WO2009081447A1 - 光ピックアップ用アクチュエータ - Google Patents

光ピックアップ用アクチュエータ Download PDF

Info

Publication number
WO2009081447A1
WO2009081447A1 PCT/JP2007/001442 JP2007001442W WO2009081447A1 WO 2009081447 A1 WO2009081447 A1 WO 2009081447A1 JP 2007001442 W JP2007001442 W JP 2007001442W WO 2009081447 A1 WO2009081447 A1 WO 2009081447A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
track
coils
radial direction
focus
Prior art date
Application number
PCT/JP2007/001442
Other languages
English (en)
French (fr)
Inventor
Satoshi Shimokawa
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2007/001442 priority Critical patent/WO2009081447A1/ja
Publication of WO2009081447A1 publication Critical patent/WO2009081447A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0925Electromechanical actuators for lens positioning
    • G11B7/0933Details of stationary parts
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0925Electromechanical actuators for lens positioning
    • G11B7/0935Details of the moving parts

Definitions

  • the present invention relates to an optical pickup actuator used for access for recording or reproduction with respect to an optical disc.
  • An optical disc apparatus such as a CD player, a DVD recorder, and an optical disc drive incorporated in a computer has an optical pickup that enables focusing and tracking on a recording surface of the optical disc.
  • An actuator provided in the optical pickup slightly moves the objective lens in the focus direction (lens axis direction) and the radial direction while facing the optical disk.
  • the actuator for optical pickup (hereinafter referred to as an actuator) disclosed in Patent Document 1 includes two objective lenses as shown in FIG.
  • One objective lens is used to access a so-called red disk (CD or DVD), and the other objective lens is used to access a blue disk (HD-DVD or Blu-ray disk).
  • the optical pickup can be made with a smaller lens thickness than when a single objective lens that can be shared by a plurality of types of optical discs is provided. Can be made thin.
  • the structure of the principal part of the conventional actuator described in Patent Document 1 will be described.
  • the movable body 70 to which two objective lenses 61 and 62 are attached, a block 80 that supports the movable body 70, and a magnetic yoke 90 to which the block 80 is assembled.
  • the actuator 9 When the actuator 9 is used, the two objective lenses 61 and 62 are aligned along the tangential direction T and face an optical disk (not shown). In this case, for example, in the illustrated posture, the actuator 9 is positioned below the optical disk.
  • the tangential direction T is a direction orthogonal to the focus direction F and the radial direction R, and corresponds to a tangential direction of a circle concentric with the optical disc.
  • the movable body 70 includes a lens attachment portion 71 and two substantially prismatic coil attachment portions 72 and 73 disposed on both sides in the radial direction R with respect to the lens attachment portion 71.
  • Two focus coils 63, 64 and four track coils 65, 66, 67, 68 are assembled to the coil mounting portions 72, 73.
  • the track coils 65, 66, 67, 68 are arranged on both sides in the tangential direction T with respect to the focus coils 63, 64.
  • Such a movable body 70 is connected to the block 80 via a plurality of support wires 81 extending from both ends of the block 80 in the radial direction R.
  • the magnetic yoke 90 has yokes 90A and 90B inserted into gaps inside the focus coils 63 and 64, and a total of four magnets 91 and 92 arranged on both sides in the tangential direction T of the yokes 90A and 90B. , 93, 94 are supported.
  • the magnets 91, 92, 93, 94 are disposed on both sides of the movable body 70 in the tangential direction T so as to face a part of the radial direction R in each of the track coils 65, 66, 67, 68. Looking at the length in the focus direction F, the magnets 91, 92, 93, 94 are longer than the track coils 65, 66, 67, 68.
  • Electromagnetic action mainly by the focus coils 63, 64 and the magnets 91, 92, 93, 94 translates the movable body 70 in the focus direction F, and mainly the track coils 65, 66, 67, 68 and the magnets 91, 92, 93, 94 causes the movable body 70 to translate in the radial direction R.
  • Laser light is guided to the objective lenses 61 and 62 of the movable body 70 that is moving and stationary by rise mirrors 97 and 98 disposed between the yoke 90A and the yoke 90B.
  • the rising mirrors 97 and 98 are fixed with respect to the magnetic yoke 90 and the block 80.
  • the conventional actuator 9 generates an unnecessary moment that makes the orientation of the objective lenses 61 and 62 inappropriate with respect to the optical disc.
  • the unnecessary moment is related to the relative positions of the track coils 65, 66, 67, 68 and the magnets 91, 92, 93, 94 shown in FIG.
  • the track coils 65, 66, 67, 68 and the magnets 91, 92, 93, 94 are in relation to the geometric center of the movable body 70 in a plane parallel to both the radial direction R and the tangential direction T. They are arranged point-symmetrically.
  • the portion near the objective lenses 61 and 62 is an effective energization unit.
  • An effective energizing portion is a portion where a desired translational force is generated by electromagnetic action in each track coil 65, 66, 67, 68 facing one of the magnets 91, 92, 93, 94 adjacent to each other. It is.
  • the factor that is unavoidable related to the unnecessary moment is the non-uniformity of the magnetic field shown in FIG.
  • the magnet has a magnetic force distribution in which the magnetic force slightly decreases from the center in the focus direction F toward both ends. For this reason, the intensity of the magnetic field acting on the track coil slightly changes as the track coil moves in the focus direction F.
  • the magnet may be made sufficiently longer than the track coil. However, this makes the optical pickup thicker and heavier. It is difficult to make the magnetic force uniform in the movable range of the track coil by using a magnet having a practical size.
  • the two track coils 65 and 66 on the left side of the figure have a large downward translation force
  • the two track coils 67 and 68 on the right side have a large upward translation force.
  • an unnecessary moment for causing the movable body 70 to rotate counterclockwise around an axis (not shown) in the tangential direction is generated.
  • the translational force generated at the upper end near the center of the magnet is larger than the translational force generated at the lower end.
  • the two track coils 65 and 66 on the left side of the drawing have a large upward translation force
  • the two track coils 67 and 68 on the right side have a large downward translation force. For this reason, an unnecessary moment is generated to rotate the movable body 70 clockwise around the axis in the tangential direction.
  • an object of the present invention is to reduce an unnecessary moment due to a magnetic force distribution of a magnet.
  • An actuator that achieves the above object is disposed on both sides in the radial direction with respect to the lens mounting portion to which the objective lens is mounted and the lens mounting portion in order to drive at least one objective lens in the focus direction and the radial direction.
  • a movable body having a pair of coil mounting portions, at least one focus coil for driving in a focusing direction attached to the pair of coil mounting portions, and two tangentials each for the pair of coil mounting portions
  • the relative positions of two of the four track coils and the plurality of magnets are such that in each of the two track coils, the half on the side far from the objective lens in the radial direction is the remaining half. It is determined to receive a stronger magnetic field from the plurality of magnets.
  • the relative positions of the remaining two track coils and the plurality of magnets are such that in each of the two track coils, the half near the objective lens in the radial direction has a stronger magnetic field than the remaining half. It is determined to receive from the magnet.
  • the outer diameters of the four track coils are equal, the dimensions of the four magnets are equal, and the two track coils attached to one of the pair of coil attachment portions are arranged in the radial direction.
  • the two magnets corresponding to these track coils are displaced in the radial direction, and the two track coils attached to one of the other coil attachment portions have a radial position.
  • the two magnets corresponding to these track coils are also displaced in the radial direction.
  • the actuator 1 according to the first embodiment of the present invention shown in FIG. 5 includes a movable body 20 to which two objective lenses 11 and 12 are attached, a block 30 that supports the movable body 20, and a magnetic to which the block 30 is assembled.
  • a yoke 40 is provided.
  • the actuator 1 in a disassembled state in which the movable body 20 is separated from the magnetic yoke 40 is illustrated for easy understanding of the configuration.
  • the actuator 1 is the same as the conventional example of FIG.
  • the actuator 1 enables access to a red disk and a blue disk.
  • the actuator 1 is assembled in the optical disc apparatus, and the actuator 1 is focused on three directions orthogonal to each other in the usage state of the focus direction F, the radial direction R, and the tangential direction T.
  • the mutual positional relationship of the components of is specified. Even if the actuator 1 is not assembled to the optical disk device and the posture of the actuator 1 is unspecified, the mutual positional relationship between the constituent elements is not substantially different from the use state.
  • the two objective lenses 11 and 12 are arranged along the tangential direction T and face the optical disc. If the posture at that time is applied to FIG. 5, the actuator 1 is positioned below the optical disk.
  • the movable body 20 of the actuator 1 has a lens attachment portion 21 to which the objective lenses 11 and 12 are attached, and two hollow coil attachment portions 22 and 23 disposed on both sides in the radial direction R with respect to the lens attachment portion 21.
  • the lens attachment portion 21 and the coil attachment portions 22 and 23 are integrally formed by resin molding.
  • Focus coils 13 and 14 are assembled one by one on the coil mounting portions 22 and 23, and two track coils 15, 16, 17, and 18 having substantially the same outer diameter are assembled.
  • the track coils 15, 16, 17 and 18 are arranged on both sides in the tangential direction T with respect to the focus coils 13 and 14.
  • Such a movable body 20 is connected to the block 30 by fixing the coil attachment portions 22 and 23 to the tips of the support wires 31 extending from the both ends of the block 30 in the radial direction R.
  • the magnetic yoke 40 has yokes 40A and 40B inserted into the gaps inside the focus coils 13 and 14, and a total of four magnets 41 and 42 arranged on both sides of the yokes 40A and 40B in the tangential direction T. , 43, 44 are supported.
  • the magnetic yoke 40 is formed by punching and bending a metal plate.
  • the magnets 41, 42, 43, 44 are arranged on both sides of the tangential direction T with respect to the movable body 20 so as to face a part of the radial direction R in each of the track coils 15, 16, 17, 18.
  • the magnets 41, 42, 43, and 44 have the same dimensions and materials. Looking at the length in the focus direction F, the magnets 41, 42, 43, 44 are longer than the track coils 15, 16, 17, 18.
  • Electromagnetic action mainly by the focus coils 13, 14 and the magnets 41, 42, 43, 44 translates the movable body 20 in the focus direction F, and mainly the track coils 15, 16, 17, 18 and the magnets 41, 42, 43, The electromagnetic action due to 44 causes the movable body 20 to translate in the radial direction R.
  • Laser light is guided by two rising mirrors (not shown) to the objective lenses 11 and 12 of the movable body 20 that is moving and stationary.
  • the two rising mirrors are arranged side by side in the tangential direction T between the yoke 40 ⁇ / b> A and the yoke 40 ⁇ / b> B in order to reduce the thickness of the actuator 1 and are fixed to the magnetic yoke 40.
  • the laser light incident on the objective lens 11 travels between the magnet 41 and the magnet 43 along the tangential direction T and is reflected by one rising mirror.
  • the laser light incident on the objective lens 12 travels along the tangential direction T between the magnet 42 and the magnet 44 and is reflected by the other rising mirror.
  • the return laser beam incident on and reflected by the optical disk follows the incident optical path in the reverse direction and travels toward a light receiver (not shown).
  • each of the objective lenses 11 and 12 is about 3 mm, and the approximate plan view size of the actuator 1 is about 20 mm ⁇ 15 mm.
  • the material of the elements of the actuator 1, and the actuator 1 can be composed of parts made of known materials as in the conventional example.
  • One of the features of the actuator 1 is the positional relationship between the track coils 15, 16, 17, and 18 and the magnets 41, 42, 43, and 44 that are well shown in FIG.
  • the track coils 15, 16, 17, and 18 are roughly located at the four corners of the movable body 20.
  • each of the two track coils 15 and 18 a half on the side farther from the objective lenses 11 and 12 in the radial direction R (hereinafter referred to as an outer portion) is a remaining half (hereinafter referred to as an inner portion). It is determined to receive a strong magnetic field from the magnets 41 and 44 in comparison with.
  • the relative positions of the remaining two track coils 16 and 17 and the corresponding magnets 42 and 43 are such that the inner portion of each of the two track coils 16 and 17 has a stronger magnetic field than the outer portion. It is determined to be received from the magnets 42 and 43.
  • the effective energization part hatched in the drawing corresponds to the outer part
  • the effective energization part corresponds to the inner part.
  • the effective current-carrying part corresponds to the outer part or the inner part is determined by the relative position in the radial direction R between the track coils 15, 16, 17, 18 and the magnets 41, 42, 43, 44. , 16, 17 and 18, regardless of whether the poles on the coil side of the magnets 41, 42, 43 and 44 are N poles or S poles.
  • the left half includes an effective energization portion, but in the track coil 15, the left half is an outer portion and the track coil 17 has a left portion.
  • Half is the inner part.
  • the four track coils 15, 16, 17, and the movable body 20 are in any of the neutral position, the positive shift position, and the negative shift position.
  • the translational force in the focus direction F generated at 18 cancels out, thereby reducing unnecessary moments that try to rotate the movable body 20 around the axis in the tangential direction.
  • the translational force in the focus direction F having the size of
  • the number of the track coils 15 and 17 for which the downward translation force is applied is the same as the number of the track coils 16 and 18 for which the upward translation force is applied, the upward translation force and the downward translation force cancel each other.
  • the magnitude of the translational force in the focus direction F acting on the movable body 20 is substantially zero.
  • the actuator 1 reduces unnecessary moments.
  • the track coils 15, 16, 17, 18 and the magnets 41, 42, 43, 44 and the magnets 41, 42, 43, 44 are shown in FIG.
  • the calculation results for the actuators arranged so as to have the positional relationship described in the above are plotted.
  • the horizontal axis of the graph represents the position of the movable body in the focus direction.
  • the position where the focus shift amount is zero is the neutral position of focusing.
  • the vertical axis represents the ratio of the unwanted moment to the track translation force in the radial direction.
  • the outer diameters of the four track coils 15, 16, 17, 18 are equal, and the dimensions and materials of the four magnets 41, 42, 43, 44 are equal. That is, parts are shared.
  • the position of the radial direction R is mutually shifted, and two magnets corresponding to these track coils 15 and 16 Also in 41 and 42, positions in the radial direction are shifted from each other.
  • the radial direction R is displaced from each other, and the two magnets 43 and 44 corresponding to these track coils 17 and 18 are also radial. The positions in the direction R are shifted from each other.
  • the positional deviation in the radial direction R related to the track coils 15, 16, 17, 18 and the magnets 41, 42, 43, 44 in the actuator 1 is intentionally arranged for the purpose of further reducing the dimension in the radial direction R of the actuator 1. This is the selected result. For example, if the position of the track coil 15 in the radial direction R is set to the position of the track coil 16 in the radial direction R, that is, the track coil 15 is moved to the left from the position shown in FIG. Therefore, the size of the actuator 1 increases by the amount of movement. Further, when the position of the magnet 42 is aligned with the position of the magnet 41, the track coil 16 must be moved to the left from the illustrated position, and the size of the optical actuator 1 is also increased. On the right side of FIG.
  • 17 is a group of track coils in a diagonal position relationship when the arrangement positions of the four track coils 15, 16, 17, 18 are regarded as square vertices.
  • an unnecessary moment can be reduced.
  • the actuator 2 in the actuator 2 according to the second embodiment illustrated in FIG. 10, the upper side of the four track coils 15, 16, 17, 18 that are arranged vertically and horizontally with respect to the geometric center of the movable body 20 b.
  • the effective current-carrying parts of the two track coils 15 and 17 correspond to the outer part
  • the effective current-carrying parts of the lower two track coils 16 and 18 correspond to the inner part.
  • Effective energization parts are indicated by hatching in the figure.
  • FIG. 11 there exists a modification in which only one magnet 95 is associated with the two track coils 16 and 18 whose effective energization portions correspond to the inner portions. . That is, the number of magnets according to the second embodiment is 4 or 3.
  • the movable body 24 of the actuator 2b shown in FIG. 11 includes a single objective lens 11b, even if it includes two objective lenses 11 and 12 like the movable body 20b of FIG. One or more objective lenses may be provided.
  • the number of lenses in the actuators 2 and 2b is a matter to be appropriately selected according to the application.
  • the magnitude of the translational force in the focus direction F acting on the movable body 20b is almost zero.
  • the translational force generated at the upper end near the center of the magnet is larger than the translational force generated at the lower end.
  • the translational force in the focus direction F having the size of
  • the number of the track coils 15 and 17 for which the downward translation force is applied is the same as the number of the track coils 16 and 18 for which the upward translation force is applied, the upward translation force and the downward translation force cancel each other.
  • the magnitude of the translational force in the focus direction F acting on the movable body 20b is substantially zero.
  • the left side of the four track coils 15, 16, 17, and 18 arranged so as to be vertically and horizontally distributed with respect to the geometric center of the movable body 20 c.
  • the effective current-carrying parts of the two track coils 15 and 16 correspond to the outer part, and the effective current-carrying parts of the right two track coils 17 and 18 correspond to the inner part.
  • Effective energization parts are indicated by hatching in the figure.
  • the two focus coils 13 and 14 are not necessarily required, and the number of focus coils may be one.
  • the number of objective lenses 11 and 12 is not limited.
  • the present invention contributes to improvement in the accuracy of access to the optical disc in the optical disc apparatus.

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

 磁石の磁力分布に起因する不要なモーメントに関して改善された光ピックアップ用アクチュエータ(1,2,2b,3)は、対物レンズ(11,12)とフォーカスコイル(13,14)と4個のトラックコイル(15,16,17,18)とが取り付けられた可動体(20,20b,20c,24)、および複数の磁石(41,42,43,44)とを備える。4個のトラックコイルのうちの2個のトラックコイルと磁石との相対位置は対物レンズから遠い側の半分が残りの半分と比べて強い磁界を受けるように定められる。残りの2個のトラックコイルと磁石との相対位置は、対物レンズに近い側の半分が残りの半分と比べて強い磁界を受けるように定められる。

Description

光ピックアップ用アクチュエータ
 本発明は、光ディスクに対する記録または再生のためのアクセスに用いられる光ピックアップ用アクチュエータに関する。
 CDプレーヤ、DVDレコーダ、およびコンピュータに組み込まれる光ディスクドライブなどの光ディスク装置は、光ディスクの記録面へのフォーカシングおよびトラッキングを可能にする光ピックアップを有する。光ピックアップに備えられたアクチュエータは、光ディスクと向かい合った状態で対物レンズをフォーカス方向(レンズ軸方向)およびラジアル方向に微小移動させる。
 特許文献1によって開示された光ピックアップ用アクチュエータ(以後、アクチュエータという)は、図1のように2個の対物レンズを備えている。一方の対物レンズはいわゆる赤色系ディスク(CDやDVD)へのアクセスに用いられ、他方の対物レンズは青色系ディスク(HD-DVDやブルーレイディスク)へのアクセスに用いられる。光学特性の異なる複数種類の光ディスクのそれぞれ対応した複数の対物レンズを備えることにより、複数種類の光ディスクに共用可能な単一の対物レンズを備える場合と比べて、レンズの厚みを小さくして光ピックアップを薄型にすることができる。以下、特許文献1に記載された従来のアクチュエータの要部の構成を説明する。
 図1に示される従来のアクチュエータ9は、2個の対物レンズ61,62が取り付けられた可動体70、可動体70を支持するブロック80、ブロック80が組み付けられる磁気ヨーク90を備える。アクチュエータ9の使用時において、2個の対物レンズ61,62はタンジェンシャル方向Tに沿って並び、図示しない光ディスクと向かい合う。その際に例えば図示の姿勢であれば、アクチュエータ9は光ディスクの下方に位置する。なお、タンジェンシャル方向Tは、フォーカス方向Fおよびラジアル方向Rと直交する方向であり、光ディスクと同心の円の接線方向に相当する。
 可動体70は、レンズ取付け部71と、レンズ取付け部71に対するラジアル方向Rの両側に配置される略角柱状の二つのコイル取付け部72,73とを有する。コイル取付け部72,73には、2個のフォーカスコイル63,64および4個のトラックコイル65,66,67,68が組み付けられている。トラックコイル65,66,67,68はフォーカスコイル63,64に対してタンジェンシャル方向Tの両側に配置される。このような可動体70は、ブロック80のラジアル方向Rの両端部から複数本ずつ延びる支持ワイヤ81を介してブロック80に連結される。
 磁気ヨーク90は、フォーカスコイル63,64の内側の空隙に挿入されるヨーク90A,90Bを有し、各ヨーク90A,90Bのタンジェンシャル方向Tの両側に配置される計4個の磁石91,92,93,94を支持する。磁石91,92,93,94は、トラックコイル65,66,67,68のそれぞれにおけるラジアル方向Rの一部分と対向するように可動体70に対してタンジェンシャル方向Tの両側に配置される。フォーカス方向Fの長さをみると、磁石91,92,93,94はトラックコイル65,66,67,68よりも長い。
 磁気ヨーク90とブロック80とが適切に組み合わさった状態において、可動体70は磁気ヨーク90と非接触に支持され、支持ワイヤ81の撓みに依存する位置範囲内の微小な2軸移動が可能である。主としてフォーカスコイル63,64と磁石91,92,93,94とによる電磁作用が可動体70をフォーカス方向Fに並進移動させ、主としてトラックコイル65,66,67,68と磁石91,92,93,94とによる電磁作用が可動体70をラジアル方向Rに並進移動させる。移動中および静止状態の可動体70の対物レンズ61,62に、ヨーク90Aとヨーク90Bとの間に配置される立上げミラー97,98によってレーザ光が導かれる。立上げミラー97,98は磁気ヨーク90およびブロック80に対して固定である。
特開2006-309911号公報
 従来のアクチュエータ9は、光ディスクに対する対物レンズ61,62の向きを不適にする不要なモーメントを生じさせる。その不要なモーメントには図2に示されるトラックコイル65,66,67,68と磁石91,92,93,94との相対位置が関係する。図2のように、ラジアル方向Rおよびタンジェンシャル方向Tの両方と平行な平面において、トラックコイル65,66,67,68および磁石91,92,93,94は可動体70の幾何中心に対して点対称に配置されている。注目すべき点は、4個のトラックコイル65,66,67,68において、図中で斜線の付された有効な通電部と対物レンズ61,62との遠近の関係が同じになることである。図2の例示では、トラックコイル65,66,67,68のいずれにおいても、対物レンズ61,62に近い側の部分が有効な通電部となる。有効な通電部とは、各トラックコイル65,66,67,68において、磁石91,92,93,94のうちの近接する1つの磁石と対向して電磁作用による所望の並進力が発生する部分である。
 不要なモーメントに関連する可避が困難な要因は、図3に示される磁界の不均一性である。磁石は図示のようにフォーカス方向Fの中央から両端に向かうにつれて磁力が僅かずつ弱くなる磁力分布をもつ。このため、トラックコイルに作用する磁界の強度はトラックコイルのフォーカス方向Fの移動に伴って微妙に変化する。磁界の強度を実質的に均一にするには、トラックコイルよりも磁石を十分に長くすればよい。しかし、それによって光ピックアップが厚くかつ重くなる。実用的な寸法の磁石を用いてトラックコイルの可動範囲で磁力を均一にするのは困難である。
 不要なモーメントは、図4(B)のように可動体70がフォーカス方向Fの可動範囲の中央である中立位置に在るときには生じないが、図4(A)のように可動体70が中立位置よりも光ディスクに近い正シフト位置に在るとき、および図4(C)のように可動体70が中立位置よりも光ディスクから遠い負シフト位置に在るときに生じる。詳しくは次のとおりである。図4で例示される通電状態では、4個のトラックコイル65,66,67,68の有効な通電部に図の左から右へ向かうトラッキングのためのラジアル方向Rの並進力が働く。そして、ラジアル方向Rの並進力だけでなく、フォーカス方向Fの並進力も働く。なぜなら、トラックコイル65,66,67,68が環状であってラジアル方向Rに沿う部分をもつからである。図4(B)の状態では、4個のトラックコイル65,66,67,68のそれぞれにおいて、図4の上下方向であるフォーカス方向Fの両端部に同等の磁界が加わるので、大きさの等しい上向きの並進力と下向きの並進力とが打ち消し合う。これに対して、図4(A)の状態では、トラックコイル65,66,67,68のそれぞれにおいて、磁石の中央部に近い下端部に生じる並進力が上端部に生じる並進力よりも大きい。その上、図の左側の2個のトラックコイル65,66では下向きの並進力が大きく、右側の2個のトラックコイル67,68では上向きの並進力が大きい。このため、図示しないタンジェンシャル方向の軸の周りに可動体70を左回転させようとする不要なモーメントが生じる。また、図4(C)の状態では、トラックコイル65,66,67,68のそれぞれにおいて、磁石の中央部に近い上端部に生じる並進力が下端部に生じる並進力よりも大きい。その上、図の左側の2個のトラックコイル65,66では上向きの並進力が大きく、右側の2個のトラックコイル67,68では下向きの並進力が大きい。このため、タンジェンシャル方向の軸の周りに可動体70を右回転させようとする不要なモーメントが生じる。
 本発明は、このような事情に鑑み、磁石の磁力分布に起因する不要なモーメントを低減することを目的としている。
 上記目的を達成するアクチュエータは、少なくとも1個の対物レンズをフォーカス方向およびラジアル方向に駆動するため、前記対物レンズが取り付けられたレンズ取付け部および前記レンズ取付け部に対してラジアル方向の両側に配置される一対のコイル取付け部を有した可動体と、前記一対のコイル取付け部に取り付けられたフォーカス方向の駆動のための少なくとも1個のフォーカスコイルと、前記一対のコイル取付け部に2個ずつタンジェンシャル方向にコイル軸が沿うように取り付けられたラジアル方向の駆動のための合計4個のトラックコイルと、前記可動体に対するタンジェンシャル方向の両側に配置される複数の磁石とを備える。前記4個のトラックコイルのうちの2個のトラックコイルと前記複数の磁石との相対位置は、当該2個のトラックコイルのそれぞれにおいてラジアル方向における前記対物レンズから遠い側の半分が残りの半分と比べて強い磁界を前記複数の磁石から受けるように定められる。残りの2個のトラックコイルと前記複数の磁石との相対位置が、当該2個のトラックコイルのそれぞれにおいてラジアル方向における前記対物レンズに近い側の半分が残りの半分と比べて強い磁界を前記複数の磁石から受けるように定められる。
 好ましい態様のアクチュエータにおいては、前記4個のトラックコイルの外径が等しく、前記4個の磁石の寸法が等しく、前記一対のコイル取付け部の一方に取り付けられた2個のトラックコイルにおいてラジアル方向の位置がずれているとともに、これらトラックコイルに対応する2個の磁石においてもラジアル方向の位置がずれており、他方のコイル取付け部の一方に取り付けられた2個のトラックコイルにおいてラジアル方向の位置がずれているとともに、これらトラックコイルに対応する2個の磁石においてもラジアル方向の位置がずれている。
従来のアクチュエータの分解斜視図である。 従来のアクチュエータにおけるトラッキングコイルと磁石との位置関係を示す図である。 磁石のフォーカス方向の磁力分布を示す図である。 従来のアクチュエータにおけるトラッキングコイルに発生する並進力を示す図である。 本発明の第1実施形態に係るアクチュエータの分解斜視図である。 本発明の第1実施形態に係るアクチュエータにおけるトラッキングコイルと磁石との位置関係を示す図である。 有効な通電部が外側部分に対応するトラックコイルと有効な通電部が内側部分に対応するトラックコイルとを示す図である。 第1実施形態のアクチュエータにおけるトラッキングコイルに発生する並進力を示す図である。 第1実施形態のアクチュエータにおける不要なモーメントの測定結果を示すグラフである。 第2実施形態に係るアクチュエータにおけるトラッキングコイルと磁石との位置関係を示す図である。 第2実施形態に係る構成の変形例を示す図である。 第2実施形態のアクチュエータにおけるトラッキングコイルに発生する並進力を示す図である。 第3実施形態に係るアクチュエータにおけるトラッキングコイルと磁石との位置関係を示す図である。 第3実施形態のアクチュエータにおけるトラッキングコイルに発生する並進力を示す図である。
 図5に示される本発明の第1実施形態に係るアクチュエータ1は、2個の対物レンズ11,12が取り付けられた可動体20、可動体20を支持するブロック30、およびブロック30が組み付けられる磁気ヨーク40を備える。図では構成を分かり易くするために可動体20が磁気ヨーク40から離れた分解状態のアクチュエータ1が描かれている。基本的な構成および用途に関して、アクチュエータ1は図1の従来例と同様である。アクチュエータ1は、赤色系ディスクへのアクセスおよび青色系ディスクへのアクセスを可能にする。
 以下の説明では便宜的にアクチュエータ1が光ディスク装置に組み付けられた使用状態を想定し、フォーカス方向F、ラジアル方向Rおよびタンジェンシャル方向Tという使用状態での互いに直交する3方向に注目してアクチュエータ1の構成要素の相互の位置関係を特定する。光ディスク装置に組み付けられておらずアクチュエータ1の姿勢が不特定であっても、構成要素の相互の位置関係は使用状態と実質的に変わりがない。アクチュエータ1が使用されるとき、2個の対物レンズ11,12はタンジェンシャル方向Tに沿って並んで光ディスクと向かい合う。その際の姿勢を図5に当てはめると、アクチュエータ1は光ディスクの下方に位置する。
 アクチュエータ1の可動体20は、対物レンズ11,12が取り付けられたレンズ取付け部21と、レンズ取付け部21に対するラジアル方向Rの両側に配置される中空の二つのコイル取付け部22,23とを有する。例えばレンズ取付け部21およびコイル取付け部22,23は樹脂成型により一体に形成される。コイル取付け部22,23には、フォーカスコイル13,14が1個ずつ組み付けられ、外径寸法が実質的に等しいトラックコイル15,16,17,18が2個ずつ組み付けられている。トラックコイル15,16,17,18はフォーカスコイル13,14に対してタンジェンシャル方向Tの両側に配置される。このような可動体20は、ブロック30のラジアル方向Rの両端部から複数本ずつ延びる支持ワイヤ31の先端にコイル取付け部22,23を固定することによってブロック30に連結される。
 磁気ヨーク40は、フォーカスコイル13,14の内側の空隙に挿入されるヨーク40A,40Bを有し、各ヨーク40A,40Bのタンジェンシャル方向Tの両側に配置される計4個の磁石41,42,43,44を支持する。例えば磁気ヨーク40は金属板の打ち抜き折り曲げ加工により形成される。磁石41,42,43,44は、トラックコイル15,16,17,18のそれぞれにおけるラジアル方向Rの一部分と対向するように可動体20に対してタンジェンシャル方向Tの両側に配置される。磁石41,42,43,44において寸法および材質は共通である。フォーカス方向Fの長さをみると、磁石41,42,43,44はトラックコイル15,16,17,18よりも長い。
 磁気ヨーク40がブロック30と適切に組み合わさった状態において、可動体20は磁気ヨーク40と非接触に支持され、支持ワイヤ31の撓みに依存する位置範囲内の微小な2軸移動が可能である。主としてフォーカスコイル13,14と磁石41,42,43,44とによる電磁作用が可動体20をフォーカス方向Fに並進移動させ、主としてトラックコイル15,16,17,18と磁石41,42,43,44とによる電磁作用が可動体20をラジアル方向Rに並進移動させる。
 移動中および静止状態の可動体20の対物レンズ11,12に図示しない二つの立上げミラーによってレーザ光が導かれる。二つの立上げミラーはアクチュエータ1の薄型化のためにヨーク40Aとヨーク40Bとの間にタンジェンシャル方向Tに並べて配置されかつ磁気ヨーク40に対して固定される。対物レンズ11に入射するレーザ光は、磁石41と磁石43との間をタンジェンシャル方向Tに沿って進んで一方の立上げミラーで反射する。対物レンズ12に入射するレーザ光は磁石42と磁石44との間をタンジェンシャル方向Tに沿って進んで他方の立上げミラーで反射する。光ディスクに入射して反射した戻りレーザ光は入射光路を逆にたどって図示しない受光器に向かう。
 対物レンズ11,12のそれぞれの直径は3mm程度であり、アクチュエータ1の概略の平面視サイズは20mm×15mm程度である。ただし、これは一例に過ぎず、寸法は任意に選定される事項である。アクチュエータ1の要素の材質については特別の制約はなく、従来例と同様に公知の材料からなる部品によってアクチュエータ1を構成することができる。
 アクチュエータ1の特徴の1つは、図6によく示されるトラックコイル15,16,17,18と磁石41,42,43,44との位置関係である。ラジアル方向Rおよびタンジェンシャル方向Tの両方に平行な面に対する平面視において、トラックコイル15,16,17,18は概略的に可動体20の四隅に位置する。このように配置された4個のトラックコイルのうちの図中の左上と右下の対角の隅に位置する2個のトラックコイル15,18とこれらに対応する磁石41,44との相対位置が、当該2個のトラックコイル15,18のそれぞれにおいてラジアル方向Rにおける対物レンズ11,12から遠い側の半分(以下、これを外側部分という)が残りの半分(以下、これを内側部分という)と比べて強い磁界を磁石41,44から受けるように定められている。そして、残りの2個のトラックコイル16,17とこれらに対応する磁石42,43との相対位置が、当該2個のトラックコイル16,17のそれぞれにおいて内側部分が外側部分と比べて強い磁界を磁石42,43から受けるように定められている。言い換えれば、トラックコイル15,18では図中で斜線の付された有効な通電部が外側部分に対応し、トラックコイル16,17では有効な通電部が内側部分に対応する。
 有効な通電部が外側部分に対応するか内側部分に対応するかはトラックコイル15,16,17,18と磁石41,42,43,44とのラジアル方向Rの相対位置で決まり、トラックコイル15,16,17,18のそれぞれに近接する磁石41,42,43,44のコイル側の極がN極であるかS極であるかを問わない。図7を参照すると、代表として示される2個のトラックコイル115,17のどちらにおいても左半分が有効な通電部を含むが、トラックコイル15では左半分が外側部分であってトラックコイル17では左半分が内側部分である。
 上記の特徴をもつアクチュエータ1においては、図8に示されるように可動体20が中立位置、正シフト位置および負シフト位置のいずれに在っても、4個のトラックコイル15,16,17,18に生じるフォーカス方向Fの並進力が打ち消し合い、それによって可動体20をタンジェンシャル方向の軸の周りに回転させようとする不要なモーメントが低減される。
 詳しくは次のように並進力が打ち消し合う。
 アクチュエータ1においてトラッキングのためのラジアル方向Rの並進力を発生させるとき、必然的にフォーカス方向Fの不要な並進力が生じる。例えば図8に示される通電状態では、4個のトラックコイル15,16,17,18に図の左から右へ向かうラジアル方向Rの並進力と、可動体20の位置に応じた大きさのフォーカス方向Fの並進力が働く。図8(A)の状態では、トラックコイル15,16,17,18のそれぞれにおいては、磁石の中央部に近い下端部に生じる並進力が上端部に生じる並進力よりも大きいので、両者の差分の大きさをもつフォーカス方向Fの並進力が働く。しかし、トラックコイル15,16,17,18の構成が同一であり、かつ上向きの並進力が働くトラックコイル15,17の個数と下向きの並進力が働くトラックコイル16,18の個数とが同数であることから、上向きの並進力と下向きの並進力とが打ち消し合って、可動体20に作用するフォーカス方向Fの並進力の大きさはほぼ零となる。図8(B)の状態では、4個のトラックコイル15,16,17,18のそれぞれにおいて、図8の上下方向であるフォーカス方向Fの両端部に同等の磁界が加わるので、大きさの等しい上向きの並進力と下向きの並進力とが打ち消し合う。可動体20に作用するフォーカス方向Fの並進力の大きさはほぼ零である。図8(C)の状態では、トラックコイル15,16,17,18のそれぞれにおいては、磁石の中央部に近い上端部に生じる並進力が下端部に生じる並進力よりも大きいので、両者の差分の大きさをもつフォーカス方向Fの並進力が働く。しかし、下向きの並進力が働くトラックコイル15,17の個数と上向きの並進力が働くトラックコイル16,18の個数とが同数であることから、上向きの並進力と下向きの並進力とが打ち消し合って、可動体20に作用するフォーカス方向Fの並進力の大きさはほぼ零となる。
 図9のグラフが示すようにアクチュエータ1によれば不要なモーメントが低減される。図9では本実施形態のアクチュエータ1における測定結果(実施例)とともに、比較例としてアクチュエータ1と同じ部品で構成されトラックコイル15,16,17,18と磁石41,42,43,44が図2で説明した位置関係となるように配置されたアクチュエータにおける計算結果がプロットされている。グラフの横軸は可動体のフォーカス方向の位置を表わす。フォーカスシフト量が零の位置はフォーカシングの中立位置である。縦軸はラジアル方向のトラック並進力に対する不要なモーメントの比を表わす。グラフから明らかなとおり、実施例においても正シフト側または負シフト側のフォーカスシフト量の絶対値が大きくなるにつれて不要なモーメントが増大する傾向は見られるものの、比較例と比べて格段に不要なモーメントが小さい。不要なモーメントに関する顕著な改善が明白である。
 再び図6を参照してアクチュエータ1が有する他の特徴を説明する。
 アクチュエータ1においては、上述したとおり4個のトラックコイル15,16,17,18の外径が等しくかつ4個の磁石41,42,43,44の寸法および材質が等しい。すなわち、部品が共通化されている。そして、可動体20の一方のコイル取付け部に取り付けられた2個のトラックコイル15,16においてラジアル方向Rの位置が相互にずれているとともに、これらトラックコイル15,16に対応する2個の磁石41,42においてもラジアル方向の位置が相互にずれている。他方のコイル取付け部に取り付けられた2個のトラックコイル17,18においてラジアル方向Rの位置が相互にずれているとともに、これらトラックコイル17,18に対応する2個の磁石43,44においてもラジアル方向Rの位置が相互にずれている。
 アクチュエータ1におけるトラックコイル15,16,17,18および磁石41,42,43,44に係るラジアル方向Rの位置ずれは、アクチュエータ1のラジアル方向Rの寸法をより小さくする目的をもって意図的に配置が選定された結果である。例えば、トラックコイル15のラジアル方向Rの位置をトラックコイル16のラジアル方向Rの位置にすると、すなわち図6でトラックコイル15を図示の位置より左方に移動させたとすると、磁石41も同様に左方に移動させなければならず、移動分だけアクチュエータ1の寸法が増大する。また、磁石42の位置を磁石41の位置に揃えると、トラックコイル16を図示の位置より左方に移動させなければならず、やはり光アクチュエータ1の寸法が増大する。図6の右側においては、トラックコイル18の位置をトラックコイル17の位置に揃えたり、磁石43の位置を磁石44の位置に揃えたりすると、必然的に磁石44またはトラックコイル17を右方に移動させなければならず、やはりアクチュエータ1の寸法が増大する。トラックコイル15,16,17,18および磁石41,42,43,44の配置において意図的にラジアル方向Rの位置をずらすことにより、不要なモーメントを低減するとともにアクチュエータ1を小型軽量にすることができる。
 以上の第1実施形態に係るアクチュエータ1では、有効な通電部が外側部分に対応する2個のトラックコイル15,18の組、および有効な通電部が内側部分に対応する2個のトラックコイル16,17の組は、4個のトラックコイル15,16,17,18の配置位置を四角形の頂点とみなしたときの対角位置関係にあるトラックコイルの組である。しかし、以下に説明する第2、第3の実施形態のような配置関係にある2個ずつのトラックコイルの組合せであっても、不要なモーメントを低減することができる。
 図10に例示される第2実施形態に係るアクチュエータ2においては、可動体20bの幾何中心に対して上下左右に振り分けて配置された4個のトラックコイル15,16,17,18のうち、上側の2個のトラックコイル15,17の有効な通電部が外側部分に対応し、下側の2個のトラックコイル16,18の有効な通電部が内側部分に対応する。有効な通電部は図中に斜線で示される。このような第2実施形態においては、図11に示されるとおり、有効な通電部が内側部分に対応する2個のトラックコイル16,18に1個の磁石95のみを対応させる変形例が存在する。つまり、第2実施形態に係る磁石の個数は4または3である。
 なお、図11に示されるアクチュエータ2bの可動体24は単一の対物レンズ11bを備えるが、図10の可動体20bと同様に2個の対物レンズ11,12を備えるものであっても、3個以上の対物レンズを備えるものであってもよい。アクチュエータ2,2bにおけるレンズの個数は用途に応じて適宜選定すべき事項である。
 アクチュエータ2,2bにおいても、トラッキングのためのラジアル方向Rの並進力を発生させると、必然的にフォーカス方向Fの不要な並進力が生じる。例えば図12(A)の状態では、トラックコイル15,16,17,18のそれぞれにおいて、磁石の中央部に近い下端部に生じる並進力が上端部に生じる並進力よりも大きいので、両者の差分の大きさをもつフォーカス方向Fの並進力が生じる。しかし、トラックコイル15,18に生じる上向きの並進力とトラックコイル16,17に生じる下向きの並進力とが打ち消し合って、可動体20bに作用するフォーカス方向Fの並進力の大きさはほぼ零となる。図12(B)の状態では、4個のトラックコイル15,16,17,18のそれぞれにおいて、大きさの等しい上向きの並進力と下向きの並進力とが打ち消し合う。したがって、可動体20bに作用するフォーカス方向Fの並進力の大きさはほぼ零である。図12(C)の状態では、トラックコイル15,16,17,18のそれぞれにおいては、磁石の中央部に近い上端部に生じる並進力が下端部に生じる並進力よりも大きいので、両者の差分の大きさをもつフォーカス方向Fの並進力が働く。しかし、下向きの並進力が働くトラックコイル15,17の個数と上向きの並進力が働くトラックコイル16,18の個数とが同数であることから、上向きの並進力と下向きの並進力とが打ち消し合って、可動体20bに作用するフォーカス方向Fの並進力の大きさはほぼ零となる。
 図13に例示される第3実施形態に係るアクチュエータ3においては、可動体20cの幾何中心に対して上下左右に振り分けて配置された4個のトラックコイル15,16,17,18のうち、左側の2個のトラックコイル15,16の有効な通電部が外側部分に対応し、右側の2個のトラックコイル17,18の有効な通電部が内側部分に対応する。有効な通電部は図中に斜線で示される。
 アクチュエータ3においても、トラッキングのためのラジアル方向Rの並進力を発生させると、必然的にフォーカス方向Fの不要な並進力が生じる。例えば図14(A)の状態では、トラックコイル15,16,17,18のそれぞれにおいて、下端部に生じる並進力と上端部に生じる並進力との差分の大きさをもつフォーカス方向Fの並進力が働く。しかし、4個のトラックコイル15,16,17,18のいずれでも上向きの並進力が働くので、可動体20cをタンジェンシャル方向の軸の周りに回転させようとする不要なモーメントは低減される。図14(B)の状態では、4個のトラックコイル15,16,17,18のそれぞれにおいて、大きさの等しい上向きの並進力と下向きの並進力とが打ち消し合う。したがって、不要なモーメントは生じない。図14(C)の状態では、トラックコイル15,16,17,18のそれぞれにおいては、上端部に生じる並進力と下端部に生じる並進力との差分の大きさをもつフォーカス方向Fの並進力が働く。しかし、4個のトラックコイル15,16,17,18のいずれでも下向きの並進力が働くので、可動体20cをタンジェンシャル方向の軸の周りに回転させようとする不要なモーメントは低減される。
 以上の第1、第2および第3の実施形態において、フォーカス方向Fの駆動が可能であれば、必ずしも2個のフォーカスコイル13,14が必要ではなく、フォーカスコイル数は1でもよい。対物レンズ11,12の個数も限定されない。
 本発明は、光ディスク装置における光ディスクへのアクセスの精度の向上に貢献する。

Claims (5)

  1.  少なくとも1個の対物レンズをフォーカス方向およびラジアル方向に駆動する光ピックアップ用アクチュエータであって、
     前記対物レンズが取り付けられたレンズ取付け部および前記レンズ取付け部に対してラジアル方向の両側に配置される一対のコイル取付け部を有した可動体と、
     前記一対のコイル取付け部に取り付けられたフォーカス方向の駆動のための少なくとも1個のフォーカスコイルと、
     前記一対のコイル取付け部に2個ずつタンジェンシャル方向にコイル軸が沿うように取り付けられた、ラジアル方向の駆動のための合計4個のトラックコイルと、
     前記可動体に対するタンジェンシャル方向の両側に配置される複数の磁石とを備え、
     前記4個のトラックコイルのうちの2個のトラックコイルと前記複数の磁石との相対位置が、当該2個のトラックコイルのそれぞれにおいてラジアル方向における前記対物レンズから遠い側の半分が残りの半分と比べて強い磁界を前記複数の磁石から受けるように定められ、
     残りの2個のトラックコイルと前記複数の磁石との相対位置が、当該2個のトラックコイルのそれぞれにおいてラジアル方向における前記対物レンズに近い側の半分が残りの半分と比べて強い磁界を前記複数の磁石から受けるように定められた
     ことを特徴とする光ピックアップ用アクチュエータ。
  2.  前記複数の磁石として、前記4個のトラックコイルに1個ずつ対応する合計4個の磁石を備えており、
     前記一対のコイル取付け部の一方に取り付けられた2個のトラックコイルの片方とそれに対応する第1の磁石との相対位置は、当該1個のトラックコイルでラジアル方向における前記対物レンズから遠い側の半分が残りの半分と比べて強い磁界を前記第1の磁石から受けるように定められ、当該2個のトラックコイルのうちの残りの片方とそれに対応する第2の磁石との相対位置は、当該1個のトラックコイルでラジアル方向における前記対物レンズに近い側の半分が残りの半分と比べて強い磁界を前記第2の磁石から受けるように定められた
     請求項1に記載の光ピックアップ用アクチュエータ。
  3.  前記4個のトラックコイルの外径が等しく、
     前記4個の磁石の寸法が等しく、
     前記一対のコイル取付け部の一方に取り付けられた2個のトラックコイルにおいてラジアル方向の位置がずれているとともに、これらトラックコイルに対応する2個の磁石においてもラジアル方向の位置がずれており、
     他方のコイル取付け部の一方に取り付けられた2個のトラックコイルにおいてラジアル方向の位置がずれているとともに、これらトラックコイルに対応する2個の磁石においてもラジアル方向の位置がずれている
     請求項2に記載の光ピックアップ用アクチュエータ。
  4.  2個の対物レンズをフォーカス方向およびラジアル方向に駆動する光ピックアップ用アクチュエータであって、
     前記2個の対物レンズがタンジェンシャル方向に沿って並ぶように取り付けられたレンズ取付け部、前記レンズ取付け部に対するラジアル方向の第1の側に配置される第1のコイル取付け部、および前記レンズ取付け部に対するラジアル方向の第2の側に配置される第2のコイル取付け部を有した可動体と、
     前記第1および第2のコイル取付け部に1個ずつ取り付けられたフォーカス方向の駆動のための2個のフォーカスコイルと、
     前記第1および第2のコイル取付け部に2個ずつタンジェンシャル方向にコイル軸が沿うように取り付けられ、前記2個のフォーカスコイルに対してタンジェンシャル方向の両側に配置される、ラジアル方向の駆動のための合計4個のトラックコイルと、
     前記4個のトラックコイルに1個ずつ対応し、前記可動体に対してタンジェンシャル方向の両側に配置される合計4個の磁石とを備えており、
     前記第1のコイル取付け部に取り付けられ且つ前記2個のフォーカスコイルに対するタンジェンシャル方向の第1の側に配置される1個のトラックコイルとそれに対応する1個の磁石とのラジアル方向の相対位置、および前記第2のコイル取付け部に取り付けられ且つ前記2個のフォーカスコイルに対してタンジェンシャル方向の第2の側に配置される1個のトラックコイルとそれに対応する1個の磁石とのラジアル方向の相対位置が、当該2個のトラックコイルのそれぞれにおいてラジアル方向における前記対物レンズから遠い側の半分が残りの半分と比べて強い磁界を対応する前記磁石から受けるように定められ、
     前記第1のコイル取付け部に取り付けられ且つ前記2個のフォーカスコイルに対するタンジェンシャル方向の前記第2の側に配置される1個のトラックコイルとそれに対応する1個の磁石とのラジアル方向の相対位置、および前記第2のコイル取付け部に取り付けられ且つ前記2個のフォーカスコイルに対してタンジェンシャル方向の前記第1の側に配置される1個のトラックコイルとそれに対応する1個の磁石とのラジアル方向の相対位置が、当該2個のトラックコイルのそれぞれにおいてラジアル方向における前記対物レンズに近い側の半分が残りの半分と比べて強い磁界を対応する前記磁石から受けるように定められた
     ことを特徴とする光ピックアップ用アクチュエータ。
  5.  2個の対物レンズをフォーカス方向およびラジアル方向に駆動する光ピックアップ用アクチュエータであって、
     前記2個の対物レンズがタンジェンシャル方向に沿って並ぶように取り付けられたレンズ取付け部、前記レンズ取付け部に対するラジアル方向の第1の側に配置される第1のコイル取付け部、および前記レンズ取付け部に対するラジアル方向の第2の側に配置される第2のコイル取付け部を有した可動体と、
     前記第1および第2のコイル取付け部に1個ずつ取り付けられたフォーカス方向の駆動のための2個のフォーカスコイルと、
     前記第1および第2のコイル取付け部に2個ずつタンジェンシャル方向にコイル軸が沿うように取り付けられ、前記2個のフォーカスコイルに対してタンジェンシャル方向の両側に配置される、ラジアル方向の駆動のための合計4個のトラックコイルと、
     前記4個のトラックコイルに1個ずつ対応し、前記可動体に対してタンジェンシャル方向の両側に配置される合計4個の磁石とを備えており、
     前記第1のコイル取付け部に取り付けられ且つ前記2個のフォーカスコイルに対するタンジェンシャル方向の第1の側に配置される1個のトラックコイルとそれに対応する1個の磁石とのラジアル方向の相対位置、および前記第2のコイル取付け部に取り付けられ且つ前記2個のフォーカスコイルに対してタンジェンシャル方向の前記第1の側に配置される1個のトラックコイルとそれに対応する1個の磁石とのラジアル方向の相対位置が、当該2個のトラックコイルのそれぞれにおいてラジアル方向における前記対物レンズから遠い側の半分が残りの半分と比べて強い磁界を対応する前記磁石から受けるように定められ、
     前記第1のコイル取付け部に取り付けられ且つ前記2個のフォーカスコイルに対するタンジェンシャル方向の第2の側に配置される1個のトラックコイルとそれに対応する1個の磁石とのラジアル方向の相対位置、および前記第2のコイル取付け部に取り付けられ且つ前記2個のフォーカスコイルに対してタンジェンシャル方向の第2の側に配置される1個のトラックコイルとそれに対応する1個の磁石とのラジアル方向の相対位置が、当該2個のトラックコイルのそれぞれにおいてラジアル方向における前記対物レンズに近い側の半分が残りの半分と比べて強い磁界を対応する前記磁石から受けるように定められた
     ことを特徴とする光ピックアップ用アクチュエータ。
PCT/JP2007/001442 2007-12-20 2007-12-20 光ピックアップ用アクチュエータ WO2009081447A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/001442 WO2009081447A1 (ja) 2007-12-20 2007-12-20 光ピックアップ用アクチュエータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/001442 WO2009081447A1 (ja) 2007-12-20 2007-12-20 光ピックアップ用アクチュエータ

Publications (1)

Publication Number Publication Date
WO2009081447A1 true WO2009081447A1 (ja) 2009-07-02

Family

ID=40800766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001442 WO2009081447A1 (ja) 2007-12-20 2007-12-20 光ピックアップ用アクチュエータ

Country Status (1)

Country Link
WO (1) WO2009081447A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171662A (ja) * 2002-11-20 2004-06-17 Hitachi Ltd 対物レンズ駆動装置
JP2006309911A (ja) * 2005-03-29 2006-11-09 Fujitsu Ltd 光ピックアップ
JP2007213631A (ja) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd 対物レンズ駆動装置、光ピックアップ装置及び光ディスク装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171662A (ja) * 2002-11-20 2004-06-17 Hitachi Ltd 対物レンズ駆動装置
JP2006309911A (ja) * 2005-03-29 2006-11-09 Fujitsu Ltd 光ピックアップ
JP2007213631A (ja) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd 対物レンズ駆動装置、光ピックアップ装置及び光ディスク装置

Similar Documents

Publication Publication Date Title
KR20010013817A (ko) 콤팩트한 액추에이터를 갖는 렌즈계를 구비한 광학 주사장치
US7305688B2 (en) Tilting movement optical pickup actuator and optical recording and/or reproducing apparatus using the same and method
EP1675112B1 (en) Optical pickup actuator and optical recording and/or reproducing apparatus
JP2002050061A (ja) 光ピックアップ組立体
US7453656B2 (en) Recording and/or reproducing apparatus with an optical pickup actuator having high thrust
WO2009081447A1 (ja) 光ピックアップ用アクチュエータ
JP5108927B2 (ja) 光学素子のアクチュエータ
US8116177B2 (en) Optical pickup and disc drive apparatus
US7336567B2 (en) Optical head device having an objective lens holder supported by composite wires and single wires
JP2011123990A (ja) 光学素子のアクチュエータ
US7602565B2 (en) Optical pickup
EP1724768B1 (en) Optical pick-up actuator and optical recording and/or reproducing apparatus including the optical pick-up actuator
JP3821998B2 (ja) 対物レンズ駆動装置及び光ピックアップ及び光ディスクドライブ
JP4564944B2 (ja) 光ピックアップ
JP4124899B2 (ja) 対物レンズ駆動装置
KR100524998B1 (ko) 광픽업 액츄에이터
JP4753900B2 (ja) 対物レンズ駆動装置
US8171506B2 (en) Optical-system driving device effecting switchover between objective lenses for achieving focal spots
JP4368778B2 (ja) 光ピックアップの製造方法
KR20070001803A (ko) 광학 저장 매체를 위한 픽업과 상기 픽업을 구비한디바이스
KR100806062B1 (ko) 광픽업 장치 및 상기 광픽업 장치를 채용한 광기록/재생시스템
JP2009110629A (ja) 対物レンズ駆動装置および光ピックアップ装置
JP2008130140A (ja) 対物レンズアクチュエータ及び光ディスク装置
JP2009146461A (ja) 対物レンズ駆動装置
KR20040013346A (ko) 콜리미터 액츄에이터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07849870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07849870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP