム等が挙げられる。 The polyphosphate is not particularly limited, and examples thereof include ammonium polyphosphate, piperazine polyphosphate, melamine polyphosphate, ammonium amide polyphosphate, and aluminum polyphosphate.
 これらの中でも、リン酸塩含有難燃剤の自己消火性が向上するため、モノリン酸塩を使用することが好ましく、リン酸二水素アンモニウムを使用することがより好ましい。 Among these, since the self-extinguishing property of the phosphate-containing flame retardant is improved, it is preferable to use a monophosphate, and it is more preferable to use ammonium dihydrogen phosphate.
 リン酸塩含有難燃剤は一種もしくは二種以上を使用することができる。 The phosphate-containing flame retardant can be used alone or in combination of two or more.
 本発明に使用するリン酸塩含有難燃剤の添加量は、ウレタン樹脂100重量部に対して、1.5重量部~52重量部の範囲であることが好ましく、1.5重量部~20重量部の範囲であることがより好ましく、2.0重量部~15重量部の範囲であることが更に好ましく、2.0重量部~10重量部の範囲であることが最も好ましい。 The amount of the phosphate-containing flame retardant used in the present invention is preferably in the range of 1.5 to 52 parts by weight with respect to 100 parts by weight of the urethane resin, and 1.5 to 20 parts by weight. More preferably, it is in the range of 2.0 parts by weight to 15 parts by weight, and most preferably in the range of 2.0 parts by weight to 10 parts by weight.
 リン酸塩含有難燃剤の範囲が1.5重量部以上の場合は、難燃性ウレタン樹脂組成物の自己消火性が保持され、また52重量部以下の場合には難燃性ウレタン樹脂組成物の発泡が阻害されない。 When the range of the phosphate-containing flame retardant is 1.5 parts by weight or more, the self-extinguishing property of the flame retardant urethane resin composition is maintained, and when it is 52 parts by weight or less, the flame retardant urethane resin composition Foaming is not hindered.
 また本発明に使用する臭素含有難燃剤としては、分子構造中に臭素を含有する化合物であれば特に限定はないが、例えば、芳香族臭素化化合物等を挙げることができる。 The bromine-containing flame retardant used in the present invention is not particularly limited as long as it is a compound containing bromine in the molecular structure, and examples thereof include aromatic brominated compounds.
 芳香族臭素化化合物の具体例としては、例えば、ヘキサブロモベンゼン、ペンタブロモトルエン、ヘキサプロモビフェニル、デカプロモビフェニル、ヘキサプロモシクロデカン、デカプロモジフェニルエーテル、オクタブロモジフェニルエーテル、ヘキサプロモジフェニルエーテル、ビス(ペンタブロモフエノキシ)エタン、エチレンービス(テトラプロモフタルイミド)、テトラプロモビスフェノールA等のモノマー有機臭素化合物;臭素化ビスフェノールAを原料として製造されたポリカーボネートオリゴマー、ポリカ-ポネートオリゴマーとビスフェノールAとの共重合物等の臭素化ポリカーボネート;臭素化ビスフェノールAとエピクロルヒドリンとの反応によって製造されるジエポキシ化合物、臭素化フェノール類とエピクロルヒドリンとの反応によって得られるモノエポキシ化合物等の臭素化エポキシ化合物;ポリ(臭素化ベンジルアクリレート);臭素化ポリフェニレンエーテル;臭素化ビスフェノールA、塩化シアヌールおよび臭素化フェノールの縮合物;臭素化(ポリスチレン)、ポリ(臭素化スチレン)、架橋臭素化ポリスチレン等の臭素化ポリスチレン;架橋または非架橋臭素化ポリ(-メチルスチレン)等のハロゲン化された臭素化合物ポリマーが挙げられる。 Specific examples of the aromatic brominated compound include, for example, hexabromobenzene, pentabromotoluene, hexapromobiphenyl, decapromobiphenyl, hexapromocyclodecane, decapromodiphenyl ether, octabromodiphenyl ether, hexapromodiphenyl ether, bis (pentabromo Monomeric organic bromine compounds such as phenoxy) ethane, ethylene-bis (tetraprophtalimide), tetraprobisbisphenol A; polycarbonate oligomers produced from brominated bisphenol A as raw materials, copolymer of polycarbonate oligomer and bisphenol A Brominated polycarbonate such as diepoxy compounds produced by the reaction of brominated bisphenol A and epichlorohydrin, brominated phenols and epichlorohydride Brominated epoxy compounds such as monoepoxy compounds obtained by reaction with styrene; poly (brominated benzyl acrylate); brominated polyphenylene ether; condensates of brominated bisphenol A, cyanuric chloride and brominated phenol; brominated (polystyrene) And brominated polystyrene such as poly (brominated styrene) and crosslinked brominated polystyrene; and halogenated bromine compound polymers such as crosslinked or non-crosslinked brominated poly (-methylstyrene).
 燃焼初期の発熱量を制御する観点から、臭素化ポリスチレン、ヘキサブロモベンゼン等が好ましく、ヘキサブロモベンゼンがより好ましい。 From the viewpoint of controlling the calorific value at the initial stage of combustion, brominated polystyrene, hexabromobenzene and the like are preferable, and hexabromobenzene is more preferable.
 臭素含有難燃剤は一種もしくは二種以上を使用することができる。 臭 素 One or more bromine-containing flame retardants can be used.
 本発明に使用する臭素含有難燃剤の添加量は、ウレタン樹脂100重量部に対して、1.5重量部~52重量部の範囲であることが好ましく、1.5重量部~20重量部の範囲であることがより好ましく、2.0重量部~15重量部の範囲であることが更に好ましく、2.0重量部~10重量部の範囲であることが最も好ましい。 The addition amount of the bromine-containing flame retardant used in the present invention is preferably in the range of 1.5 to 52 parts by weight with respect to 100 parts by weight of the urethane resin, and 1.5 to 20 parts by weight. More preferred is a range of 2.0 parts by weight to 15 parts by weight, still more preferred is a range of 2.0 parts by weight to 10 parts by weight.
 臭素含有難燃剤の範囲が0.1重量部以上の場合は、難燃性ウレタン樹脂組成物の自己消火性が保持され、また52重量部以下の場合には難燃性ウレタン樹脂組成物の発泡が阻害されない。 When the range of the bromine-containing flame retardant is 0.1 part by weight or more, the self-extinguishing property of the flame retardant urethane resin composition is maintained, and when the range is 52 parts by weight or less, foaming of the flame retardant urethane resin composition Is not disturbed.
 また本発明に使用するアンチモン含有難燃剤としては、例えば、酸化アンチモン、アンチモン酸塩、ピロアンチモン酸塩等が挙げられる。 Further, examples of the antimony-containing flame retardant used in the present invention include antimony oxide, antimonate, pyroantimonate, and the like.
 酸化アンチモンとしては、例えば、三酸化アンチモン、五酸化アンチモン等が挙げられる。 Examples of the antimony oxide include antimony trioxide and antimony pentoxide.
 アンチモン酸塩としては、例えば、アンチモン酸ナトリウム、アンチモン酸カリウム等が挙げられる。 Examples of the antimonate include sodium antimonate and potassium antimonate.
 ピロアンチモン酸塩としては、例えば、ピロアンチモン酸ナトリウム、ピロアンチモン酸カリウム等が挙げられる。 Examples of pyroantimonate include sodium pyroantimonate and potassium pyroantimonate.
 本発明に使用するアンチモン含有難燃剤は、酸化アンチモンであることが好ましい。 The antimony-containing flame retardant used in the present invention is preferably antimony oxide.
 アンチモン含有難燃剤は、一種もしくは二種以上を使用することができる。 Antimony-containing flame retardants can be used alone or in combination of two or more.
 アンチモン含有難燃剤の添加量は、ウレタン樹脂100重量部に対して、1.5重量部~52重量部の範囲であることが好ましく、1.5重量部~20重量部の範囲であることがより好ましく、2.0重量部~15重量部の範囲であることが更に好ましく、2.0重量部~10重量部の範囲であることが最も好ましい。 The addition amount of the antimony-containing flame retardant is preferably in the range of 1.5 to 52 parts by weight and more preferably in the range of 1.5 to 20 parts by weight with respect to 100 parts by weight of the urethane resin. More preferably, the range is from 2.0 parts by weight to 15 parts by weight, still more preferably from 2.0 parts by weight to 10 parts by weight.
 アンチモン含有難燃剤の範囲が1.5重量部以上の場合は、難燃性ウレタン樹脂組成物の自己消火性が保持され、また52重量部以下の場合には難燃性ウレタン樹脂組成物の発泡が阻害されない。 When the range of the antimony-containing flame retardant is 1.5 parts by weight or more, the self-extinguishing property of the flame retardant urethane resin composition is maintained, and when it is 52 parts by weight or less, foaming of the flame retardant urethane resin composition Is not disturbed.
 また本発明に使用する金属水酸化物としては、例えば、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、水酸化鉄、水酸化ニッケル、水酸化ジルコニウム、水酸化チタン、水酸化亜鉛、水酸化銅、水酸化バナジウム、水酸化スズ等があげられる。 Examples of the metal hydroxide used in the present invention include magnesium hydroxide, calcium hydroxide, aluminum hydroxide, iron hydroxide, nickel hydroxide, zirconium hydroxide, titanium hydroxide, zinc hydroxide, copper hydroxide. , Vanadium hydroxide, tin hydroxide and the like.
 金属水酸化物は、一種もしくは二種以上を使用することができる。 1 type or 2 types or more can be used for a metal hydroxide.
 金属水酸化物の添加量は、ウレタン樹脂100重量部に対して、1.5重量部~52重量部の範囲であることが好ましく、1.5重量部~20重量部の範囲であることがより好ましく、2.0重量部~15重量部の範囲であることが更に好ましく、2.0重量部~10重量部の範囲であることが最も好ましい。 The addition amount of the metal hydroxide is preferably in the range of 1.5 to 52 parts by weight and preferably in the range of 1.5 to 20 parts by weight with respect to 100 parts by weight of the urethane resin. More preferably, the range is from 2.0 parts by weight to 15 parts by weight, still more preferably from 2.0 parts by weight to 10 parts by weight.
 金属水酸化物の範囲が1.5重量部以上の場合は、難燃性ウレタン樹脂組成物の自己消火性が保持され、また52重量部以下の場合には難燃性ウレタン樹脂組成物の発泡が阻害されない。 When the range of the metal hydroxide is 1.5 parts by weight or more, the self-extinguishing property of the flame retardant urethane resin composition is maintained, and when it is 52 parts by weight or less, the foam of the flame retardant urethane resin composition is maintained. Is not disturbed.
 また難燃性ウレタン樹脂組成物は、無機充填材を併用することができる。 In addition, the flame retardant urethane resin composition can be used in combination with an inorganic filler.
 無機充填材としては、特に限定はないが、例えば、シリカ、珪藻土、アルミナ、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ド-ソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム等のカリウム塩、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカパルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素パルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムポレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、各種磁性粉、スラグ繊維、フライアッシュ、シリカアルミナ繊維、アルミナ繊維、シリカ繊維、ジルコニア繊維等が挙げられる。 The inorganic filler is not particularly limited. For example, silica, diatomaceous earth, alumina, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, basic magnesium carbonate, calcium carbonate, carbonate Magnesium, zinc carbonate, barium carbonate, dosonite, hydrotalcite, calcium sulfate, barium sulfate, gypsum fiber, potassium salt of calcium silicate, talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite, imogolite, Sericite, glass fiber, glass beads, silica parun, aluminum nitride, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon parun, charcoal powder, various metal powders, potassium titanate, magnesium sulfate, zirconium titanate Emissions lead, aluminum port rate, molybdenum sulfide, silicon carbide, stainless steel fiber, various magnetic powder, slag fibers, fly ash, silica alumina fiber, alumina fiber, silica fiber, zirconia fiber, and the like.
 無機充填材は、一種もしくは二種以上を使用することができる。 Inorganic fillers can be used alone or in combination of two or more.
 さらに難燃性ウレタン樹脂組成物は、それぞれ本発明の目的を損なわない範囲で、必要に応じて、フェノール系、アミン系、イオウ系等の酸化防止剤、熱安定剤、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、軟化剤、顔料、粘着付与樹脂等の補助成分、ポリブテン、石油樹脂等の粘着付与剤を含むことができる。 Furthermore, the flame retardant urethane resin composition is within a range that does not impair the object of the present invention, as necessary, such as phenol-based, amine-based, sulfur-based antioxidants, heat stabilizers, metal harm-preventing agents, charging agents. An inhibitor, a stabilizer, a crosslinking agent, a lubricant, a softener, a pigment, an auxiliary component such as a tackifier resin, and a tackifier such as polybutene and a petroleum resin can be included.
 難燃性ウレタン樹脂組成物は反応して硬化するため、その粘度は時間の経過と共に変化する。そこで難燃性ウレタン樹脂組成物を使用する前は、難燃性ウレタン樹脂組成物を二以上に分割して、難燃性ウレタン樹脂組成物が反応して硬化することを防止しておく。そして難燃性ウレタン樹脂組成物を使用する際に、二以上に分割しておいた難燃性ウレタン樹脂組成物を一つにまとめることにより、難燃性ウレタン樹脂組成物が得られる。 Since the flame retardant urethane resin composition reacts and cures, its viscosity changes over time. Therefore, before using the flame retardant urethane resin composition, the flame retardant urethane resin composition is divided into two or more to prevent the flame retardant urethane resin composition from reacting and curing. And when using a flame-retardant urethane resin composition, a flame-retardant urethane resin composition is obtained by putting together the flame-retardant urethane resin composition divided | segmented into two or more.
 なお難燃性ウレタン樹脂組成物を二以上に分割するときは、二以上に分割された難燃性ウレタン樹脂組成物のそれぞれの成分単独は硬化が始まらず、難燃性ウレタン樹脂組成物のそれぞれの成分を混合した後に硬化反応が始まるようにそれぞれの成分を分割すればよい。 In addition, when dividing the flame retardant urethane resin composition into two or more, each component of the flame retardant urethane resin composition divided into two or more does not start to cure, and each of the flame retardant urethane resin composition Each component may be divided so that the curing reaction starts after the components are mixed.
 本発明は、(A)ポリイソシアネート化合物を含有する第1液、(B)ポリオール化合物を含有する第2液、(C)三量化触媒、(D)発泡剤、(E)整泡剤および(F)添加剤を含む、難燃性ウレタン樹脂組成物を形成するための組み合わせまたは反応系であるシステムであって、ポリイソシアネート化合物、ポリオール化合物、三量化触媒、発泡剤、整泡剤および添加剤を混合して生成された難燃性ウレタン樹脂組成物の硬化物における13C NMRで測定したときのウレタンのカルボニル基のピークに対するイソシアヌレートのカルボニル基のピークの強度比が0.3~3.5の間である、難燃性ウレタン樹脂組成物を形成するためのシステムも包含する。 The present invention includes (A) a first liquid containing a polyisocyanate compound, (B) a second liquid containing a polyol compound, (C) a trimerization catalyst, (D) a foaming agent, (E) a foam stabilizer and ( F) A system that is a combination or reaction system for forming a flame retardant urethane resin composition, including an additive, comprising a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent, a foam stabilizer, and an additive The intensity ratio of the peak of the carbonyl group of the isocyanurate to the peak of the carbonyl group of the urethane as measured by 13 C NMR in the cured product of the flame retardant urethane resin composition produced by mixing 0.3 to 3. Also included is a system for forming a flame retardant urethane resin composition that is between 5.
 (C)三量化触媒、(D)発泡剤、(E)整泡剤および(F)添加剤の各々は、上記の第1液もしくは第2液に含有されてもよいし、第1液および第2液とは別に提供されてもよい。好ましくは、(C)三量化触媒、(D)発泡剤、(E)整泡剤および(F)添加剤の各々は上記の第2液に含有される。難燃性ウレタン樹脂組成物を形成するためのシステムは、上記第1液を収容する第1容器と上記第2液を収容する第2容器とを備えた装置、例えばコーキングガンまたはスプレー式容器として提供される。 Each of (C) trimerization catalyst, (D) foaming agent, (E) foam stabilizer and (F) additive may be contained in the first liquid or the second liquid, and the first liquid and It may be provided separately from the second liquid. Preferably, (C) the trimerization catalyst, (D) the foaming agent, (E) the foam stabilizer and (F) the additive are each contained in the second liquid. A system for forming a flame retardant urethane resin composition includes a first container that contains the first liquid and a second container that contains the second liquid, such as a caulking gun or a spray-type container. Provided.
 (A)~(F)の成分の詳細およびそれより形成される難燃性ウレタン樹脂組成物については上述した通りである。 Details of the components (A) to (F) and the flame-retardant urethane resin composition formed therefrom are as described above.
 難燃性ウレタン樹脂組成物の製造方法は特に限定されないが、例えば、難燃性ウレタン樹脂組成物の各成分を混合する方法、難燃性ウレタン樹脂組成物を有機溶剤に懸濁させたり、加温して溶融させたりして塗料状とする方法、溶剤に分散してスラリーを調製する等の方法、また難燃性ウレタン樹脂組成物に含まれる反応硬化性樹脂成分に25℃の温度において固体である成分が含まれる場合には、難燃性ウレタン樹脂組成物を加熱下に溶融させる等の方法により難燃性ウレタン樹脂組成物を得ることができる。 The method for producing the flame retardant urethane resin composition is not particularly limited. For example, the method of mixing the components of the flame retardant urethane resin composition, the flame retardant urethane resin composition suspended in an organic solvent, A method of heating and melting to form a paint, a method of preparing a slurry by dispersing in a solvent, etc., and a reaction curable resin component contained in a flame retardant urethane resin composition at a temperature of 25 ° C. When the component which is is contained, a flame-retardant urethane resin composition can be obtained by methods, such as melting a flame-retardant urethane resin composition under heating.
 難燃性ウレタン樹脂組成物は、難燃性ウレタン樹脂組成物の各成分を単軸押出機、二軸押出機、バンバリーミキサー、ニーダーミキサー、混練ロール、ライカイ機、遊星式撹拝機等公知の装置を用いて混練することにより得ることができる。 The flame retardant urethane resin composition is a known component such as a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader mixer, a kneading roll, a laika machine, a planetary stirring machine, etc. It can be obtained by kneading using an apparatus.
 また、ウレタン樹脂の主剤と硬化剤とをそれぞれ別々に充填材等と共に混練しておき、注入直前にスタティックミキサー、ダイナミックミキサー等で混練して得ることもできる。 Also, the urethane resin main component and the curing agent can be kneaded separately with a filler and the like, and kneaded with a static mixer, a dynamic mixer or the like immediately before injection.
 さらに触媒を除く難燃性ウレタン樹脂組成物の成分と、触媒とを注入直前に同様に混練して得ることもできる。以上説明した方法により難燃性ウレタン樹脂組成物を得ることができる。 Further, the components of the flame retardant urethane resin composition excluding the catalyst and the catalyst can be kneaded in the same manner immediately before injection. A flame-retardant urethane resin composition can be obtained by the method described above.
 次に本発明に係る難燃性ウレタン樹脂組成物の硬化方法について説明する。 Next, a method for curing the flame retardant urethane resin composition according to the present invention will be described.
 前記難燃性ウレタン樹脂組成物のそれぞれの成分を混合すると反応が始まり時間の経過と共に粘度が上昇し、流動性を失う。 When the respective components of the flame retardant urethane resin composition are mixed, the reaction starts, the viscosity increases with the passage of time, and the fluidity is lost.
 例えば、前記難燃性ウレタン樹脂組成物を、金型、枠材等の容器へ注入して硬化させることにより、前記難燃性ウレタン樹脂組成物からなる成形体を発泡体として得ることができる。 For example, the molded body made of the flame retardant urethane resin composition can be obtained as a foam by injecting the flame retardant urethane resin composition into a container such as a mold or a frame material and curing it.
 前記難燃性ウレタン樹脂組成物からなる成形体を得る際には、熱を加えたり、圧力を加えたりすることができる。 When obtaining a molded body composed of the flame retardant urethane resin composition, heat or pressure can be applied.
 得られた硬化後の難燃性ウレタン樹脂組成物、すなわち難燃性ウレタン樹脂組成物の硬化物のサンプル中のイソシアヌレートのカルボニル基のピークとウレタンのカルボニル基のピークを固体13C NMRにて測定する場合、難燃性ウレタン樹脂組成物の硬化物における上部表面のスキン層を避け、スキン層より下方の部分を測定する。壁面等に施工した難燃性ウレタン樹脂組成物の硬化物を測定する場合、硬化物の表面から10%の深さの部分からサンプルを削り取ることが好ましい。 The solid-state 13 C NMR shows the peak of the carbonyl group of isocyanurate and the peak of the carbonyl group of urethane in the obtained flame-retardant urethane resin composition after curing, that is, a sample of the cured product of the flame-retardant urethane resin composition. When measuring, the skin layer of the upper surface in the hardened | cured material of a flame-retardant urethane resin composition is avoided, and the part below a skin layer is measured. When measuring the hardened | cured material of the flame-retardant urethane resin composition applied to the wall surface etc., it is preferable to scrape off a sample from the part of 10% depth from the surface of hardened | cured material.
 前記難燃性ウレタン樹脂組成物からなる成形体は、比重が 0.020-0.130の範囲であることが取り扱いやすいことから好ましく、 0.030-0.100の範囲であることがより好ましく、0.030-0.080の範囲であることがさらに好ましく、0.040-0.060の範囲であることが最も好ましい。 The molded body made of the flame retardant urethane resin composition preferably has a specific gravity in the range of 0.020-0.130 because it is easy to handle, and more preferably in the range of 0.030-0.100. , 0.030-0.080 is more preferable, and 0.040-0.060 is most preferable.
 硬化後の本発明の難燃性ウレタン樹脂組成物は、特定のスピン-スピン緩和時間により特徴付けられる。パルス法NMRを用いたソリッドエコー(solid echo)法によって得られるスピン-スピン緩和時間(T2)は、物質の分子運動性を表す尺度であり、数値が大きいほど運動性が高いことを示す。 The cured flame retardant urethane resin composition of the present invention after curing is characterized by a specific spin-spin relaxation time. The spin-spin relaxation time (T2) obtained by the solid echo method using pulsed NMR is a measure representing the molecular mobility of a substance, and the larger the value, the higher the mobility.
 ソリッドエコー法については、既によく知られているため詳細は省略するが、主にガラス状および結晶性高分子などの緩和時間の短い試料の測定に用いられるものである。一般に、単一の90°パルス後に生じるFID信号はexp(-t/T2)に従って減衰するので、これからT2緩和時間であるT2を求めることができる。パルスNMRによるスピン―スピン緩和時間の測定の実際としては、例えば、西等のJ.Chem.Phys.82、4327(1985)記載の方法が挙げられる。 The solid echo method is already well known and will not be described in detail, but is mainly used for measurement of samples with a short relaxation time such as glassy and crystalline polymers. In general, since the FID signal generated after a single 90 ° pulse attenuates according to exp (−t / T2), T2 which is the T2 relaxation time can be obtained from this. As an example of the measurement of the spin-spin relaxation time by pulse NMR, for example, J. et al. Chem. Phys. 82, 4327 (1985).
 パルスNMRの解析結果から物性と相分離構造と組成との関連を解析する方法はよく知られており、パルスNMRで得られる自由誘導減衰(FID)信号を最小二乗法によってスピン-スピン緩和時間T2の長い成分から順に差し引いて、波形分離することにより、たとえば結晶性高分子であれば、3つの成分、つまり緩和時間の短いスピン-スピン緩和時間(T2S)を有する第1の成分、緩和時間のより長いスピン-スピン緩和時間(T2L)を有する第2の成分、第1の成分と第2の成分の間の中間の成分である第3の成分に分けることができ、ガウス型関数及びローレンツ型関数もしくは指数関数による計算式を用いて、各成分の成分量が求められる(例えば、「固体NMR(高分解能NMRとパルスNMR)によるポリウレタン樹脂の相分離構造解析」(DIC Technical Review N.12,pp.7~12,2006)を参照)。 A method of analyzing the relationship between physical properties, phase separation structure and composition from the analysis result of pulse NMR is well known, and spin-spin relaxation time T2 is obtained by free induction decay (FID) signal obtained by pulse NMR by the least square method. For example, in the case of a crystalline polymer, three components, that is, a first component having a short relaxation time (T2S), a first component having a relaxation time, It can be divided into a second component having a longer spin-spin relaxation time (T2L), a third component that is an intermediate component between the first component and the second component, and a Gaussian function and a Lorentz type The amount of each component can be determined using a calculation formula using a function or exponential function (for example, “polyurethane by solid-state NMR (high resolution NMR and pulsed NMR) Phase separation structure analysis of fat "(DIC Technical Review N.12, pp.7 ~ 12,2006) see).
 パルスNMRの測定について詳説すると、以下の通りである。まず、直径1cmのガラス管に、凍結粉砕した粉末状のサンプルを1~2cmの高さまで詰めた試料を磁場の中に置き、高周波パルス磁場を加えた後の巨視的磁化の緩和挙動を測定すると、自由誘導減衰(FID)信号が得られる(横軸:時間(m秒)、縦軸:自由誘導減衰信号強度)。得られたFID信号の初期値は測定試料中のプロトンの数に比例しており、測定試料に3つの成分がある場合には、FID信号は3成分の応答信号の和として現れる。一方、試料中に含まれる各成分は運動性に差があるため、成分間で応答信号の減衰の速さが異なり、スピン-スピン緩和時間T2が相違する。そのため、最小二乗法により3成分に分けることができ、たとえば結晶性高分子の場合、スピン-スピン緩和時間T2の長い方から順にそれぞれ非晶相(L成分)、界面相(M成分)、結晶相(S成分)となる。 The pulse NMR measurement will be described in detail as follows. First, when a sample of a powder sample that has been frozen and crushed to a height of 1 to 2 cm is placed in a magnetic field in a glass tube having a diameter of 1 cm, the relaxation behavior of the macroscopic magnetization after applying a high-frequency pulsed magnetic field is measured. A free induction decay (FID) signal is obtained (horizontal axis: time (msec), vertical axis: free induction decay signal intensity). The initial value of the obtained FID signal is proportional to the number of protons in the measurement sample, and when the measurement sample has three components, the FID signal appears as the sum of response signals of the three components. On the other hand, since each component contained in the sample has a difference in mobility, the speed of decay of the response signal differs among the components, and the spin-spin relaxation time T2 differs. Therefore, it can be divided into three components by the method of least squares. For example, in the case of a crystalline polymer, an amorphous phase (L component), an interface phase (M component), a crystal, respectively, in order from the longer spin-spin relaxation time T2. It becomes a phase (S component).
 本明細書では、Gauss-Decay extended法を用いて、測定によって得られた減衰曲線を2つのガウス型関数の足し合わせとみなし、ハード成分およびソフト成分の2成分へと単純化することで、ハード成分のT2値および2つの成分の信号強度の分率と本発明の難燃性ウレタン樹脂組成物の形状保持性などの物性値とに相関があることを見出したため、2成分として解析している。本発明の難燃性ウレタン樹脂組成物においても、T2が低い程、また、非晶相の割合が低い程、硬いポリウレタンになる。 In this specification, by using the Gauss-Decay extended method, the attenuation curve obtained by measurement is regarded as the sum of two Gaussian functions and simplified to two components, a hard component and a soft component. Since it was found that there is a correlation between the T2 value of the component and the signal intensity fraction of the two components and the physical property value such as the shape retention of the flame retardant urethane resin composition of the present invention, it is analyzed as two components. . Also in the flame-retardant urethane resin composition of the present invention, the lower the T2 and the lower the proportion of the amorphous phase, the harder the polyurethane.
 本明細書では、パルスNMRを用いて150℃、観測核が1Hで測定したハード成分(第1成分)のスピン-スピン緩和時間(T2S)が0.01ミリ秒~0.1ミリ秒の間であり、ソフト成分(第2成分)のスピン-スピン緩和時間(T2L)が0.1ミリ秒~1.0ミリ秒の間にあるものとする。第1の成分のスピン-スピン緩和時間(T2S)が0.01ミリ秒より短いものは実用的でなく、第1の成分のスピン-スピン緩和時間(T2S)が0.1ミリ秒より長いと、難燃性ウレタン樹脂組成物が軟らかくなりすぎて火炎等の熱により一定の形状を保つことが困難となり、形状保持性に劣る。第2成分のスピン-スピン緩和時間(T2L)が1.0ミリ秒より長いと、実用的でない。 In this specification, the spin-spin relaxation time (T2S) of the hard component (first component) measured at 150 ° C. using pulsed NMR at 1 ° C. and the observation nucleus is 0.01 ms to 0.1 ms. It is assumed that the spin-spin relaxation time (T2L) of the soft component (second component) is between 0.1 ms and 1.0 ms. It is not practical that the spin-spin relaxation time (T2S) of the first component is shorter than 0.01 milliseconds, and if the spin-spin relaxation time (T2S) of the first component is longer than 0.1 milliseconds, The flame retardant urethane resin composition becomes too soft and it becomes difficult to maintain a certain shape by heat such as flame, resulting in poor shape retention. If the spin-spin relaxation time (T2L) of the second component is longer than 1.0 milliseconds, it is not practical.
 本発明の難燃性ウレタン樹脂組成物においては、パルスNMRを用いて150℃、観測核が1Hで測定した第1成分のスピン-スピン緩和時間(T2S)における信号強度の分率が第2成分のスピン-スピン緩和時間(T2L)における信号強度の分率よりも多い。本発明の難燃性ウレタン樹脂組成物のパルスNMR測定は、加熱後に温度が安定した後で行う。一つの実施形態では、本発明の難燃性ウレタン樹脂組成物は、組成物サンプルの投入つまり150℃での加熱開始の10分後にパルスNMR測定を行う。 In the flame-retardant urethane resin composition of the present invention, the fraction of the signal intensity in the spin-spin relaxation time (T2S) of the first component measured at 150 ° C. using pulsed NMR and the observation nucleus is 1 H is the second. More than the fraction of the signal intensity in the component spin-spin relaxation time (T2L). The pulse NMR measurement of the flame retardant urethane resin composition of the present invention is performed after the temperature is stabilized after heating. In one embodiment, the flame retardant urethane resin composition of the present invention performs a pulse NMR measurement 10 minutes after the composition sample is charged, that is, after heating at 150 ° C. is started.
 なお、スピン-スピン緩和時間は用いられる磁場強度によっても多少変化するが、磁場強度の大きさにかかわらず本発明に包含される。 The spin-spin relaxation time slightly changes depending on the magnetic field strength used, but is included in the present invention regardless of the magnitude of the magnetic field strength.
 一実施形態では、難燃性ウレタン樹脂組成物は、前記ポリイソシアネート化合物および前記ポリオール化合物からなるウレタン樹脂100重量部を基準として、0.1~10重量部の範囲の三量化触媒と、0.1~30重量部の発泡剤と、0.1重量部~10重量部の範囲の整泡剤と、4.5重量部~70重量部の範囲の添加剤とを含み、パルスNMRを用いて150℃、観測核が1Hで測定した第1成分のスピン-スピン緩和時間(T2S)が0.01ミリ秒~0.1ミリ秒の間であり、観測核が1Hで測定した第2成分のスピン-スピン緩和時間(T2L)が0.1ミリ秒~1.0ミリ秒の間、特には0.1ミリ秒~0.95ミリ秒の間にあり、第1成分における信号強度の分率が第2成分における信号強度の分率よりも多い。 In one embodiment, the flame retardant urethane resin composition comprises a trimerization catalyst in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the urethane resin composed of the polyisocyanate compound and the polyol compound; 1 to 30 parts by weight of a foaming agent, 0.1 to 10 parts by weight of a foam stabilizer, and 4.5 to 70 parts by weight of an additive, using pulsed NMR The spin-spin relaxation time (T2S) of the first component measured at 150 ° C. and the observation nucleus at 1 H is between 0.01 milliseconds and 0.1 milliseconds, and the observation nucleus is measured at 1 H. The component spin-spin relaxation time (T2L) is between 0.1 ms and 1.0 ms, in particular between 0.1 ms and 0.95 ms, and the signal strength of the first component is The fraction is greater than the fraction of signal strength in the second component.
 別の実施形態では、観測核が1Hで測定した第2成分のスピン-スピン緩和時間(T2L)が0.15ミリ秒~1ミリ秒の間であり、さらに別の実施形態では0.15秒~0.95ミリ秒の間である。 In another embodiment, the spin-spin relaxation time (T2L) of the second component measured at 1 H for the observation nucleus is between 0.15 ms and 1 ms, and in yet another embodiment 0.15 Between seconds and 0.95 milliseconds.
 別の実施形態では、第1成分における信号強度の分率が70%を超え(第2成分における信号強度の分率が30%未満)、より好ましくは75%を超え(第2成分における信号強度の分率が25%未満)、さらに好ましくは80%を超える(第2成分における信号強度の分率が20%未満)。 In another embodiment, the signal strength fraction in the first component is greater than 70% (the signal strength fraction in the second component is less than 30%), more preferably greater than 75% (the signal strength in the second component. Is less than 25%), more preferably more than 80% (the signal intensity fraction in the second component is less than 20%).
 次に本発明に係る難燃性ウレタン樹脂組成物の応用例について説明する。
前記難燃性ウレタン樹脂組成物を、建築物、家具、自動車、電車、船等の構造物に吹き付けることにより、前記構造物の表面に難燃性ウレタン樹脂組成物からなる発泡体層を形成することができる。
Next, application examples of the flame retardant urethane resin composition according to the present invention will be described.
By blowing the flame retardant urethane resin composition onto a structure such as a building, furniture, automobile, train, ship, etc., a foam layer made of the flame retardant urethane resin composition is formed on the surface of the structure. be able to.
 例えば、前記難燃性ウレタン樹脂組成物を、ポリイソシアネート化合物と、それ以外の成分とに分けておき、両者を噴霧しながら混合して前記構造物の表面に吹き付ける方法、前記ポリイソシアネート化合物と、それ以外の成分とを混合した後に前記構造物の表面に吹き付ける方法等があげられる。上記の方法により、前記構造物の表面に発泡体層を形成することができる。 For example, the flame retardant urethane resin composition is divided into a polyisocyanate compound and other components, mixed while spraying both, and sprayed onto the surface of the structure, the polyisocyanate compound, Examples thereof include a method of spraying the surface of the structure after mixing with other components. By the above method, a foam layer can be formed on the surface of the structure.
 次に本発明の繊維強化樹脂成形品について実施する耐火試験について説明する。 Next, a fire resistance test performed on the fiber-reinforced resin molded product of the present invention will be described.
 難燃性ウレタン樹脂組成物からなる成形品を縦10cm、横10cmおよび厚み5cmに切断して、コーンカロリーメーター試験用サンプルを準備する。 A molded product made of a flame retardant urethane resin composition is cut into a length of 10 cm, a width of 10 cm, and a thickness of 5 cm to prepare a sample for a corn calorimeter test.
 コーンカロリーメーター試験用サンプル用いて、ISO-5660の試験方法に準拠して、放射熱強度50kW/m2にて20分間加熱したときのコーンカロリーメーター試験による総発熱量を測定することができる。 Using the sample for corn calorimeter test, the total calorific value by the corn calorimeter test when heated at a radiant heat intensity of 50 kW / m 2 for 20 minutes can be measured according to the test method of ISO-5660.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
1.難燃性ウレタン樹脂組成物の製造
 表1に示した配合により、実施例1~3および比較例1に係る難燃性ウレタン樹脂組成物を準備した。表中の各成分の詳細は次の通りである。
・ポリオール化合物(以下、「ポリオール」という)
 (A-1)p-フタル酸ポリエステルポリオール(川崎化成工業社製、製品名:マキシモールRFK-505、水酸基価=250mgKOH/g)
 (A-2)p-フタル酸ポリエステルポリオール(川崎化成工業社製、製品名:マキシモールRF K-087、水酸基価=200mgKOH/g)
・整泡剤
 ポリアルキレングリコール系整泡剤(東レダウコーニング社製、製品名:SH-193)
・三量化触媒
 (B-1)3量化触媒(モメンティブ・パフォーマンス・マテリアル・ジャパン社製、製品名:K-zero G)
 (B-2)3量化触媒(東ソー社製、製品名:TOYOCAT-TR20)
・ウレタン化触媒
 (B-3)ペンタメチルジエチレントリアミン(東ソー社製、製品名:TOYOCAT-DT)
・発泡剤
 (C-1)水
 (C-2)HFC HFC-365mfc(1,1,1,3,3-ペンタフルオロブタン、日本ソルベイ社製)およびHFC-245fa(1,1,1,3,3-ペンタフルオロプロパン、セントラル硝子社製)、混合比率 HFC-365mfc:HFC-245fa = 7:3、以下「HFC」という)
・イソシアネート化合物 (以下、「ポリイソシアネート」という)
 MDI(日本ウレタン工業社製、製品名:ミリオネートMR-200)粘度:167mPa・s
・添加剤
(D-1) トリス(β―クロロプロピル)ホスフェート(大八化学社製、製品名:TMCPP、以下「TMCPP」という。)
(D-2) 赤リン (燐化学工業社製、製品名:ノーバエクセル140)
(D-3) リン酸二水素アンモニウム(太平化学産業社製)
(D-4) ヘキサブロモベンゼン(マナック社製、製品名:HBB-b、以下「HBB」という。
1. Production of Flame Retardant Urethane Resin Composition Flame retardant urethane resin compositions according to Examples 1 to 3 and Comparative Example 1 were prepared according to the formulation shown in Table 1. Details of each component in the table are as follows.
・ Polyol compound (hereinafter referred to as “polyol”)
(A-1) p-phthalic acid polyester polyol (manufactured by Kawasaki Chemical Industries, Ltd., product name: Maximol RFK-505, hydroxyl value = 250 mgKOH / g)
(A-2) p-phthalic acid polyester polyol (manufactured by Kawasaki Kasei Kogyo Co., Ltd., product name: Maximol RF K-087, hydroxyl value = 200 mgKOH / g)
・ Foam stabilizer Polyalkylene glycol foam stabilizer (manufactured by Toray Dow Corning, product name: SH-193)
-Trimerization catalyst (B-1) Trimerization catalyst (Momentive Performance Material Japan, product name: K-zero G)
(B-2) Trimerization catalyst (manufactured by Tosoh Corporation, product name: TOYOCAT-TR20)
Urethane catalyst (B-3) Pentamethyldiethylenetriamine (Tosoh Corporation, product name: TOYOCAT-DT)
-Foaming agent (C-1) Water (C-2) HFC HFC-365mfc (1,1,1,3,3-pentafluorobutane, manufactured by Solvay Japan) and HFC-245fa (1,1,1,3) , 3-pentafluoropropane (manufactured by Central Glass Co., Ltd.), mixing ratio HFC-365mfc: HFC-245fa = 7: 3, hereinafter referred to as “HFC”)
・ Isocyanate compound (hereinafter referred to as “polyisocyanate”)
MDI (manufactured by Nippon Urethane Industry Co., Ltd., product name: Millionate MR-200) Viscosity: 167 mPa · s
Additive (D-1) Tris (β-chloropropyl) phosphate (manufactured by Daihachi Chemical Co., Ltd., product name: TMCPP, hereinafter referred to as “TMCPP”)
(D-2) Red phosphorus (Product name: Nova Excel 140, manufactured by Rin Chemical Industry Co., Ltd.)
(D-3) Ammonium dihydrogen phosphate (manufactured by Taihei Chemical Industrial Co., Ltd.)
(D-4) Hexabromobenzene (manufactured by Manac, product name: HBB-b, hereinafter referred to as “HBB”).
 下記の表1の配合に従い、ポリオール化合物、整泡剤、各種触媒、HFC成分を除く発泡剤、および添加剤を1000mLポリプロピレンビーカーにはかりとり、25℃、1分間手混ぜで撹拝した。撹拝後の混練物に対してポリイソシアネート化合物、HFCを加え、ハンドミキサーで約10秒間擾拝し発泡体を作成した。得られた難燃性ウレタン樹脂組成物は時間の経過と共に流動性を失い、実施例1~3および比較例1の硬化した難燃性ウレタン樹脂組成物の発泡体を得た。
2.発泡体の難燃性の評価
 上記発泡体を下記の基準により評価し、結果を表1に示した(各成分の割合をポリイソシアヌレート樹脂100重量部に対する重量部で示す)。 
[熱量の測定]
 硬化物から10cm×10cm×5cmになるようにコーンカロリーメーター試験用サンプルを切り出し、ISO-5660に準拠し、放射熱強度50kW/m2にて20分間加熱したときの最大発熱速度、総発熱量を測定した結果を表1に記載した。
In accordance with the formulation shown in Table 1 below, the polyol compound, foam stabilizer, various catalysts, the foaming agent excluding the HFC component, and additives were weighed into a 1000 mL polypropylene beaker and stirred by hand mixing at 25 ° C. for 1 minute. A polyisocyanate compound and HFC were added to the kneaded material after stirring, and a foam was made by worshiping with a hand mixer for about 10 seconds. The obtained flame-retardant urethane resin composition lost its fluidity with time, and the foams of the cured flame-retardant urethane resin compositions of Examples 1 to 3 and Comparative Example 1 were obtained.
2. Evaluation of Flame Retardancy of Foam The above foam was evaluated according to the following criteria, and the results are shown in Table 1 (the ratio of each component is expressed in parts by weight relative to 100 parts by weight of polyisocyanurate resin).
[Measurement of calorific value]
A sample for corn calorimeter test is cut out from the cured product so as to be 10 cm × 10 cm × 5 cm, and the maximum heat generation rate and total heat generation when heated for 20 minutes at a radiant heat intensity of 50 kW / m 2 in accordance with ISO-5660 The results of measuring are shown in Table 1.
 この測定方法は、建築基準法施行令第 108条の2に規定される公的機関である建築総合試験所にて、コーンカロリーメーター法による基準に対応するものとして規定された試験法であり、ISO-5660の試験方法に準拠したものである。  This measurement method is a test method stipulated as corresponding to the standard by the corn calorimeter method at the Building Research Institute, which is a public institution prescribed in Article 108-2 of the Building Standard Law Enforcement Order, It conforms to the test method of ISO-5660.
 20分間加熱でコーンカロリーメーターの総発熱量が8MJ/m2以下の場合に合格であるが、本試験では20分間加熱で8MJ/m2を超えるものをFAIL、20分間加熱で8MJ/m2以下のものをPASSとした。 Although the total amount of heat generated by the cone calorimeter at a heating for 20 minutes is acceptable in the case of 8 MJ / m 2 or less, 8 MJ / m 2 at a heating FAIL, 20 minutes what is in excess of 8 MJ / m 2 at a heating for 20 minutes in this study The following was designated as PASS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
3.発熱体の形状保持性の評価
 前記ISO-5660の試験を実施したときに、膨張後の成形体が点火器に接触するかどうか(膨張の測定)、前記試験用サンプルの裏面まで到達する変形が見られるかどうか(変形の測定)、前記ISO-5660の試験を実施したときに、前記試験用サンプルの横方向に1cm以上かつ厚み方向に5mm以上の変形が見られるかどうか(収縮の測定)を測定した。
3. Evaluation of shape retention of heating element When the test of ISO-5660 is carried out, whether the molded body after expansion comes into contact with the igniter (measurement of expansion), deformation that reaches the back surface of the test sample. Whether or not the deformation is observed (deformation measurement), and whether or not deformation of 1 cm or more in the lateral direction and 5 mm or more in the thickness direction is observed in the test sample when the test of ISO-5660 is performed (measurement of shrinkage) Was measured.
 実施例1-6では膨張、変形、および収縮がいずれも合格であり、比較例1,2では膨張、変形、および収縮のうちのすくなくともいずれか一つが不合格であった。
4.パルスNMRによる測定
 実施例1~6及び比較例1~2の各難燃性ポリウレタン樹脂組成物の硬化物のサンプルについて、パルス法NMRを用いてソリッドエコー法による測定を行った。この測定は、直径1cmのガラス管に、凍結粉砕した粉末状のサンプルを1~2cmの高さまで詰め、パルスNMR測定装置(ブルカーバイオスピン社製、MINISPEC mq20、25MHz)を用い、ソリッドエコー法にて、繰り返し時間:4s、積算回数:256回、温度:150℃、測定開始時間:(温度が安定するまで)サンプル投入後10分経過後に測定開始にて測定する。
In Example 1-6, expansion, deformation, and contraction were all acceptable, and in Comparative Examples 1 and 2, at least one of expansion, deformation, and contraction was unacceptable.
4). Measurement by Pulsed NMR The cured material samples of each flame retardant polyurethane resin composition of Examples 1 to 6 and Comparative Examples 1 and 2 were measured by solid echo method using pulsed NMR. In this measurement, a freeze-pulverized powdery sample was packed in a glass tube having a diameter of 1 cm to a height of 1 to 2 cm, and a solid-echo method was used using a pulse NMR measurement apparatus (MINISPEC mq20, 25 MHz, manufactured by Bruker BioSpin). Then, the repetition time: 4 s, the number of integration: 256 times, the temperature: 150 ° C., the measurement start time: (until the temperature stabilizes) Measurement is performed at the start of measurement 10 minutes after the sample is charged.
 得られた減衰曲線を最小二乗法によりT2(スピン-スピン緩和時間)から、サンプルの第1の成分のスピン-スピン緩和時間(T2S)と、第2の成分のスピン-スピン緩和時間(T2L)とを求めた。測定結果を表2に示す。実施例1~6の難燃性ポリウレタン樹脂組成物では、第1の成分のスピン-スピン緩和時間(T2S)が0.01ミリ秒~0.1ミリ秒の間にあり、第2成分のスピン-スピン緩和時間(T2L)は0.1ミリ秒~0.95ミリ秒の間にあった。実施例1~6の難燃性ポリウレタン樹脂組成物と比較例1~2の難燃性ポリウレタン樹脂組成物は、150℃での測定にて明瞭に区別された。 The obtained attenuation curve is calculated from T2 (spin-spin relaxation time) by the least square method, from the spin-spin relaxation time (T2S) of the first component of the sample and the spin-spin relaxation time (T2L) of the second component. And asked. The measurement results are shown in Table 2. In the flame-retardant polyurethane resin compositions of Examples 1 to 6, the spin-spin relaxation time (T2S) of the first component is between 0.01 milliseconds and 0.1 milliseconds, and the spin of the second component The spin relaxation time (T2L) was between 0.1 ms and 0.95 ms. The flame retardant polyurethane resin compositions of Examples 1 to 6 and the flame retardant polyurethane resin compositions of Comparative Examples 1 and 2 were clearly distinguished by measurement at 150 ° C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (8)

  1.  ポリイソシアネート化合物、ポリオール化合物、三量化触媒、発泡剤、整泡剤、および添加剤を含む難燃性ウレタン樹脂組成物であって、該難燃性ウレタン樹脂組成物の硬化物における、パルスNMRを用いてソリッドエコー法によって150℃、観測核が1Hで測定した第1成分のスピン-スピン緩和時間(T2S)が0.01ミリ秒~0.1ミリ秒の間であり、第2成分のスピン-スピン緩和時間(T2L)が0.1ミリ秒~1.0ミリ秒の間であり、かつ第1成分の信号強度の分率が第2成分の信号強度の分率よりも多い、難燃性ウレタン樹脂組成物。 A flame retardant urethane resin composition comprising a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent, a foam stabilizer, and an additive, wherein a pulse NMR is measured in a cured product of the flame retardant urethane resin composition. The spin-spin relaxation time (T2S) of the first component measured at 150 ° C. by the solid echo method and the observation nucleus at 1 H is between 0.01 ms and 0.1 ms, and the second component The spin-spin relaxation time (T2L) is between 0.1 ms and 1.0 ms, and the signal intensity fraction of the first component is greater than the signal intensity fraction of the second component. Flammable urethane resin composition.
  2.  前記添加剤が赤リン、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、アンチモン含有難燃剤、および金属水酸化物から選ばれる少なくとも1つを含む、請求項1に記載の難燃性ウレタン樹脂組成物。 The flame retardant according to claim 1, wherein the additive comprises at least one selected from red phosphorus, phosphate ester, phosphate-containing flame retardant, bromine-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. Urethane resin composition.
  3.  前記添加剤が、前記ポリイソシアネート化合物および前記ポリオール化合物からなるウレタン樹脂100重量部を基準として4.5重量部~70重量部の範囲である、請求項1に記載の難燃性ウレタン樹脂組成物。 The flame retardant urethane resin composition according to claim 1, wherein the additive is in the range of 4.5 to 70 parts by weight based on 100 parts by weight of the urethane resin comprising the polyisocyanate compound and the polyol compound. .
  4.  前記三量化触媒が、前記ポリイソシアネート化合物および前記ポリオール化合物からなるウレタン樹脂100重量部を基準として0.1~10重量部の範囲である、請求項1に記載の難燃性ウレタン樹脂組成物。 The flame retardant urethane resin composition according to claim 1, wherein the trimerization catalyst is in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the urethane resin comprising the polyisocyanate compound and the polyol compound.
  5.  前記発泡剤が、前記ポリイソシアネート化合物および前記ポリオール化合物からなるウレタン樹脂100重量部を基準として0.1~30重量部の範囲である、請求項1~4のいずれか一項に記載の難燃性ウレタン樹脂組成物。 The flame retardant according to any one of claims 1 to 4, wherein the foaming agent is in a range of 0.1 to 30 parts by weight based on 100 parts by weight of a urethane resin composed of the polyisocyanate compound and the polyol compound. Urethane resin composition.
  6.  第1成分における信号強度の分率が80%を超え、第2成分における信号強度の分率が20%未満である、請求項1~5のいずれか一項に記載の難燃性ウレタン樹脂組成物。 The flame retardant urethane resin composition according to any one of claims 1 to 5, wherein a fraction of the signal intensity in the first component exceeds 80% and a fraction of the signal intensity in the second component is less than 20%. object.
  7.  イソシアネートインデックスが125以上である請求項1~6のいずれか一項に記載の難燃性ウレタン樹脂組成物。 The flame retardant urethane resin composition according to any one of claims 1 to 6, having an isocyanate index of 125 or more.
  8.  (A)ポリイソシアネート化合物を含有する第1液、(B)ポリオール化合物を含有する第2液、(C)三量化触媒、(D)発泡剤、(E)整泡剤および(F)添加剤を含む、該難燃性ウレタン樹脂組成物の硬化物における、パルスNMRを用いてソリッドエコー法によって150℃、観測核が1Hで測定した第1成分のスピン-スピン緩和時間(T2S)が0.01ミリ秒~0.1ミリ秒の間であり、第2成分のスピン-スピン緩和時間(T2L)が0.1ミリ秒~1.0ミリ秒の間であり、かつ第1成分の信号強度の分率が第2成分の信号強度の分率よりも多い、難燃性ウレタン樹脂組成物を形成するための組み合わせ。  (A) 1st liquid containing polyisocyanate compound, (B) 2nd liquid containing polyol compound, (C) trimerization catalyst, (D) foaming agent, (E) foam stabilizer and (F) additive In the cured product of the flame retardant urethane resin composition, the spin-spin relaxation time (T2S) of the first component measured at 150 ° C. by solid echo method using pulsed NMR and the observed nucleus at 1 H is 0. .01 ms to 0.1 ms, the second component spin-spin relaxation time (T2L) is between 0.1 ms to 1.0 ms, and the first component signal A combination for forming a flame-retardant urethane resin composition having a strength fraction greater than the signal strength fraction of the second component.
PCT/JP2015/071780 2014-08-01 2015-07-31 Flame-retardant polyurethane resin composition WO2016017797A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015540946A JPWO2016017797A1 (en) 2014-08-01 2015-07-31 Flame retardant polyurethane resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-157994 2014-08-01
JP2014157994 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016017797A1 true WO2016017797A1 (en) 2016-02-04

Family

ID=55217692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071780 WO2016017797A1 (en) 2014-08-01 2015-07-31 Flame-retardant polyurethane resin composition

Country Status (3)

Country Link
JP (1) JPWO2016017797A1 (en)
TW (1) TW201605973A (en)
WO (1) WO2016017797A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357947A4 (en) * 2015-09-30 2019-04-17 Sekisui Chemical Co., Ltd. Flame-retardant rigid polyurethane foam
WO2021005914A1 (en) * 2019-07-08 2021-01-14 日本ポリテック株式会社 Cured object, overcoat film, and flexible wiring board
CN115011104A (en) * 2021-11-25 2022-09-06 上海联景高分子材料有限公司 Preparation method and application of thermoplastic polyurethane with excellent flame retardant property

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309511A (en) * 1987-05-26 1988-12-16 インペリアル・ケミカル・インダストリーズ・ピーエルシー Manufacture of polyisocyanurate foam
JP2009040916A (en) * 2007-08-09 2009-02-26 Nippon Polyurethane Ind Co Ltd Composition for forming water-expanded rigid polyisocyanurate foam, method for production of water-expanded rigid polyisocyanurate foam using the composition, and water-expanded rigid polyisocyanurate foam produced by the method
JP2009149760A (en) * 2007-12-20 2009-07-09 Nippon Polyurethane Ind Co Ltd Production method for rigid polyurethane foam
JP2010082719A (en) * 2008-09-30 2010-04-15 Fujibo Holdings Inc Polishing pad and method of manufacturing the same
JP2013023510A (en) * 2011-07-15 2013-02-04 Nippon Polyurethane Ind Co Ltd Rigid polyurethane foam composition
WO2013058183A1 (en) * 2011-10-18 2013-04-25 富士紡ホールディングス株式会社 Polishing pad and method for producing same
WO2015004928A1 (en) * 2013-07-12 2015-01-15 積水化学工業株式会社 Urethane resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030153656A1 (en) * 2002-01-11 2003-08-14 Rinus Sjerps Flame retardant polyurethanes and polyisocyanurates, and additives therefor
US20060217451A1 (en) * 2005-03-28 2006-09-28 Vittorio Bonapersona Polyurethane or polyisocyanurate foam composition
TW201439287A (en) * 2013-01-20 2014-10-16 Sekisui Chemical Co Ltd Flame-retardant urethane resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309511A (en) * 1987-05-26 1988-12-16 インペリアル・ケミカル・インダストリーズ・ピーエルシー Manufacture of polyisocyanurate foam
JP2009040916A (en) * 2007-08-09 2009-02-26 Nippon Polyurethane Ind Co Ltd Composition for forming water-expanded rigid polyisocyanurate foam, method for production of water-expanded rigid polyisocyanurate foam using the composition, and water-expanded rigid polyisocyanurate foam produced by the method
JP2009149760A (en) * 2007-12-20 2009-07-09 Nippon Polyurethane Ind Co Ltd Production method for rigid polyurethane foam
JP2010082719A (en) * 2008-09-30 2010-04-15 Fujibo Holdings Inc Polishing pad and method of manufacturing the same
JP2013023510A (en) * 2011-07-15 2013-02-04 Nippon Polyurethane Ind Co Ltd Rigid polyurethane foam composition
WO2013058183A1 (en) * 2011-10-18 2013-04-25 富士紡ホールディングス株式会社 Polishing pad and method for producing same
WO2015004928A1 (en) * 2013-07-12 2015-01-15 積水化学工業株式会社 Urethane resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357947A4 (en) * 2015-09-30 2019-04-17 Sekisui Chemical Co., Ltd. Flame-retardant rigid polyurethane foam
US11236192B2 (en) 2015-09-30 2022-02-01 Sekisui Chemical Co., Ltd. Flame-retardant rigid polyurethane foam
WO2021005914A1 (en) * 2019-07-08 2021-01-14 日本ポリテック株式会社 Cured object, overcoat film, and flexible wiring board
CN114080408A (en) * 2019-07-08 2022-02-22 日保丽公司 Cured product, overcoat film, and flexible wiring board
CN114080408B (en) * 2019-07-08 2023-08-25 日保丽公司 Cured product, overcoat film, and flexible wiring board
CN115011104A (en) * 2021-11-25 2022-09-06 上海联景高分子材料有限公司 Preparation method and application of thermoplastic polyurethane with excellent flame retardant property
CN115011104B (en) * 2021-11-25 2023-12-22 上海联景高分子材料有限公司 Preparation method and application of thermoplastic polyurethane with excellent flame retardant property

Also Published As

Publication number Publication date
JPWO2016017797A1 (en) 2017-05-18
TW201605973A (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP6481058B2 (en) Flame retardant urethane resin composition
JP6748262B2 (en) In-situ foaming system for in-situ formation of flame-retardant polyurethane foam
KR102156009B1 (en) Fire-resistant heat-insulating coating material for piping or equipment
JP6564496B2 (en) Flame retardant polyurethane resin composition
KR102156004B1 (en) Flame-retardant urethane resin composition
JP2015078357A (en) Flame resistant heat insulation composition
JP5671591B2 (en) Fireproof urethane resin composition
JP6298344B2 (en) Flame retardant urethane resin composition
JP6378088B2 (en) Urethane resin composition
WO2016017797A1 (en) Flame-retardant polyurethane resin composition
JP6963056B2 (en) Polyurethane composition
JP6985002B2 (en) Urethane resin composition
JP2018090721A (en) Flame-retardant urethane resin composition
JP2017226831A (en) Flame-retardant urethane resin composition
JP2018131555A (en) Flame-retardant urethane resin composition
JP6751617B2 (en) Flame-retardant urethane resin composition and its manufacturing method
JP2022102148A (en) Urethane resin composition, raw material composition and raw material kit thereof, and urethane resin foam
JP2017218586A (en) Flame-retardant urethane resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015540946

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826833

Country of ref document: EP

Kind code of ref document: A1