WO2009081496A1 - モータ駆動回路、ファンモータ、電子機器、及びノート型パーソナルコンピュータ - Google Patents

モータ駆動回路、ファンモータ、電子機器、及びノート型パーソナルコンピュータ Download PDF

Info

Publication number
WO2009081496A1
WO2009081496A1 PCT/JP2007/074947 JP2007074947W WO2009081496A1 WO 2009081496 A1 WO2009081496 A1 WO 2009081496A1 JP 2007074947 W JP2007074947 W JP 2007074947W WO 2009081496 A1 WO2009081496 A1 WO 2009081496A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
drive
rotation
circuit
driving
Prior art date
Application number
PCT/JP2007/074947
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Imai
Tetsuya Yoshitomi
Joji Noie
Original Assignee
Sanyo Electric Co., Ltd.
Sanyo Semiconductor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to JP2008517260A priority Critical patent/JP4217921B1/ja
Priority to PCT/JP2007/074947 priority patent/WO2009081496A1/ja
Priority to KR1020087009201A priority patent/KR101030966B1/ko
Priority to CN200780001484XA priority patent/CN101589545B/zh
Priority to TW097100047A priority patent/TW200830692A/zh
Priority to US12/252,289 priority patent/US7839104B2/en
Publication of WO2009081496A1 publication Critical patent/WO2009081496A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/22Arrangements for starting in a selected direction of rotation

Definitions

  • the present invention relates to a motor drive circuit, a fan motor, an electronic device, and a notebook personal computer.
  • a fan motor is used to cool a heat-generating component such as a processor, for example.
  • a heat-generating component such as a processor
  • the cooling performance can be improved by maximizing the motor rotation speed.
  • the motor rotates according to the amount of heat generated. Need to adjust speed. For example, in a fan motor, the rotational speed of the motor can be adjusted by increasing or decreasing the drive voltage applied to the motor coil in accordance with the amount of heat generated.
  • intermittent drive may be performed in addition to drive voltage control to further reduce power consumption and reduce noise.
  • the drive voltage is controlled to be lowered according to the target rotational speed of the motor, and the drive voltage is applied to the motor coil as the target rotational speed of the motor is lowered.
  • a method of controlling so as to decrease the ratio is disclosed.
  • the rotational speed of the motor can be increased compared to the case of control only by adjusting the drive voltage. It is possible to control to a low rotation, and it is possible to reduce power consumption and reduce noise.
  • the present invention has been made in view of the above problems, and an object thereof is to enable a motor to be started at a low speed.
  • a motor drive circuit includes a pulse generation circuit that generates a pulse signal in which the duty ratio of one logical level increases as the drive voltage corresponding to the target rotational speed of the motor increases. Based on a rotation signal corresponding to the rotation of the motor, the motor is driven by the drive voltage at a duty ratio higher than the duty ratio of the pulse signal when the rotation starts from a state where the motor is stopped. And a drive control circuit for driving the motor with the drive voltage during a period of the one logic level after the motor starts rotating.
  • FIG. 1 is a diagram showing a configuration of a motor drive circuit according to an embodiment of the present invention.
  • the motor drive circuit 10 is incorporated in a fan motor for cooling a heat-generating component (cooled device) such as a processor in an electronic device such as a notebook personal computer, and rotates the cooling fan. Used to drive a motor.
  • a heat-generating component cooled device
  • a processor such as a processor in an electronic device
  • a notebook personal computer Used to drive a motor.
  • the motor drive circuit 10 of this embodiment is a circuit that drives a single-phase fan motor, and includes NPN transistors 11 to 14, a drive voltage generation circuit 20, a pulse generation circuit 22, a rotation detection circuit 24, an OR circuit 26, and a control circuit. 28 is comprised.
  • the motor drive circuit 10 is integrated, a motor coil L is connected between the terminals OUT1 and OUT2, and a voltage Vh1 and a voltage Vh2 according to the rotational position of the motor are connected between the terminals H1 and H2.
  • a Hall element 30 that outputs (rotation signal) is connected, and a signal for controlling the rotation speed of the motor is input from the microcomputer 32 via the terminal CNT.
  • the voltages Vh1 and Vh2 are voltages that change in a sine wave shape having opposite phases.
  • the NPN transistors 11 to 14 constitute an H bridge circuit for driving the motor coil L with the drive voltage Vm.
  • the motor coil L is driven by the drive voltage Vm so that current flows from the terminal OUT1 to the terminal OUT2.
  • the NPN transistors 12 and 13 are on and the NPN transistors 11 and 14 are off, the motor coil L is driven by the drive voltage Vm so that current flows from the terminal OUT2 to the terminal OUT1.
  • the NPN transistors 11 to 14 can be provided outside the integrated circuit.
  • the drive voltage generation circuit 20 generates a drive voltage Vm that increases as the target rotational speed increases in response to a signal indicating the target rotational speed input from the microcomputer 32.
  • the drive voltage generation circuit 20 can be configured by a regulator circuit that generates the drive voltage Vm by, for example, stepping down a power supply voltage of 5.0 V in accordance with a signal from the microcomputer 32.
  • the drive voltage Vm output from the drive voltage generation circuit 20 is used to drive the motor coil L. Therefore, the rotational speed of the motor increases as the drive voltage Vm increases, and the rotational speed of the motor decreases as the drive voltage Vm decreases.
  • the pulse generation circuit 22 generates a pulse signal PWM in which, for example, the H level duty ratio increases as the drive voltage Vm increases.
  • This pulse signal PWM is for driving the motor coil L intermittently.
  • the motor coil L is driven during a period in which the pulse signal PWM is at the H level.
  • the pulse generation circuit 22 can be realized by using, for example, a reference voltage generation circuit, a triangular wave generation circuit, and a comparison circuit disclosed in Japanese Patent Application Laid-Open No. 2006-174648.
  • the rotation detection circuit 24 detects whether or not the motor is rotating based on the voltages Vh1 and Vh2 output from the Hall element 30, and outputs a detection signal DET (rotation detection signal).
  • the detection signal DET is at the H level when the motor is stopped, and the detection signal DET is at the L level when the rotation of the motor is detected.
  • the rotation of the motor is detected based on the voltages Vh1 and Vh2 output from the Hall element 30, but not limited to the output from the Hall element 30, the frequency according to the rotation speed of the motor
  • the rotation of the motor may be detected using a signal that changes according to the rotation of the motor, such as an FG (Frequency Generator) signal.
  • FG Frequency Generator
  • OR circuit 26 outputs a logical sum of pulse signal PWM output from pulse generation circuit 22 and detection signal DET output from rotation detection circuit 24 as drive signal DRV. Since the detection signal DET is at the H level during the period from when the motor is stopped until the rotation of the motor is detected, the drive signal DRV is maintained at the H level during this period regardless of the pulse signal PWM. When the rotation of the motor is detected and the detection signal DET becomes L level, the drive signal DRV changes according to the pulse signal PWM.
  • the control circuit 28 complementarily turns on and off the NPN transistors 11 and 14 and the NPN transistors 12 and 13 according to the rotational position of the motor. Further, the control circuit 28 appropriately turns on / off the NPN transistors 11 to 14 so that the motor coil L is driven by the drive voltage Vm while the drive signal DRV is at the H level. Therefore, when the drive signal DRV is maintained at the H level, the motor coil L is continuously driven by the drive voltage Vm. On the other hand, when the drive signal DRV changes according to the pulse signal PWM, the motor coil L is intermittently driven by the drive voltage Vm. A state in which the motor coil L is continuously driven by the drive voltage Vm is referred to as full drive.
  • the circuit constituted by the rotation detection circuit 24, the OR circuit 26, and the control circuit 28 corresponds to the drive control circuit of the present invention, and the circuit constituted by the OR circuit 26 and the control circuit 28 corresponds to the drive circuit of the present invention. Equivalent to.
  • FIG. 2 is a diagram illustrating a configuration example of the rotation detection circuit 24.
  • the rotation detection circuit 24 includes a comparator 40, an edge detection circuit 42, a counter 44, and a detection signal output circuit 46.
  • the comparator 40 outputs a comparison result between the voltages Vh1 and Vh2. In this embodiment, when the voltage Vh1 is higher than the voltage Vh2, the output of the comparator 40 becomes H level, and when the voltage Vh1 is lower than the voltage Vh2, the output of the comparator 40 becomes L level.
  • the edge detection circuit 42 detects an edge of the signal output from the comparator 40, that is, a change from the L level to the H level and a change from the H level to the L level, and outputs a pulse according to the detection of the edge.
  • the counter 44 counts the number of pulses output from the edge detection circuit 42.
  • the detection signal output circuit 46 changes the detection signal DET to L level when the count value of the counter reaches a predetermined value (for example, “4”). When the motor is stopped, the count value of the counter 44 is reset to zero and the detection signal DET is reset to the H level.
  • FIG. 3 is a diagram illustrating an example of the operation of the rotation detection circuit 24.
  • the voltages Vh1 and Vh2 output from the Hall element 30 do not change, and the signal CMP output from the comparator 40 does not change.
  • the signal CMP output from the comparator 40 is at the H level when the motor is stopped.
  • the drive voltage generation circuit 20 When a signal indicating the target rotation speed of the motor is input from the microcomputer 32, the drive voltage generation circuit 20 generates a drive voltage Vm corresponding to the target rotation speed.
  • the pulse generation circuit 22 generates a pulse signal PWM with a duty corresponding to the drive voltage Vm.
  • the count value of the counter 44 is reset to zero, and the detection signal DET output from the detection signal output circuit 46 is reset to H level. Therefore, the drive signal DRV output from the OR circuit 26 is maintained at the H level regardless of the pulse signal PWM. Therefore, the control circuit 28 starts full driving of the motor coil L with the driving voltage Vm.
  • the detection signal DET output from the detection signal output circuit 46 changes to L level.
  • the drive signal DRV output from the OR circuit 26 changes according to the pulse signal PWM, and the motor coil L is intermittently driven according to the pulse signal PWM. That is, in the motor drive circuit 10, full driving is performed until the motor starts rotating, and intermittent driving is performed after the motor starts rotating.
  • FIG. 4 is a diagram showing an example of the relationship between the drive voltage Vm and the rotation speed of the motor.
  • the rotational speed increases as the drive voltage Vm increases, and the rotational speed decreases as the drive voltage Vm decreases.
  • the pulse signal PWM has a lower rotation speed in the intermittent drive than in the full drive when the fluctuation range of the drive voltage Vm is the same. Can be controlled. If the duty ratio of the H level of the pulse signal PWM when the drive voltage Vm is at the maximum level (Vmax) is 100%, the maximum rotation speed in the case of intermittent drive becomes the same as that in the case of full drive, and the cooling performance is improved. Can be maintained.
  • the rotational speed of the motor can be decreased by decreasing the H level duty ratio of the drive voltage Vm and the pulse signal PWM.
  • the drive voltage Vm reaches the lowest level (Vmin)
  • the rotation speed of the motor becomes the lowest speed Smin.
  • Va higher than Vmin may be required as the driving voltage Vm.
  • the motor drive circuit 10 of the present embodiment when it is desired to start rotating at the rotational speed Smin from the state where the motor is stopped, the motor is fully driven until the motor starts rotating. A starting torque exceeding the cogging torque can be obtained, and the rotation of the motor can be started. Then, after the motor starts to rotate, torque is not required as much as at the time of startup due to the inertial action. Therefore, the motor drive circuit 10 can switch from full drive to intermittent drive and control the rotation speed to Smin.
  • the motor drive circuit 10 of the present embodiment has been described above.
  • the motor When rotation starts from a state where the motor is stopped, the motor is fully driven by the drive voltage Vm. After the motor starts rotating, the motor is driven by the drive voltage Vm while the PWM signal is at the H level. . Therefore, the motor can be started to rotate even when the drive voltage Vm is such that the motor cannot be rotated only when the PWM signal is at the H level, and the PWM signal is driven only during the period when the PWM signal is at the H level. Compared to the case, the motor can be started at a lower speed.
  • the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention.
  • the present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
  • the drive ratio at the start of rotating the motor is 100%, that is, full drive, but the drive ratio (duty ratio) at the start of rotating the motor is not limited to 100%, and the pulse signal PWM It is sufficient that the ratio is higher than the H level duty ratio.
  • a pulse signal having an H level duty ratio higher than that of the pulse signal PWM may be separately generated, and the motor may be driven by the drive voltage Vm during the H level period of the separately generated pulse signal.
  • the motor drive circuit 10 is used for driving a single-phase fan motor, but the motor to be driven is not limited to the fan motor, and the number of phases is not limited to a single phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

 モータ駆動回路は、モータの目標回転速度に応じた駆動電圧が高くなるに連れて一方の論理レベルのデューティー比が高くなるパルス信号を生成するパルス生成回路と、モータの回転に応じた回転信号に基づいて、モータが停止している状態から回転を開始する際はパルス信号のデューティー比より高いデューティー比で、駆動電圧によってモータを駆動し、モータが回転を開始した後はパルス信号が一方の論理レベルである期間、駆動電圧によってモータを駆動する駆動制御回路と、を備える。

Description

モータ駆動回路、ファンモータ、電子機器、及びノート型パーソナルコンピュータ
 本発明は、モータ駆動回路、ファンモータ、電子機器、及びノート型パーソナルコンピュータに関する。
 ノート型パーソナルコンピュータ等の電子機器では、例えばプロセッサ等の発熱部品を冷却するためにファンモータが用いられる。ファンモータを用いて発熱部品を冷却する場合、モータの回転速度を最大にすることによって冷却性能を高めることができるが、消費電力の抑制や静音化のために、発熱量に応じてモータの回転速度を調整する必要がある。例えば、ファンモータでは、モータコイルに印加される駆動電圧を発熱量に応じて上昇または下降させることにより、モータの回転速度を調整することができる。
 また、消費電力の抑制や静音化をさらに進めるために、駆動電圧の制御に加えて、間欠駆動が行われる場合もある。例えば、特開2006-174648号公報には、モータの目標回転速度に応じて駆動電圧が低くなるように制御するとともに、モータの目標回転速度が低くなるに連れて駆動電圧がモータコイルに印加される割合が低下するように制御する方式が開示されている。
 このように、モータの目標回転速度が低くなるに連れて駆動電圧がモータコイルに印加される割合を低下させることにより、駆動電圧の調整のみによる制御の場合と比較してモータの回転速度をより低回転まで制御することが可能となり、消費電力の抑制や静音化を実現することができる。
 ところで、モータの回転時には、磁極の位置とモータコイルの位置との関係に応じた引力や斥力によってコギング・トルクが生じる。そして、モータが停止している場合、コギング・トルクが最低となる場所にモータコイルが位置していることが多い。そのため、モータが停止している状態から回転を開始するためには、コギング・トルクの最大レベルを超えるトルクが必要となる。
 特開2006-174648号公報に開示された方式では、モータの回転速度を低速にする場合には駆動電圧が低い状態であるとともに駆動の割合も低下するため、モータを駆動するトルクも小さくなる。したがって、モータが回転している場合は慣性の働きによって小さいトルクであっても回転させ続けることができるが、モータが停止している状態から低速で回転させ始める場合、モータを駆動するトルクがコギング・トルクの最大レベルを超えることができず、低速での起動ができないことがある。特に単相モータの場合は三相の場合と比較してコギング・トルクの最大レベルと最小レベルとの差が大きいことが多いため、低速での起動が困難になる可能性が高くなる。
 本発明は上記課題を鑑みてなされたものであり、モータを低速で起動可能とすることを目的とする。
 上記目的を達成するため、本発明のモータ駆動回路は、モータの目標回転速度に応じた駆動電圧が高くなるに連れて一方の論理レベルのデューティー比が高くなるパルス信号を生成するパルス生成回路と、前記モータの回転に応じた回転信号に基づいて、前記モータが停止している状態から回転を開始する際は前記パルス信号のデューティー比より高いデューティー比で、前記駆動電圧によって前記モータを駆動し、前記モータが回転を開始した後は前記パルス信号が前記一方の論理レベルの期間、前記駆動電圧によって前記モータを駆動する駆動制御回路とを備える。
本発明の一実施形態であるモータ駆動回路の構成を示す図である。 回転検出回路の構成例を示す図である。 回転検出回路の動作の一例を示す図である。 駆動電圧とモータの回転速度との関係の一例を示す図である。
符号の説明
 10 モータ駆動回路
 11~14 NPNトランジスタ
 20 駆動電圧生成回路
 22 パルス生成回路
 24 回転検出回路
 26 OR回路
 28 制御回路
 30 ホール素子
 32 マイコン
 40 コンパレータ
 42 エッジ検出回路
 44 カウンタ
 46 検出信号出力回路
 図1は、本発明の一実施形態であるモータ駆動回路の構成を示す図である。モータ駆動回路10は、例えば、ノート型パーソナルコンピュータ等の電子機器において、プロセッサ等の発熱部品(被冷却装置)を冷却するためのファンモータに組み込まれており、冷却用のファンを回転させるためのモータを駆動するために用いられる。
 本実施形態のモータ駆動回路10は単相のファンモータを駆動する回路であり、NPNトランジスタ11~14、駆動電圧生成回路20、パルス生成回路22、回転検出回路24、OR回路26、及び制御回路28を含んで構成されている。本実施形態においては、モータ駆動回路10は集積化されており、端子OUT1,OUT2間に、モータコイルLが接続され、端子H1,H2間に、モータの回転位置に応じた電圧Vh1及び電圧Vh2(回転信号)を出力するホール素子30が接続され、モータの回転速度を制御するための信号が端子CNTを介してマイコン32から入力されている。なお、電圧Vh1,Vh2は互いに逆相となる正弦波状に変化する電圧である。
 NPNトランジスタ11~14はモータコイルLを駆動電圧Vmによって駆動するためのHブリッジ回路を構成している。例えば、NPNトランジスタ11,14がオン、NPNトランジスタ12,13がオフの状態では、端子OUT1から端子OUT2の方向に電流が流れるようにモータコイルLが駆動電圧Vmによって駆動される。また、例えば、NPNトランジスタ12,13がオン、NPNトランジスタ11,14がオフの状態では、端子OUT2から端子OUT1の方向に電流が流れるようにモータコイルLが駆動電圧Vmによって駆動される。なお、モータ駆動回路10を集積化する場合において、NPNトランジスタ11~14を集積回路の外部に設けることも可能である。
 駆動電圧生成回路20は、マイコン32から入力される目標回転速度を示す信号に応じて、目標回転速度の上昇に応じて高くなる駆動電圧Vmを生成する。駆動電圧生成回路20は、例えば5.0Vの電源電圧をマイコン32からの信号に応じて降圧することによって駆動電圧Vmを生成するレギュレータ回路により構成することができる。駆動電圧生成回路20から出力される駆動電圧VmはモータコイルLを駆動するために用いられる。したがって、駆動電圧Vmが高くなるに連れてモータの回転速度が速くなり、駆動電圧Vmが低くなるに連れてモータの回転速度が遅くなる。
 パルス生成回路22は、駆動電圧Vmが高くなるに連れて例えばHレベルのデューティー比が高くなるパルス信号PWMを生成する。このパルス信号PWMはモータコイルLを間欠駆動するためのものである。本実施形態では、モータコイルLをパルス信号PWMに基づいて間欠駆動する場合、パルス信号PWMがHレベルの期間にモータコイルLが駆動されることとする。なお、パルス生成回路22は、例えば、特開2006-174648号公報に開示された基準電圧発生回路、三角波発生回路、及び比較回路を用いて実現することができる。
 回転検出回路24は、ホール素子30から出力される電圧Vh1,Vh2に基づいて、モータが回転しているかどうかを検出し、検出信号DET(回転検出信号)を出力する。本実施形態では、モータが停止している状態では検出信号DETがHレベルとなり、モータの回転が検出されると検出信号DETがLレベルになることとする。なお、本実施形態ではホール素子30から出力される電圧Vh1,Vh2に基づいてモータの回転を検出することとするが、ホール素子30からの出力に限らず、モータの回転速度に応じた周波数となるFG(Frequency Generator)信号等、モータの回転に応じて変化する信号を用いてモータの回転を検出することとしてもよい。
 OR回路26は、パルス生成回路22から出力されるパルス信号PWMと、回転検出回路24から出力される検出信号DETとの論理和を駆動信号DRVとして出力する。モータが停止している状態からモータの回転が検出されるまでの期間は検出信号DETがHレベルであるため、その期間はパルス信号PWMにかかわらず、駆動信号DRVはHレベルに維持される。モータの回転が検出されて検出信号DETがLレベルになると、駆動信号DRVはパルス信号PWMに応じて変化することとなる。
 制御回路28は、モータの回転位置に応じてNPNトランジスタ11,14及びNPNトランジスタ12,13を相補的にオンオフさせる。また、制御回路28は、駆動信号DRVがHレベルの期間にモータコイルLが駆動電圧Vmによって駆動されるよう、NPNトランジスタ11~14を適宜オンオフさせる。したがって、駆動信号DRVがHレベルで維持されている場合、モータコイルLは駆動電圧Vmによって駆動され続けることとなる。一方、駆動信号DRVがパルス信号PWMに応じて変化する場合、モータコイルLは駆動電圧Vmによって間欠駆動されることとなる。なお、モータコイルLが駆動電圧Vmによって駆動され続ける状態のことをフル駆動と称することとする。
 なお、回転検出回路24、OR回路26、及び制御回路28により構成される回路が本発明の駆動制御回路に相当し、OR回路26及び制御回路28により構成される回路が本発明の駆動回路に相当する。
 図2は、回転検出回路24の構成例を示す図である。回転検出回路24は、コンパレータ40、エッジ検出回路42、カウンタ44、及び検出信号出力回路46を含んで構成されている。コンパレータ40は電圧Vh1,Vh2の比較結果を出力する。本実施形態では、電圧Vh1が電圧Vh2より高い場合にコンパレータ40の出力がHレベルになり、電圧Vh1が電圧Vh2より低い場合にコンパレータ40の出力がLレベルになることとする。エッジ検出回路42は、コンパレータ40から出力される信号のエッジ、すなわち、LレベルからHレベルへの変化及びHレベルからLレベルへの変化を検出し、エッジの検出に応じてパルスを出力する。カウンタ44は、エッジ検出回路42から出力されるパルスの数をカウントする。検出信号出力回路46は、カウンタのカウント値が既定の値(例えば“4”)になると検出信号DETをLレベルに変化させる。なお、モータが停止している状態では、カウンタ44のカウント値がゼロにリセットされるとともに、検出信号DETがHレベルにリセットされることとする。
 モータ駆動回路10において、モータが停止している状態から回転を開始する際の動作の一例について説明する。図3は、回転検出回路24の動作の一例を示す図である。モータが停止している場合、ホール素子30から出力される電圧Vh1,Vh2は変化せず、コンパレータ40から出力される信号CMPも変化しない。本実施形態では、モータが停止している状態においてコンパレータ40から出力される信号CMPはHレベルになっていることとする。
 マイコン32からモータの目標回転速度を示す信号が入力されると、駆動電圧生成回路20が目標回転速度に応じた駆動電圧Vmを生成する。そして、パルス生成回路22は、駆動電圧Vmに応じたデューティーのパルス信号PWMを生成する。モータが停止している場合、カウンタ44のカウント値がゼロにリセットされるとともに、検出信号出力回路46から出力される検出信号DETがHレベルにリセットされている。そのため、OR回路26から出力される駆動信号DRVはパルス信号PWMにかかわらずHレベルに維持される。そのため、制御回路28は、駆動電圧VmによってモータコイルLのフル駆動を開始する。フル駆動によってモータが回転し始めると、ホール素子30から出力される電圧Vh1,Vh2がモータの回転に応じて変化し、コンパレータ40から出力される信号CMPも変化する。そして、信号CMPの変化によってエッジ検出回路42から信号EDGEが出力され、カウンタ44のカウント値が増加していく。
 カウンタ44のカウント値が既定の値(例えば“4”)に到達すると、モータが回転し始めたと判定され、検出信号出力回路46から出力される検出信号DETがLレベルに変化する。検出信号DETがLレベルになると、OR回路26から出力される駆動信号DRVはパルス信号PWMに応じて変化することとなり、モータコイルLはパルス信号PWMに応じて間欠駆動されることとなる。すなわち、モータ駆動回路10では、モータが回転し始めるまではフル駆動となり、モータが回転し始めた後は間欠駆動となる。
 図4は、駆動電圧Vmとモータの回転速度との関係の一例を示す図である。図4に示すように、駆動電圧Vmが高くなるに連れて回転速度が速くなり、駆動電圧Vmが低くなるに連れて回転速度が遅くなる。また、パルス信号PWMは駆動電圧Vmが高くなるに連れてHレベルのデューティー比が高くなるため、駆動電圧Vmの変動範囲が同じ場合、フル駆動よりも間欠駆動の方が回転速度をより低速に制御することができる。なお、駆動電圧Vmが最大レベル(Vmax)の場合におけるパルス信号PWMのHレベルのデューティー比を100%とすれば、間欠駆動の場合における最高回転速度はフル駆動の場合と同じとなり、冷却性能を維持することができる。
 モータが回転している状態では、駆動電圧Vm及びパルス信号PWMのHレベルのデューティー比を低下させていくことにより、モータの回転速度を遅くしていくことができる。そして、駆動電圧Vmが最低レベル(Vmin)に到達すると、モータの回転速度が最低速度Sminとなる。一方、モータが停止している状態から回転速度Sminで回転させ始めたい場合、駆動電圧VmをVminとして間欠駆動を開始しても、コギング・トルクを超える起動トルクが得られない場合がある。換言すると、間欠駆動でモータを起動する場合、駆動電圧Vmとして、Vminより高いVaが必要になる場合がある。このような場合であっても、本実施形態のモータ駆動回路10では、モータが停止している状態から回転速度Sminで回転させ始めたい場合、モータが回転し始めるまではフル駆動となるため、コギング・トルクを超える起動トルクを得ることが可能となり、モータの回転を開始させることができる。そして、モータが回転し始めた後は慣性の働きによって起動時ほどトルクが必要ではないため、モータ駆動回路10ではフル駆動から間欠駆動に切り替わり、回転速度をSminに制御することができる。
 以上、本実施形態のモータ駆動回路10について説明した。モータが停止している状態から回転を開始する際は駆動電圧Vmによってモータがフル駆動され、モータが回転を開始した後は、PWM信号がHレベルの期間、駆動電圧Vmによってモータが駆動される。そのため、PWM信号がHレベルの期間のみの駆動ではモータを回転させ始めることができないような駆動電圧Vmであってもモータを回転させ始めることが可能となり、PWM信号がHレベルの期間のみ駆動する場合と比較してモータをより低速で起動することができる。
 そして、このようなモータ駆動回路10を用いることにより、ノート型パーソナルコンピュータ等の電子機器において、プロセッサ等の発熱部品の発熱量が小さい場合においては、ファンの回転速度を十分低回転にすることが可能となり、電力消費量を抑制することができる。
 なお、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。例えば、本実施形態では、モータを回転させ始める際の駆動割合を100%、すなわちフル駆動としたが、モータを回転させ始める際の駆動割合(デューティー比)は100%に限らず、パルス信号PWMのHレベルのデューティー比よりも高い割合であればよい。例えば、Hレベルのデューティー比がパルス信号PWMよりも高いパルス信号を別途生成し、別途生成したパルス信号のHレベルの期間に駆動電圧Vmによってモータを駆動することとしてもよい。また、例えば、本実施形態では、モータ駆動回路10を単相のファンモータの駆動用としたが、駆動対象のモータはファンモータに限られず、相数についても単相に限られない。

Claims (6)

  1.  モータの目標回転速度に応じた駆動電圧が高くなるに連れて一方の論理レベルのデューティー比が高くなるパルス信号を生成するパルス生成回路と、
     前記モータの回転に応じた回転信号に基づいて、前記モータが停止している状態から回転を開始する際は前記パルス信号の前記デューティー比より高いデューティー比で、前記駆動電圧によって前記モータを駆動し、前記モータが回転を開始した後は前記パルス信号が前記一方の論理レベルの期間、前記駆動電圧によって前記モータを駆動する駆動制御回路と、
     を備えることを特徴とするモータ駆動回路。
  2.  請求項1に記載のモータ駆動回路であって、
     前記駆動制御回路は、
     前記回転信号に基づいて、前記モータが回転を開始すると回転検出信号を出力する回転検出回路と、
     前記回転検出信号が出力されていない場合は、前記パルス信号の前記デューティー比より高いデューティー比で、前記駆動電圧によって前記モータを駆動し、前記回転検出信号が出力されている場合は、前記パルス信号が前記一方の論理レベルの期間、前記駆動電圧によって前記モータを駆動する駆動回路と、
     を含んで構成されることを特徴とするモータ駆動回路。
  3.  請求項1または2に記載のモータ駆動回路であって、
     前記駆動制御回路は、
     前記回転信号に基づいて、前記モータが停止している状態から回転を開始する際は前記パルス信号にかかわらず前記駆動電圧によって前記モータを駆動し、前記モータが回転を開始した後は前記パルス信号が前記一方の論理レベルである期間、前記駆動電圧によって前記モータを駆動すること、
     を特徴とするモータ駆動回路。
  4.  ファンと、
     前記ファンを駆動するモータと、
     前記モータを駆動するモータ駆動回路と、
     を備え、
     前記モータ駆動回路は、
     前記モータの目標回転速度に応じた駆動電圧が高くなるに連れて一方の論理レベルのデューティー比が高くなるパルス信号を生成するパルス生成回路と、
     前記モータの回転に応じた回転信号に基づいて、前記モータが停止している状態から回転を開始する際は前記パルス信号の前記デューティー比より高いデューティー比で、前記駆動電圧によって前記モータを駆動し、前記モータが回転を開始した後は前記パルス信号が前記一方の論理レベルの期間、前記駆動電圧によって前記モータを駆動する駆動制御回路と、
     を含んで構成されることを特徴とするファンモータ。
  5.  ファンと、
     前記ファンを駆動するモータと、
     前記モータを駆動するモータ駆動回路と、
     前記ファンによって冷却される被冷却装置と、
     を備え、
     前記モータ駆動回路は、
     前記モータの目標回転速度に応じた駆動電圧が高くなるに連れて一方の論理レベルのデューティー比が高くなるパルス信号を生成するパルス生成回路と、
     前記モータの回転に応じた回転信号に基づいて、前記モータが停止している状態から回転を開始する際は前記パルス信号の前記デューティー比より高いデューティー比で、前記駆動電圧によって前記モータを駆動し、前記モータが回転を開始した後は前記パルス信号が前記一方の論理レベルの期間、前記駆動電圧によって前記モータを駆動する駆動制御回路と、
     を含んで構成されることを特徴とする電子機器。
  6.  ファンと、
     前記ファンを駆動するモータと、
     前記モータを駆動するモータ駆動回路と、
     前記ファンによって冷却されるプロセッサと、
     を備え、
     前記モータ駆動回路は、
     前記モータの目標回転速度に応じた駆動電圧が高くなるに連れて一方の論理レベルのデューティー比が高くなるパルス信号を生成するパルス生成回路と、
     前記モータの回転に応じた回転信号に基づいて、前記モータが停止している状態から回転を開始する際は前記パルス信号の前記デューティー比より高いデューティー比で、前記駆動電圧によって前記モータを駆動し、前記モータが回転を開始した後は前記パルス信号が前記一方の論理レベルの期間、前記駆動電圧によって前記モータを駆動する駆動制御回路と、
     を含んで構成されることを特徴とするノート型パーソナルコンピュータ。
PCT/JP2007/074947 2007-12-26 2007-12-26 モータ駆動回路、ファンモータ、電子機器、及びノート型パーソナルコンピュータ WO2009081496A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008517260A JP4217921B1 (ja) 2007-12-26 2007-12-26 モータ駆動回路、ファンモータ、電子機器、及びノート型パーソナルコンピュータ
PCT/JP2007/074947 WO2009081496A1 (ja) 2007-12-26 2007-12-26 モータ駆動回路、ファンモータ、電子機器、及びノート型パーソナルコンピュータ
KR1020087009201A KR101030966B1 (ko) 2007-12-26 2007-12-26 모터 구동 장치, 팬 모터, 전자기기 및 노트형 퍼스널 컴퓨터
CN200780001484XA CN101589545B (zh) 2007-12-26 2007-12-26 马达驱动电路、风扇马达、电子设备、以及笔记本型个人计算机
TW097100047A TW200830692A (en) 2007-12-26 2008-01-02 Motor driving circuit, fan motor, electronic machine, and notebook computer
US12/252,289 US7839104B2 (en) 2007-12-26 2008-10-15 Motor drive circuit, fan motor, electronic device, and notebook personal computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/074947 WO2009081496A1 (ja) 2007-12-26 2007-12-26 モータ駆動回路、ファンモータ、電子機器、及びノート型パーソナルコンピュータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/252,289 Continuation US7839104B2 (en) 2007-12-26 2008-10-15 Motor drive circuit, fan motor, electronic device, and notebook personal computer

Publications (1)

Publication Number Publication Date
WO2009081496A1 true WO2009081496A1 (ja) 2009-07-02

Family

ID=40403846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074947 WO2009081496A1 (ja) 2007-12-26 2007-12-26 モータ駆動回路、ファンモータ、電子機器、及びノート型パーソナルコンピュータ

Country Status (6)

Country Link
US (1) US7839104B2 (ja)
JP (1) JP4217921B1 (ja)
KR (1) KR101030966B1 (ja)
CN (1) CN101589545B (ja)
TW (1) TW200830692A (ja)
WO (1) WO2009081496A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018509132A (ja) * 2015-03-12 2018-03-29 広東美的環境電器制造有限公司 直流扇風機の制御システム及び直流扇風機

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948890B2 (ja) * 2005-08-29 2012-06-06 ローム株式会社 モータ駆動装置及びこれを用いた電気機器
JP5196811B2 (ja) * 2007-03-06 2013-05-15 ローム株式会社 モータ駆動装置及びこれを用いた電気機器
JP5084388B2 (ja) * 2007-07-25 2012-11-28 キヤノン株式会社 画像形成装置
JP5651301B2 (ja) * 2009-01-22 2015-01-07 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー モータ駆動回路
KR20110036403A (ko) 2009-10-01 2011-04-07 삼성전자주식회사 기록매체의 존 레이아웃 설정 방법과 이를 적용한 데이터 저장 장치 및 저장매체
JP2011205744A (ja) * 2010-03-24 2011-10-13 On Semiconductor Trading Ltd モータ駆動回路および照明装置
JP5709446B2 (ja) * 2010-09-27 2015-04-30 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー ドライブ回路の起動時制御回路
CN102694494A (zh) * 2011-03-23 2012-09-26 台达电子工业股份有限公司 马达控制系统及其所应用的风扇
JP6184134B2 (ja) * 2013-03-12 2017-08-23 キヤノン株式会社 モータ駆動装置およびその制御方法
DE102017119740A1 (de) * 2017-08-29 2019-02-28 Elektrosil Systeme Der Elektronik Gmbh Ansteuerung eines Lüftermotors für ein verbessertes EMV-Verhalten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216088A (ja) * 1985-07-10 1987-01-24 Hitachi Ltd 直流モ−タの駆動回路
JPH08266086A (ja) * 1995-03-20 1996-10-11 Kokusan Denki Co Ltd 直流ブラシレス電動機の速度制御方法及び装置
JP2006174648A (ja) * 2004-12-17 2006-06-29 Sanyo Electric Co Ltd 回転速度制御回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855520A (en) * 1972-12-22 1974-12-17 Allis Chalmers Control having conduction limit means to vary duty cycle of power switch
US4587467A (en) * 1985-03-14 1986-05-06 Rca Corporation System for orienting a rotating member
US5036267A (en) * 1989-12-15 1991-07-30 Sundstrand Corporation Aircraft turbine start from a low voltage battery
JPH05228291A (ja) * 1992-02-24 1993-09-07 Toshiba Corp 洗濯機
JP2004064971A (ja) * 2002-07-31 2004-02-26 Toshiba Corp ディスク記憶装置、同装置に適用されるスピンドルモータドライバ及びスピンドルモータ駆動方法
EP2077611A2 (en) * 2007-12-19 2009-07-08 Melexis NV Method for operating a BLDC motors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216088A (ja) * 1985-07-10 1987-01-24 Hitachi Ltd 直流モ−タの駆動回路
JPH08266086A (ja) * 1995-03-20 1996-10-11 Kokusan Denki Co Ltd 直流ブラシレス電動機の速度制御方法及び装置
JP2006174648A (ja) * 2004-12-17 2006-06-29 Sanyo Electric Co Ltd 回転速度制御回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018509132A (ja) * 2015-03-12 2018-03-29 広東美的環境電器制造有限公司 直流扇風機の制御システム及び直流扇風機

Also Published As

Publication number Publication date
CN101589545A (zh) 2009-11-25
TWI368390B (ja) 2012-07-11
JPWO2009081496A1 (ja) 2011-05-06
KR101030966B1 (ko) 2011-04-28
US7839104B2 (en) 2010-11-23
TW200830692A (en) 2008-07-16
US20090167219A1 (en) 2009-07-02
KR20090094052A (ko) 2009-09-03
CN101589545B (zh) 2013-01-16
JP4217921B1 (ja) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4217921B1 (ja) モータ駆動回路、ファンモータ、電子機器、及びノート型パーソナルコンピュータ
JP5651301B2 (ja) モータ駆動回路
US7898211B2 (en) Driving circuit for motor and device equipped with driving circuit
JP4100442B2 (ja) モータ駆動制御装置ならびにモータの駆動制御システム
US7323838B2 (en) Motor control method and device thereof
JP5697320B2 (ja) ドライバ回路
JP5770701B2 (ja) ステッピングモータの駆動制御装置
US10978974B2 (en) Motor starting device and method
JP4712084B2 (ja) モータ駆動回路
JP5359021B2 (ja) 電動機の駆動制御回路
CN107786128B (zh) 电动机驱动装置
JP2019118241A (ja) モータ制御装置
TW201318293A (zh) 保護電路方法及馬達控制電路
JP5591508B2 (ja) ドライバ回路
TWI653816B (zh) 風扇轉速控制電路
JP5632865B2 (ja) モータ駆動回路
JP5591507B2 (ja) ドライバ回路
JP2008245377A (ja) モータ駆動回路
KR19990075671A (ko) 오픈루프 구간의 제어방법
JP4803115B2 (ja) 単相dcブラシレスモータの駆動装置
JP2000166277A (ja) Dcモータの電流検出制御装置及び該装置を搭載する電気機器
JP2012075198A (ja) ドライブ回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001484.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2008517260

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087009201

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07860176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07860176

Country of ref document: EP

Kind code of ref document: A1