WO2021255958A1 - Foam composition for flame-retardant polyisocyanurate foam and method for producing flame-retardant polyisocyanurate foam using said foam - Google Patents

Foam composition for flame-retardant polyisocyanurate foam and method for producing flame-retardant polyisocyanurate foam using said foam Download PDF

Info

Publication number
WO2021255958A1
WO2021255958A1 PCT/JP2020/043771 JP2020043771W WO2021255958A1 WO 2021255958 A1 WO2021255958 A1 WO 2021255958A1 JP 2020043771 W JP2020043771 W JP 2020043771W WO 2021255958 A1 WO2021255958 A1 WO 2021255958A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
flame
retardant
polyisocyanurate foam
foam
Prior art date
Application number
PCT/JP2020/043771
Other languages
French (fr)
Japanese (ja)
Inventor
隆康 佐藤
貴雄 末竹
Original Assignee
旭有機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材株式会社 filed Critical 旭有機材株式会社
Priority to JP2022532245A priority Critical patent/JPWO2021255958A1/ja
Publication of WO2021255958A1 publication Critical patent/WO2021255958A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only

Definitions

  • the present invention relates to an effervescent composition for flame-retardant polyisocyanurate foam and a method for producing a flame-retardant polyisocyanurate foam using the same, and in particular, exhibits nonflammable properties specified by the Building Standards Law of Japan. It relates to an effervescent composition capable of advantageously forming a polyisocyanurate foam having, and a method capable of advantageously forming a nonflammable polyisocyanurate foam from such an effervescent composition.
  • polyurethane foam has been mainly used as a heat insulating material for heat insulating materials such as interior and exterior wall materials for buildings, heat insulation of panels, metal siding, electric refrigerators, etc. by utilizing its excellent heat insulating properties, adhesiveness, and light weight. It is used for heat insulation, heat insulation of building walls, ceilings, roofs, etc., and prevention of dew condensation, heat insulation of infusion pipes, etc. It is also practically used as a reinforcing material for the case.
  • such a polyurethane foam is generally composed of a polyol compounding liquid (premixed liquid) in which a polyol is mixed with a foaming agent and, if necessary, various auxiliaries such as a catalyst, a foam stabilizer and a flame retardant. And a composition containing polyisocyanate as a main component are continuously or intermittently mixed by a mixing device to obtain a foamable composition for polyurethane foam, which is used as a slab foaming method, an injection foaming method, or a spray foaming method. , Laminate continuous foaming method, lightweight filling method, injection backfilling method, etc., by foaming and curing.
  • Patent Document 1 Japanese Patent Publication No. 2014-524954
  • improved flame retardancy has been proposed.
  • Polyisocyanate components including isocyanate prepolymers and any flame retardant compounds, as well as aromatic polyester polyols, red phosphorus and catalysts, and further Reactive formulations consisting of polyol components containing components such as flame retardants have been proposed, which have been shown to be able to form elastic polyurethane coatings with improved flammability properties.
  • halogen-containing compounds, phosphates, inorganic fillers, antimony oxide, zinc and the like are exemplified there as flame-retardant additives to be further added and contained.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2014-532098
  • trialkyl phosphate as a smoke suppressant for polyurethane foam, whereby smoke is remarkably generated when burned. That is, it has been clarified that a polyurethane foam having improved smoke suppression properties can be obtained.
  • urethane catalysts and triglycerides of isocyanates are used for the formation of polyurethane foams, and metal-based inorganic fillers for ease of processing, such as metal hydrates and zinc borate, are used.
  • zinc salts such as zinc succinate can be contained.
  • a flame retardant urethane resin composition containing an additive containing red phosphorus as an essential component together with a polyol compound, a polyisocyanate compound, a trimerization catalyst, a foaming agent and a foam stabilizer.
  • red phosphorus such urethane resin compositions include phosphate esters, phosphate-containing flame retardants, brominated flame retardants, and boron-containing flame retardants.
  • Antimon-containing flame retardant and at least one selected from the group consisting of metal hydroxides are said to be contained in combination, which makes it easy to handle, has excellent flame retardancy, and when heated. It has been clarified that a flame retardant urethane resin composition capable of forming a foam that maintains a constant shape can be provided.
  • the flame-retardant polyurethane coating obtained in Patent Document 1 and Patent Document 2 and the polyurethane foam having improved smoke emission suppressing performance are severely flame-retardant in recent years in terms of their flame-retardant characteristics. It was not possible to fully respond to the request for conversion.
  • the flame-retardant polyurethane coating obtained in Patent Document 1 merely clarifies the characteristics of an elastic coating layer, and has severe flame-retardant characteristics required for polyurethane foam (foam).
  • the purpose is merely to improve the smoke emission suppressing performance, and the flame retardant performance is stricter. It was not possible to fully respond to the request related to.
  • the red phosphorus used in Patent Document 1 and Patent Document 3 promotes the formation of a surface carbonized layer necessary for increasing the flame retardancy of the polyurethane foam when the polyurethane foam is burned, and suppresses the propagation of flame.
  • the red phosphorus itself has the property of burning when the amount used is increased in order to enhance the flame-retardant effect. Since the contained red phosphorus is burned, there is a problem that the initial calorific value of the polyurethane foam becomes high, and there is an inherent problem that the time to self-extinguishing becomes long.
  • JP-A-2010-195920 Patent Document 4
  • JP-A-2012-236874 Patent Document 5
  • organic as a filler flame retardant
  • a phosphinate compound is used
  • a polyurethane foam formed by using only such an organic phosphinate compound has good self-extinguishing property at the time of ignition.
  • the formation of the carbonized layer on the surface of the polyurethane foam, which is necessary for enhancing the flame retardancy is insufficient, and the carbonized layer is liable to crack due to the heat of combustion. Then, when cracks occur in the carbonized layer, further combustion is caused from the cracks, and there is a possibility that the calorific value increases.
  • the polyurethane foam formed by the reaction of the polyol and the polyisocyanate and the foaming by the foaming agent is generally formed on the core layer (main body portion) having a laminated structure of a large number of foam cells and the surface of the core layer. It is composed of a dense skin layer (skin part) that is substantially free of foam cells, but the material (resin) of such polyurethane foam is a flammable substance, in particular.
  • the skin layer formed on the foam surface is dense and flammable. Therefore, when the obtained polyurethane foam is made flame-retardant by using various flame retardants proposed in the above-mentioned publication, the core layer portion, which is the main body of the foam, has excellent flame retardancy. Even if it is non-flammable, it will burn in the skin layer, which is the skin of the foam, which will increase the calorific value and worsen the self-extinguishing property. It was not able to fully exhibit flame retardancy and nonflammability.
  • the fire resistance and fire protection performance of materials are classified into flame retardant materials, semi-incombustible materials, and non-combustible materials.
  • stricter fire protection performance is required, the above is to give a high degree of flame retardancy to the foam material made of polyurethane foam obtained by reacting the polyol and polyisocyanate and foaming. It has been difficult to satisfy the non-combustible performance of the non-combustible material that requires the strictest fire protection performance even when the conventional flame retardant as disclosed in the published publication is used.
  • the total calorific value for 20 minutes after the start of heating is 8.0 MJ /. If the amount of the above-mentioned known flame-retardant agent is increased with respect to the effervescent composition for polyurethane foam in order to obtain nonflammable properties of m 2 or less, the reaction between the polyol and the polyisocyanate is inhibited. Problems such as the inability to obtain the desired foam and the deterioration of physical or mechanical properties such as the thermal conductivity of the obtained foam will be caused.
  • the non-combustible material satisfies the total calorific value described above, and the maximum calorific value continuously exceeds 10 seconds. It is said that it does not exceed 200 kW / m 2 and that there are no cracks or holes that penetrate to the back surface, which is harmful in terms of flame resistance. While ensuring useful physical or mechanical properties as a polyurethane resin, it was not possible to sufficiently meet the demand for such nonflammable performance.
  • the present invention has been made in the background of such circumstances, and the solution thereof is a polyisocyanurate foam that further enhances flame retardancy even in the presence of a skin layer. It is an object of the present invention to provide an effervescent composition which can advantageously form a polyisocyanurate foam which has a low calorific value at the time of combustion and has excellent self-extinguishing property, and also provides such a polyisocyanurate foam. It is an object of the present invention to provide a method capable of advantageously producing a polyisocyanurate foam having such excellent flame retardancy by using an effervescent composition for use.
  • the present invention can be suitably carried out in various aspects as listed below in order to solve the above-mentioned problems. It is understood that the aspects or technical features of the present invention are not limited to those described below and can be recognized based on the invention idea that can be grasped from the description of the specification. Should be.
  • the polyisocyanate is composed of a composition A containing a polyisocyanate and a polyol-free composition B containing at least a trimerization catalyst as a catalyst, and the trimericization of the polyisocyanate in the absence of polyol.
  • a foamable composition capable of forming a polyisocyanurate foam by a catalytic isocyanurate-forming reaction and foaming with a foaming agent is obtained, and the composition B is further prepared into a powdery state with a liquid organic phosphate ester.
  • the phosphorus concentration in the composition B is set to 10 to 30% by mass.
  • the trimerization catalyst is a quaternary ammonium salt or a carboxylic acid alkali metal salt.
  • the foaming agent is an organic foaming agent selected from the group consisting of hydrocarbons, hydrofluoroolefins and hydrochlorofluoroolefins. ).
  • the foamable composition can be obtained into a predetermined structure.
  • a method for producing a flame-retardant polyisocyanurate foam which comprises forming a polyisocyanurate foam layer having a predetermined thickness on the surface of the structure by spraying on the surface of the structure to foam and cure the foam.
  • the polyisocyanurate foam layer is heated to a radiant heat intensity of 50 kW / m 2 in accordance with the heat generation test method specified in ISO-5660, the total for 20 minutes from the start of heating.
  • the calorific value is 8.0MJ / The above-mentioned aspect (1) characterized by having a non-combustible property of m 2 or less. 4) The method for producing a flame-retardant polyisocyanurate foam according to 4).
  • the polyol is not used to further promote the nulation of the polyisocyanate, and at least triglyceride as a reaction catalyst. Since a catalyst is used and, further, a liquid organic phosphate ester and a powdered phosphorus-containing flame retardant are used in combination as a flame retardant, in the presence of the isocyanurate structure introduced by such a trimerization catalyst, The organic phosphate ester and the phosphorus-containing flame retardant can effectively exhibit the flame retardant action of each, and thus the skin layer can be obtained even if the skin layer is present on the foam surface. The flame retardancy of the polyisocyanurate foam can be further enhanced, the total calorific value can be effectively reduced, and thus the realization of nonflammable performance can be advantageously achieved.
  • the combustible content in the formed foam is reduced to the limit by the absence of the polyol as a combustible resin component.
  • This also contributes to the fact that the initial calorific value at the time of combustion can be advantageously reduced, the effect of enhancing self-extinguishing property can be effectively exerted, and therefore the flame retardancy can be advantageously enhanced.
  • it effectively promotes the formation of a carbonized layer on the surface of the polyisocyanurate foam at the time of ignition and suppresses the formation of cracks on the surface, thereby preventing the formation of cracks on the surface. It will have the effect of blocking the combustion of polyisocyanurate and preventing the increase in calorific value.
  • the surface of the polyisocyanurate foam upon combustion by the combined use of the organic phosphate ester and the phosphorus-containing flame retardant, due to the synergistic effect of the flame retardant action as described above, the surface of the polyisocyanurate foam upon combustion.
  • the polyisocyanurate foam has a better balance between the carbonized layer and the self-extinguishing property, does not continue to burn even when ignited, and has high heat-resistant decomposition resistance, whereby a skin layer exists. Even so, polyisocyanurate foam, which is extremely difficult to burn and has improved self-extinguishing properties, could be provided advantageously.
  • the effervescent composition for flame-retardant polyisocyanurate foam according to the present invention is composed of a composition A containing a polyisocyanate and a polyol-free composition B containing at least a trimerization catalyst as a catalyst. It is an effervescent composition in which the desired polyisocyanurate foam is formed by foaming with a foaming agent together with an isocyanurate-forming reaction with a triisocyanate catalyst in the absence of a polyol.
  • Polyisocyanate which is a main component constituting the composition A used, forms an isocyanurate structure by a trimerization catalyst, and further gives polyisocyanurate (resin) by a high molecular weight, various known polyisocyanates.
  • the compounds will be used alone or in combination as appropriate.
  • the polyisocyanate is an organic isocyanate compound having two or more isocyanate groups (NCO groups) in the molecule, and is, for example, diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate, tolylene diisocyanate, polytolylene triisocyanate.
  • NCO groups isocyanate groups
  • Aromatic polyisocyanates such as xylylene diisocyanate and naphthalene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as isophorone diisocyanate, urethane prepolymers having an isocyanate group at the molecular terminal, and polyisocyanates. Examples thereof include isocyanurate modified products and carbodiimide modified products. These polyisocyanate compounds may be used alone or in combination of two or more. In general, polymethylene polyphenylene polyisocyanate (polymeric MDI) is preferably used from the viewpoint of reactivity, economy, handleability and the like.
  • composition B the polyisocyanate contained in the above-mentioned composition A is made into a nurate to form a hard foam of polyisocyanurate (resin).
  • a catalyst isocyanurate-forming catalyst that promotes the formation of an isocyanurate ring by reacting the isocyanate group contained in the isocyanurate is contained.
  • trimerization catalyst various known ones can be appropriately selected and used, but quaternary ammonium salt or carboxylic acid alkali metal salt; tris (dimethylaminomethyl) phenol is preferable.
  • trimethylammonium salt, triethylammonium salt, triphenylammonium salt and other tertiary ammonium salts, etc. Can be mentioned.
  • the quaternary ammonium groups (monovalent cations in which four organic groups are covalently bonded to the nitrogen atom) in the quaternary ammonium salt advantageously used here include tetramethylammonium, methyltriethylammonium, and ethyltrimethyl.
  • tetramethylammonium methyltriethylammonium, ethyltrimethylammonium, butyltrimethylammonium, hexyltrimethylammonium, octyltrimethylammonium, decyltrimethylammonium, and dodecyltrimethylammonium because of their excellent catalytic activity and industrial availability.
  • Tetradecyltrimethylammonium Tetradecyltrimethylammonium, hexadecyltrimethylammonium, octadecyltrimethylammonium, (2-hydroxypropyl) trimethylammonium, hydroxyethyltrimethylammonium, hydroxyethyl-2-hydroxypropyldimethylammonium, 1-methyl-1-azania-4-azabicyclo [2,2,2]
  • Octanium and quaternary ammonium groups such as 1,1-dimethyl-4-methylpiperidinium will be preferably adopted.
  • examples of the organic acid group or inorganic acid group which are monovalent anions which are ionically bonded to such a quaternary ammonium group to form a quaternary ammonium salt include formic acid group, acetic acid group and octyl acid.
  • Organic acid groups such as benzenesulfonic acid group and phosphoric acid ester group, and inorganic acid groups such as halogen group, hydroxyl group, hydrogencarbonate group and carbonic acid group can be mentioned.
  • a formic acid group, an acetate group, an octylate group, a methylcarbonic acid group, a halogen group, a hydroxyl group, a hydrogencarbonate group, and a carbonic acid group are preferably used because they have excellent catalytic activity and are industrially available. ..
  • an alkali metal salt of an aliphatic carboxylic acid having 1 to 8 carbon atoms is preferably used.
  • examples of the aliphatic carboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, heptanic acid, octylic acid and the like, and among them, formic acid, acetic acid, hexanic acid, octylic acid and the like are preferable.
  • Carboxylic acid is used.
  • the alkali metal include lithium, potassium, sodium and the like, and potassium and sodium are preferably used.
  • the aliphatic carboxylic acid alkali metal salt targeted in the present invention may be any compound in the above-mentioned combination of the aliphatic carboxylic acid and the alkali metal, but preferred examples thereof are potassium octylate and potassium 2-ethylhexanoate. , Sodium acetate, potassium acetate, potassium formate and the like.
  • the amount of the trimerization catalyst used as one of the catalysts is such that 100 parts by mass of the entire polyisocyanate in the composition A is used in order to effectively exert the function as the catalyst. It will be selected within the range of 3 to 10 parts by mass, preferably 4 to 9 parts by mass. If the amount of the trimerization catalyst used is less than 3 parts by mass, the trimerization of polyisocyanate cannot be sufficiently realized, and therefore it becomes difficult to sufficiently achieve the effect of improving flame retardancy. On the other hand, if the amount is more than 10 parts by mass, the reaction proceeds too much and the solidification becomes faster, which causes a problem in the spray foaming operation and the like, which makes the construction difficult.
  • the resinification catalyst in combination with such a quantification catalyst.
  • the resinification catalyst include known ones such as dibutyltin dilaurate; bismuth octylate (bismuth 2-ethylhexylate), bismuth neodecanoate, bismuth neododecanoate, bismuth naphthenate and other fatty acid bismuth salts; lead naphthenate and the like. I can.
  • the amount of such a resinification catalyst used is 0.1 to 5 parts by mass with respect to 100 parts by mass of the entire polyisocyanate in the composition A in order to effectively exert its function as a catalyst. It will be preferably selected within the range of 0.5 to 3 parts by mass. If the amount of this resinification catalyst used is less than 0.1 parts by mass, the obtained foam may become sticky, dust or the like may adhere to the resin, resulting in a poor appearance. In the spray foaming operation, the floor or the like may be used. Since the droplets adhering to the salt become sticky, there is a problem that workability deteriorates. On the other hand, if the amount exceeds 5 parts by mass, heat generation increases during the resinification reaction, and the appearance is abnormal such as yellowing of the foam. The catalyst containing the quaternary ammonium salt or the carboxylic acid alkali metal salt contained in the droplets generated during foaming may worsen the work environment at the work site where the spraying work is performed.
  • a known catalyst conventionally used in the production of polyurethane foam is also appropriately selected to include the quantification catalyst and the like. It can be contained in the composition B.
  • an amine-based catalyst can advantageously improve the initial foamability of polyurethane, and also has the effect of reducing the overall density of the foam without changing the density difference between the skin layer and the core layer, and further.
  • the stickiness of the foam can be improved to advantageously prevent the deterioration of the appearance due to the adhesion of dust, etc., and in the spray foaming method, the feature of improving the deterioration of workability due to the stickiness of the droplets adhering to the floor, etc. is exhibited.
  • an amine-based catalyst it is recommended to use a reactive amine compound having an OH group or an NH group in the chemical structure, or a cyclic amine compound having a cyclic structure. Among them, the reactive amine compound is recommended. By using it as a catalyst, the odor can be further reduced.
  • the reactive amine compound or cyclic amine compound used as such an amine-based catalyst can be appropriately selected from known urethanization catalysts.
  • the reactive amine compound is tetramethyl. Guanidin, N, N-dimethylaminoethanol, N, N-dimethylaminoethoxyethanol, ethoxylated hydroxylamine, N, N, N', N'-tetramethyl-1,3-diamino-2-propanol, N, N , N'-trimethylaminoethylethanolamine, 1,4-bis (2-hydroxypropyl), 2-methylpiperazine, 1- (2-hydroxypropyl) imidazole, 3,3-diamino-N-methyldipropylamine, Examples thereof include N-methyl-N'-hydroxyethyl piperazine.
  • cyclic amine compound examples include 1,2-dimethylimidazole, 1-isopropyl-2-methylimidazole, 2,4,6-tri (dimethylaminomethyl) phenol, triethylenediamine, and N, N'-dimethylcyclohexylamine.
  • the amount of the amine-based catalyst used as one of the catalysts As for the amount of the amine-based catalyst used as one of the catalysts, the function as the catalyst is effectively exhibited, the problems such as odor and deterioration of the working environment are reduced, and the effective foam characteristics are obtained. In order to obtain it, it is within the range of 0.1 to 7 parts by mass, preferably 0.2 to 3 parts by mass, and more preferably 0.3 to 1 part by mass with respect to 100 parts by mass of the entire polyisocyanate in the composition A. Will be selected in. If the amount of this amine-based catalyst used is less than 0.1 parts by mass, it becomes difficult to fully exert the function as a catalyst, and the obtained foam becomes sticky, dust and the like adhere to it, and the appearance deteriorates.
  • the droplets adhering to the floor or the like become sticky, which causes problems such as poor workability.
  • the amount of the amine-based catalyst used is more than 7 parts by mass, the odor of the obtained polyisocyanurate foam becomes remarkable, and the amine-based catalyst volatilized during foaming causes a problem that the spraying work environment is deteriorated. It will be evoked. Therefore, from the viewpoint of odor, it is preferable that the amount of the amine-based catalyst used is small.
  • the polyisocyanurate is carried out by using the composition B containing the above-mentioned trimerization catalyst as at least one of the catalysts to promote the nurateization reaction of the polyisocyanate in the composition A.
  • the flame retardancy of the produced polyisocyanurate foam is synergistically produced by using a liquid organic phosphate ester and a powdered phosphorus-containing flame retardant in combination as a flame retardant. This allows for higher flame retardancy than when these flame retardants are used alone, and even when the polyol is reacted with polyisocyanates to form polyurethane foam. It was possible to advantageously provide the polyisocyanurate foam having.
  • the liquid organic phosphoric acid ester used in the present invention has an effect of reducing the calorific value at the time of burning of the foam, so that the polyisocyanurate foam formed from the effervescent composition according to the present invention is flame-retardant.
  • the properties can be synergistically and further improved, and the composition B can be made into a liquid chemical solution to effectively reduce its viscosity and improve the workability of spraying and the like. It also acts as a thickener.
  • the liquid organic phosphate ester used here is not particularly limited as long as it is liquid, and known ones such as monophosphate ester and condensed phosphate ester may be used alone or in combination. Can be done.
  • the monophosphate ester is not particularly limited, but for example, trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxy.
  • Ethyl phosphate triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyldiphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2- Ethylhexyl) Phosphonate, Di (Isopropyl) Phenylphosphine, Monoisodecyl Phosphonate, 2-Acryloyloxyethyl Acid Phosphonate, 2-methacryloyloxyethyl Acid Phosphonate, Diphenyl-2-Acryloyloxyethyl Phosphonate, Diphenyl-2-methacryloyloxyethyl Phosphonate , Melamine phosphate, Dimelamine phosphate, Melaminepyrophosphat
  • the condensed phosphoric acid ester is also not particularly limited, and is, for example, trialkylpolyphosphate, resorcinolpolyphenyl phosphate, resorcinolpoly (di-2,6-xylyl) phosphate (manufactured by Daihachi Chemical Industry Co., Ltd.). PX-200), hydroquinone poly (2,6-xylyl) phosphate, and condensed phosphate esters of these condensates can be mentioned.
  • condensed phosphoric acid ester for example, resorcinol polyphenyl phosphate (CR-733S), bisphenol A polycresyl phosphate (CR-741), aromatic condensed phosphoric acid ester (CR747), resorcinol polyphenyl phosphate (CR-747).
  • Adecastab PFR manufactured by ADEKA Co., Ltd. bisphenol A polycresyl phosphate (FP-600, FP-700) and the like can be mentioned.
  • a monophosphate ester because it has a high effect of reducing the viscosity in the composition before curing and the effect of reducing the initial calorific value, and in particular, tris (1-chloro-2-propyl). It is more preferable to use phosphate.
  • the amount of such an organic phosphoric acid ester used is generally 25 to 60% by mass, preferably about 30 to 50% by mass in the composition B. If the amount of this organic phosphate ester used is too small, there is a problem that it is difficult to fully exert the effect of addition thereof, while if the amount used is too large, a polyisocyanurate foam is formed. Therefore, problems such as a decrease in catalytic effect and inhibition of foaming will be caused. Further, this organic phosphoric acid ester is generally used in a ratio of about 10 to 70 parts by mass, preferably about 30 to 50 parts by mass, with respect to 100 parts by mass of the polyisocyanate in the composition A.
  • a powdery phosphorus-containing flame retardant that is used together with such an organic phosphoric acid ester to impart effective flame retardancy to the polyisocyanurate foam formed thereof is advantageous in that the average particle size is 50 ⁇ m or less. Among them, it has an average particle size of preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 40 ⁇ m, and even more preferably 1 to 36 ⁇ m. If the average particle size of this phosphorus-containing flame retardant becomes too large, it is difficult to obtain a uniform dispersion effect in the effervescent composition, which causes a problem that the object of the present invention cannot be sufficiently achieved. Is.
  • the lower limit thereof is set as the lower limit. It is desirable that the thickness is about 0.1 ⁇ m.
  • the powdery phosphorus-containing flame retardant is generally at a ratio of about 40 to 100 parts by mass, preferably about 50 to 80 parts by mass, based on 100 parts by mass of the liquid organic phosphoric acid ester. , Will be used.
  • a powdery phosphorus-containing flame retardant various known powdery ones can be used, but in particular, in the present invention, a group consisting of red phosphorus and phosphate. It is desirable to be selected more.
  • red phosphorus is treated as a phosphorus-containing flame retardant.
  • the combination of the liquid organic phosphoric acid ester and the powdery phosphorus-containing flame retardant may be a combination of the organic phosphoric acid ester and red phosphorus, a combination of the organic phosphoric acid ester and the phosphate, and further.
  • the organic phosphate ester and the phosphorus-containing flame retardant may be in any combination even if a plurality of them are used.
  • red phosphorus-containing flame retardants known red phosphorus is preferably used, and usually, it is appropriately selected from commercially available products and used. It becomes. (For example, those sold under the names of "NOVARED” and “NOVAEXCEL” manufactured by Rinkagaku Kogyo Co., Ltd., “HISHIGUARD” manufactured by Nippon Chemical Industrial Co., Ltd., and “EXOLIT RP” manufactured by Clariant Chemicals Co., Ltd. Among them, such powdered red phosphorus has improved handleability or workability, as well as improved dispersibility in the resin composition and advantageously improved the effect of addition thereof.
  • a coating layer is formed on the surface, specifically, hydroxides of metals such as aluminum hydroxide, magnesium hydroxide, zinc hydroxide, and titanium hydroxide, aluminum oxide, and oxidation.
  • a coating layer made of an inorganic compound made of an oxide of a metal such as magnesium, zinc oxide, or titanium oxide, and / or a thermosetting resin such as a phenol resin, a furan resin, or a xylene / formaldehyde resin is formed on the particle surface.
  • the red phosphorus powder will be advantageously used.
  • the coating layer is generally formed at a ratio of about 1 to 30 parts by mass with respect to 100 parts by mass of red phosphorus.
  • examples of the phosphate pointed out as another suitablely used powdery phosphorus-containing flame retardant include monophosphate, pyrophosphate, polyphosphate, organic phosphinate and the like. One or more selected from them will be contained in the composition B.
  • the monophosphate which is one of the specific examples of such a phosphate-containing flame retardant, is not particularly limited, but for example, ammonium such as ammonium phosphate, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate.
  • Salts sodium salts such as monosodium phosphate, disodium phosphate, trisodium phosphate, monosodium phosphite, dissodium phosphite, sodium hypophosphite; monopotassium phosphate, dipotassium phosphate, phosphorus Potassium salts such as tripotassium acid, monopotassium phosphite, dipotassium phosphite, potassium hypophosphite; monolithium phosphate, dilithium phosphate, trilithium phosphate, monolithium phosphite, phosphite Lithium salts such as dilithium and lithium hypophosphite; barium salts such as barium dihydrogen phosphate, barium hydrogen phosphate, tribarium phosphate and barium hypophosphite; magnesium monohydrogen phosphate, magnesium hydrogen phosphate, etc.
  • Magnesium salts such as trimagnesium phosphate and magnesium hypophosphite; calcium salts such as calcium dihydrogen phosphate, calcium hydrogen phosphate, tricalcium phosphate and calcium hypophosphite; zinc phosphate, zinc phosphite, hypophosphite Zinc salts such as zinc phosphate and the like can be mentioned.
  • the pyrophosphate is not particularly limited, and for example, ammonium pyrophosphate, melamine pyrophosphate, acetguanamine pyrophosphate, benzoguanamine pyrophosphate, acrylic guanamine pyrophosphate, 2,4-diamino-6 pyrophosphate.
  • polyphosphate is not particularly limited, and examples thereof include ammonium polyphosphate, piperazine polyphosphate, melamine polyphosphate, ammonium polyphosphate, aluminum polyphosphate, and the like.
  • the organic phosphinate which is one of the phosphorus-containing flame retardants, is one of the organic groups such as a linear alkyl group and a phenyl group having 1 to 6 carbon atoms in the phosphorus atom constituting the phosphinic acid.
  • various known metals are ionically bonded to the organic phosphinic acid having a structure in which the two are covalently bonded to exhibit a salt form.
  • the phosphorus atom has a methyl group, an ethyl group or a phenyl group.
  • the metal is preferably Mg, Al, Ca, Ti or Zn, and particularly preferably Al or Zn.
  • Examples thereof include aluminum ethylphosphinate, (mono or di) aluminum phenylphosphinate, and the like.
  • red phosphorus and an organic phosphinate in combination as a phosphorus-containing flame retardant, and the combined use has sufficient strength on the foam surface when the polyisocyanurate foam is burned. It has the effect of promoting the formation of a carbonized layer, effectively preventing the increase in the total calorific value of the polyisocyanurate foam without causing cracks in the carbonized layer, and the initial calorific value during combustion of the polyisocyanurate foam. It is more difficult than the case where either organic phosphinate or red phosphorus is contained alone in the polyisocyanurate foam by allowing the effect of reducing the amount of fire and increasing the self-extinguishing property to be exerted advantageously. By making it possible to synergistically exert the flame retardant characteristics of the flame retardant, it is possible to advantageously form a polyisocyanurate foam that is extremely difficult to burn and has improved self-extinguishing properties.
  • the composition B which is one of the constituents of the effervescent composition according to the present invention, contains the above-mentioned organic phosphoric acid ester or phosphorus-containing flame retardant, so that the composition B is generally 10 to 30% by mass. It will be adjusted to have a phosphorus concentration of preferably 12 to 25% by mass. If the phosphorus concentration in the composition B is too low, there is a problem that it is difficult to sufficiently increase the flame retardancy of the foam, while if the phosphorus concentration is too high, the flame retardancy is improved. However, it causes a problem that adversely affects the nucleolation reaction of polyisocyanate and the spray foaming operation. By the way, the phosphorus concentration in the composition B can be determined as follows.
  • the content of P (phosphorus atom) in each compound of the added flame retardant is measured or calculated as the phosphorus concentration (% by mass).
  • the phosphorus concentration of each flame retardant is calculated according to the formula [total atomic weight of P in the compound] ⁇ [molecular weight of the compound] ⁇ 100 (%).
  • the phosphorus concentration in each composition B is calculated from the amount of each flame retardant added, and the total phosphorus concentration of each flame retardant is calculated to obtain the phosphorus concentration in composition B.
  • ICP emission spectroscopic analysis, fluorescent X-ray analysis, Auger electron spectroscopy and the like are used for such quantitative analysis.
  • composition A or the composition B constituting the effervescent composition for the flame retardant polyisocyanurate foam according to the present invention in addition to the above-mentioned compounding components or contained components, the polyisocyanurate (resin) produced is further added.
  • various conventionally known auxiliary agents such as known foam stabilizers and other flame retardants are appropriately selected as necessary. It is also possible to mix them.
  • the foaming agent used here various known non-fluorocarbon-based and fluorocarbon-based foaming agents can be appropriately selected.
  • the non-fluorocarbon-based foaming agent ( And / or a source thereof) is advantageously used, and specifically, an organic foaming agent such as hydrocarbon (HC), hydrofluoroolefin (HFO), or hydrochlorofluoroolefin (HCFO) is contained.
  • HC hydrocarbon
  • HFO hydrofluoroolefin
  • HCFO hydrochlorofluoroolefin
  • HFC hydrofluorocarbon
  • difluoromethane (HFC32) and 1,1,1,2,2-pentafluoroethane (1,1,1,2,2-pentafluoroethane) HFC125 1,1,1-trifluoroethane (HFC143a), 1,1,2,2-tetrafluoroethane (HFC134), 1,1,1,2-tetrafluoroethane (HFC134a), 1,1- Difluoroethane (HFC152a), 1,1,1,2,3,3,3-heptafluoropropane (HFC227ea), 1,1,1,3,3-pentafluoropropane (HFC245fa), 1,1,1,3 , 3-Pentafluorobutane (HFC365mfc), 1,1,1,2,2,3,4,5,5,5-decafluoropentane (HFC4310
  • hydrocarbon which is one of the non-CFC foaming agents preferably used in the present invention
  • hydrocarbon which is one of the non-CFC foaming agents preferably used in the present invention
  • hydrofluoroolefin for example, pentafluoropropene such as 1,2,3,3,3-pentafluoropropene (HFO1225ye), 1,3,3,3-tetrafluoropropene (HFO1234ze), and the like.
  • Tetrafluoropropene such as 2,3,3,3-tetrafluoropropene (HFO1234yf), 1,2,3,3-tetrafluoropropene (HFO1234ye), and birds such as 3,3,3-trifluoropropene (HFO1243zf).
  • Hexafluorobutene isomers such as fluoropropene, tetrafluorobutene (HFO1345), pentafluorobutene isomers (HFO1354), 1,1,1,4,4,4-hexafluoro-2-butene (HFO1336mzz).
  • HFO1336) heptafluorobutene isomer
  • HFO1447 heptafluoropentene isomer
  • HFO14308 octafluoropentene isomer
  • HFO1429) nonafluoropentene isomer
  • examples of the hydrochlorofluoroolefin (HCFO) include 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) and 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf). , Dichlorotrifluoropropene (HCFO1223) and the like.
  • hydrofluoroolefins HFOs
  • hydrochlorofluoroolefins HCFOs
  • water can be used as the foaming agent in addition to the above-mentioned ones.
  • water reacts with polyisocyanates, such water cannot be present in composition A, and when it becomes present in composition B, such composition B becomes present.
  • the water reacts with the polyisocyanate, the polyisocyanate is consumed, and the polyisocyanate in the reaction system is reduced.
  • the total amount of isocyanurate rings may be reduced, leading to a decrease in the flame retardancy of the polyisocyanurate foam produced. For this reason, it is desirable that the effervescent composition according to the present invention contains substantially no water.
  • the term "substantially free of water” means that the content of water in each composition is less than 0.1% by mass. Even if a trace amount of water of less than 0.1% by mass is detected in each composition, it is considered as an error and it is judged that water is not contained. In addition, when water is contained, it is permissible within the range where the flame retardancy does not decrease, and the content of water in the composition B is generally 1% by mass or less, preferably 0.5% by mass or less. , Will be adjusted.
  • the above-mentioned foaming agent contained in the effervescent composition for flame retardant polyisocyanurate foam according to the present invention is generally about 40 to 100 parts by mass with respect to 100 parts by mass of the above-mentioned liquid organic phosphoric acid ester. It is desirable that it is used in a proportion of about 50 to 90 parts by mass. If the content of the foaming agent is too small, the foaming characteristics deteriorate, for example, there is a problem that sufficient foaming cannot be obtained by spray foaming, and if it is too large, the foam shrinks or the like. It will cause problems.
  • the foam stabilizer is used to uniformly arrange the cell structure of the polyisocyanurate foam, and here, a silicone-based surfactant or a nonionic surfactant is preferably adopted.
  • a silicone-based surfactant or a nonionic surfactant is preferably adopted.
  • Specific examples include polyoxyalkylene-modified dimethylpolysiloxane, polysiloxaneoxyalkylene copolymer, polyoxyethylene sorbitan fatty acid ester, castor oil ethylene oxide adduct, lauryl fatty acid ethylene oxide adduct, and the like.
  • One type may be used alone, or two or more types may be used in combination.
  • the blending amount of this defoaming agent is appropriately determined according to the desired foam characteristics, the type of the defoaming agent to be used, and the like, but is 0.5 to 5% by mass in the composition B. It is selected in the range of about 1 to 3% by mass, preferably about 1 to 3% by mass.
  • the desired polyisocyanurate foam is formed by the isocyanurate-forming reaction of the polyisocyanate and the foaming by the foaming agent.
  • polyurethane foam various known methods for producing polyurethane foam can be adopted as they are, and for example, a mixture of these compositions A and composition B is applied onto the face material. Then, it is injected into a laminated continuous foaming method that foams and cures in a plate shape, in a space where heat insulation is required such as an electric refrigerator, in a honeycomb structure of a lightweight and high-strength board, in a void generated in civil engineering work, etc.
  • a foamable composition according to the present invention by an injection foaming method of filling and foaming / curing, or a spray foaming method of spraying from a spray gun head of an on-site foaming machine onto a predetermined adherend (structure) to foam / cure. Is foamed and cured to form the desired polyisocyanurate foam.
  • the polyisocyanurate foam (foam) formed by mixing the composition A and the composition B according to the present invention, foaming and curing them is a resin.
  • the isocyanurate structure and the synergistic action of the organic phosphate ester as a flame retardant and the phosphorus-containing flame retardant while reducing the combustibles constituting the foam to the limit by not using the polyol as a component. Since it is effectively realized as a foam capable of exhibiting a high degree of flame retardancy even in the presence of a skin layer, a non-combustible material specified by Japan's Building Standards Law is advantageously provided. I got it.
  • the density, maximum heat generation rate, total heat generation amount, self-fire extinguishing time, and the state of surface cracks after the combustion test obtained in the following examples and comparative examples are as follows. Evaluation or measurement.
  • Polyol compound Phthalic acid-based polyester polyol (RDK133 manufactured by Kawasaki Kasei Chemicals, Inc., hydroxyl value: 315 mgKOH / G)
  • Triquantization catalyst quaternary ammonium salt (U-CAT18X manufactured by San Apro) : Quaternary ammonium salt (Kao Corporation Kaorizer No. ..
  • Resinification catalyst Bismuth octylate (Pucat 2 manufactured by Nihon Kagaku Sangyo Co., Ltd.) 5) Flame Retardant: Organic Phosphate Ester: TCPP (Wanshan Tris (1-chloro-2-propyl) Phosphate: Liquid, Phosphorus Concentration: 9.5% Content) : Organic Phosphate Ester: Polyphosphoric Acid Ester (ADEKA Corporation) Made by Adecaster PFR: Liquid, Phosphorus concentration: 10.9% by mass) : Organic Phosphate Ester: Tris (Tribromoneopentyl) phosphate (CR-900 manufactured by Daihachi Chemical Industry Co., Ltd .: Powder, Phosphorus concentration: 3.0% by mass) : Red phosphorus (Nova Excel 140 manufactured by Rin Kagaku Kogyo Co., Ltd., phosphorus concentration: 94% by mass, average particle size: 24-36 ⁇ m) : Red phosphorus (
  • composition A Preparation of polyisocyanate composition (composition A)- Polymeric MDI (Wannate PM-130 manufactured by Manka Kagaku Japan Co., Ltd.) was prepared as a polyisocyanate, and the composition A was composed only of this polyisocyanate.
  • composition B Preparation of catalyst composition (composition B)-
  • the various raw materials prepared above that is, the trimerization catalyst, the resinification catalyst, the flame retardant (organic phosphate ester, red phosphorus, organic phosphinate), the foaming agent and the foam stabilizer are shown in Tables 1 to 3 below.
  • Various catalyst compositions according to Examples 1 to 16 and Comparative Examples 1 to 9 were prepared as Composition B, respectively, by uniformly mixing them in the various combinations and blending ratios shown.

Abstract

Provided is a foam composition that yields a polyisocyanurate foam having a low calorific value upon combustion and excellent self-extinguishing properties, said composition also being capable of advantageously forming a polyisocyanurate foam having higher flame retardancy even in the presence of a skin layer. In a foam composition configured from a composition A containing a polyisocyanate and a polyol-free composition B containing at least a trimerization catalyst as a catalyst, said composition being capable of forming a polyisocyanurate foam via an isocyanuration reaction caused by the trimerization catalyst and foaming caused by a foaming agent, the composition B also contains a liquid organic phosphoric acid ester and a powdered phosphorus-containing flame retardant.

Description

難燃性ポリイソシアヌレートフォーム用発泡性組成物及びそれを用いた難燃性ポリイソシアヌレートフォームの製造方法Effervescent composition for flame-retardant polyisocyanurate foam and method for producing flame-retardant polyisocyanurate foam using the same.
 本発明は、難燃性ポリイソシアヌレートフォーム用発泡性組成物、及びそれを用いた難燃性ポリイソシアヌレートフォームの製造方法に係り、特に、我国の建築基準法にて規定される不燃特性を有するポリイソシアヌレートフォームを有利に形成し得る発泡性組成物と、そのような発泡性組成物から不燃性のポリイソシアヌレートフォームを有利に形成し得る方法に関するものである。 The present invention relates to an effervescent composition for flame-retardant polyisocyanurate foam and a method for producing a flame-retardant polyisocyanurate foam using the same, and in particular, exhibits nonflammable properties specified by the Building Standards Law of Japan. It relates to an effervescent composition capable of advantageously forming a polyisocyanurate foam having, and a method capable of advantageously forming a nonflammable polyisocyanurate foam from such an effervescent composition.
 従来から、ポリウレタンフォームは、その優れた断熱性や接着性、軽量性等の特性を利用して、主に断熱材料として、建築用内外壁材やパネル等の断熱、金属サイディングや電気冷蔵庫等の断熱、ビル・マンション・冷凍倉庫等の躯体壁面、天井、屋根等の断熱及び結露防止、輸液パイプ等の断熱に用いられ、更には、土木工事において発生する空隙を埋める裏込材や、土木工事に際しての補強材等としても、実用されている。また、そのようなポリウレタンフォームは、一般に、ポリオールに発泡剤、更に必要に応じて、触媒や整泡剤、難燃剤等の各種助剤を配合したポリオール配合液(プレミックス液)からなる組成物と、ポリイソシアネートを主体として含む組成物とを、混合装置により連続的に又は断続的に混合して、ポリウレタンフォーム用発泡性組成物とし、これを、スラブ発泡法、注入発泡法、スプレー発泡法、ラミネート連続発泡法、軽量盛土工法、注入裏込め工法等の方式により、発泡させて、硬化させることにより、製造されている。 Conventionally, polyurethane foam has been mainly used as a heat insulating material for heat insulating materials such as interior and exterior wall materials for buildings, heat insulation of panels, metal siding, electric refrigerators, etc. by utilizing its excellent heat insulating properties, adhesiveness, and light weight. It is used for heat insulation, heat insulation of building walls, ceilings, roofs, etc., and prevention of dew condensation, heat insulation of infusion pipes, etc. It is also practically used as a reinforcing material for the case. Further, such a polyurethane foam is generally composed of a polyol compounding liquid (premixed liquid) in which a polyol is mixed with a foaming agent and, if necessary, various auxiliaries such as a catalyst, a foam stabilizer and a flame retardant. And a composition containing polyisocyanate as a main component are continuously or intermittently mixed by a mixing device to obtain a foamable composition for polyurethane foam, which is used as a slab foaming method, an injection foaming method, or a spray foaming method. , Laminate continuous foaming method, lightweight filling method, injection backfilling method, etc., by foaming and curing.
 しかしながら、上記のようにして形成されるポリウレタンフォームは、火に晒された場合は易燃性であるために、その用途上からも高い難燃性が要求されている。そのため、各種の難燃剤を配合せしめてなる難燃性ポリウレタンフォーム用発泡性組成物が提案されてきており、例えば、特表2014-524954号公報(特許文献1)においては、改善された難燃特性を有する吹付け可能な弾性ポリウレタンコーティングを製造するための反応性処方物として、イソシアネートプレポリマー及び任意の難燃性化合物を含むポリイソシアネート成分と、芳香族ポリエステルポリオール、赤リン及び触媒、そして更なる難燃剤等の成分を含むポリオール成分とからなる反応性処方物が提案され、これによって、改善された燃焼性特性を有する弾性ポリウレタンコーティングが形成され得ることが、明らかにされている。なお、そこでは、更に添加、含有せしめられる難燃性添加物として、ハロゲン含有化合物、ホスフェート類、無機フィラー、アンチモンオキシド、亜鉛等が、例示されている。 However, since the polyurethane foam formed as described above is flammable when exposed to fire, high flame retardancy is required from the viewpoint of its use. Therefore, a foamable composition for a flame-retardant polyurethane foam containing various flame retardants has been proposed. For example, in Japanese Patent Publication No. 2014-524954 (Patent Document 1), improved flame retardancy has been proposed. Polyisocyanate components, including isocyanate prepolymers and any flame retardant compounds, as well as aromatic polyester polyols, red phosphorus and catalysts, and further Reactive formulations consisting of polyol components containing components such as flame retardants have been proposed, which have been shown to be able to form elastic polyurethane coatings with improved flammability properties. In addition, halogen-containing compounds, phosphates, inorganic fillers, antimony oxide, zinc and the like are exemplified there as flame-retardant additives to be further added and contained.
 また、特表2014-532098号公報(特許文献2)においては、ポリウレタンフォームの煙抑制剤として、リン酸トリアルキルを用いることが提案され、これによって、燃やした場合に煙の発生が著しく少ない、即ち、改善された発煙抑制特性を有するポリウレタンフォームが得られることが、明らかにされている。そして、そこでは、ポリウレタンフォームの形成のために、ウレタン触媒やイソシアネートの三量化触媒が用いられることや、加工容易性のための金属系無機充填剤、例えば、金属水和物やホウ酸亜鉛、スズ酸亜鉛等の亜鉛塩等を含有せしめることが出来ることを、明らかにしている。 Further, in Japanese Patent Application Laid-Open No. 2014-532098 (Patent Document 2), it is proposed to use trialkyl phosphate as a smoke suppressant for polyurethane foam, whereby smoke is remarkably generated when burned. That is, it has been clarified that a polyurethane foam having improved smoke suppression properties can be obtained. Then, urethane catalysts and triglycerides of isocyanates are used for the formation of polyurethane foams, and metal-based inorganic fillers for ease of processing, such as metal hydrates and zinc borate, are used. It has been clarified that zinc salts such as zinc succinate can be contained.
 さらに、WO2014/112394(特許文献3)においては、ポリオール化合物、ポリイソシアネート化合物、三量化触媒、発泡剤及び整泡剤と共に、赤リンを必須成分とする添加剤を含有する難燃性ウレタン樹脂組成物が明らかにされており、更に、そのようなウレタン樹脂組成物には、添加剤として、赤リンの他に、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤及び金属水酸化物からなる群より選ばれた少なくとも一つを組み合わせて、含有せしめるとされており、これによって、取り扱いが容易であり、難燃性に優れ、加熱されたときに一定の形状を保つ発泡体を形成することの出来る難燃性ウレタン樹脂組成物を提供し得ることが、明らかにされている。 Further, in WO2014 / 112394 (Patent Document 3), a flame retardant urethane resin composition containing an additive containing red phosphorus as an essential component together with a polyol compound, a polyisocyanate compound, a trimerization catalyst, a foaming agent and a foam stabilizer. In addition to red phosphorus, such urethane resin compositions include phosphate esters, phosphate-containing flame retardants, brominated flame retardants, and boron-containing flame retardants. , Antimon-containing flame retardant and at least one selected from the group consisting of metal hydroxides are said to be contained in combination, which makes it easy to handle, has excellent flame retardancy, and when heated. It has been clarified that a flame retardant urethane resin composition capable of forming a foam that maintains a constant shape can be provided.
 しかしながら、それら特許文献のうち、特許文献1や特許文献2において得られた難燃性ポリウレタンコーティングや発煙抑制性能が改善されたポリウレタンフォームにあっては、その難燃特性において、近年における厳しい難燃化要請に充分に応え得るものではなかったのである。例えば、特許文献1において得られる難燃性ポリウレタンコーティングは、弾性を有する被覆層についての特性を明らかにしているに過ぎないものであって、ポリウレタンフォーム(発泡体)に要求される厳しい難燃特性を充分に満たすものではなかったのであり、更に、特許文献2に開示のポリウレタンフォームにあっても、単に、発煙抑制性能の改善を目的としているに過ぎないものであって、より厳しい難燃性能に係る要請に充分に応え得るものではなかったのである。 However, among those patent documents, the flame-retardant polyurethane coating obtained in Patent Document 1 and Patent Document 2 and the polyurethane foam having improved smoke emission suppressing performance are severely flame-retardant in recent years in terms of their flame-retardant characteristics. It was not possible to fully respond to the request for conversion. For example, the flame-retardant polyurethane coating obtained in Patent Document 1 merely clarifies the characteristics of an elastic coating layer, and has severe flame-retardant characteristics required for polyurethane foam (foam). Further, even in the polyurethane foam disclosed in Patent Document 2, the purpose is merely to improve the smoke emission suppressing performance, and the flame retardant performance is stricter. It was not possible to fully respond to the request related to.
 また、特許文献1や特許文献3において用いられている赤リンは、ポリウレタンフォームの燃焼時に、ポリウレタンフォームの難燃性を高めるのに必要な表面炭化層の形成を促して、炎の伝搬を抑制する等の優れた難燃効果を発揮せしめるものではあるが、難燃効果を高めるべく、その使用量を多くすると、赤リン自体が燃える性質を有しているところから、ポリウレタンフォームに着火した時に、含有せしめられている赤リンが燃焼するようになるために、ポリウレタンフォームの初期発熱量が高くなる問題があり、そして自己消火に至る時間が長くなる問題を内在している。 Further, the red phosphorus used in Patent Document 1 and Patent Document 3 promotes the formation of a surface carbonized layer necessary for increasing the flame retardancy of the polyurethane foam when the polyurethane foam is burned, and suppresses the propagation of flame. However, when the polyurethane foam is ignited, the red phosphorus itself has the property of burning when the amount used is increased in order to enhance the flame-retardant effect. Since the contained red phosphorus is burned, there is a problem that the initial calorific value of the polyurethane foam becomes high, and there is an inherent problem that the time to self-extinguishing becomes long.
 一方、特開2010-195920号公報(特許文献4)や特開2012-236874号公報(特許文献5)等においては、ポリウレタン樹脂に難燃性を付与するためのフィラー(難燃剤)として、有機ホスフィン酸塩化合物を用いることが明らかにされているのであるが、そのような有機ホスフィン酸塩化合物のみを用いて形成されるポリウレタン発泡体にあっては、その着火時に、良好な自己消火性を発揮するものの、その難燃性を高めるのに必要な、ポリウレタン発泡体表面における炭化層の形成が不充分となり、燃焼熱によって炭化層にひび割れが発生し易い問題を内在している。そして、炭化層にひび割れが発生すると、そこから更なる燃焼を招き、発熱量が増大することになる恐れを内在している。 On the other hand, in JP-A-2010-195920 (Patent Document 4) and JP-A-2012-236874 (Patent Document 5), organic as a filler (flame retardant) for imparting flame retardancy to polyurethane resin. Although it has been clarified that a phosphinate compound is used, a polyurethane foam formed by using only such an organic phosphinate compound has good self-extinguishing property at the time of ignition. However, there is an inherent problem that the formation of the carbonized layer on the surface of the polyurethane foam, which is necessary for enhancing the flame retardancy, is insufficient, and the carbonized layer is liable to crack due to the heat of combustion. Then, when cracks occur in the carbonized layer, further combustion is caused from the cracks, and there is a possibility that the calorific value increases.
 ところで、ポリオールとポリイソシアネートとの反応と、発泡剤による発泡とによって形成されるポリウレタンフォームは、一般に、多数の発泡セルの積層構造からなるコア層(本体部)と、このコア層の表面に形成される、実質的に発泡セルが存在しない、密度の高いスキン層(表皮部)とから、構成されるものであるが、かかるポリウレタンフォームの材質(樹脂)自体は可燃性の物質であり、特にフォーム表面に形成されるスキン層は、密度が高くて、燃え易くなっているのである。このため、上述の公報にて提案されている各種難燃剤を用いて、得られるポリウレタンフォームの難燃化を図った場合において、フォーム本体部であるコア層の部分では、優れた難燃性乃至は不燃性が発揮されるものであっても、フォーム表皮であるスキン層の部分では、燃えてしまい、これによって発熱量が高くなって、自己消火性も悪くなるところから、目的とする高度の難燃性や不燃性を充分に発揮し得るものではなかったのである。 By the way, the polyurethane foam formed by the reaction of the polyol and the polyisocyanate and the foaming by the foaming agent is generally formed on the core layer (main body portion) having a laminated structure of a large number of foam cells and the surface of the core layer. It is composed of a dense skin layer (skin part) that is substantially free of foam cells, but the material (resin) of such polyurethane foam is a flammable substance, in particular. The skin layer formed on the foam surface is dense and flammable. Therefore, when the obtained polyurethane foam is made flame-retardant by using various flame retardants proposed in the above-mentioned publication, the core layer portion, which is the main body of the foam, has excellent flame retardancy. Even if it is non-flammable, it will burn in the skin layer, which is the skin of the foam, which will increase the calorific value and worsen the self-extinguishing property. It was not able to fully exhibit flame retardancy and nonflammability.
 なお、我国の建築基準法においては、材料の耐火・防火性能に関して、難燃材料、準不燃材料、及び不燃材料に区分されて、難燃材料から、準不燃材料、更には不燃材料となる程、より厳しい防火性能が要求されているのであるが、ポリオールとポリイソシアネートとを反応せしめると共に、発泡させて得られるポリウレタンフォームからなる発泡体材料に対し、高度の難燃性を付与せしめるべく、上記した公報に開示の如き従来の難燃剤を用いたところで、最も厳しい防火性能の要求される不燃材料における不燃性能を満たすことは、困難なことであった。特に、かかる建築基準法にて規定される不燃材料に要求される特性、即ち放射熱強度:50kW/m2 にて加熱したときに、加熱開始後から20分間の総発熱量が8.0MJ/m2 以下となる不燃特性を得るために、ポリウレタンフォーム用発泡性組成物に対して、上記した公知の難燃剤の配合量を増加せしめたりすると、ポリオールとポリイソシアネートとの反応が阻害されて、目的とする発泡体を得ることが出来なくなったり、また、得られる発泡体の熱伝導率等の物理的乃至は機械的特性が悪化する等の問題が、惹起されるようになるのである。 In Japan's Building Standards Law, the fire resistance and fire protection performance of materials are classified into flame retardant materials, semi-incombustible materials, and non-combustible materials. Although stricter fire protection performance is required, the above is to give a high degree of flame retardancy to the foam material made of polyurethane foam obtained by reacting the polyol and polyisocyanate and foaming. It has been difficult to satisfy the non-combustible performance of the non-combustible material that requires the strictest fire protection performance even when the conventional flame retardant as disclosed in the published publication is used. In particular, when heated at the characteristics required for non-combustible materials specified by the Building Standards Law, that is, radiant heat intensity: 50 kW / m 2 , the total calorific value for 20 minutes after the start of heating is 8.0 MJ /. If the amount of the above-mentioned known flame-retardant agent is increased with respect to the effervescent composition for polyurethane foam in order to obtain nonflammable properties of m 2 or less, the reaction between the polyol and the polyisocyanate is inhibited. Problems such as the inability to obtain the desired foam and the deterioration of physical or mechanical properties such as the thermal conductivity of the obtained foam will be caused.
 また、前記建築基準法の規定(施行令第1条第五号)によれば、不燃材料は、上記せる総発熱量を満たすものであると共に、最高発熱速度が、10秒を超えて連続して200kW/m2 を超えることがないこと、そして防炎上有害な、裏面まで貫通する亀裂及び穴がないこととされているのであるが、従来の難燃剤を配合してなるポリウレタン発泡体材料は、ポリウレタン樹脂としての有用な物理的乃至は機械的特性を確保しつつ、そのような不燃性能の要請に充分に応え得るものではなかったのである。 In addition, according to the provisions of the Building Standards Act (Article 1, Item 5 of the Enforcement Ordinance), the non-combustible material satisfies the total calorific value described above, and the maximum calorific value continuously exceeds 10 seconds. It is said that it does not exceed 200 kW / m 2 and that there are no cracks or holes that penetrate to the back surface, which is harmful in terms of flame resistance. While ensuring useful physical or mechanical properties as a polyurethane resin, it was not possible to sufficiently meet the demand for such nonflammable performance.
特表2014-524954号公報Japanese Patent Publication No. 2014-524954 特表2014-532098号公報Special Table 2014-532098 Gazette WO2014/112394WO2014 / 112394 特開2010-195920号公報JP-A-2010-195920 特開2012-236874号公報Japanese Unexamined Patent Publication No. 2012-236874
 ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、スキン層の存在下においても、難燃性をより一層高めてなるポリイソシアヌレートフォームを有利に形成し得ると共に、燃焼時の発熱量が低く且つ優れた自己消火性を有するポリイソシアヌレートフォームを与え得る発泡性組成物を提供することにあり、また、そのようなポリイソシアヌレートフォーム用発泡性組成物を用いて、かかる優れた難燃性を有するポリイソシアヌレートフォームを有利に製造し得る方法を提供することにある。 Here, the present invention has been made in the background of such circumstances, and the solution thereof is a polyisocyanurate foam that further enhances flame retardancy even in the presence of a skin layer. It is an object of the present invention to provide an effervescent composition which can advantageously form a polyisocyanurate foam which has a low calorific value at the time of combustion and has excellent self-extinguishing property, and also provides such a polyisocyanurate foam. It is an object of the present invention to provide a method capable of advantageously producing a polyisocyanurate foam having such excellent flame retardancy by using an effervescent composition for use.
 そして、本発明は、上記した課題を解決するために、以下に列挙せる如き各種の態様において、好適に実施され得るものである。なお、本発明の態様乃至は技術的特徴は、以下に記載のものに何等限定されることなく、明細書の記載から把握され得る発明思想に基づいて認識され得るものであることが、理解されるべきである。 The present invention can be suitably carried out in various aspects as listed below in order to solve the above-mentioned problems. It is understood that the aspects or technical features of the present invention are not limited to those described below and can be recognized based on the invention idea that can be grasped from the description of the specification. Should be.
(1) ポリイソシアネートを含む組成物Aと、触媒として、少なくとも三
   量化触媒を含む、ポリオール不含の組成物Bとから構成され、ポリオ
   ールの不存在下における、該ポリイソシアネートの該三量化触媒によ
   るイソシアヌレート化反応と、発泡剤による発泡とにより、ポリイソ
   シアヌレートフォームを形成し得る発泡性組成物にして、前記組成物
   Bが、更に、液状の有機リン酸エステルと粉状のリン含有難燃剤とを
   含有していることを特徴とする難燃性ポリイソシアヌレートフォーム
   用発泡性組成物。
(2) 前記組成物Bにおけるリン濃度が10~30質量%となるように、
   調整されていることを特徴とする前記態様(1)に記載の難燃性ポリ
   イソシアヌレートフォーム用発泡性組成物。
(3) 前記液状の有機リン酸エステルが、前記組成物B中に25~60質
   量%の割合で含有せしめられることを特徴とする前記態様(1)又は
   前記態様(2)に記載の難燃性ポリイソシアヌレートフォーム用発泡
   性組成物。
(4) 前記液状の有機リン酸エステルが、モノリン酸エステル及び縮合リ
   ン酸エステルからなる群より選択されることを特徴とする前記態様(
   1)乃至前記態様(3)の何れか1つに記載の難燃性ポリイソシアヌ
   レートフォーム用発泡性組成物。
(5) 前記粉状のリン含有難燃剤が、50μm以下の平均粒子径を有して
   いることを特徴とする前記態様(1)乃至前記態様(4)の何れか1
   つに記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。
(6) 前記粉状のリン含有難燃剤が、赤リン及びリン酸塩からなる群より
   選択されることを特徴とする前記態様(1)乃至前記態様(5)の何
   れか1つに記載の難燃性ポリイソシアヌレートフォーム用発泡性組成
   物。
(7) 前記リン酸塩が、モノリン酸塩、ピロリン酸塩、ポリリン酸塩、及
   び有機ホスフィン酸塩からなる群より選択されることを特徴とする前
   記態様(6)に記載の難燃性ポリイソシアヌレートフォーム用発泡性
   組成物。
(8) 前記粉状のリン含有難燃剤として、赤リンと有機ホスフィン酸塩と
   が併用されることを特徴とする前記態様(1)乃至前記態様(7)の
   何れか1つに記載の難燃性ポリイソシアヌレートフォーム用発泡性組
   成物。
(9) 前記粉状のリン含有難燃剤が、前記液状の有機リン酸エステルの1
   00質量部に対して40~100質量部の割合において、含有せしめ
   られることを特徴とする前記態様(1)乃至前記態様(8)の何れか
   1つに記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。
(10) 前記三量化触媒が、第四級アンモニウム塩又はカルボン酸アルカ
   リ金属塩であることを特徴とする前記態様(1)乃至前記態様(9)
   の何れか1つに記載の難燃性ポリイソシアヌレートフォーム用発泡性
   組成物。
(11) 前記発泡剤が、ハイドロカーボン、ハイドロフルオロオレフィン
   及びハイドロクロロフルオロオレフィンからなる群より選ばれる有機
   の発泡剤であることを特徴とする前記態様(1)乃至前記態様(10
   )の何れか1つに記載の難燃性ポリイソシアヌレートフォーム用発泡
   性組成物。
(12) 前記発泡剤が、前記組成物Bに含有せしめられることを特徴とす
   る前記態様(1)乃至前記態様(11)の何れか1つに記載の難燃性
   ポリイソシアヌレートフォーム用発泡性組成物。
(13) 前記発泡剤が、前記液状の有機リン酸エステルの100質量部に
   対して40~100質量部の割合において、用いられることを特徴と
   する前記態様(1)乃至前記態様(12)の何れか1つに記載の難燃
   性ポリイソシアヌレートフォーム用発泡性組成物。
(14) 前記態様(1)乃至前記態様(13)の何れか1つに記載の難燃
   性ポリイソシアヌレートフォーム用発泡性組成物を用いて、かかる発
   泡性組成物を、所定の構造体の表面に吹き付けて、発泡・硬化せしめ
   ることにより、かかる構造体表面に所定厚さのポリイソシアヌレート
   フォーム層を形成することを特徴とする難燃性ポリイソシアヌレート
   フォームの製造方法。
(15) 前記ポリイソシアヌレートフォーム層が、ISO-5660に規
   定される発熱性試験方法に準拠して、放射熱強度:50kW/m2 に
   て加熱したときに、加熱開始から20分間の総発熱量が8.0MJ/
   m2 以下である不燃特性を有していることを特徴とする前記態様(1
   4)に記載の難燃性ポリイソシアヌレートフォームの製造方法。
(1) The polyisocyanate is composed of a composition A containing a polyisocyanate and a polyol-free composition B containing at least a trimerization catalyst as a catalyst, and the trimericization of the polyisocyanate in the absence of polyol. A foamable composition capable of forming a polyisocyanurate foam by a catalytic isocyanurate-forming reaction and foaming with a foaming agent is obtained, and the composition B is further prepared into a powdery state with a liquid organic phosphate ester. A foaming composition for a flame-retardant polyisocyanurate foam containing a phosphorus-containing flame retardant.
(2) The phosphorus concentration in the composition B is set to 10 to 30% by mass.
The effervescent composition for flame-retardant polyisocyanurate foam according to the above aspect (1), which is prepared.
(3) The difficulty according to the above aspect (1) or the above aspect (2), wherein the liquid organic phosphoric acid ester is contained in the composition B in a proportion of 25 to 60% by quantity. Foamable composition for flammable polyisocyanurate foam.
(4) The embodiment (4), wherein the liquid organic phosphate ester is selected from the group consisting of a monophosphate ester and a condensed phosphate ester.
The effervescent composition for flame-retardant polyisocyanurate foam according to any one of 1) to (3) above.
(5) Any one of the above-described embodiments (1) to (4), wherein the powdered phosphorus-containing flame retardant has an average particle size of 50 μm or less.
The effervescent composition for flame-retardant polyisocyanurate foam according to one.
(6) Described in any one of the above-described embodiments (1) to (5), wherein the powdered phosphorus-containing flame retardant is selected from the group consisting of red phosphorus and phosphate. Effervescent composition for flame retardant polyisocyanurate foam.
(7) The flame retardant according to the above-mentioned embodiment (6), wherein the phosphate is selected from the group consisting of monophosphate, pyrophosphate, polyphosphate, and organic phosphinate. Effervescent composition for sex polyisosocyanurate foam.
(8) The difficulty according to any one of the above-described embodiments (1) to (7), wherein red phosphorus and an organic phosphinate are used in combination as the powdered phosphorus-containing flame retardant. Foamable composition for flammable polyisocyanurate foam.
(9) The powdered phosphorus-containing flame retardant is one of the liquid organic phosphoric acid esters.
The flame-retardant polyisocyanurate foam according to any one of the above aspects (1) to (8), which is contained in a proportion of 40 to 100 parts by mass with respect to 00 parts by mass. Effervescent composition.
(10) The embodiments (1) to (9), wherein the trimerization catalyst is a quaternary ammonium salt or a carboxylic acid alkali metal salt.
The effervescent composition for flame-retardant polyisocyanurate foam according to any one of the above.
(11) The aspect (1) to the above aspect (10), wherein the foaming agent is an organic foaming agent selected from the group consisting of hydrocarbons, hydrofluoroolefins and hydrochlorofluoroolefins.
). The effervescent composition for flame-retardant polyisocyanurate foam according to any one of.
(12) Foaming for flame-retardant polyisocyanurate foam according to any one of the above-described embodiments (1) to (11), wherein the foaming agent is contained in the composition B. Sex composition.
(13) The foaming agent according to any one of the above embodiments (1) to (12), wherein the foaming agent is used in a ratio of 40 to 100 parts by mass with respect to 100 parts by mass of the liquid organic phosphoric acid ester. The foaming composition for flame-retardant polyisocyanurate foam according to any one of them.
(14) Using the effervescent composition for flame-retardant polyisocyanurate foam according to any one of the above-mentioned aspects (1) to (13), the foamable composition can be obtained into a predetermined structure. A method for producing a flame-retardant polyisocyanurate foam, which comprises forming a polyisocyanurate foam layer having a predetermined thickness on the surface of the structure by spraying on the surface of the structure to foam and cure the foam.
(15) When the polyisocyanurate foam layer is heated to a radiant heat intensity of 50 kW / m 2 in accordance with the heat generation test method specified in ISO-5660, the total for 20 minutes from the start of heating. The calorific value is 8.0MJ /
The above-mentioned aspect (1) characterized by having a non-combustible property of m 2 or less.
4) The method for producing a flame-retardant polyisocyanurate foam according to 4).
 このように、本発明に従う難燃性ポリイソシアヌレートフォーム用発泡性組成物にあっては、ポリオールを用いないようにして、ポリイソシアネートのヌレート化を更に促進させると共に、反応触媒として、少なくとも三量化触媒が用いられ、更には難燃剤として、液状の有機リン酸エステルと粉状のリン含有難燃剤とが併用されているところから、かかる三量化触媒によって導入されるイソシアヌレート構造の存在下において、それら有機リン酸エステルとリン含有難燃剤とが、それぞれの有する難燃化作用を効果的に発現せしめ得ることとなるのであり、これによって、フォーム表面にスキン層が存在していても、得られるポリイソシアヌレートフォームの難燃性がより一層高められ得て、総発熱量を効果的に低減せしめ、以て、不燃性能の実現も有利に達成され得ることとなるのである。 As described above, in the effervescent composition for flame retardant polyisocyanurate foam according to the present invention, the polyol is not used to further promote the nulation of the polyisocyanate, and at least triglyceride as a reaction catalyst. Since a catalyst is used and, further, a liquid organic phosphate ester and a powdered phosphorus-containing flame retardant are used in combination as a flame retardant, in the presence of the isocyanurate structure introduced by such a trimerization catalyst, The organic phosphate ester and the phosphorus-containing flame retardant can effectively exhibit the flame retardant action of each, and thus the skin layer can be obtained even if the skin layer is present on the foam surface. The flame retardancy of the polyisocyanurate foam can be further enhanced, the total calorific value can be effectively reduced, and thus the realization of nonflammable performance can be advantageously achieved.
 特に、そのような本発明に従う発泡性組成物から形成されるポリイソシアヌレートフォームにあっては、可燃樹脂成分となるポリオールの不使用により、形成されるフォーム中の可燃分が限界まで低減されていることも寄与して、燃焼時の初期発熱量が有利に低減せしめられ得て、自己消火性を高める効果が効果的に発揮され、以て、その難燃性が有利に高められ得ることとなることに加えて、着火時に、ポリイソシアヌレートフォームの表面に炭化層が生成するのを効果的に促進して、その表面にひび割れが発生するのを抑制し、これにより、そのひび割れの箇所からの燃焼を阻止して、発熱量が増大するのを阻止する効果をもたらすことになる。 In particular, in the polyisocyanurate foam formed from such an effervescent composition according to the present invention, the combustible content in the formed foam is reduced to the limit by the absence of the polyol as a combustible resin component. This also contributes to the fact that the initial calorific value at the time of combustion can be advantageously reduced, the effect of enhancing self-extinguishing property can be effectively exerted, and therefore the flame retardancy can be advantageously enhanced. In addition to this, it effectively promotes the formation of a carbonized layer on the surface of the polyisocyanurate foam at the time of ignition and suppresses the formation of cracks on the surface, thereby preventing the formation of cracks on the surface. It will have the effect of blocking the combustion of polyisocyanurate and preventing the increase in calorific value.
 かくして、本発明に従って、イソシアヌレート構造の有効な導入と共に、有機リン酸エステルとリン含有難燃剤との併用によって、上述の如き難燃作用の相乗効果により、ポリイソシアヌレートフォームの燃焼に際して、その表面に生成する炭化層と自己消火性のバランスがより一層良好となり、着火しても燃え続けることがなく、且つ高い耐熱分解性を有するポリイソシアヌレートフォームとなるのであり、これによって、スキン層が存在していても、極めて燃焼し難く、また自己消火性の高められたポリイソシアヌレートフォームが、有利に提供され得ることとなったのである。 Thus, according to the present invention, with the effective introduction of the isocyanurate structure, by the combined use of the organic phosphate ester and the phosphorus-containing flame retardant, due to the synergistic effect of the flame retardant action as described above, the surface of the polyisocyanurate foam upon combustion. The polyisocyanurate foam has a better balance between the carbonized layer and the self-extinguishing property, does not continue to burn even when ignited, and has high heat-resistant decomposition resistance, whereby a skin layer exists. Even so, polyisocyanurate foam, which is extremely difficult to burn and has improved self-extinguishing properties, could be provided advantageously.
 以下、本発明に従う難燃性ポリイソシアヌレートフォーム用発泡性組成物について詳細に説明して、その具体的構成を、更に明らかにすることとする。 Hereinafter, the effervescent composition for flame-retardant polyisocyanurate foam according to the present invention will be described in detail, and its specific configuration will be further clarified.
 先ず、本発明に従う難燃性ポリイソシアヌレートフォーム用発泡性組成物は、ポリイソシアネートを含む組成物Aと、触媒として、少なくとも三量化触媒を含む、ポリオール不含の組成物Bとから構成され、ポリオールの不存在下における、ポリイソシアネートの三量化触媒によるイソシアヌレート化反応と共に、発泡剤による発泡にて、目的とするポリイソシアヌレートフォームが形成されることとなる発泡性組成物であるが、そこで用いられる組成物Aを構成する主たる成分であるポリイソシアネートは、三量化触媒によって、イソシアヌレート構造を形成し、更に、高分子量化によって、ポリイソシアヌレート(樹脂)を与える、公知の各種のポリイソシアネート化合物が、単独で又は適宜に組み合わされて、用いられることとなる。 First, the effervescent composition for flame-retardant polyisocyanurate foam according to the present invention is composed of a composition A containing a polyisocyanate and a polyol-free composition B containing at least a trimerization catalyst as a catalyst. It is an effervescent composition in which the desired polyisocyanurate foam is formed by foaming with a foaming agent together with an isocyanurate-forming reaction with a triisocyanate catalyst in the absence of a polyol. Polyisocyanate, which is a main component constituting the composition A used, forms an isocyanurate structure by a trimerization catalyst, and further gives polyisocyanurate (resin) by a high molecular weight, various known polyisocyanates. The compounds will be used alone or in combination as appropriate.
 具体的には、ポリイソシアネートは、分子中に2つ以上のイソシアネート基(NCO基)を有する有機イソシアネート化合物であり、例えば、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、トリレンジイソシアネート、ポリトリレントリイソシアネート、キシリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ポリイソシアネート、イソホロンジイソシアネート等の脂環式ポリイソシアネートの他、分子末端にイソシアネート基を有するウレタンプレポリマー、ポリイソシアネートのイソシアヌレート変性体、カルボジイミド変性体等を挙げることが出来る。これらのポリイソシアネート化合物は、単独で用いられてもよく、また2種以上が併用されてもよい。一般的には、反応性や経済性、取り扱い性等の観点から、ポリメチレンポリフェニレンポリイソシアネート(ポリメリックMDI)が、好適に用いられることとなる。 Specifically, the polyisocyanate is an organic isocyanate compound having two or more isocyanate groups (NCO groups) in the molecule, and is, for example, diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate, tolylene diisocyanate, polytolylene triisocyanate. , Aromatic polyisocyanates such as xylylene diisocyanate and naphthalene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as isophorone diisocyanate, urethane prepolymers having an isocyanate group at the molecular terminal, and polyisocyanates. Examples thereof include isocyanurate modified products and carbodiimide modified products. These polyisocyanate compounds may be used alone or in combination of two or more. In general, polymethylene polyphenylene polyisocyanate (polymeric MDI) is preferably used from the viewpoint of reactivity, economy, handleability and the like.
 一方、組成物Bには、上記した組成物Aに含まれるポリイソシアネートをヌレート化させて、ポリイソシアヌレート(樹脂)の硬質フォームを形成すべく、触媒として少なくとも三量化触媒、換言すればポリイソシアネートの有するイソシアネート基を反応させて、三量化させ、イソシアヌレート環の生成を促進する触媒(イソシアヌレート化触媒)が含有せしめられることとなる。この三量化触媒としては、公知の各種のものを適宜に選択して、用いることが可能であるが、好ましくは、第四級アンモニウム塩や、カルボン酸アルカリ金属塩;トリス(ジメチルアミノメチル)フェノール、2,4-ビス(ジメチルアミノメチル)フェノール、トリス(ジメチルアミノプロピル)ヘキサヒドロトリアジン等の含窒素芳香族化合物;トリメチルアンモニウム塩、トリエチルアンモニウム塩、トリフェニルアンモニウム塩等の第三級アンモニウム塩等を挙げることが出来る。これらのうち、第四級アンモニウム塩又はカルボン酸アルカリ金属塩を用いることが、難燃性の向上の点から、好ましく、中でも、2種類以上の第四級アンモニウム塩を併用することが、更なる難燃性の向上とポリイソシアヌレートフォームの密度を低減させることによる施工性の向上の点からも、特に好ましい。 On the other hand, in the composition B, the polyisocyanate contained in the above-mentioned composition A is made into a nurate to form a hard foam of polyisocyanurate (resin). A catalyst (isocyanurate-forming catalyst) that promotes the formation of an isocyanurate ring by reacting the isocyanate group contained in the isocyanurate is contained. As the trimerization catalyst, various known ones can be appropriately selected and used, but quaternary ammonium salt or carboxylic acid alkali metal salt; tris (dimethylaminomethyl) phenol is preferable. , 2,4-Bis (dimethylaminomethyl) phenol, tris (dimethylaminopropyl) hexahydrotriazine and other nitrogen-containing aromatic compounds; trimethylammonium salt, triethylammonium salt, triphenylammonium salt and other tertiary ammonium salts, etc. Can be mentioned. Of these, it is preferable to use a quaternary ammonium salt or a carboxylic acid alkali metal salt from the viewpoint of improving flame retardancy, and above all, it is further preferable to use two or more kinds of quaternary ammonium salts in combination. It is particularly preferable from the viewpoint of improving flame retardancy and improving workability by reducing the density of polyisocyanurate foam.
 ここで有利に用いられる第四級アンモニウム塩における第四級アンモニウム基(窒素原子に4個の有機基が共有結合した形態の1価のカチオン)としては、テトラメチルアンモニウム、メチルトリエチルアンモニウム、エチルトリメチルアンモニウム、プロピルトリメチルアンモニウム、ブチルトリメチルアンモニウム、ペンチルトリメチルアンモニウム、ヘキシルトリメチルアンモニウム、ヘプチルトリメチルアンモニウム、オクチルトリメチルアンモニウム、ノニルトリメチルアンモニウム、デシルトリメチルアンモニウム、ウンデシルトリメチルアンモニウム、ドデシルトリメチルアンモニウム、トリデシルトリメチルアンモニウム、テトラデシルトリメチルアンモニウム、ヘプタデシルトリメチルアンモニウム、ヘキサデシルトリメチルアンモニウム、ヘプタデシルトリメチルアンモニウム、オクタデシルトリメチルアンモニウム等の脂肪族アンモニウム基、(2-ヒドロキシプロピル)トリメチルアンモニウム、ヒドロキシエチルトリメチルアンモニウム、トリメチルアミノエトキシエタノール、ヒドロキシエチル-2-ヒドロキシプロピルジメチルアンモニウム等のヒドロキシアンモニウム基、1-メチル-1-アザニア-4-アザビシクロ[2,2,2]オクタニウム、1,1-ジメチル-4-メチルピペリジニウム、1-メチルモルホリニウム、1-メチルピペリジニウム等の脂環式アンモニウム基等が、挙げられる。これらの中でも、触媒活性に優れ、工業的に入手可能であるところから、テトラメチルアンモニウム、メチルトリエチルアンモニウム、エチルトリメチルアンモニウム、ブチルトリメチルアンモニウム、ヘキシルトリメチルアンモニウム、オクチルトリメチルアンモニウム、デシルトリメチルアンモニウム、ドデシルトリメチルアンモニウム、テトラデシルトリメチルアンモニウム、ヘキサデシルトリメチルアンモニウム、オクタデシルトリメチルアンモニウム、(2-ヒドロキシプロピル)トリメチルアンモニウム、ヒドロキシエチルトリメチルアンモニウム、ヒドロキシエチル-2-ヒドロキシプロピルジメチルアンモニウム、1-メチル-1-アザニア-4-アザビシクロ[2,2,2]オクタニウム、及び1,1-ジメチル-4-メチルピペリジニウム等の第四級アンモニウム基が、好ましく採用されることとなる。 The quaternary ammonium groups (monovalent cations in which four organic groups are covalently bonded to the nitrogen atom) in the quaternary ammonium salt advantageously used here include tetramethylammonium, methyltriethylammonium, and ethyltrimethyl. Ammonium, propyltrimethylammonium, butyltrimethylammonium, pentyltrimethylammonium, hexyltrimethylammonium, heptyltrimethylammonium, octyltrimethylammonium, nonyltrimethylammonium, decyltrimethylammonium, undecyltrimethylammonium, dodecyltrimethylammonium, tridecyltrimethylammonium, tetradecyl Adipose ammonium groups such as trimethylammonium, heptadecyltrimethylammonium, hexadecyltrimethylammonium, heptadecyltrimethylammonium, octadecyltrimethylammonium, (2-hydroxypropyl) trimethylammonium, hydroxyethyltrimethylammonium, trimethylaminoethoxyethanol, hydroxyethyl- Hydroxyammonium groups such as 2-hydroxypropyldimethylammonium, 1-methyl-1-azania-4-azabicyclo [2,2,2] octanium, 1,1-dimethyl-4-methylpiperidinium, 1-methylmorpholi Examples thereof include alicyclic ammonium groups such as nium and 1-methylpiperidinium. Among these, tetramethylammonium, methyltriethylammonium, ethyltrimethylammonium, butyltrimethylammonium, hexyltrimethylammonium, octyltrimethylammonium, decyltrimethylammonium, and dodecyltrimethylammonium because of their excellent catalytic activity and industrial availability. , Tetradecyltrimethylammonium, hexadecyltrimethylammonium, octadecyltrimethylammonium, (2-hydroxypropyl) trimethylammonium, hydroxyethyltrimethylammonium, hydroxyethyl-2-hydroxypropyldimethylammonium, 1-methyl-1-azania-4-azabicyclo [2,2,2] Octanium and quaternary ammonium groups such as 1,1-dimethyl-4-methylpiperidinium will be preferably adopted.
 また、かくの如き第四級アンモニウム基とイオン結合して、第四級アンモニウム塩を構成する1価のアニオンである有機酸基又は無機酸基としては、例えば、ギ酸基、酢酸基、オクチル酸基、蓚酸基、マロン酸基、コハク酸基、グルタル酸基、アジピン酸基、安息香酸基、トルイル酸基、エチル安息香酸基、メチル炭酸基、フェノール基、アルキルベンゼンスルホン酸基、トルエンスルホン酸基、ベンゼンスルホン酸基、リン酸エステル基等の有機酸基や、ハロゲン基、水酸基、炭酸水素基、炭酸基等の無機酸基が挙げられる。これらの中でも、触媒活性に優れ且つ工業的に入手可能なことから、ギ酸基、酢酸基、オクチル酸基、メチル炭酸基、ハロゲン基、水酸基、炭酸水素基、及び炭酸基が、好ましく採用される。 Further, examples of the organic acid group or inorganic acid group which are monovalent anions which are ionically bonded to such a quaternary ammonium group to form a quaternary ammonium salt include formic acid group, acetic acid group and octyl acid. Group, oxalic acid group, malonic acid group, succinic acid group, glutarate group, adipic acid group, benzoic acid group, toluyl acid group, ethyl benzoic acid group, methyl carbonate group, phenol group, alkylbenzene sulfonic acid group, toluene sulfonic acid group. , Organic acid groups such as benzenesulfonic acid group and phosphoric acid ester group, and inorganic acid groups such as halogen group, hydroxyl group, hydrogencarbonate group and carbonic acid group can be mentioned. Among these, a formic acid group, an acetate group, an octylate group, a methylcarbonic acid group, a halogen group, a hydroxyl group, a hydrogencarbonate group, and a carbonic acid group are preferably used because they have excellent catalytic activity and are industrially available. ..
 ところで、上述のような構成の第四級アンモニウム塩からなる触媒としては、各種のものが市販されており、例えば、U-CAT 18X、U-CAT 2313(サンアプロ株式会社製)や、カオーライザーNo.410、カオーライザーNo.420(花王株式会社製)等を挙げることが出来る。 By the way, as a catalyst composed of a quaternary ammonium salt having the above-mentioned structure, various catalysts are commercially available, for example, U-CAT 18X, U-CAT 2313 (manufactured by Sun Appro Co., Ltd.), Kaorizer No. .. 410, Kao Riser No. 420 (manufactured by Kao Corporation) and the like can be mentioned.
 また、カルボン酸アルカリ金属塩としては、炭素数1~8の脂肪族カルボン酸のアルカリ金属塩が、好ましく用いられる。そこにおいて、脂肪族カルボン酸としては、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、ヘキサン酸、ヘプタン酸、オクチル酸等が挙げられ、その中でも、好ましくは蟻酸、酢酸、ヘキサン酸、オクチル酸等のカルボン酸が用いられる。また、アルカリ金属としては、リチウム、カリウム、ナトリウム等が挙げられ、好ましくはカリウム及びナトリウムが用いられる。本発明で対象とされる脂肪族カルボン酸アルカリ金属塩は、前述の脂肪族カルボン酸とアルカリ金属との組合せにおける何れの化合物でもよいが、好ましい例として、オクチル酸カリウム、2-エチルヘキサン酸カリウム、酢酸ナトリウム、酢酸カリウム、蟻酸カリウム等が挙げられる。 As the carboxylic acid alkali metal salt, an alkali metal salt of an aliphatic carboxylic acid having 1 to 8 carbon atoms is preferably used. Here, examples of the aliphatic carboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, heptanic acid, octylic acid and the like, and among them, formic acid, acetic acid, hexanic acid, octylic acid and the like are preferable. Carboxylic acid is used. Examples of the alkali metal include lithium, potassium, sodium and the like, and potassium and sodium are preferably used. The aliphatic carboxylic acid alkali metal salt targeted in the present invention may be any compound in the above-mentioned combination of the aliphatic carboxylic acid and the alkali metal, but preferred examples thereof are potassium octylate and potassium 2-ethylhexanoate. , Sodium acetate, potassium acetate, potassium formate and the like.
 なお、このように、触媒の一つとして用いられる三量化触媒の使用量としては、その触媒としての機能を有効に発揮させるべく、組成物A中のポリイソシアネート全体の100質量部に対して、3~10質量部、好ましくは4~9質量部の範囲内において、選択されることとなる。この三量化触媒の使用量が、3質量部よりも少なくなると、ポリイソシアネートの三量化が充分に実現され得ず、そのために難燃性の向上効果を充分に達成することが困難となる等の問題があり、一方10質量部よりも多くなると、反応が進み過ぎて、固化が早くなるため、吹付け発泡操作等に問題を生じ、施工が困難となる。 As described above, the amount of the trimerization catalyst used as one of the catalysts is such that 100 parts by mass of the entire polyisocyanate in the composition A is used in order to effectively exert the function as the catalyst. It will be selected within the range of 3 to 10 parts by mass, preferably 4 to 9 parts by mass. If the amount of the trimerization catalyst used is less than 3 parts by mass, the trimerization of polyisocyanate cannot be sufficiently realized, and therefore it becomes difficult to sufficiently achieve the effect of improving flame retardancy. On the other hand, if the amount is more than 10 parts by mass, the reaction proceeds too much and the solidification becomes faster, which causes a problem in the spray foaming operation and the like, which makes the construction difficult.
 そして、本発明にあっては、かかる三量化触媒と共に、樹脂化触媒を併用することも、可能である。この樹脂化触媒としては、ジブチルスズジラウレート;オクチル酸ビスマス(2-エチルヘキシル酸ビスマス)、ネオデカン酸ビスマス、ネオドデカン酸ビスマス、ナフテン酸ビスマス等の脂肪酸ビスマス塩;ナフテン酸鉛等の公知のものを挙げることが出来る。 And, in the present invention, it is also possible to use a resinification catalyst in combination with such a quantification catalyst. Examples of the resinification catalyst include known ones such as dibutyltin dilaurate; bismuth octylate (bismuth 2-ethylhexylate), bismuth neodecanoate, bismuth neododecanoate, bismuth naphthenate and other fatty acid bismuth salts; lead naphthenate and the like. I can.
 また、そのような樹脂化触媒の使用量としては、その触媒としての機能を有効に発揮させるべく、組成物A中のポリイソシアネート全体の100質量部に対して、0.1~5質量部、好ましくは0.5~3質量部の範囲内において、選択されることとなる。なお、この樹脂化触媒の使用量が0.1質量部よりも少なくなると、得られるフォームがべたつき、ゴミ等が付着して、外観が悪くなる問題があり、またスプレー発泡操作においては、床等に付着した飛沫がべたつくことになるために、施工性が悪くなる等の問題があり、一方5質量部よりも多くなると、樹脂化反応時に発熱が高くなり、フォームの黄変等、外観に異常をきたし、発泡中に発生する飛沫に含まれる第四級アンモニウム塩又はカルボン酸アルカリ金属塩を含む触媒により、吹付け施工を行なっている作業現場の作業環境を悪化せしめる恐れがある。 The amount of such a resinification catalyst used is 0.1 to 5 parts by mass with respect to 100 parts by mass of the entire polyisocyanate in the composition A in order to effectively exert its function as a catalyst. It will be preferably selected within the range of 0.5 to 3 parts by mass. If the amount of this resinification catalyst used is less than 0.1 parts by mass, the obtained foam may become sticky, dust or the like may adhere to the resin, resulting in a poor appearance. In the spray foaming operation, the floor or the like may be used. Since the droplets adhering to the salt become sticky, there is a problem that workability deteriorates. On the other hand, if the amount exceeds 5 parts by mass, heat generation increases during the resinification reaction, and the appearance is abnormal such as yellowing of the foam. The catalyst containing the quaternary ammonium salt or the carboxylic acid alkali metal salt contained in the droplets generated during foaming may worsen the work environment at the work site where the spraying work is performed.
 さらに、上述の如き三量化触媒や樹脂化触媒に加えて、更に必要に応じて、従来からポリウレタンフォームの製造に際して用いられている公知の触媒も、適宜に選択されて、三量化触媒等を含む組成物B中に含有せしめることが可能である。例えば、アミン系触媒は、ポリウレタンの初期発泡性を有利に向上せしめ得るものであり、またスキン層とコア層との密度差を変えることなく、フォームの密度を全体的に下げる作用があり、更にフォームのべたつきを改善して、ゴミ等の付着による外観の悪化を有利に阻止し得ると共に、スプレー発泡法においては、床等に付着した飛沫のべたつきによる作業性の悪化等を改善する特徴を発揮するものである。そして、そのようなアミン系触媒としては、化学構造内にOH基やNH基を有する反応性アミン化合物や、環状構造を有する環式アミン化合物を用いることが推奨され、中でも、反応性アミン化合物を触媒として用いることによって、より一層臭気の低減を図ることが出来る。 Further, in addition to the above-mentioned quantification catalyst and resinification catalyst, if necessary, a known catalyst conventionally used in the production of polyurethane foam is also appropriately selected to include the quantification catalyst and the like. It can be contained in the composition B. For example, an amine-based catalyst can advantageously improve the initial foamability of polyurethane, and also has the effect of reducing the overall density of the foam without changing the density difference between the skin layer and the core layer, and further. The stickiness of the foam can be improved to advantageously prevent the deterioration of the appearance due to the adhesion of dust, etc., and in the spray foaming method, the feature of improving the deterioration of workability due to the stickiness of the droplets adhering to the floor, etc. is exhibited. It is something to do. As such an amine-based catalyst, it is recommended to use a reactive amine compound having an OH group or an NH group in the chemical structure, or a cyclic amine compound having a cyclic structure. Among them, the reactive amine compound is recommended. By using it as a catalyst, the odor can be further reduced.
 なお、そのようなアミン系触媒として用いられる反応性アミン化合物や環式アミン化合物は、公知のウレタン化触媒の中から適宜に選択され得るところであって、例えば、反応性アミン化合物としては、テトラメチルグアニジン、N,N-ジメチルアミノエタノール、N,N-ジメチルアミノエトキシエタノール、エトキシ化ヒドロキシルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノ-2-プロパノール、N,N,N’-トリメチルアミノエチルエタノールアミン、1,4-ビス(2-ヒドロキシプロピル)、2-メチルピペラジン、1-(2-ヒドロキシプロピル)イミダゾール、3,3-ジアミノ-N-メチルジプロピルアミン、N-メチル-N’-ヒドロキシエチルピペラジン等を挙げることが出来る。また、環式アミン化合物としては、1,2-ジメチルイミダゾール、1-イソプロピル-2-メチルイミダゾール、2,4,6-トリ(ジメチルアミノメチル)フェノール、トリエチレンジアミン、N,N’-ジメチルシクロヘキシルアミン、N,N-ジシクロヘキシルメチルアミン、メチレンビス(ジメチルシクロヘキシル)アミン、N,N-ジメチルベンジルアミン、モルフォリン、N-メチルモルフォリン、N-エチルモルフォリン、N-(2-ジメチルアミノエチル)モルフォリン、4,4’-オキシジエチレンジモルフォリン、N,N’-ジエチルピペラジン、N,N’-ジメチルピペラジン、N-メチル-N’-ジメチルアミノエチルピペラジン、1,8-ジアゾビシクロ(5,4,0)-ウンデセン-7等を挙げることが出来る。 The reactive amine compound or cyclic amine compound used as such an amine-based catalyst can be appropriately selected from known urethanization catalysts. For example, the reactive amine compound is tetramethyl. Guanidin, N, N-dimethylaminoethanol, N, N-dimethylaminoethoxyethanol, ethoxylated hydroxylamine, N, N, N', N'-tetramethyl-1,3-diamino-2-propanol, N, N , N'-trimethylaminoethylethanolamine, 1,4-bis (2-hydroxypropyl), 2-methylpiperazine, 1- (2-hydroxypropyl) imidazole, 3,3-diamino-N-methyldipropylamine, Examples thereof include N-methyl-N'-hydroxyethyl piperazine. Examples of the cyclic amine compound include 1,2-dimethylimidazole, 1-isopropyl-2-methylimidazole, 2,4,6-tri (dimethylaminomethyl) phenol, triethylenediamine, and N, N'-dimethylcyclohexylamine. , N, N-dicyclohexylmethylamine, methylenebis (dimethylcyclohexyl) amine, N, N-dimethylbenzylamine, morpholine, N-methylmorpholine, N-ethylmorpholin, N- (2-dimethylaminoethyl) morpholine , 4,4'-Oxydiethylenedimorpholine, N, N'-diethylpiperazine, N, N'-dimethylpiperazine, N-methyl-N'-dimethylaminoethylpiperazine, 1,8-diazobicyclo (5,4) , 0) -Undesen-7, etc. can be mentioned.
 そして、かかる触媒の一つとして用いられるアミン系触媒の使用量としては、その触媒としての機能を有効に発揮させつつ、臭気や作業環境の悪化等の問題を低減して、有効なフォーム特性を得るべく、組成物A中のポリイソシアネート全体の100質量部に対して、0.1~7質量部、好ましくは0.2~3質量部、より好ましくは0.3~1質量部の範囲内において、選択されることとなる。なお、このアミン系触媒の使用量が0.1質量部よりも少なくなると、触媒としての機能を充分に発揮せしめ難くなると共に、得られるフォームがべたつき、ゴミ等が付着して、外観が悪くなる等の問題があり、またスプレー発泡操作においては、床等に付着した飛沫がべたつくことになるために、施工性が悪くなる等の問題を惹起する。また、かかるアミン系触媒の使用量が7質量部よりも多くなると、得られるポリイソシアヌレートフォームの臭気が顕著となり、また発泡中に揮発するアミン系触媒により、吹付け作業環境が悪化する問題を惹起するようになる。このため、臭気の点から、かかるアミン系触媒は、その使用量が少ないことが好ましいのである。 As for the amount of the amine-based catalyst used as one of the catalysts, the function as the catalyst is effectively exhibited, the problems such as odor and deterioration of the working environment are reduced, and the effective foam characteristics are obtained. In order to obtain it, it is within the range of 0.1 to 7 parts by mass, preferably 0.2 to 3 parts by mass, and more preferably 0.3 to 1 part by mass with respect to 100 parts by mass of the entire polyisocyanate in the composition A. Will be selected in. If the amount of this amine-based catalyst used is less than 0.1 parts by mass, it becomes difficult to fully exert the function as a catalyst, and the obtained foam becomes sticky, dust and the like adhere to it, and the appearance deteriorates. In addition, in the spray foaming operation, the droplets adhering to the floor or the like become sticky, which causes problems such as poor workability. Further, when the amount of the amine-based catalyst used is more than 7 parts by mass, the odor of the obtained polyisocyanurate foam becomes remarkable, and the amine-based catalyst volatilized during foaming causes a problem that the spraying work environment is deteriorated. It will be evoked. Therefore, from the viewpoint of odor, it is preferable that the amount of the amine-based catalyst used is small.
 しかも、本発明にあっては、上述の如き三量化触媒を、少なくとも触媒の一つとして含む組成物Bを用いて、組成物A中のポリイソシアネートのヌレート化反応を進行させて、ポリイソシアヌレート(樹脂)を生成せしめることに加えて、難燃剤として、液状の有機リン酸エステルと粉状のリン含有難燃剤とを併用することにより、生成するポリイソシアヌレートフォームの難燃性が相乗的に高められ得るようにしたのであり、これによって、それら難燃剤を単独で使用するよりも、更にはポリオールをポリイソシアネートに反応せしめて、ポリウレタンフォームを形成する場合よりも、更に高度の難燃性を有するポリイソシアヌレートフォームを、有利に提供せしめ得たのである。 Moreover, in the present invention, the polyisocyanurate is carried out by using the composition B containing the above-mentioned trimerization catalyst as at least one of the catalysts to promote the nurateization reaction of the polyisocyanate in the composition A. In addition to producing (resin), the flame retardancy of the produced polyisocyanurate foam is synergistically produced by using a liquid organic phosphate ester and a powdered phosphorus-containing flame retardant in combination as a flame retardant. This allows for higher flame retardancy than when these flame retardants are used alone, and even when the polyol is reacted with polyisocyanates to form polyurethane foam. It was possible to advantageously provide the polyisocyanurate foam having.
 ところで、かかる本発明において用いられる液状の有機リン酸エステルは、フォームの燃焼時の発熱量を低下せしめる効果を有することで、本発明に従う発泡性組成物から形成されるポリイソシアヌレートフォームの難燃性を、相乗的に、より一層向上せしめ得るものであると共に、組成物Bを液状の薬液と為して、その粘度を効果的に低下させて、吹付け等の施工作業性を向上せしめ得る減粘剤としても、作用するものである。そして、ここで用いられる液状の有機リン酸エステルとしては、液状であれば特に限定されるものではなく、モノリン酸エステル、縮合リン酸エステル等の公知のものを、単独で又は組み合わせて、用いることが出来る。 By the way, the liquid organic phosphoric acid ester used in the present invention has an effect of reducing the calorific value at the time of burning of the foam, so that the polyisocyanurate foam formed from the effervescent composition according to the present invention is flame-retardant. The properties can be synergistically and further improved, and the composition B can be made into a liquid chemical solution to effectively reduce its viscosity and improve the workability of spraying and the like. It also acts as a thickener. The liquid organic phosphate ester used here is not particularly limited as long as it is liquid, and known ones such as monophosphate ester and condensed phosphate ester may be used alone or in combination. Can be done.
 具体的には、それら有機リン酸エステルの中で、モノリン酸エステルとしては、特に限定されるものではないが、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(フェニルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、メラミンピロホスフェート、トリフェニルホスフィンオキサイド、トリクレジルホスフィンオキサイド、メタンホスホン酸ジフェニル、フェニルホスホン酸ジエチル、レジルシノールビス(ジフェニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)、ホスファフェナントレン、トリス(1-クロロ-2-プロピル)ホスフェート等を挙げることが出来る。 Specifically, among these organic phosphate esters, the monophosphate ester is not particularly limited, but for example, trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxy. Ethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyldiphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2- Ethylhexyl) Phosphonate, Di (Isopropyl) Phenylphosphine, Monoisodecyl Phosphonate, 2-Acryloyloxyethyl Acid Phosphonate, 2-methacryloyloxyethyl Acid Phosphonate, Diphenyl-2-Acryloyloxyethyl Phosphonate, Diphenyl-2-methacryloyloxyethyl Phosphonate , Melamine phosphate, Dimelamine phosphate, Melaminepyrophosphate, Triphenylphosphine oxide, Tricresylphosphine oxide, Diphenyl methanephosphonate, Diethyl phenylphosphonate, Regylsinol bis (diphenyl phosphate), Bisphenol A bis (diphenyl phosphate), Phosphine Phenylphosphine, tris (1-chloro-2-propyl) phosphate and the like can be mentioned.
 また、縮合リン酸エステルとしても、特に限定されるものではないが、例えば、トリアルキルポリホスフェート、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート(大八化学工業株式会社製PX-200)、ハイドロキノンポリ(2,6-キシリル)ホスフェート、並びにこれらの縮合物等の縮合リン酸エステルを挙げることが出来る。更に、市販の縮合リン酸エステルとしては、例えば、レゾルシノールポリフェニルホスフェート(CR-733S)、ビスフェノールAポリクレジルホスフェート(CR-741)、芳香族縮合リン酸エステル(CR747)、レゾルシノールポリフェニルホスフェート(株式会社ADEKA製アデカスタブPFR)、ビスフェノールAポリクレジルホスフェ-ト(FP-600、FP-700)等を挙げることが出来る。 The condensed phosphoric acid ester is also not particularly limited, and is, for example, trialkylpolyphosphate, resorcinolpolyphenyl phosphate, resorcinolpoly (di-2,6-xylyl) phosphate (manufactured by Daihachi Chemical Industry Co., Ltd.). PX-200), hydroquinone poly (2,6-xylyl) phosphate, and condensed phosphate esters of these condensates can be mentioned. Further, as commercially available condensed phosphoric acid ester, for example, resorcinol polyphenyl phosphate (CR-733S), bisphenol A polycresyl phosphate (CR-741), aromatic condensed phosphoric acid ester (CR747), resorcinol polyphenyl phosphate (CR-747). Adecastab PFR manufactured by ADEKA Co., Ltd.), bisphenol A polycresyl phosphate (FP-600, FP-700) and the like can be mentioned.
 上記の中でも、硬化前の組成物中の粘度を低下させる効果と初期の発熱量を低減させる効果が高いため、モノリン酸エステルを使用することが好ましく、特にトリス(1-クロロ-2-プロピル)ホスフェートを使用することが、より好ましい。 Among the above, it is preferable to use a monophosphate ester because it has a high effect of reducing the viscosity in the composition before curing and the effect of reducing the initial calorific value, and in particular, tris (1-chloro-2-propyl). It is more preferable to use phosphate.
 そして、このような有機リン酸エステルの使用量としては、組成物B中において、一般に25~60質量%、好ましくは30~50質量%程度となる割合が採用されることとなる。なお、この有機リン酸エステルの使用量が少なくなり過ぎると、その添加効果を充分に発揮させ難くなる等の問題があり、一方、その使用量が多くなり過ぎると、ポリイソシアヌレートフォームを形成するための触媒効果の低下や発泡阻害等の問題が惹起されるようになる。また、この有機リン酸エステルは、組成物A中のポリイソシアネートの100質量部に対して、一般に10~70質量部程度、好ましくは30~50質量部程度の割合において用いられるものである。 The amount of such an organic phosphoric acid ester used is generally 25 to 60% by mass, preferably about 30 to 50% by mass in the composition B. If the amount of this organic phosphate ester used is too small, there is a problem that it is difficult to fully exert the effect of addition thereof, while if the amount used is too large, a polyisocyanurate foam is formed. Therefore, problems such as a decrease in catalytic effect and inhibition of foaming will be caused. Further, this organic phosphoric acid ester is generally used in a ratio of about 10 to 70 parts by mass, preferably about 30 to 50 parts by mass, with respect to 100 parts by mass of the polyisocyanate in the composition A.
 また、かくの如き有機リン酸エステルと共に用いられて、形成されるポリイソシアヌレートフォームに、有効な難燃性を付与せしめる粉状のリン含有難燃剤は、有利には、50μm以下の平均粒子径を有するものであり、中でも、好ましくは0.1~50μm、より好ましくは0.5~40μm、更に好ましくは1~36μmの平均粒子径を有している。このリン含有難燃剤の平均粒子径が大きくなり過ぎると、発泡性組成物中における均一な分散効果を得ることが難しく、そのために、本発明の目的を充分に達成し得なくなる問題を惹起するからである。なお、かかるリン含有難燃剤の粒径が小さくなり過ぎると、その取扱いや発泡性組成物中への均一な分散が困難となる等の問題を惹起するようになるところから、その下限としては、0.1μm程度とすることが望ましいのである。そして、このような粉状のリン含有難燃剤は、前記した液状の有機リン酸エステルの100質量部に対して、一般に、40~100質量部程度、好ましくは50~80質量部程度の割合において、用いられることとなる。なお、かかるリン含有難燃剤の添加量が少なくなり過ぎると、その添加効果を充分に発揮し難くなる問題があり、一方、その添加量が多くなり過ぎると、組成物Bの液状化を阻害して、吹付け作業性の悪化を招く等の問題を惹起するようになる。 Further, a powdery phosphorus-containing flame retardant that is used together with such an organic phosphoric acid ester to impart effective flame retardancy to the polyisocyanurate foam formed thereof is advantageous in that the average particle size is 50 μm or less. Among them, it has an average particle size of preferably 0.1 to 50 μm, more preferably 0.5 to 40 μm, and even more preferably 1 to 36 μm. If the average particle size of this phosphorus-containing flame retardant becomes too large, it is difficult to obtain a uniform dispersion effect in the effervescent composition, which causes a problem that the object of the present invention cannot be sufficiently achieved. Is. If the particle size of the phosphorus-containing flame retardant becomes too small, problems such as difficulty in handling the phosphorus-containing flame retardant and uniform dispersion in the effervescent composition will occur. Therefore, the lower limit thereof is set as the lower limit. It is desirable that the thickness is about 0.1 μm. The powdery phosphorus-containing flame retardant is generally at a ratio of about 40 to 100 parts by mass, preferably about 50 to 80 parts by mass, based on 100 parts by mass of the liquid organic phosphoric acid ester. , Will be used. If the amount of the phosphorus-containing flame retardant added is too small, there is a problem that it is difficult to fully exert the effect of the addition, while if the amount of the phosphorus-containing flame retardant is added too much, the liquefaction of the composition B is hindered. As a result, problems such as deterioration of spraying workability will be caused.
 ところで、かくの如き粉状のリン含有難燃剤としては、公知の各種の粉状のものを用いることが可能であるが、特に、本発明にあっては、赤リン及びリン酸塩からなる群より選ばれることが望ましい。なお、本発明において、赤リンは、リン含有難燃剤として取り扱うこととする。また、液状の有機リン酸エステルと粉状のリン含有難燃剤の組合せとしては、有機リン酸エステルと赤リンとの組合せの他、有機リン酸エステルとリン酸塩との組合せでもよく、更にはそれら有機リン酸エステルやリン含有難燃剤は、その複数を用いた組合せであっても、何等差支えない。 By the way, as such a powdery phosphorus-containing flame retardant, various known powdery ones can be used, but in particular, in the present invention, a group consisting of red phosphorus and phosphate. It is desirable to be selected more. In the present invention, red phosphorus is treated as a phosphorus-containing flame retardant. The combination of the liquid organic phosphoric acid ester and the powdery phosphorus-containing flame retardant may be a combination of the organic phosphoric acid ester and red phosphorus, a combination of the organic phosphoric acid ester and the phosphate, and further. The organic phosphate ester and the phosphorus-containing flame retardant may be in any combination even if a plurality of them are used.
 そして、そのようなリン含有難燃剤の一つとして、好適に用いられる赤リンとしては、公知のものが、何れも対象とされ、通常、市販品の中から適宜に選択して、用いられることとなる。(例えば、燐化学工業株式会社製の「NOVARED」、「NOVAEXCEL」、日本化学工業株式会社製の「HISHIGUARD」、クラリアントケミカルズ株式会社製の「EXOLIT RP」等の名称にて販売されているものを挙げることが出来る。中でも、そのような粉末状の赤リンは、取扱い性乃至は作業性の向上と共に、樹脂組成物中への分散性を高め、その添加効果を有利に向上せしめる上において、その表面に、コーティング層が形成されているものであることが望ましく、具体的には、水酸化アルミニウム、水酸化マグネシウム、水酸化亜鉛、水酸化チタン等の金属の水酸化物や、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化チタン等の金属の酸化物からなる無機化合物、及び/又はフェノール樹脂、フラン樹脂、キシレン・ホルムアルデヒド樹脂等の熱硬化性樹脂からなる被覆層を、粒子表面に形成してなる赤リン粉末が、有利に用いられることとなる。なお、かかる被覆層は、一般に、赤リンの100質量部に対して、1~30質量部程度の割合において、形成されている。 As one of such phosphorus-containing flame retardants, known red phosphorus is preferably used, and usually, it is appropriately selected from commercially available products and used. It becomes. (For example, those sold under the names of "NOVARED" and "NOVAEXCEL" manufactured by Rinkagaku Kogyo Co., Ltd., "HISHIGUARD" manufactured by Nippon Chemical Industrial Co., Ltd., and "EXOLIT RP" manufactured by Clariant Chemicals Co., Ltd. Among them, such powdered red phosphorus has improved handleability or workability, as well as improved dispersibility in the resin composition and advantageously improved the effect of addition thereof. It is desirable that a coating layer is formed on the surface, specifically, hydroxides of metals such as aluminum hydroxide, magnesium hydroxide, zinc hydroxide, and titanium hydroxide, aluminum oxide, and oxidation. A coating layer made of an inorganic compound made of an oxide of a metal such as magnesium, zinc oxide, or titanium oxide, and / or a thermosetting resin such as a phenol resin, a furan resin, or a xylene / formaldehyde resin is formed on the particle surface. The red phosphorus powder will be advantageously used. The coating layer is generally formed at a ratio of about 1 to 30 parts by mass with respect to 100 parts by mass of red phosphorus.
 また、粉状のリン含有難燃剤の好適に用いられる他の一つとして指摘したリン酸塩としては、例えば、モノリン酸塩、ピロリン酸塩、ポリリン酸塩、有機ホスフィン酸塩等を挙げることが出来、それらの中から選択された一つ又は複数が、組成物B中に含有せしめられることとなる。 In addition, examples of the phosphate pointed out as another suitablely used powdery phosphorus-containing flame retardant include monophosphate, pyrophosphate, polyphosphate, organic phosphinate and the like. One or more selected from them will be contained in the composition B.
 なお、そのようなリン酸塩含有難燃剤の具体例の一つであるモノリン酸塩としては、特に限定されないが、例えば、リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のアンモニウム塩;リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、亜リン酸一ナトリウム、亜リン酸二ナトリウム、次亜リン酸ナトリウム等のナトリウム塩;リン酸一カリウム、リン酸二カリウム、リン酸三カリウム、亜リン酸一カリウム、亜リン酸二カリウム、次亜リン酸カリウム等のカリウム塩;リン酸一リチウム、リン酸二リチウム、リン酸三リチウム、亜リン酸一リチウム、亜リン酸二リチウム、次亜リン酸リチウム等のリチウム塩;リン酸二水素バリウム、リン酸水素バリウム、リン酸三バリウム、次亜リン酸バリウム等のバリウム塩;リン酸一水素マグネシウム、リン酸水素マグネシウム、リン酸三マグネシウム、次亜リン酸マグネシウム等のマグネシウム塩;リン酸二水素カルシウム、リン酸水素カルシウム、リン酸三カルシウム、次亜リン酸カルシウム等のカルシウム塩;リン酸亜鉛、亜リン酸亜鉛、次亜リン酸亜鉛等の亜鉛塩等を挙げることが出来る。 The monophosphate, which is one of the specific examples of such a phosphate-containing flame retardant, is not particularly limited, but for example, ammonium such as ammonium phosphate, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate. Salts; sodium salts such as monosodium phosphate, disodium phosphate, trisodium phosphate, monosodium phosphite, dissodium phosphite, sodium hypophosphite; monopotassium phosphate, dipotassium phosphate, phosphorus Potassium salts such as tripotassium acid, monopotassium phosphite, dipotassium phosphite, potassium hypophosphite; monolithium phosphate, dilithium phosphate, trilithium phosphate, monolithium phosphite, phosphite Lithium salts such as dilithium and lithium hypophosphite; barium salts such as barium dihydrogen phosphate, barium hydrogen phosphate, tribarium phosphate and barium hypophosphite; magnesium monohydrogen phosphate, magnesium hydrogen phosphate, etc. Magnesium salts such as trimagnesium phosphate and magnesium hypophosphite; calcium salts such as calcium dihydrogen phosphate, calcium hydrogen phosphate, tricalcium phosphate and calcium hypophosphite; zinc phosphate, zinc phosphite, hypophosphite Zinc salts such as zinc phosphate and the like can be mentioned.
 また、ピロリン酸塩としても、特に限定されるものではないが、例えば、ピロリン酸アンモニウム、ピロリン酸メラミン、ピロリン酸アセトグアナミン、ピロリン酸ベンゾグアナミン、ピロリン酸アクリルグアナミン、ピロリン酸2,4-ジアミノ-6-ノニル-1,3,5-トリアジン、ピロリン酸2,4-ジアミノ-6-ハイドロキシ-1,3,5-トリアジン、ピロリン酸2-アミノ-4,6-ジハイドロキシ-1,3,5-トリアジン、ピロリン酸2,4-ジアミノ-6-メトキシ-1,3,5-トリアジン、ピロリン酸2,4-ジアミノ-6-エトキシ-1,3,5-トリアジン、ピロリン酸2,4-ジアミノ-6-プロポキシ-1,3,5-トリアジン、ピロリン酸2,4-ジアミノ-6-イソプロポキシ-1,3,5-トリアジン、ピロリン酸2,4-ジアミノ-6-メルカプト-1,3,5-トリアジン、ピロリン酸2-アミノ-4,6-ジメルカプト-1,3,5-トリアジン等を挙げることが出来る。 Further, the pyrophosphate is not particularly limited, and for example, ammonium pyrophosphate, melamine pyrophosphate, acetguanamine pyrophosphate, benzoguanamine pyrophosphate, acrylic guanamine pyrophosphate, 2,4-diamino-6 pyrophosphate. -Nonyl-1,3,5-triazine, pyrophosphate 2,4-diamino-6-hydroxy-1,3,5-triazine, pyrrophosphate 2-amino-4,6-dihydroxy-1,3,5- Triazine, pyrophosphate 2,4-diamino-6-methoxy-1,3,5-triazine, pyrophosphate 2,4-diamino-6-ethoxy-1,3,5-triazine, pyrophosphate 2,4-diamino- 6-propoxy-1,3,5-triazine, pyrophosphate 2,4-diamino-6-isopropoxy-1,3,5-triazine, pyrophosphate 2,4-diamino-6-mercapto-1,3,5 -Triazine, 2-amino-4,6-dimercapto-1,3,5-triazine pyrophosphate and the like can be mentioned.
 さらに、ポリリン酸塩としては、特に限定されないが、例えば、ポリリン酸アンモニウム、ポリリン酸ピペラジン、ポリリン酸メラミン、ポリリン酸アンモニウムアミド、ポリリン酸アルミニウム等を挙げることが出来る。 Further, the polyphosphate is not particularly limited, and examples thereof include ammonium polyphosphate, piperazine polyphosphate, melamine polyphosphate, ammonium polyphosphate, aluminum polyphosphate, and the like.
 加えて、リン含有難燃剤の一つである有機ホスフィン酸塩は、ホスフィン酸を構成するリン原子に、炭素数が1~6の直鎖状のアルキル基やフェニル基等の有機基の1つ又は2つが共有結合されてなる構造の有機ホスフィン酸に、公知の各種の金属がイオン結合して、塩形態を呈するものであって、一般に、リン原子には、メチル基、エチル基又はフェニル基が結合したものが好ましく、また金属としては、Mg、Al、Ca、Ti又はZnであることが望ましく、特に、Al又はZnであることが好ましい。具体的には、(モノ又はジ)メチルホスフィン酸亜鉛、(モノ又はジ)エチルホスフィン酸亜鉛、(モノ又はジ)フェニルホスフィン酸亜鉛、(モノ又はジ)メチルホスフィン酸アルミニウム、(モノ又はジ)エチルホスフィン酸アルミニウム、(モノ又はジ)フェニルホスフィン酸アルミニウム等を挙げることが出来る。 In addition, the organic phosphinate, which is one of the phosphorus-containing flame retardants, is one of the organic groups such as a linear alkyl group and a phenyl group having 1 to 6 carbon atoms in the phosphorus atom constituting the phosphinic acid. Alternatively, various known metals are ionically bonded to the organic phosphinic acid having a structure in which the two are covalently bonded to exhibit a salt form. Generally, the phosphorus atom has a methyl group, an ethyl group or a phenyl group. Is preferable, and the metal is preferably Mg, Al, Ca, Ti or Zn, and particularly preferably Al or Zn. Specifically, (mono or di) zinc phosphinate, (mono or di) zinc phosphinate, (mono or di) zinc phenylphosphinate, (mono or di) aluminum phosphinate, (mono or di). Examples thereof include aluminum ethylphosphinate, (mono or di) aluminum phenylphosphinate, and the like.
 特に、本発明にあっては、リン含有難燃剤として、赤リンと有機ホスフィン酸塩とを併用することが望ましく、その併用によって、ポリイソシアヌレートフォームの燃焼時に、フォーム表面に充分な強度を有する炭化層の形成を促し、かかる炭化層にひび割れを生じさせることなく、ポリイソシアヌレートフォームの総発熱量の増大を効果的に阻止する効果を奏すると共に、ポリイソシアヌレートフォームの燃焼時の初期発熱量を低減せしめ、自己消火性を高める効果が有利に奏され得るようにすることにより、有機ホスフィン酸塩と赤リンのどちらか一方を、単独でポリイソシアヌレートフォームに含有せしめる場合よりも、それら難燃剤の持つ難燃特性を相乗的に発揮せしめ得るようにして、以て、極めて燃焼し難く、自己消火性の高められたポリイソシアヌレートフォームが有利に形成され得ることとなる。 In particular, in the present invention, it is desirable to use red phosphorus and an organic phosphinate in combination as a phosphorus-containing flame retardant, and the combined use has sufficient strength on the foam surface when the polyisocyanurate foam is burned. It has the effect of promoting the formation of a carbonized layer, effectively preventing the increase in the total calorific value of the polyisocyanurate foam without causing cracks in the carbonized layer, and the initial calorific value during combustion of the polyisocyanurate foam. It is more difficult than the case where either organic phosphinate or red phosphorus is contained alone in the polyisocyanurate foam by allowing the effect of reducing the amount of fire and increasing the self-extinguishing property to be exerted advantageously. By making it possible to synergistically exert the flame retardant characteristics of the flame retardant, it is possible to advantageously form a polyisocyanurate foam that is extremely difficult to burn and has improved self-extinguishing properties.
 そして、本発明に従う発泡性組成物の構成成分の一方である組成物Bに、上記した有機リン酸エステルやリン含有難燃剤が含有せしめられることにより、組成物Bは、一般に10~30質量%、好ましくは12~25質量%のリン濃度を有するように、調整されることとなる。なお、この組成物B中のリン濃度が少なくなり過ぎると、フォームの難燃性を充分に高めることが困難となる問題があり、一方、リン濃度が高くなり過ぎると、難燃性は向上するものの、ポリイソシアネートのヌレート化反応や吹付け発泡作業等に悪影響をもたらす問題を惹起する。ところで、かかる組成物Bにおけるリン濃度は、以下の如くして求められることとなる。先ず、添加される難燃剤(有機リン酸エステルやリン含有難燃剤)のそれぞれの化合物におけるP(リン原子)の含有量が、リン濃度(質量%)として、測定又は算出される。この算出の場合にあっては、[化合物中のPの原子量の総和]÷[化合物の分子量]×100(%)なる式に従って、それぞれの難燃剤のリン濃度が計算される。次に、各難燃剤の添加量からそれぞれの組成物Bにおけるリン濃度を計算し、各難燃剤のリン濃度の合計を算出することにより、組成物Bにおけるリン濃度として、求められることとなる。勿論、難燃剤を含有する組成物Bから、直接、定量分析によって、リン濃度(合計量)を測定することも可能である。そして、そのような定量分析には、ICP発光分光分析、蛍光X線分析、オージェ電子分光法等が用いられるのである。 Then, the composition B, which is one of the constituents of the effervescent composition according to the present invention, contains the above-mentioned organic phosphoric acid ester or phosphorus-containing flame retardant, so that the composition B is generally 10 to 30% by mass. It will be adjusted to have a phosphorus concentration of preferably 12 to 25% by mass. If the phosphorus concentration in the composition B is too low, there is a problem that it is difficult to sufficiently increase the flame retardancy of the foam, while if the phosphorus concentration is too high, the flame retardancy is improved. However, it causes a problem that adversely affects the nucleolation reaction of polyisocyanate and the spray foaming operation. By the way, the phosphorus concentration in the composition B can be determined as follows. First, the content of P (phosphorus atom) in each compound of the added flame retardant (organic phosphate ester or phosphorus-containing flame retardant) is measured or calculated as the phosphorus concentration (% by mass). In the case of this calculation, the phosphorus concentration of each flame retardant is calculated according to the formula [total atomic weight of P in the compound] ÷ [molecular weight of the compound] × 100 (%). Next, the phosphorus concentration in each composition B is calculated from the amount of each flame retardant added, and the total phosphorus concentration of each flame retardant is calculated to obtain the phosphorus concentration in composition B. Of course, it is also possible to directly measure the phosphorus concentration (total amount) from the composition B containing the flame retardant by quantitative analysis. Then, ICP emission spectroscopic analysis, fluorescent X-ray analysis, Auger electron spectroscopy and the like are used for such quantitative analysis.
 また、本発明に従う難燃剤ポリイソシアヌレートフォーム用発泡性組成物を構成する組成物A又は組成物Bには、上記した配合成分乃至は含有成分に加えて、更に、生成するポリイソシアヌレート(樹脂)を発泡させるための発泡剤が配合され、加えて、必要に応じて、公知の整泡剤や、更なる他の難燃剤等の、従来から知られている各種の助剤を適宜に選択して、配合せしめることも可能である。 Further, in the composition A or the composition B constituting the effervescent composition for the flame retardant polyisocyanurate foam according to the present invention, in addition to the above-mentioned compounding components or contained components, the polyisocyanurate (resin) produced is further added. ) Is compounded, and in addition, various conventionally known auxiliary agents such as known foam stabilizers and other flame retardants are appropriately selected as necessary. It is also possible to mix them.
 そして、ここで用いられる発泡剤としては、公知の各種非フロン系・フロン系の発泡剤が、適宜に選択され得るものであるが、特に、本発明にあっては、非フロン系発泡剤(及び/又はその発生源)が有利に用いられ、具体的には、ハイドロカーボン(HC)、ハイドロフルオロオレフィン(HFO)、ハイドロクロロフルオロオレフィン(HCFO)等の有機の発泡剤が、含有せしめられる。 As the foaming agent used here, various known non-fluorocarbon-based and fluorocarbon-based foaming agents can be appropriately selected. In particular, in the present invention, the non-fluorocarbon-based foaming agent ( And / or a source thereof) is advantageously used, and specifically, an organic foaming agent such as hydrocarbon (HC), hydrofluoroolefin (HFO), or hydrochlorofluoroolefin (HCFO) is contained.
 例えば、それら本発明において用いられ得る発泡剤の一つである、フロン系発泡剤のハイドロフルオロカーボン(HFC)としては、ジフルオロメタン(HFC32)、1,1,1,2,2-ペンタフルオロエタン(HFC125)、1,1,1-トリフルオロエタン(HFC143a)、1,1,2,2-テトラフルオロエタン(HFC134)、1,1,1,2-テトラフルオロエタン(HFC134a)、1,1-ジフルオロエタン(HFC152a)、1,1,1,2,3,3,3-ヘプタフルオロプロパン(HFC227ea)、1,1,1,3,3-ペンタフルオロプロパン(HFC245fa)、1,1,1,3,3-ペンタフルオロブタン(HFC365mfc)、及び1,1,1,2,2,3,4,5,5,5-デカフルオロペンタン(HFC4310mee)等を挙げることが出来る。 For example, as the hydrofluorocarbon (HFC) of the fluorocarbon-based foaming agent, which is one of the foaming agents that can be used in the present invention, difluoromethane (HFC32) and 1,1,1,2,2-pentafluoroethane (1,1,1,2,2-pentafluoroethane) HFC125), 1,1,1-trifluoroethane (HFC143a), 1,1,2,2-tetrafluoroethane (HFC134), 1,1,1,2-tetrafluoroethane (HFC134a), 1,1- Difluoroethane (HFC152a), 1,1,1,2,3,3,3-heptafluoropropane (HFC227ea), 1,1,1,3,3-pentafluoropropane (HFC245fa), 1,1,1,3 , 3-Pentafluorobutane (HFC365mfc), 1,1,1,2,2,3,4,5,5,5-decafluoropentane (HFC4310mee) and the like.
 また、本発明において好適に用いられる非フロン系発泡剤の一つであるハイドロカーボン(HC)としては、ノルマルペンタン、イソペンタン、シクロペンタン、イソブタン等を挙げることが出来る。更に、ハイドロフルオロオレフィン(HFO)としては、例えば、1,2,3,3,3-ペンタフルオロプロペン(HFO1225ye)等のペンタフルオロプロペン、1,3,3,3-テトラフルオロプロペン(HFO1234ze)、2,3,3,3-テトラフルオロプロペン(HFO1234yf)、1,2,3,3-テトラフルオロプロペン(HFO1234ye)等のテトラフルオロプロペン、3,3,3-トリフルオロプロペン(HFO1243zf)等のトリフルオロプロペン、テトラフルオロブテン(HFO1345)類、ペンタフルオロブテン異性体(HFO1354)類、1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO1336mzz)等のヘキサフルオロブテン異性体(HFO1336)類、ヘプタフルオロブテン異性体(HFO1327)類、ヘプタフルオロペンテン異性体(HFO1447)類、オクタフルオロペンテン異性体(HFO1438)類、ノナフルオロペンテン異性体(HFO1429)類等を挙げることが出来、加えて、ハイドロクロロフルオロオレフィン(HCFO)としては、1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)、ジクロロトリフルオロプロペン(HCFO1223)等を挙げることが出来る。特に、これらハイドロフルオロオレフィン(HFO)やハイドロクロロフルオロオレフィン(HCFO)は、化学的に不安定であるために、地球温暖化係数が低く、そのために、環境に優しい発泡剤として、好適に用いられ得るのである。 Further, examples of the hydrocarbon (HC), which is one of the non-CFC foaming agents preferably used in the present invention, include normal pentane, isopentane, cyclopentane, isobutane and the like. Further, as the hydrofluoroolefin (HFO), for example, pentafluoropropene such as 1,2,3,3,3-pentafluoropropene (HFO1225ye), 1,3,3,3-tetrafluoropropene (HFO1234ze), and the like. Tetrafluoropropene such as 2,3,3,3-tetrafluoropropene (HFO1234yf), 1,2,3,3-tetrafluoropropene (HFO1234ye), and birds such as 3,3,3-trifluoropropene (HFO1243zf). Hexafluorobutene isomers such as fluoropropene, tetrafluorobutene (HFO1345), pentafluorobutene isomers (HFO1354), 1,1,1,4,4,4-hexafluoro-2-butene (HFO1336mzz). HFO1336), heptafluorobutene isomer (HFO1327), heptafluoropentene isomer (HFO1447), octafluoropentene isomer (HFO1438), nonafluoropentene isomer (HFO1429) and the like can be mentioned. In addition, examples of the hydrochlorofluoroolefin (HCFO) include 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) and 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf). , Dichlorotrifluoropropene (HCFO1223) and the like. In particular, these hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) have a low global warming potential due to their chemical instability, and are therefore suitably used as environmentally friendly foaming agents. Get it.
 なお、本発明にあっては、発泡剤として、上述したものの他、水を使用することも可能である。しかしながら、水は、ポリイソシアネートと反応するものであるところから、そのような水は組成物Aには存在せしめられ得ず、また、組成物B中に存在するようになると、かかる組成物Bが、ポリイソシアネート含有の組成物Aに混合せしめられて、反応させられるときに、かかる水とポリイソシアネートとが反応して、ポリイソシアネートが消費されてしまい、反応系のポリイソシアネートが少なくなることで、イソシアヌレート環の総量が少なくなり、生成するポリイソシアヌレートフォームの難燃性の低下を招くようになる恐れがある。このことから、本発明に従う発泡性組成物中において、水は実質的に含有されていないことが望ましい。ここで、実質的に水が含有されていないとは、各組成物において、水の含有量が0.1質量%未満である状態をいうものとする。各組成物において、0.1質量%未満の微量な水が検出されたとしても、誤差と見做して、水が含有されていないと判断する。なお、水を含有させる場合は、難燃性が低下しない範囲内で許容され、水の含有量は、組成物B中、一般に1質量%以下、好ましくは0.5質量%以下となるように、調整されることとなる。 In the present invention, water can be used as the foaming agent in addition to the above-mentioned ones. However, since water reacts with polyisocyanates, such water cannot be present in composition A, and when it becomes present in composition B, such composition B becomes present. When it is mixed with the composition A containing polyisocyanate and reacted, the water reacts with the polyisocyanate, the polyisocyanate is consumed, and the polyisocyanate in the reaction system is reduced. The total amount of isocyanurate rings may be reduced, leading to a decrease in the flame retardancy of the polyisocyanurate foam produced. For this reason, it is desirable that the effervescent composition according to the present invention contains substantially no water. Here, the term "substantially free of water" means that the content of water in each composition is less than 0.1% by mass. Even if a trace amount of water of less than 0.1% by mass is detected in each composition, it is considered as an error and it is judged that water is not contained. In addition, when water is contained, it is permissible within the range where the flame retardancy does not decrease, and the content of water in the composition B is generally 1% by mass or less, preferably 0.5% by mass or less. , Will be adjusted.
 ところで、本発明に従う難燃剤ポリイソシアヌレートフォーム用発泡性組成物に含有せしめられる上記の発泡剤は、前記した液状の有機リン酸エステルの100質量部に対して、一般に、40~100質量部程度、好ましくは50~90質量部程度の割合において、用いられることが望ましい。なお、かかる発泡剤の含有量が少なくなり過ぎると、発泡特性が悪化して、例えば、吹付発泡において充分な発泡が得られない等の問題があり、また多くなり過ぎると、フォームの収縮等の問題を惹起するようになる。 By the way, the above-mentioned foaming agent contained in the effervescent composition for flame retardant polyisocyanurate foam according to the present invention is generally about 40 to 100 parts by mass with respect to 100 parts by mass of the above-mentioned liquid organic phosphoric acid ester. It is desirable that it is used in a proportion of about 50 to 90 parts by mass. If the content of the foaming agent is too small, the foaming characteristics deteriorate, for example, there is a problem that sufficient foaming cannot be obtained by spray foaming, and if it is too large, the foam shrinks or the like. It will cause problems.
 また、整泡剤は、ポリイソシアヌレートフォームのセル構造を均一に整えるために用いられるものであって、ここでは、シリコーン系のものや非イオン系界面活性剤が、好適に採用される。具体例として、ポリオキシアルキレン変性ジメチルポリシロキサン、ポリシロキサンオキシアルキレン共重合体、ポリオキシエチレンソルビタン脂肪酸エステル、ヒマシ油エチレンオキシド付加物、ラウリル脂肪酸エチレンオキシド付加物等を挙げることが出来、これらのうちの、1種が単独で、或いは2種以上が組み合わされて、用いられる。なお、この整泡剤の配合量は、所期のフォーム特性や、使用する整泡剤の種類等に応じて適宜に決定されるところであるが、組成物B中において0.5~5質量%程度、好ましくは1~3質量%程度の範囲内で選択される。 Further, the foam stabilizer is used to uniformly arrange the cell structure of the polyisocyanurate foam, and here, a silicone-based surfactant or a nonionic surfactant is preferably adopted. Specific examples include polyoxyalkylene-modified dimethylpolysiloxane, polysiloxaneoxyalkylene copolymer, polyoxyethylene sorbitan fatty acid ester, castor oil ethylene oxide adduct, lauryl fatty acid ethylene oxide adduct, and the like. One type may be used alone, or two or more types may be used in combination. The blending amount of this defoaming agent is appropriately determined according to the desired foam characteristics, the type of the defoaming agent to be used, and the like, but is 0.5 to 5% by mass in the composition B. It is selected in the range of about 1 to 3% by mass, preferably about 1 to 3% by mass.
 そして、上述の如くして得られた、ポリイソシアネートを含む組成物Aと、触媒として少なくとも三量化触媒を含み、更に、液状の有機リン酸エステルや粉状のリン含有難燃剤を含有する組成物Bとを用いて、それらを、体積比にて、一般に組成物A:組成物B=2:1~1:1の割合において、混合することにより、ポリオールの不存在下において、三量化触媒によるポリイソシアネートのイソシアヌレート化反応と、発泡剤による発泡とにより、目的とするポリイソシアヌレートフォームが形成されることとなるのである。 A composition containing the polyisocyanate-containing composition A obtained as described above, a composition containing at least a trimerization catalyst as a catalyst, and further containing a liquid organic phosphoric acid ester and a powdery phosphorus-containing flame retardant. By mixing them with B in volume ratio, generally at a ratio of composition A: composition B = 2: 1 to 1: 1 in the absence of the polyol, by a trimerization catalyst. The desired polyisocyanurate foam is formed by the isocyanurate-forming reaction of the polyisocyanate and the foaming by the foaming agent.
 なお、かかるポリイソシアヌレートフォームの形成に際しては、公知の各種のポリウレタンフォームの製造手法が、そのまま採用され得るところであって、例えば、それら組成物Aと組成物Bとの混合物を面材上に塗布して、板状に発泡・硬化を行なうラミネート連続発泡法、電気冷蔵庫等の断熱性の要求される空間内や軽量・高強度ボードのハニカム構造内、土木工事において発生する空隙内等に注入、充填して、発泡・硬化を行なう注入発泡法、または現場発泡機のスプレーガンヘッドから所定の被着体(構造体)へ吹き付けて発泡・硬化させるスプレー発泡法等によって、本発明に従う発泡性組成物は発泡・硬化せしめられることにより、目的とする、ポリイソシアヌレートフォームが形成されることとなるのである。 In forming such polyisocyanurate foam, various known methods for producing polyurethane foam can be adopted as they are, and for example, a mixture of these compositions A and composition B is applied onto the face material. Then, it is injected into a laminated continuous foaming method that foams and cures in a plate shape, in a space where heat insulation is required such as an electric refrigerator, in a honeycomb structure of a lightweight and high-strength board, in a void generated in civil engineering work, etc. A foamable composition according to the present invention by an injection foaming method of filling and foaming / curing, or a spray foaming method of spraying from a spray gun head of an on-site foaming machine onto a predetermined adherend (structure) to foam / cure. Is foamed and cured to form the desired polyisocyanurate foam.
 かくの如くして、本発明に従う組成物A及び組成物Bを用いて、それらを混合せしめて、発泡・硬化することにより、形成されたポリイソシアヌレートフォーム(発泡体)にあっては、樹脂成分となるポリオールを不使用として、フォームを構成する可燃物を限界まで低減せしめつつ、イソシアヌレート構造と、難燃剤としての有機リン酸エステルとリン含有難燃剤との相乗的な作用に基づいて、スキン層の存在下においても、高度の難燃性を発揮し得るフォームとして、効果的に実現せしめられてなるものであるところから、我国の建築基準法により規定される不燃材料が有利に提供され得たのである。 In this way, the polyisocyanurate foam (foam) formed by mixing the composition A and the composition B according to the present invention, foaming and curing them is a resin. Based on the isocyanurate structure and the synergistic action of the organic phosphate ester as a flame retardant and the phosphorus-containing flame retardant, while reducing the combustibles constituting the foam to the limit by not using the polyol as a component. Since it is effectively realized as a foam capable of exhibiting a high degree of flame retardancy even in the presence of a skin layer, a non-combustible material specified by Japan's Building Standards Law is advantageously provided. I got it.
 以下に、本発明の実施例を幾つか示し、比較例と対比することにより、本発明の特徴を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には、上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。なお、以下に示す百分率(%)及び部は、特に断りのない限り、何れも、質量基準にて示されるものである。 Hereinafter, the features of the present invention will be clarified more specifically by showing some examples of the present invention and comparing them with the comparative examples. Needless to say, it is not subject to any restrictions. Further, in addition to the following examples, the present invention is further modified in various ways based on the knowledge of those skilled in the art, as long as it does not deviate from the gist of the present invention, in addition to the above-mentioned specific description. It should be understood that modifications, improvements, etc. can be made. Unless otherwise specified, the percentages (%) and parts shown below are all shown on a mass basis.
 また、以下の実施例や比較例において求められたポリイソシアヌレートフォームの密度や最大発熱速度、総発熱量、自己消火時間及び燃焼試験後の表面のひび割れの状態について、それぞれ、以下の如くして評価乃至は測定した。 In addition, the density, maximum heat generation rate, total heat generation amount, self-fire extinguishing time, and the state of surface cracks after the combustion test obtained in the following examples and comparative examples are as follows. Evaluation or measurement.
(1)最大発熱速度及び総発熱量の測定
 実施例や比較例において吹付け発泡して得られたポリイソシアヌレートフォーム層(肉厚:約60mm)から、そのフォーム表面のスキン層を残したまま、肉厚:50mmの試験片となるように切り出して、100mm×100mm×50mmのサイズのポリイソシアヌレートフォーム試験片を採取する。
(1) Measurement of maximum heat generation rate and total heat generation amount From the polyisocyanurate foam layer (thickness: about 60 mm) obtained by spray foaming in Examples and Comparative Examples, the skin layer on the foam surface remains. , Cut out so as to be a test piece having a wall thickness of 50 mm, and collect a polyisocyanurate foam test piece having a size of 100 mm × 100 mm × 50 mm.
 次いで、この採取された試験片を、ISO-5660に規定される燃焼試験法に準拠して、放射熱強度:50kW/m2 にて、20分間加熱したときの最大発熱速度及び総発熱量を、それぞれ、測定する。そして、かかる最大発熱速度が200kW/m2 以下である場合及び総発熱量が8MJ/m2 以下である場合を、合格とする。 Next, the maximum heat generation rate and total heat generation amount when the collected test piece was heated for 20 minutes at a radiant heat intensity of 50 kW / m 2 in accordance with the combustion test method specified in ISO-5660. , Each measure. Then, the case where the maximum heat generation rate is 200 kW / m 2 or less and the case where the total heat generation amount is 8 MJ / m 2 or less are accepted.
(2)密度の測定
 前記ポリイソシアヌレートフォーム層から切り出された試験片について、その寸法を、ノギスを使用して正確に計測する一方、電子天秤を用いて、その質量を計測して、それら得られた計測値から、かかるサンプル(発泡体)の密度をJIS K7222に準拠して算出する。
(2) Density measurement The dimensions of the test pieces cut out from the polyisocyanurate foam layer are accurately measured using a caliper, while the mass is measured using an electronic balance to obtain them. From the measured values obtained, the density of the sample (foam) is calculated according to JIS K7222.
(3)自己消火時間の測定
 前記ISO-5660に準拠した燃焼試験を実施したときの、加熱による着火から火が消えるまでの時間を測定した。
(3) Measurement of self-extinguishing time The time from ignition by heating to extinguishing the fire when the combustion test conforming to the ISO-5660 was carried out was measured.
(4)ひび割れ(残渣)の状態の評価
 前記ISO-5660に準拠した燃焼試験を実施したときに得られる、試験終了後の前記試験片において、表面にひび割れが認められない場合には「○」とし、その表面にひび割れが観察される場合には「×」とし、更に、ひび割れがその試験片の裏面まで到達した場合には「××」として、評価する。
(4) Evaluation of the state of cracks (residues) If no cracks are found on the surface of the test piece after the test, which is obtained when the combustion test conforming to the ISO-5660 is performed, "○" is displayed. If cracks are observed on the surface thereof, it is evaluated as "x", and if the cracks reach the back surface of the test piece, it is evaluated as "XX".
 先ず、以下の実施例及び比較例において用いられる成分として、以下の各種原料を準備した。
 ポリオール化合物:フタル酸系ポリエステルポリオール(川崎化成工業株
          式会社製RDK133、水酸基価:315mgKOH
          /g)
 三量化触媒:第四級アンモニウム塩(サンアプロ社製U-CAT18X)
      :第四級アンモニウム塩(花王株式会社製カオーライザーNo
       .420)
 樹脂化触媒:オクチル酸ビスマス(日本化学産業株式会社製プキャット2
       5)
 難燃剤:有機リン酸エステル:TCPP(ワンシャン社製トリス(1-ク
     ロロ-2-プロピル)ホスフェート:液体、リン濃度:9.5質
     量%)
    :有機リン酸エステル:ポリリン酸エステル(株式会社ADEKA
     製アデカスタブPFR:液体、リン濃度:10.9質量%)
    :有機リン酸エステル:トリス(トリブロモネオペンチル)ホスフ
     ェート(大八化学工業株式会社製CR-900:粉体、リン濃度
     :3.0質量%)
    :赤リン(燐化学工業株式会社製ノーバエクセル140、リン濃度
     :94質量%、平均粒子径:24~36μm)
    :赤リン(燐化学工業株式会社製ノーバレッド120、リン濃度:
     85質量%、平均粒子径:20~30μm)
    :リン酸二水素アンモニウム(富士フィルム和光純薬株式会社製試
     薬、平均粒子径:5μm、リン濃度:27質量%)
    :ポリリン酸アンモニウム(クラリアントケミカルズ株式会社製E
     XOLITAP422、平均粒子径:15μm、リン濃度:31
     質量%)
    :ジエチルホスフィン酸アルミニウム(クラリアントケミカルズ株
     式会社製EXOLIT OP930、平均粒子径(D50):3~
     5μm、リン濃度:23質量%)
    :ジエチルホスフィン酸アルミニウム(クラリアントケミカルズ株
     式会社製EXOLIT OP935、平均粒子径(D50):2~
     3μm、リン濃度:23質量%)
 発泡剤:HCFO-1233zd(Honeywell社製1-クロロ-
     3,3,3-トリフルオロプロペン)
    :HFO-1336mzz(Chemours社製1,1,1,4
     ,4,4-ヘキサフルオロ-2-ブテン)
    :HFC365mfc(SOLVAY社製1,1,1,3,3-ペ
     ンタフルオロブタン)
    :HFC245fa(セントラル硝子株式会社製1,1,1,3,
     3-ペンタフルオロプロパン)
    :水
 整泡剤:シリコーン系整泡剤(モメンティブ・パフォーマンス・マテリア
     ルズ・ジャパン合同会社製Niax Silicone L-6
     100)
First, the following various raw materials were prepared as the components used in the following examples and comparative examples.
Polyol compound: Phthalic acid-based polyester polyol (RDK133 manufactured by Kawasaki Kasei Chemicals, Inc., hydroxyl value: 315 mgKOH
/ G)
Triquantization catalyst: quaternary ammonium salt (U-CAT18X manufactured by San Apro)
: Quaternary ammonium salt (Kao Corporation Kaorizer No.
.. 420)
Resinification catalyst: Bismuth octylate (Pucat 2 manufactured by Nihon Kagaku Sangyo Co., Ltd.)
5)
Flame Retardant: Organic Phosphate Ester: TCPP (Wanshan Tris (1-chloro-2-propyl) Phosphate: Liquid, Phosphorus Concentration: 9.5% Content)
: Organic Phosphate Ester: Polyphosphoric Acid Ester (ADEKA Corporation)
Made by Adecaster PFR: Liquid, Phosphorus concentration: 10.9% by mass)
: Organic Phosphate Ester: Tris (Tribromoneopentyl) phosphate (CR-900 manufactured by Daihachi Chemical Industry Co., Ltd .: Powder, Phosphorus concentration: 3.0% by mass)
: Red phosphorus (Nova Excel 140 manufactured by Rin Kagaku Kogyo Co., Ltd., phosphorus concentration: 94% by mass, average particle size: 24-36 μm)
: Red phosphorus (Nova Red 120 manufactured by Rin Kagaku Kogyo Co., Ltd., phosphorus concentration:
85% by mass, average particle size: 20 to 30 μm)
: Ammonium dihydrogen phosphate (Wako Pure Chemical Industries, Ltd., average particle size: 5 μm, phosphorus concentration: 27% by mass)
: Ammonium polyphosphate (E, manufactured by Clariant Chemicals, Inc.)
XOLITAP422, average particle size: 15 μm, phosphorus concentration: 31
mass%)
: Aluminum diethyl phosphinate (EXOLIT OP930 manufactured by Clariant Chemicals Co., Ltd., average particle size (D 50 ): 3 ~
5 μm, phosphorus concentration: 23% by mass)
: Aluminum diethyl phosphinate (EXOLIT OP935 manufactured by Clariant Chemicals Co., Ltd., average particle size (D 50 ): 2 to
3 μm, phosphorus concentration: 23% by mass)
Foaming agent: HCFO-1233zd (Honeywell 1-chloro-
3,3,3-trifluoropropene)
: HFO-1336mzz (Chemours 1,1,1,4)
, 4,4-Hexafluoro-2-butene)
: HFC365mfc (1,1,1,3,3-pentafluorobutane manufactured by SOLVAY)
: HFC245fa (manufactured by Central Glass Co., Ltd. 1,1,1,3)
3-Pentafluoropropane)
: Water defoaming agent: Silicone-based defoaming agent (Momentive Performance Materials Japan GK Niax Silicone L-6
100)
-ポリイソシアネート組成物(組成物A)の調製-
 ポリイソシアネートとして、ポリメリックMDI(万華化学ジャパン株式会社製Wannate PM-130)を準備して、このポリイソシアネートのみによって、組成物Aを構成した。
-Preparation of polyisocyanate composition (composition A)-
Polymeric MDI (Wannate PM-130 manufactured by Manka Kagaku Japan Co., Ltd.) was prepared as a polyisocyanate, and the composition A was composed only of this polyisocyanate.
-触媒組成物(組成物B)の調製-
 上記で準備した各種の原料、即ち、三量化触媒、樹脂化触媒、難燃剤(有機リン酸エステル、赤リン、有機ホスフィン酸塩)、発泡剤及び整泡剤を、下記表1~表3に示される各種の組み合わせ及び配合割合において、均一に混合せしめて、実施例1~16及び比較例1~9に係る各種の触媒組成物を、組成物Bとして、それぞれ、調製した。
-Preparation of catalyst composition (composition B)-
The various raw materials prepared above, that is, the trimerization catalyst, the resinification catalyst, the flame retardant (organic phosphate ester, red phosphorus, organic phosphinate), the foaming agent and the foam stabilizer are shown in Tables 1 to 3 below. Various catalyst compositions according to Examples 1 to 16 and Comparative Examples 1 to 9 were prepared as Composition B, respectively, by uniformly mixing them in the various combinations and blending ratios shown.
-ポリイソシアヌレートフォームの製造-
 上記で得られた各種の触媒組成物とポリイソシアネート組成物とを、体積比1:1で用い、現場スプレー発泡機(商品名:A-25、グラコ社製)により、混合せしめて、発泡原液とし、これを、雰囲気温度:15℃の条件下において、被着体である無機フレキシブルボード(910mm×910mm)の表面に、下吹き1回及び上吹き1回の吹付け作業を実施し、発泡・硬化させることにより、下吹き層が約5mmであり且つ上吹き層が50~60mmの硬質イソシアヌレートフォームからなる、実施例1~16及び比較例1~9に係る各種の発泡層(肉厚:約60mm)を、それぞれ、作製した。
-Manufacturing of polyisocyanurate foam-
The various catalyst compositions obtained above and the polyisocyanate composition are used at a volume ratio of 1: 1 and mixed by an in-situ spray foaming machine (trade name: A-25, manufactured by Graco) to prepare an effervescent stock solution. Then, under the condition of atmospheric temperature: 15 ° C., the surface of the inorganic flexible board (910 mm × 910 mm) as an adherend was sprayed once with a bottom blow and once with a top blow, and foamed. -Various foam layers (thickness) according to Examples 1 to 16 and Comparative Examples 1 to 9, which are made of a hard isocyanate foam having a bottom blown layer of about 5 mm and a top blown layer of 50 to 60 mm by curing. : Approximately 60 mm) were prepared respectively.
 そして、かくして得られた各種のポリイソシアヌレートフォームを用いて、その密度、最大発熱速度、総発熱量、自己消火時間及びひび割れ(残渣)の状態について、それぞれ測定乃至は評価して、それら得られた結果を、それぞれ、下記表1~表3にまとめて示した。 Then, using the various polyisocyanurate foams thus obtained, the density, maximum heat generation rate, total heat generation amount, self-fire extinguishing time and state of cracks (residues) are measured or evaluated, respectively, and obtained. The results are summarized in Tables 1 to 3 below, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 かかる表1及び表2の結果から明らかなように、本発明に従う実施例1~16において採用された、ポリイソシアネート組成物(組成物A)と触媒組成物(組成物B)との組み合わせからなる発泡性組成物にあっては、何れも、ISO-5660に準拠した燃焼試験法において、総発熱量(20分)が8MJ/m2 以下となる、高度の難燃性を有するポリイソシアヌレートフォームを得ることが出来ると共に、火が着いてから自己消火に至るまでの時間が短いことが、確認された。また、燃焼試験後の試験片においては、何れも、その表面に、ひび割れは何等認められず、高い難燃性を実現出来るものであることが、理解される。 As is clear from the results of Tables 1 and 2, it comprises a combination of the polyisocyanate composition (composition A) and the catalyst composition (composition B) adopted in Examples 1 to 16 according to the present invention. All of the effervescent compositions have a highly flame-retardant polyisocyanurate foam having a total calorific value (20 minutes) of 8 MJ / m 2 or less in the combustion test method based on ISO-5660. It was confirmed that the time from the onset of fire to the self-extinguishing of the fire was short. Further, it is understood that in each of the test pieces after the combustion test, no cracks are observed on the surface thereof, and high flame retardancy can be realized.
 これに対して、表3に示される結果から明らかな如く、ポリイソシアネート組成物(組成物A)に組み合わされる触媒組成物(組成物B)に、ポリオールが添加せしめられて、そのようなポリオールがポリイソシアネートと反応せしめられて得られる比較例1~4のフォームにあっては、目的とする高度の難燃性を得ることが出来ず、最大発熱速度や総発熱量(20分)において劣るものとなった。また、液状の有機リン酸エステルを組成物Bに添加配合せしめていない比較例5~6や、粉状の有機リン酸エステルが配合されてなる比較例7にあっては、吹付け作業が出来ず、有効なポリイソシアヌレートフォームを得ることが出来ず、更に、液状の有機リン酸エステルに粉状のリン含有難燃剤を組み合わせていない比較例8~9において得られたフォームにあっては、最大発熱速度や総発熱量(20分)の値が悪く、且つひび割れが顕著であるものとなり、高度の難燃性を有するポリイソシアヌレートフォームの形成が困難であることが、認められた。 On the other hand, as is clear from the results shown in Table 3, a polyol is added to the catalyst composition (composition B) to be combined with the polyisocyanate composition (composition A), and such a polyol is added. In the foams of Comparative Examples 1 to 4 obtained by reacting with polyisocyanate, the desired high flame retardancy cannot be obtained, and the maximum heat generation rate and the total calorific value (20 minutes) are inferior. It became. Further, in Comparative Examples 5 to 6 in which the liquid organic phosphoric acid ester is not added and blended in the composition B, and Comparative Example 7 in which the powdery organic phosphoric acid ester is blended, the spraying operation can be performed. In addition, the foams obtained in Comparative Examples 8 to 9 in which an effective polyisocyanurate foam could not be obtained and the liquid organic phosphate ester was not combined with a powdery phosphorus-containing flame retardant were used. It was found that the values of the maximum calorific value and the total calorific value (20 minutes) were poor, and the cracks were remarkable, and it was difficult to form a polyisocyanulate foam having a high degree of flame retardancy.

Claims (15)

  1.  ポリイソシアネートを含む組成物Aと、触媒として、少なくとも三量化触媒を含む、ポリオール不含の組成物Bとから構成され、ポリオールの不存在下における、該ポリイソシアネートの該三量化触媒によるイソシアヌレート化反応と、発泡剤による発泡とにより、ポリイソシアヌレートフォームを形成し得る発泡性組成物にして、
     前記組成物Bが、更に、液状の有機リン酸エステルと粉状のリン含有難燃剤とを含有していることを特徴とする難燃性ポリイソシアヌレートフォーム用発泡性組成物。
    It is composed of a composition A containing a polyisocyanate and a polyol-free composition B containing at least a trimerization catalyst as a catalyst, and isocyanurateization of the polyisocyanate with the trimerization catalyst in the absence of a polyol. A foaming composition capable of forming a polyisocyanurate foam by the reaction and foaming with a foaming agent is obtained.
    A foamable composition for flame-retardant polyisocyanurate foam, wherein the composition B further contains a liquid organic phosphoric acid ester and a powdery phosphorus-containing flame retardant.
  2.  前記組成物Bにおけるリン濃度が10~30質量%となるように、調整されていることを特徴とする請求項1に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 The effervescent composition for flame-retardant polyisocyanurate foam according to claim 1, wherein the phosphorus concentration in the composition B is adjusted to be 10 to 30% by mass.
  3.  前記液状の有機リン酸エステルが、前記組成物B中に25~60質量%の割合で含有せしめられることを特徴とする請求項1又は請求項2に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 The foam for flame-retardant polyisocyanurate foam according to claim 1 or 2, wherein the liquid organic phosphoric acid ester is contained in the composition B in a proportion of 25 to 60% by mass. Sex composition.
  4.  前記液状の有機リン酸エステルが、モノリン酸エステル及び縮合リン酸エステルからなる群より選択されることを特徴とする請求項1乃至請求項3の何れか1項に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 The flame-retardant polyisocyanurate according to any one of claims 1 to 3, wherein the liquid organic phosphoric acid ester is selected from the group consisting of a monophosphate ester and a condensed phosphoric acid ester. Foamable composition.
  5.  前記粉状のリン含有難燃剤が、50μm以下の平均粒子径を有していることを特徴とする請求項1乃至請求項4の何れか1項に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 The foam for flame-retardant polyisocyanurate foam according to any one of claims 1 to 4, wherein the powdery phosphorus-containing flame retardant has an average particle size of 50 μm or less. Sex composition.
  6.  前記粉状のリン含有難燃剤が、赤リン及びリン酸塩からなる群より選択されることを特徴とする請求項1乃至請求項5の何れか1項に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 The flame-retardant polyisocyanurate foam according to any one of claims 1 to 5, wherein the powdery phosphorus-containing flame retardant is selected from the group consisting of red phosphorus and phosphate. Effervescent composition for.
  7.  前記リン酸塩が、モノリン酸塩、ピロリン酸塩、ポリリン酸塩、及び有機ホスフィン酸塩からなる群より選択されることを特徴とする請求項6に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 The foaming for flame-retardant polyisocyanurate foam according to claim 6, wherein the phosphate is selected from the group consisting of monophosphate, pyrophosphate, polyphosphate, and organic phosphinate. Sex composition.
  8.  前記粉状のリン含有難燃剤として、赤リンと有機ホスフィン酸塩とが併用されることを特徴とする請求項1乃至請求項7の何れか1項に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 The flame-retardant polyisocyanurate foam according to any one of claims 1 to 7, wherein red phosphorus and an organic phosphinate are used in combination as the powdered phosphorus-containing flame retardant. Effervescent composition.
  9.  前記粉状のリン含有難燃剤が、前記液状の有機リン酸エステルの100質量部に対して40~100質量部の割合において、含有せしめられることを特徴とする請求項1乃至請求項8の何れか1項に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 Any of claims 1 to 8, wherein the powdered phosphorus-containing flame retardant is contained in a ratio of 40 to 100 parts by mass with respect to 100 parts by mass of the liquid organic phosphoric acid ester. The effervescent composition for flame-retardant polyisocyanurate foam according to item 1.
  10.  前記三量化触媒が、第四級アンモニウム塩又はカルボン酸アルカリ金属塩であることを特徴とする請求項1乃至請求項9の何れか1項に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 The effervescent composition for flame-retardant polyisocyanurate foam according to any one of claims 1 to 9, wherein the trimerization catalyst is a quaternary ammonium salt or a carboxylic acid alkali metal salt. thing.
  11.  前記発泡剤が、ハイドロカーボン、ハイドロフルオロオレフィン及びハイドロクロロフルオロオレフィンからなる群より選ばれる有機の発泡剤であることを特徴とする請求項1乃至請求項10の何れか1項に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 The flame retardant according to any one of claims 1 to 10, wherein the foaming agent is an organic foaming agent selected from the group consisting of hydrocarbons, hydrofluoroolefins and hydrochlorofluoroolefins. Effervescent composition for sex polyisocyanurate foam.
  12.  前記発泡剤が、前記組成物Bに含有せしめられることを特徴とする請求項1乃至請求項11の何れか1項に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 The foamable composition for flame-retardant polyisocyanurate foam according to any one of claims 1 to 11, wherein the foaming agent is contained in the composition B.
  13.  前記発泡剤が、前記液状の有機リン酸エステルの100質量部に対して40~100質量部の割合において、用いられることを特徴とする請求項1乃至請求項12の何れか1項に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物。 The invention according to any one of claims 1 to 12, wherein the foaming agent is used in a ratio of 40 to 100 parts by mass with respect to 100 parts by mass of the liquid organic phosphoric acid ester. Effervescent composition for flame-retardant polyisocyanurate foam.
  14.  請求項1乃至請求項13の何れか1項に記載の難燃性ポリイソシアヌレートフォーム用発泡性組成物を用いて、かかる発泡性組成物を、所定の構造体の表面に吹き付けて、発泡・硬化せしめることにより、かかる構造体表面に所定厚さのポリイソシアヌレートフォーム層を形成することを特徴とする難燃性ポリイソシアヌレートフォームの製造方法。 Using the foamable composition for flame-retardant polyisocyanurate foam according to any one of claims 1 to 13, the foamable composition is sprayed onto the surface of a predetermined structure to foam. A method for producing a flame-retardant polyisocyanurate foam, which comprises forming a polyisocyanurate foam layer having a predetermined thickness on the surface of the structure by curing.
  15.  前記ポリイソシアヌレートフォーム層が、ISO-5660に規定される発熱性試験方法に準拠して、放射熱強度:50kW/m2 にて加熱したときに、加熱開始から20分間の総発熱量が8.0MJ/m2 以下である不燃特性を有していることを特徴とする請求項14に記載の難燃性ポリイソシアヌレートフォームの製造方法。 When the polyisocyanurate foam layer is heated at a radiant heat intensity of 50 kW / m 2 in accordance with the exothermic test method specified in ISO-5660, the total calorific value for 20 minutes from the start of heating is 8 The method for producing a flame-retardant polyisocyanurate foam according to claim 14, which has a non-combustible property of .0 MJ / m 2 or less.
PCT/JP2020/043771 2020-06-17 2020-11-25 Foam composition for flame-retardant polyisocyanurate foam and method for producing flame-retardant polyisocyanurate foam using said foam WO2021255958A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022532245A JPWO2021255958A1 (en) 2020-06-17 2020-11-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020104560 2020-06-17
JP2020-104560 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021255958A1 true WO2021255958A1 (en) 2021-12-23

Family

ID=79267722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043771 WO2021255958A1 (en) 2020-06-17 2020-11-25 Foam composition for flame-retardant polyisocyanurate foam and method for producing flame-retardant polyisocyanurate foam using said foam

Country Status (2)

Country Link
JP (1) JPWO2021255958A1 (en)
WO (1) WO2021255958A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149760A (en) * 2007-12-20 2009-07-09 Nippon Polyurethane Ind Co Ltd Production method for rigid polyurethane foam
JP2015078594A (en) * 2013-09-13 2015-04-23 積水化学工業株式会社 Flame-retardant heat insulation panel
JP2018083909A (en) * 2016-11-25 2018-05-31 東ソー株式会社 Hard isocyanurate foam composition and method for producing hard isocyanurate foam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149760A (en) * 2007-12-20 2009-07-09 Nippon Polyurethane Ind Co Ltd Production method for rigid polyurethane foam
JP2015078594A (en) * 2013-09-13 2015-04-23 積水化学工業株式会社 Flame-retardant heat insulation panel
JP2018083909A (en) * 2016-11-25 2018-05-31 東ソー株式会社 Hard isocyanurate foam composition and method for producing hard isocyanurate foam

Also Published As

Publication number Publication date
JPWO2021255958A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
JP6626590B2 (en) Flame retardant urethane resin composition
JP6725606B2 (en) Urethane resin composition and method for heat insulation of building
CN113015757B (en) Foamable composition for nonflammable polyurethane foam
JP7034020B2 (en) Effervescent composition for flame-retardant polyurethane foam
JP2018053024A (en) Urethane resin composition preparation system, method for producing urethane molded body, and urethane molded body
JP6978396B2 (en) Polyurethane foam manufacturing method
JP2020128459A (en) Method for producing polyurethane foam
JP7233400B2 (en) Raw material for urethane resin composition and method for insulating buildings
JP2020066888A (en) Building heat insulation material, building heat insulation method, recycling method for building heat insulation material, and spraying device for heat insulation material
WO2021255958A1 (en) Foam composition for flame-retardant polyisocyanurate foam and method for producing flame-retardant polyisocyanurate foam using said foam
JP6987803B2 (en) Polyurethane foam manufacturing method
JP7305504B2 (en) Foaming composition for non-combustible polyurethane foam
JP2022155370A (en) Composition for flame-retardant foam
JP6621571B1 (en) Foamable composition for nonflammable polyurethane foam
JP7263496B2 (en) Method for manufacturing polyurethane foam
JP2018062659A (en) Foamable polyurethane composition for on-site spraying
JP7263495B2 (en) Method for manufacturing polyurethane foam
JP6978397B2 (en) Polyurethane foam manufacturing method
JP2022155368A (en) Composition for flame-retardant foam
JP2022155369A (en) Composition for flame-retardant foam
JP2020070409A (en) Method for producing polyurethane foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940495

Country of ref document: EP

Kind code of ref document: A1