WO2009074017A1 - Système central de transport et de refroidissement de mâchefer - Google Patents

Système central de transport et de refroidissement de mâchefer Download PDF

Info

Publication number
WO2009074017A1
WO2009074017A1 PCT/CN2008/001973 CN2008001973W WO2009074017A1 WO 2009074017 A1 WO2009074017 A1 WO 2009074017A1 CN 2008001973 W CN2008001973 W CN 2008001973W WO 2009074017 A1 WO2009074017 A1 WO 2009074017A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
ash
cooling system
air
conveying
Prior art date
Application number
PCT/CN2008/001973
Other languages
English (en)
French (fr)
Inventor
Yuwei Wang
Chunhua Xia
Jing Zhang
Huigang Zhao
Original Assignee
Beijing Guodian Futong Science And Technology Development Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Guodian Futong Science And Technology Development Co., Ltd. filed Critical Beijing Guodian Futong Science And Technology Development Co., Ltd.
Priority to RU2009130103/03A priority Critical patent/RU2483249C2/ru
Publication of WO2009074017A1 publication Critical patent/WO2009074017A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0266Cooling with means to convey the charge on an endless belt

Definitions

  • the present invention belongs to the field of dry slagging equipment for coal-fired boilers, and particularly relates to a ash slag centralized conveying and cooling system suitable for use in a dry slagging system.
  • the dry slagging system in the prior art mainly consists of a dry air-cooled steel belt slag conveyor, a centralized conveying system and a slag storage system.
  • the main process is to inject the quantitative ambient air under the negative pressure of the boiler furnace under the negative pressure of the boiler slag conveyor to exchange the heat with the hot slag, so that the temperature of the ambient air rises.
  • the temperature of the ash itself is lowered; the ambient air that absorbs the ash heat is returned from the boiler slag discharge port to the furnace to improve the thermal efficiency of the boiler.
  • the centralized conveying system connected to the steel belt slag conveyor generally adopts a mechanical conveying method.
  • the air locker is a commonly used device for sealing or opening and closing, which effectively solves the "helium" phenomenon in many processes.
  • the commonly used gas lockers can be divided into: buffer lockers, electric air locks, heavy hammer locks, swash plate lockers and cone lockers.
  • the technical problem to be solved by the present invention is to provide a ash centralized conveying and cooling system which can be used in a dry slagging system, which can isolate hot air after cooling hot ash by a steel belt slag conveyor.
  • the whole system can introduce ambient air at room temperature in the ash centralized conveying system, and better achieve the purpose of cooling the ash in the second stage.
  • the ash centralized conveying and cooling system of the present invention comprises an outer casing, and a slag opening and a slag opening are arranged on the outer casing; the slag inlet passes through the lower slag pipe and the steel belt slag conveyor An outlet connection, the slag outlet is sealingly connected to a conveying pipe, the conveying pipe leading to a top of a slag bin, the conveying pipe is sealingly connected with the slag bin; and the lower slag pipe and the steel belt are connected
  • the slag machine connection is provided with a gas locker;; at least one air inlet is opened on the outer casing, and the ash centralized conveying cooling system is further provided with an air outlet and at least one device for forming a negative pressure in the outer casing.
  • the means for forming a negative pressure may be an induced draft fan disposed at the top of the slag storage bin; the air outlet is disposed at the top of the slag bin.
  • the air outlet may be disposed at one end of the ash slag centralized conveying cooling system casing, and the air outlet is connected to the boiler furnace or the atmosphere through a hot air pipe sealed and connected thereto; the device for forming a negative pressure is disposed at the air outlet The cooling fan on the hot air duct.
  • the air inlets are at least two, and a one-way intake valve may be disposed at the air inlet to become a one-way air inlet, which may be respectively disposed on two sides of the outer casing and on the side of the outer casing
  • the center line is symmetrically arranged for the axis of symmetry.
  • the position and the number of the air inlets on the side of the ash slag conveying cooling system casing depend on the length of the ash slag conveying cooling system casing and the treatment energy of the ash slag.
  • the size of the air inlet is also coordinated with its length; for a certain length of ash centralized conveying cooling system, the air inlet is too small, so that the air flow inside is too slow, and the air inlet is too large to be maintained. The flow of air in its outer casing is easily lost. Therefore, the thermodynamic equilibrium calculation is needed to more accurately determine the size of each unidirectional air inlet; thus, based on this, the selection of the device for forming the negative pressure is further determined. .
  • the overall wind flow rate inside the ash slag conveying cooling system can be improved, and the air flow rate can be better achieved.
  • a single or a plurality of air outlets may be provided at the top of the slag storage bin, and accordingly, a plurality of devices for forming a negative pressure are also disposed on the top of the slag storage bin; While the air outlet is arranged at the top of the slag silo, one or more air outlets are provided at one end of the ash sump conveying cooling system casing, and the air outlets are connected to the hot air duct to pass the air with ash heat through the hot air.
  • the tube enters the boiler furnace again or enters the atmosphere.
  • the air outlets provided in the above two positions can be used at the same time or they can be selectively used.
  • Negative pressure devices such as induced draft fans or cooling fans, allow ambient air to be better circulated inside the slag concentrated delivery cooling unit;
  • Figure 1 is a set of two devices that can be used to concentrate the ash and slag into the interior of the cooling system casing.
  • Fig. 2 is a view showing the arrangement of a ash-concentrated conveying and cooling system for the slag fan which is provided on the top of the slag bin to allow the ash to be concentratedly transported to form a negative pressure inside the casing of the cooling system.
  • Fig. 3 is a view showing a device for arranging a cooling system for ash in a cooling fan which is provided with a cooling fan which can concentrate the ash into a cooling system inside the casing of the cooling system.
  • Fig. 4 is a view showing a device for concentrating and conveying a cooling system for ash in which a slag is collectively transported to form a negative pressure inside a cooling system casing, and an ambient air branch is provided at the top of the slag bin.
  • boiler one 1 steel belt slag conveyor one 2; slag storage tank one; outer casing one 4; slag inlet one 5; outlet port one 6; lower slag pipe one 7;
  • the gas turbine is 8; the conveying pipe is 9; the induced draft fan is 10; the air outlet is 11; the air inlet is 12; the hot air pipe is 13; and the cooling fan is 14.
  • the single arrow indicated in the above figures is the flow direction of the ambient air entering the ash centralized conveying cooling system.
  • FIG. 1 is a diagram of the arrangement of the ash sump centralized delivery cooling system.
  • the ash sump central conveying cooling system comprises a casing 4, on which the slag inlet 5 and the slag outlet 6 are arranged; the slag inlet 5 passes through the lower slag pipe 7 and the steel belt slag conveyor 2 Sealed connection, and a gas locker 8 is arranged at the connection between the lower slag pipe 7 and the steel strip slag conveyor 2; the slag discharge port 6 is sealingly connected with a conveying pipe 9, which leads to the top of a slag storage bin 3 And the conveying pipe 9 is sealingly connected with the slag bin 3; at the top of the slag bin 3, a device induced draft fan 10 and an air outlet 11 for forming a negative pressure in the slag concentrated conveying cooling device casing are disposed.
  • Three air inlets 12 are respectively formed on both sides of the outer casing 4 of the ash-distributing cooling system, and a one-way intake valve is disposed inside the air inlet to realize one-way air intake of the air inlet.
  • an air outlet 11 is also provided at one end of the outer casing 4 of the concentrated ash conveying cooling system, and the air outlet 11 is sealingly connected with the hot air duct 13, and the hot air duct 13 can selectively communicate with the boiler 1 furnace or the atmosphere.
  • a cooling fan 14 is also provided on the hot air pipe 13.
  • the hot ash slag When the slag is discharged from the boiler 1, the hot ash slag enters the steel strip slag conveyor 2 through the slag discharge port of the boiler 1, and the hot ash slag is slowly advanced under the action of the steel strip slag conveyor 2 until the slag of the cooling system is concentratedly transported with the ash slag.
  • the hot ash is exchanged with the ambient air entering through the inlet to make itself The temperature is lowered, and the ambient air temperature that takes away the heat of the hot ash is increased.
  • the gas locker 8 is disposed at the junction of the steel strip slag conveyor 2 and the lower slag pipe 7 of the ash slag centralized conveying cooling system, most of the ambient air after absorbing heat in the steel strip slag conveyor 2 can enter the boiler. 1 furnace interior to improve the thermal efficiency of boiler 1.
  • the ash discharged from the steel slag conveyor 2 to the slag pipe 7 of the slag centralized conveying cooling system passes through the lower slag pipe 7 into the ash slag centralized conveying cooling system.
  • the induced draft fan 10 is installed and set in the hot air. Cooling fan 14 on tube 13.
  • the hot ash with a certain temperature is slowly operated in the direction of the slag outlet 6 under the action of the conveying device inside the ash slag conveying cooling system; in the process, due to the interaction of the induced draft fan 10 and the cooling fan 14, the ash
  • the inside of the slag concentrated conveying cooling system casing 4 forms a certain negative pressure, so that the ambient air enters the outer casing 4 through the one-way intake valve provided in the above 12 one-way air inlets, and further transports the cooling system casing in the ash and slag. 4
  • the inside, the conveying pipe 9, and the inside of the slag bin 3 are sufficiently circulated, and in the process of transferring the ash to the slag opening 6, the hot ash is air-cooled using ambient air.
  • the wind cooling system can continue to carry out the internal ash. Cool to a certain extent.
  • a part of the ambient air heated by the heat exchange with the hot ash is circulated through the hot air pipe 13 into the inside of the boiler 1 to further improve the thermal efficiency of the boiler 1.
  • the hot ambient air output through the hot air duct 13 can also be directly introduced into the atmosphere.
  • a device diagram is provided on the top of the slag silo to provide a centralized ash conveying cooling system for the slag to be concentratedly transported into the cooling system casing to form a negative pressure.
  • the ash sump central conveying cooling system comprises a casing 4, on which the slag inlet 5 and the slag outlet 6 are arranged; the slag inlet 5 passes through the lower slag pipe 7 and the steel belt slag conveyor 2 Sealed connection, and a gas locker 8 is arranged at the connection between the lower slag pipe 7 and the steel strip slag conveyor 2; the slag discharge port 6 is sealingly connected with a conveying pipe 9, which leads to the top of a slag storage bin 3 And the conveying pipe 9 is sealingly connected with the slag bin 3; at the top of the slag bin 3, a device draft fan 10 and an air outlet 11 for forming a negative pressure in the slag concentrated conveying cooling device casing are disposed.
  • air inlets are provided on one side of the outer casing 4 of the ash-distributing cooling system, three air inlets are opened on the other side, and a one-way air inlet valve is arranged inside the air inlet, thereby realizing the single air inlet To the air intake.
  • the hot ash slag When the slag is discharged from the boiler 1, the hot ash slag enters the steel strip slag conveyor 2 through the slag discharge port of the boiler 1, and the hot ash slag is slowly advanced under the action of the steel strip slag conveyor 2 until the slag of the cooling system is concentratedly transported with the ash slag.
  • the hot ash is exchanged with the ambient air entering through the inlets, causing the temperature to decrease, while the temperature of the ambient air carrying away the heat of the hot ash increases.
  • the gas locker 8 is disposed at the junction of the steel strip slag conveyor 2 and the lower slag pipe 7 of the ash-distribution cooling system, most of the ambient air after absorbing heat in the steel strip slag conveyor 2 can be i ⁇
  • the inside of the boiler 1 furnace is used to increase the thermal efficiency of the boiler 1.
  • the ash discharged from the steel slag conveyor 2 to the slag pipe 7 of the slag centralized conveying cooling system passes through the lower slag pipe 7 into the ash slag centralized conveying cooling system, at which time the induced draft fan 10 is turned on.
  • the hot ash slag with a certain temperature is slowly operated in the direction of the slag discharge port 6 under the conveying arrangement of the ash slag centralized conveying cooling system; in the process, due to the action of the induced draft fan 10, the cooling is concentrated in the ash slag.
  • a certain negative pressure is formed inside the system casing 4, so that the ambient air enters the outer casing 4 through the one-way air inlet provided in the above 12 one-way inlets, and further conveys the inside of the cooling system casing 4 and the conveying pipeline in the ash and slag. 9 and the inside of the scum tank 3 are sufficiently circulated, and in the process of transferring the ash to the tap hole 6, the hot ash is air-cooled using ambient air. Therefore, when the hot ash enters the slag bin 3, the temperature has dropped to a safe temperature range, especially after the cooled ash enters the slag bin 3, the wind cooling system can continue to carry out the internal ash. Cool to a certain extent.
  • the ambient air heated by the steel strip slag conveyor 2 does not enter the ash slag centralized conveying cooling system, and thus does not affect the entry into the system.
  • the cooling efficiency of ambient air to hot ash is not limited to the above description.
  • Fig. 3 is a view showing a device for arranging a cooling system of a ash slag which is provided with a cooling fan which can collectively transport ash and slag into a cooling system inside the casing of the cooling system.
  • the ash sump central conveying cooling system comprises a casing 4, on which the slag inlet 5 and the slag outlet 6 are arranged; the slag inlet 5 passes through the lower slag pipe 7 and the steel belt slag conveyor 2 Sealed connection, and a gas locker 8 is arranged at the connection between the lower slag pipe 7 and the steel strip slag conveyor 2; the slag discharge port 6 is sealingly connected to a conveying pipe 9, which leads to the top of a slag storage bin 3 And the conveying pipe 9 is sealingly connected to the slag bin 3.
  • Three air inlets 12 are formed on each side of the outer casing 4 of the ash-distributing cooling system, and a one-way air inlet is disposed inside the air inlet to realize one-way air intake of the air inlet.
  • an air outlet 11 is also provided at one end of the outer casing 4 of the ash-distributing cooling system, and the air outlet 11 is sealingly connected with the hot air duct 13, and the hot air duct 13 can selectively communicate with the furnace or the atmosphere of the boiler.
  • a cooling fan 14 is also provided on the hot air pipe 13.
  • the hot ash slag When the slag is discharged from the boiler 1, the hot ash slag enters the steel strip slag conveyor 2 through the slag discharge port of the boiler 1, and the hot ash slag is slowly advanced under the action of the steel strip slag conveyor 2 until the slag of the cooling system is concentratedly transported with the ash slag.
  • the hot ash is exchanged with the ambient air entering through the inlets, causing the temperature to decrease, while the temperature of the ambient air carrying away the heat of the hot ash increases.
  • the gas locker 8 is disposed at the junction of the steel strip slag conveyor 2 and the lower slag pipe 7 of the ash slag centralized conveying cooling system, most of the ambient air after absorbing heat in the steel strip slag conveyor 2 can enter the boiler. 1 furnace interior to improve the thermal efficiency of boiler 1.
  • the ash discharged by the steel strip slag conveyor 2 to the lower slag pipe of the ash slag centralized conveying cooling system passes through the lower slag pipe 7 into the ash slag centralized conveying cooling system, at which time the opening is set on the hot air pipe 13 Cooling fan 14.
  • the hot ash with a certain temperature is slowly operated in the direction of the slag outlet 6 under the action of the conveying device inside the ash slag conveying cooling system; in the process, the cooling system is concentratedly transported in the ash due to the action of the cooling fan 14.
  • a certain negative pressure is formed inside the outer casing 4, so that the ambient air enters the outer casing 4 through the one-way intake valve provided in the one-way air inlet, and further conveys the inside of the cooling system casing 4 and the conveying pipe 9 in the ash and slag.
  • the inside of the scum tank 3 is sufficiently circulated, and in the process of transferring the ash to the tap hole 6, the hot ash is air-cooled using ambient air. From When the hot ash is ensured to enter the slag bin 3, its temperature has dropped to a safe temperature range. At the same time, the ambient air heated by the heat exchange with the hot ash is circulated into the interior of the boiler 1 through the hot air duct 13, thereby further improving the thermal efficiency of the boiler 1, or directly into the atmosphere.
  • the gas locker 8 may be any commercially available gas lock device that can realize the sheep opening and closing under the action of ash gravity, as long as it is a gas locker that can achieve the object of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Chimneys And Flues (AREA)
  • Furnace Details (AREA)

Description

灰渣集中输送冷却系统
技术领域 本发明属于燃煤锅炉干式排渣设备领域,具体涉及的是一种适用于干式排 渣系统中的灰渣集中输送冷却系统。 背景技术 随着科学技术的不断发展, 对灰渣综合利用水平和环保要求日益提高, 多数火力发电厂对燃煤锅炉炉底灰渣的处理已经摒弃了水力排渣水冷却的原 始处理技术, 而开始广泛采用电站燃煤锅炉干式排渣系统。 现有技术中的干式排渣系统主要由干式风冷钢带输渣机、 集中输送系统 和贮渣系统组成。 其主要工艺过程是在钢带输渣机输送 锅炉中排出的热渣 的同时, 在锅炉炉膛负压作用下, 吸入定量的环境空气, 与热渣进行热交换, 使得环境空气的温度升高而灰渣本身温度降低; 吸收灰渣热量的环境空气从 锅炉排渣口返回输入到炉膛, 从而提高锅炉的热效率。 与钢带输渣机相连的集中输送系统, 一般采用的输送方式是机械输送。 在多数情况下, 经钢带输渣机传输过程没有冷却到理想温度的灰渣, 需要在 后续的集中输送系统中继续对其进行冷却, 而继续冷却的方式大多仍是采用 风冷的方式。 那么带着灰渣热量的环境空气在穿过钢带输渣机后, 会通过设 置于钢带输渣机出渣口处的下渣管继续通过灰渣集中输送系统。 这部分经升 温后的环境空气由于吸收了热量, 所以和热灰渣之间的温差就会相对变小, 那么其吸热能力将会大大降低, 相应地其对热灰渣的冷却效果也受到很大影 响。 那么上述情况就引出了现有技术中所存在的问题, 即如何处理利用在热 灰渣冷却过程中各传输阶段传递的热量, 如何对经钢带输渣机冷却热灰渣后 的热空气进行封闭或引流, 从而可以在灰渣集中输送系统中引入完全室温的 环境空气, 更好地对灰渣进行第二阶段的冷却。 在现有技术中, 锁气器是一种常用的实现密封或者启闭的装置, 它有效 地解决了在很多工艺过程中的 "窜气" 现象。 根据其实现工作的不同方式, 常用的锁气器可以分为: 緩沖锁气器、 电动锁气器、 重锤锁气器、 斜板式锁 气器和锥式锁气器等。 发明内容 本发明所要解决的技术问题是提供一种可用于干式排渣系统中的灰渣集 中输送冷却系统, 该系统可对经钢带输渣机冷却热灰渣后的热空气进行隔离, 使得整个系统可以在灰渣集中输送系统中引入完全室温的环境空气, 更好地 实现对灰渣进行第二阶段的冷却的目的。 为实现上述目的, 本发明所述的灰渣集中输送冷却系统包括一个外壳, 在所述外壳上设置进渣口和出渣口; 所述进渣口通过下渣管与钢带输渣机的 出口连接, 所述出渣口与一个输送管道密封连接, 所述输送管道通向一个 渣仓的顶部, 所述输送管道与所述贮渣仓密封连接; 在所述下渣管与钢带输 渣机连接处设置锁气器;; 在所述外壳上开设至少一个进风口, 所述灰渣集中 输送冷却系统还设置有出风口和至少一个用于在所述外壳内形成负压的装 置。
所述形成负压的装置可以为设置于所述贮渣仓顶部的引风机; 所述出风 口设置于渣仓顶部。
所述出风口还可以设置于所述灰渣集中输送冷却系统外壳的一端, 且该 出风口通过与其密封连接的热风管与锅炉炉膛或大气连通; 所述形成负压的 装置为设置于所述热风管上的冷却风机。
所述进风口至少为两个, 其可以在所述进风口设置单向进气阀, 从而成 为单向进风口, 其可以分别设置于所述外壳的两个侧部且以所述外壳的侧部 中线为对称轴呈对称设置。
在本发明中, 灰渣集中输送冷却系统外壳侧部进风口的设置位置以及设 置的个数取决于灰渣集中输送冷却系统外壳的长度以及其对灰渣的处理能 力; 此外, 进风口的大小也要与其长度相协调; 对于一定长度的灰渣集中输 送冷却系统而言, 进风口太小使得其内部的空气流动速度太慢, 而进风口太 大又不易保持空气在其外壳内的流动, 容易散失, 所以, 需要通过热力学平 衡计算, 来更精确地确定每个单方向进风口的大小; 从而, 在此基础上, 进 一步确定形成负压的装置的选型。 通过选择合适的单方向进风口的位置、 个 数以及大小, 配合出风口以及与上述设置相匹配的形成负压的装置, 从而提 高灰渣集中输送冷却系统内部整体的风流速, 更好地达到冷却热灰渣的目的。
就本发明中所述的出风口的设置, 可以设置单一的或者复数个出风口于 贮渣仓的顶部, 那么相应地也将在贮渣仓顶部设置多个形成负压的装置; 也 可以在贮渣仓顶部设置出风口的同时, 在灰渣集中输送冷却系统外壳的一端 设置一个或多个出风口, 这些出风口通过与热风管连接, 从而将带有灰渣热 量的空气通过热风管再次进入锅炉炉膛或者通入大气。 设置在上述两个位置 的出风口可以同时使用, 也可以对其进行选择性地使用。
本发明具有如下优点:
( 1 )在灰渣集中输送冷却系统中加入锁气器使得经钢带输渣机与热灰渣 进行热交换后, 温度升高后的环境空气不再进入下一个冷却环节, 避免了对 冷却效果的影响; 同时也能够使得带有热灰渣热量的环境空气尽可能多地进 入锅炉炉膛, 从而提高了锅炉的热效率;
( 2 )在灰渣集中输送冷却系统的灰渣集中输送冷却装置外壳上设置多个 装有单向进气阀的单向进风口, 同时设置可在所述灰渣集中输送冷却装置外 壳内形成负压的装置, 如引风机或冷却风机, 可使得环境空气在灰渣集中输 送冷却装置内部更好地进行流通;
( 3 )在灰渣集中输送冷却系统的灰渣集中输送冷却装置中选择性地在其 与锅炉炉膛之间设置热风管和冷却风机, 可以使在灰渣集中输送冷却装置中 环境空气与灰渣进行热交换后所得的能量通过热风管再次进入炉膛内, 提高 锅炉的热效率。
附图说明
附图 1 是设置有两个可使灰渣集中输送冷却系统外壳内部形成负压的装 置的灰渣集中输送冷却系统的装置图。
附图 2是在贮渣仓顶部设置可使灰渣集中输送冷却系统外壳内部形成负 压的引风机的灰渣集中输送冷却系统的装置图。
附图 3 是在热风管上设置可使灰渣集中输送冷却系统外壳内部形成负压 的冷却风机的灰渣集中输送冷却系统的装置图。
附图 4是在贮渣仓顶部设置可使灰渣集中输送冷却系统外壳内部形成负 压的引风机, 且同时设置环境空气支路的灰渣集中输送冷却系统的装置图。
附图中各标号分别表示为:锅炉一 1 ;钢带输渣机一 2; 贮渣仓一3; 外壳一 4; 进渣口一5; 出法口一6; 下渣管一7; 锁气器一 8; 输送管道一 9; 引风机一 10; 出风口一11 ; 进风口一12; 热风管一13; 冷却风机一14。 上述附图中单 箭头所指出的即是环境空气进入灰渣集中输送冷却系统中的流向。 真体实施方式 以下将结合附图, 使用以下实施例对本发明进行进一步阐述。
图 1 是灰渣集中输送冷却系统的装置图。 从图中可以看到灰渣集中输送 冷却系统包括一个外壳 4, 在所述外壳 4上设置进渣口 5和出渣口 6; 进渣口 5通过下渣管 7与钢带输渣机 2密封连接,且在下渣管 7与钢带输渣机 2连接 处设置锁气器 8; 出渣口 6与一个输送管道 9密封连接, 所述输送管道 9通向 一个贮渣仓 3的顶部, 且输送管道 9与贮渣仓 3密封连接; 在贮渣仓 3顶部 设置有可在灰渣集中输送冷却装置外壳内形成负压的装置引风机 10和出风口 11。
在灰渣集中输送冷却系统的外壳 4两侧各开设有三个进风口 12, 在所述 进风口内部设置单向进气阀, 从而实现所述进风口的单向进气。 此外, 在所 迷灰渣集中输送冷却系统的外壳 4一端还设置有出风口 11,该出风口 11与热 风管 13密封连接, 热风管 13可以选择性地与锅炉 1炉膛或大气连通。 为了 提高灰渣集中输送冷却系统内部的空气流通效率, 还在热风管 13上设置有冷 却风机 14。
在锅炉 1排渣时, 热灰渣通过锅炉 1排渣口进入钢带输渣机 2, 热灰渣在 钢带输渣机 2作用下緩慢前行直至与灰渣集中输送冷却系统的下渣管 7连接 处, 在这过程中, 热灰渣与由进气口进入的环境空气进行热交换, 使得自身 温度降低, 同时带走热灰渣热量的环境空气温度升高。 由于在钢带输渣机 2 和灰渣集中输送冷却系统的下渣管 7连接处设置有锁气器 8,所以在钢带输渣 机 2内吸收热量后的环境空气大部分都可以进入锅炉 1炉膛内部以提高锅炉 1 的热效率。
被钢带输渣机 2输送到灰渣集中输送冷却系统的下渣管 7处的灰渣, 通 过下渣管 7进入灰渣集中输送冷却系统中, 此时开启引风机 10和设置于热风 管 13上的冷却风机 14。还带有一定温度的热灰渣在灰渣集中输送冷却系统内 部的输送设备作用下向出渣口 6方向緩慢运行; 在此过程中, 由于引风机 10 和冷却风机 14的共同作用, 在灰渣集中输送冷却系统外壳 4内部形成了一定 的负压, 从而使得环境空气通过上述 12个单向进风口内设置的单向进气阀进 入外壳 4内, 并进一步在灰渣集中输送冷却系统外壳 4内部、 输送管道 9以 及贮渣仓 3内部进行充分地流通, 在将灰渣传输至出渣口 6的过程中, 使用 环境空气对热灰渣进行风冷却。 从而确保热灰渣进入贮渣仓 3 时, 其温度已 经降到了安全温度范围, 特别是当经冷却后的灰渣进入贮渣仓 3后, 上述风 冷却系统依然可以继续对其内部灰渣进行一定程度地冷却。 此外, 与热灰渣 进行热交换后升温的环境空气也会有一部分通过热风管 13循环进入锅炉 1炉 膛内部, 进一步提高锅炉 1的热效率。
当然, 作为本实施例的另一种选择, 所述经过热风管 13输出的热环境空 气也可以直接通入大气中。 如图 2所示, 是在贮渣仓顶部设置可使灰渣集中输送冷却系统外壳内部 形成负压的引风机的灰渣集中输送冷却系统的装置图。 从图中可以看到灰渣 集中输送冷却系统包括一个外壳 4,在所述外壳 4上设置进渣口 5和出渣口 6; 进渣口 5通过下渣管 7与钢带输渣机 2密封连接, 且在下渣管 7与钢带输渣 机 2连接处设置锁气器 8; 出渣口 6与一个输送管道 9密封连接, 所述输送管 道 9通向一个贮渣仓 3的顶部, 且输送管道 9与贮渣仓 3密封连接; 在贮渣 仓 3顶部设置有可在灰渣集中输送冷却装置外壳内形成负压的装置引风机 10 和出风口 11。 在灰渣集中输送冷却系统的外壳 4一侧开设有四个进风口, 在另一侧开 设有三个进风口, 在所述进风口内部设置单向进气阀, 从而实现所述进风口 的单向进气。
在锅炉 1排渣时, 热灰渣通过锅炉 1排渣口进入钢带输渣机 2, 热灰渣在 钢带输渣机 2作用下緩慢前行直至与灰渣集中输送冷却系统的下渣管 7连接 处, 在这过程中, 热灰渣与由进气口进入的环境空气进行热交换, 使得自身 温度降低, 同时带走热灰渣热量的环境空气温度升高。 由于在钢带输渣机 2 和灰渣集中输送冷却系统的下渣管 7连接处设置有锁气器 8,所以在钢带输渣 机 2内吸收热量后的环境空气大部分都可以 i^锅炉 1炉膛内部以提高锅炉 1 的热效率。
被钢带输渣机 2输送到灰渣集中输送冷却系统的下渣管 7处的灰渣, 通 过下渣管 7进入灰渣集中输送冷却系统中, 此时开启引风机 10。 还带有一定 温度的热灰渣在灰渣集中输送冷却系统内部的输送设^ 用下向出渣口 6方 向缓慢运行; 在此过程中, 由于引风机 10的作用, 在灰渣集中输送冷却系统 外壳 4内部形成了一定的负压, 从而使得环境空气通过上述 12个单向进 口 内设置的单向进气岡进入外壳 4内,并进一步在灰渣集中输送冷却系统外壳 4 内部、 输送管道 9以及贮渣仓 3内部进行充分地流通, 在将灰渣传输至出渣 口 6 的过程中, 使用环境空气对热灰渣进行风冷却。 从而确保热灰渣进入贮 渣仓 3 时, 其温度已经降到了安全温度范围, 特别是当经冷却后的灰渣进入 贮渣仓 3后, 上述风冷却系统依然可以继续对其内部灰渣进行一定程度地冷 却。
从上述描述可以看出, 由于锁气器 8的设置使得经钢带输渣机 2升温后 的环境空气不会进入到灰渣集中输送冷却系统中, 也就不会影响到在该系统 中进入的环境空气对热灰渣的冷却效率。
需要说明的是, 从理论上讲, 只要在外壳 4上开设至少一个进风口 12 , 和至少一个引风机 10和出风口 11,本实施例所述的灰渣集中输送冷却系统即 可实现其目的, 本发明的进风口 12、 引风机 10和出风口 11的设置应该理解 为本发明的一个实施例。 附图 3是在热风管上设置可使灰渣集中输送冷却系统外壳内部形成负压 的冷却风机的灰渣集中输送冷却系统的装置图。 从图中可以看到灰渣集中输 送冷却系统包括一个外壳 4, 在所述外壳 4上设置进渣口 5和出渣口 6; 进渣 口 5通过下渣管 7与钢带输渣机 2密封连接, 且在下渣管 7与钢带输渣机 2 连接处设置锁气器 8; 出渣口 6与一个输送管道 9密封连接, 所述输送管道 9 通向一个贮渣仓 3的顶部, 且输送管道 9与贮渣仓 3密封连接。
在灰渣集中输送冷却系统的外壳 4两侧各开设有三个进风口 12, 在所述 进风口内部设置单向进气阔, 从而实现所述进风口的单向进气。 此外, 在所 述灰渣集中输送冷却系统的外壳 4一端还设置有出风口 11,该出风口 11与热 风管 13密封连接, 热风管 13可以选择性地与锅炉 1炉膛或大气连通。 为了 提高灰渣集中输送冷却系统内部的空气流通效率, 还在热风管 13上设置有冷 却风机 14。
在锅炉 1排渣时, 热灰渣通过锅炉 1排渣口进入钢带输渣机 2, 热灰渣在 钢带输渣机 2作用下緩慢前行直至与灰渣集中输送冷却系统的下渣管 7连接 处, 在这过程中, 热灰渣与由进气口进入的环境空气进行热交换, 使得自身 温度降低, 同时带走热灰渣热量的环境空气温度升高。 由于在钢带输渣机 2 和灰渣集中输送冷却系统的下渣管 7连接处设置有锁气器 8,所以在钢带输渣 机 2内吸收热量后的环境空气大都分都可以进入锅炉 1炉膛内部以提高锅炉 1 的热效率。
被钢带输渣机 2输送到灰渣集中输送冷却系统的下渣管 Ί处的灰渣, 通 过下渣管 7进入灰渣集中输送冷却系统中, 此时开启设置于热风管 13上的冷 却风机 14。 还带有一定温度的热灰渣在灰渣集中输送冷却系统内部的输送设 备作用下向出渣口 6方向缓慢运行; 在此过程中, 由于冷却风机 14的作用, 在灰渣集中输送冷却系统外壳 4 内部形成了一定的负压, 从而使得环境空气 通过上述单向进风口内设置的单向进气阀进入外壳 4 内, 并进一步在灰渣集 中输送冷却系统外壳 4内部、 输送管道 9以及贮渣仓 3内部进行充分地流通, 在将灰渣传输至出渣口 6 的过程中, 使用环境空气对热灰渣进行风冷却。 从 而确保热灰渣进入贮渣仓 3时, 其温度已经降到了安全温度范围。 与此同时, 与热灰渣进行热交换后升温的环境空气会通过热风管 13循环进入锅炉 1炉膛 内部, 进一步提高锅炉 1的热效率, 或者直接通入大气中。 需要说明的是, 在实际工程操作中, 在出渣口处由于系统排渣量和出渣 口口径大小设置不相匹配, 会出现在出渣口处由于排渣量太大而导致环境空 气在出渣口滞留, 使得环境空气无法在输送管道内正常流通; 所以为了解决 上述问题, 可以选择在出渣口侧部开通另一个环境空气支路连接到输送管道 上即可(参见图 4 ), 上述设置适用于本发明所述的集中输送冷却系统的任一 实施例。 本发明所述的锁气器 8可以是任何市售的可以在灰渣重力作用下实 现羊向启闭的锁气装置, 只要是可以实现本发明所述发明目的的锁气器均适 用。
虽然本发明已经通过具体实施方式对其进行了详细阐述, 但是, 本专业 普通技术人员应该明白, 在此基础上所做出的未超出权利要求保护范围的任 何形式和细节的变化, 均属于本发明所要保护的范围。

Claims

1.一种灰渣集中输送冷却系统, 包括一个外壳, 在所述外壳上设置进渣口 和出渣口, 所述进渣口通过下渣管与钢带输渣机的出口连接, 所述出渣口 与一个输送管道密封连接, 所述输送管道通向一个贮渣仓的顶部, 所述输 送管道与所述贮渣仓密封连接, 其特征在于, 在所述下渣管与钢带输渣机 连接处设置锁气器; 在所述外壳上开设至少一个进风口, 所述灰渣集中输 送冷却系统还设置有出风口和至少一个用于在所述外壳内形成负压的装 置。
2.根据权利要求 1 所述的灰渣集中输送冷却系统, 其特征在于, 所述形成. 负压的装置为设置于所述贮渣仓顶部的引风机; 所述出风口设置于渣仓顶 部。
3.根据权利要求 1 所述的灰渣集中输送冷却系统, 其特征在于, 所述出风 口设置于所述灰渣集中输送冷却系统外壳的一端, 且该出风口通过与其密 封连接的热风管与锅炉炉膛或大气连通; 所述形成负压的装置为设置于所 述热风管上的冷却风机。
4.根据权利要求 1 所述的灰渣集中输送冷却系统, 其特征在于, 所述进风 口设置单向进气阀。
5.根据权利要求 1所述的灰渣集中输送冷却系统, 其特征在于, 所述进风口 至少为两个, 分别设置于所述外壳的两个侧部且以所述外壳的侧部中线为 对称轴呈对称设置。
PCT/CN2008/001973 2007-12-06 2008-12-05 Système central de transport et de refroidissement de mâchefer WO2009074017A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009130103/03A RU2483249C2 (ru) 2007-12-06 2008-12-05 Система централизованной транспортировки и охлаждения шлака

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNU2007201906199U CN201152532Y (zh) 2007-12-06 2007-12-06 灰渣集中输送冷却系统
CN200720190619.9 2007-12-06

Publications (1)

Publication Number Publication Date
WO2009074017A1 true WO2009074017A1 (fr) 2009-06-18

Family

ID=40128211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001973 WO2009074017A1 (fr) 2007-12-06 2008-12-05 Système central de transport et de refroidissement de mâchefer

Country Status (5)

Country Link
CN (1) CN201152532Y (zh)
MY (1) MY157286A (zh)
RU (1) RU2483249C2 (zh)
TR (1) TR200907585T1 (zh)
WO (1) WO2009074017A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108561891A (zh) * 2018-06-04 2018-09-21 中国恩菲工程技术有限公司 出渣系统
CN112444134A (zh) * 2020-10-19 2021-03-05 雷波凯瑞磷化工有限责任公司 一种黄磷炉渣烟气收集及其余热利用的设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201152532Y (zh) * 2007-12-06 2008-11-19 北京国电富通科技发展有限责任公司 灰渣集中输送冷却系统
CN101456492B (zh) * 2008-12-30 2011-08-24 无锡湖光工业炉有限公司 生物质电厂飞灰气力输送工艺及设备
CN102269415B (zh) * 2011-04-26 2013-07-31 中国电力工程顾问集团西南电力设计院 一种省煤器灰的输送系统
CN103423732B (zh) * 2013-09-03 2015-05-20 孝感市保东新型节能燃料有限公司 一种利用农作物秸秆代替燃煤的改进型锅炉
CN107091481A (zh) * 2017-04-10 2017-08-25 河北工程技术高等专科学校 一种干式排渣系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259285A (ja) * 1995-03-20 1996-10-08 Nkk Corp 焼却灰溶融スラグを用いた舗装材等の製造方法
CN2330876Y (zh) * 1998-06-16 1999-07-28 龚辉勤 空冷式双质体振动冷渣机
CN2354959Y (zh) * 1998-07-09 1999-12-22 东南大学 制取中热值煤气的植物秸杆热解炉
JP2006105485A (ja) * 2004-10-05 2006-04-20 Babcock Hitachi Kk 灰処理装置
CN101008492A (zh) * 2006-01-24 2007-08-01 北京国电富通科技发展有限责任公司 燃煤锅炉干式排渣装置
CN201152532Y (zh) * 2007-12-06 2008-11-19 北京国电富通科技发展有限责任公司 灰渣集中输送冷却系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1043424A1 (ru) * 1982-01-22 1983-09-23 Производственное Объединение По Наладке,Совершенствованию Технологии И Эксплуатации Электростанций И Сетей "Союзтехэнерго" Предприятия "Уралтехэнерго" Установка дл удалени высококальциевых золошлаков

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259285A (ja) * 1995-03-20 1996-10-08 Nkk Corp 焼却灰溶融スラグを用いた舗装材等の製造方法
CN2330876Y (zh) * 1998-06-16 1999-07-28 龚辉勤 空冷式双质体振动冷渣机
CN2354959Y (zh) * 1998-07-09 1999-12-22 东南大学 制取中热值煤气的植物秸杆热解炉
JP2006105485A (ja) * 2004-10-05 2006-04-20 Babcock Hitachi Kk 灰処理装置
CN101008492A (zh) * 2006-01-24 2007-08-01 北京国电富通科技发展有限责任公司 燃煤锅炉干式排渣装置
CN201152532Y (zh) * 2007-12-06 2008-11-19 北京国电富通科技发展有限责任公司 灰渣集中输送冷却系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108561891A (zh) * 2018-06-04 2018-09-21 中国恩菲工程技术有限公司 出渣系统
CN108561891B (zh) * 2018-06-04 2024-04-12 中国恩菲工程技术有限公司 出渣系统
CN112444134A (zh) * 2020-10-19 2021-03-05 雷波凯瑞磷化工有限责任公司 一种黄磷炉渣烟气收集及其余热利用的设备

Also Published As

Publication number Publication date
RU2009130103A (ru) 2011-02-10
TR200907585T1 (tr) 2010-03-22
RU2483249C2 (ru) 2013-05-27
MY157286A (en) 2016-05-31
CN201152532Y (zh) 2008-11-19

Similar Documents

Publication Publication Date Title
WO2009074017A1 (fr) Système central de transport et de refroidissement de mâchefer
CN102099573A (zh) 高温放热物体储存堆场发电装置
WO2010057439A1 (zh) 一种环冷机烟气再利用方法和系统、及环冷机
CN204224467U (zh) 石灰窑及电石生产系统
CN105674760A (zh) 一种联合空冷系统及控制方法
CN201884079U (zh) 利用煅烧车间导热油炉余热的汽轮发电机组回热系统
CN107741021B (zh) 一种风冷干渣机炉渣显热回用系统
CN201688713U (zh) 烧结余热发电烟气温度调节装置
CN203927989U (zh) 一种锅炉用多级旋转式暖风器
CN207945086U (zh) 一种生物质电厂用空压机冷却水换热装置
CN206638079U (zh) 一种发电厂开式循环冷却水回水热量回收利用系统
CN109268920A (zh) 一种汽轮机房余热利用采暖通风系统
CN107781829A (zh) 一种能实现临时停炉保温的旋转rto炉体及其保温方法
CN207797652U (zh) 一种螺旋式烘干设备及系统
CN208983903U (zh) 一种复合式发电机冷却系统
CN103353241A (zh) 一种封闭式多通道强制通风冷却的空冷系统及工作方法
CN102997487B (zh) 一种船用尾气余热吸收式制冷机用的热源控制装置
CN209857611U (zh) 一种粮食烘干塔热风产生及输送装置
CN208084938U (zh) 一种在电缆料输送过程中冷却电缆料的装置
CN203177670U (zh) 烧结冷却机尾部低温烟气余热利用装置
CN206129611U (zh) 一种双级罗茨鼓风机的气体降温装置
WO2016162205A1 (en) Energy storage system and method
CN204006089U (zh) 火力发电厂汽轮机乏气热交换系统
CN206330463U (zh) 土壤修复热脱附系统的冷却塔除灰装置
CN202973652U (zh) 一种船用尾气余热吸收式制冷机用的热源控制装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2009130103

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5023/DELNP/2009

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08858543

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009/07585

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08858543

Country of ref document: EP

Kind code of ref document: A1