WO2009065519A1 - Procédé pour mesurer la force qui agit sur un objet capturé dans une pincette/un piège optique et pincette/piège optique - Google Patents

Procédé pour mesurer la force qui agit sur un objet capturé dans une pincette/un piège optique et pincette/piège optique Download PDF

Info

Publication number
WO2009065519A1
WO2009065519A1 PCT/EP2008/009582 EP2008009582W WO2009065519A1 WO 2009065519 A1 WO2009065519 A1 WO 2009065519A1 EP 2008009582 W EP2008009582 W EP 2008009582W WO 2009065519 A1 WO2009065519 A1 WO 2009065519A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
laser
light
optical
beam splitter
Prior art date
Application number
PCT/EP2008/009582
Other languages
German (de)
English (en)
Other versions
WO2009065519A8 (fr
Inventor
Andy Sischka
Dario Anselmetti
Original Assignee
Universität Bielefeld
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Bielefeld filed Critical Universität Bielefeld
Publication of WO2009065519A1 publication Critical patent/WO2009065519A1/fr
Publication of WO2009065519A8 publication Critical patent/WO2009065519A8/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/32Micromanipulators structurally combined with microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the invention relates to a method for measuring the force acting on an object trapped in an optical tweezers / trap in which light scattered back from the object being trapped by the optical tweezer / trap lens is detected by a detector and determines the force from the detector signal becomes.
  • the invention furthermore relates to an optical tweezers / trap, comprising an objective for focusing a laser radiation for capturing an object in the focal region of this laser radiation and having a detector for detecting a detector signal which generates the laser light backscattered by an object through the objective onto the detector; wherein based on the detector signal acting on an object force can be determined.
  • optical traps or optical tweezers which are essentially synonymous terms for the same arrangement
  • objects for observation or manipulation are caught in a strong laser light, here in particular in the focal range of a laser beam, the focus being produced by a correspondingly suitable objective.
  • it is of interest to measure the forces acting on the trapped object by measurement. It is known to perform a metrological detection by means of the backscattered at the trapped object light.
  • Such a measurement in back reflection is known in the art, wherein in a possible application of the original laser beam in back reflection is also used as a detector beam.
  • This method is based on the fact that the laser beam first passes through a beam splitter, which is intended to deflect the backscattered light from the direction of backscattering.
  • known conventional beam splitters are used, usually with a beam splitting ratio of 50 to 50, so that on the one hand, the irradiated to generate the optical trap laser beam is attenuated, since only the transmitted portion is available for the generation of the trap and also has the disadvantage in that the backscattered light in the beam splitter is also attenuated, since only the reflected component is reflected by the backscattered component in accordance with the beam splitter ratio of the beam splitter used, that is, for example, also only 50%.
  • the beam splitter ratio of the beam splitter used that is, for example, also only 50%.
  • a further device or method is known, according to which a laser beam generating the trap is beamed into the optical trap in an exactly parallel manner into this optical path, with a very low intensity Object backscattered light of this additional laser beam is detected and evaluated.
  • this laser beam can for example take place in that a separate laser beam is used with a shorter wavelength, this laser light, for example, by means of a dichroic filter on and the backscattered light from the beam path of the laser beam forming the trap can also be decoupled again.
  • this separate laser beam which serves as a separate detection beam, must also pass through a beam splitter in order to be directed to the dichroic mirror and also to transmit the returning light on the return path so that this light can fall on the detector and not into the generating laser runs back.
  • the object of the invention is therefore to provide a method for measuring the force by evaluating the backscattered on an object in the case laser light of the illuminating laser beam and thus with a so-called single-beam optical tweezers, which does not have the aforementioned features, provides higher overall intensities , provides a high trap quality and requires less adjustment accuracy compared to the prior art.
  • the object is furthermore to provide a suitable optical tweezers or an arrangement of optical elements for forming such an optical tweezers or trap.
  • this object is achieved in that a used for generating the optical tweezers / trap, in a first direction linearly polarized laser beam passes through a polarizing beam splitter, then passes through a polarization rotating element and an objective, the laser beam through the polarization rotating element circularly polarized and through the lens is focused and captures an object in the focus area and further wherein the object trapped by the object backscattered light of the same laser beam, the polarization rotating element in the reverse direction is linearly polarized by this polarization rotating element in a second direction perpendicular to the first direction and the polarizing beam splitter happens, wherein the polarizing beam splitter the illuminating laser beam and the backscattered laser light separates and the backscattered laser light is detected by the detector.
  • the object is further achieved by an optical tweezers / trap of the aforementioned type, which in a common region of the beam path of incident and backscattered laser beam a polarizing beam splitter and this in the direction of the illuminating laser beam subsequent polarization rotating element umfas'st to form an optical switch between incident laser radiation and the laser light scattered back on the object by the objective laser light of the same laser beam, wherein the detector is arranged in the separate from the incident laser light beam path of the backscattered light.
  • the essential core idea of this method or of the named device is therefore to use the original laser beam used to form the trap as well as a detection beam without using a necessarily attenuating beam splitter, which is realized here in that the used beam splitter compared to Prior art has polarizing properties, ie the laser light of an excellent linear polarization direction can pass through the beam splitter without being deflected and laser light of a perpendicular linear polarization is reflected by the beam splitter out of the beam direction.
  • Such a beam splitter which may be formed for example as a beam splitter cube, serve as an optical switch for laser beams of mutually perpendicular Poiarisationsraumen.
  • a polarization-rotating element in that, for example, a lambda quarter plate is used to move the original illuminating laser light from the first linear polarization into a circular polarization corresponding to the direction of rotation of the polarization-rotating element, ie For example, to convert a left or a right circular polarization.
  • circularly polarized light in the optical trap or tweezers in the focus area is used for holding an object by the following objective, whereas linearly polarized light is used in the usual way in the prior art.
  • the backscattered light is separated from the originally incident laser light by the polarizing beam splitter, which now follows the polarization-rotating element in the rear beam path and can fall in a separate beam path on the detector, where this backscattered laser light detected and a corresponding signal is formed, which with regard to the force, in particular with regard to at least two, preferably of three dimensions can be evaluated.
  • the polarizing beam splitter and the polarization-rotating element form an optical switch, which separates the beam path of the incident laser light from the beam path of the backscattered laser light at the location of the beam splitter.
  • the polarizing beam splitter has the particular advantage over conventional beam splitters that, in the aforementioned embodiment of the beam splitter in transmission for the illuminating laser beam, this laser light substantially passes through the beam splitter to a proportion of greater than 95% and the backscattered laser light becomes one Share of greater than 95%, optionally greater than 98% reflected. Intensity losses due to such a polarizing beam splitter element are therefore negligible in the method according to the invention or the optical tweezers according to the invention, so that, compared with the arrangements in the prior art, significantly higher intensities of the backscattered light are present at the detector.
  • the intensity of the incident light on the detector is therefore only a few percent less than the proportion of the light scattered back to the trapped object, especially where the losses are typically in the range of a few percent, whereas in the prior art methods the intensities would be attenuated to less than a quarter, namely half of the first passage through the beam splitter and again by half in the repeated passage of the backscattered light plus any further reflection and absorption losses.
  • a telescope in particular one and the same telescope is used, which may be constructed, for example, of lenses or from concave mirrors.
  • Such a telescope is intended to widen the incident laser beam to produce the optical trap before passing through the lens.
  • the laser beam should have a diameter which is approximately 20-50% larger than the rear aperture of the trapping objective used.
  • the laser beam must be widened in typical cases to about 10 millimeters, which is to be understood here only as an example and not limiting for the invention.
  • the polarizing beam splitter may be introduced into the beam path where the laser beam has already been widened, i. after such a telescope arrangement.
  • a four-quadrant detector is used as the detector for detecting the backscattered light in order to carry out the measurement of the force.
  • the telescope arrangement thus acts for the incident, forming the trap laser beam straightening while reducing the divergence, whereas for the backscattered light telescope this arrangement reduces the beam while increasing the deflections that has experienced the backscattered light on the trapped object.
  • this telescope arrangement thus amplifies the lateral deflection of the backscattered light by the magnification factor of the expanding system in the incident laser light beam path, which increases the sensitivity of the detector to the smallest deflections of the trapped object and thus also the force resolution.
  • the light spot of the backscattered light incident on the detector in this case is reduced almost exactly by the magnification factor of the beam widening, but the lateral deflection is increased by almost exactly this factor as well.
  • a quadrant detector instead of a quadrant detector to use a linear detector, which detects the usual lateral deflections of the backscattered beam with its sensitive detector surface and preferably generates over its entire detection range a signal that is proportional to the lateral deflection of the beam. This signal can be used to deduce the force in terms of magnitude and direction.
  • the polarization-rotating element facing the lens for example the lambda quarter plate
  • it can preferably be provided to slightly tilt this element in the beam path, at least so that back reflections are outside the detector range.
  • the force in the Z direction i. in the direction of the optical axis of the incident laser light of a trapped object.
  • the total intensity of the incident light on the detector can be measured and compared with a reference, if no external force in the Z direction acts on the captured object.
  • the angle of the beam cone of the backscattered light will be somewhat reduced or increased, resulting in the trap lens being more or less well-scattered light As a result, less or more scattered light through the edges of the objective lenses and the rear aperture of the lens dimmed. This results in an increase or even reduction in the intensity of the backscattered light, which can be evaluated to infer the force or direction of the acting force.
  • the method according to the invention or the device is also very unadjustable to adjustment, since the adjustment is maintained even during a movement of the objective, for example during a focusing, as in an inverted microscope.
  • the distance of the detector to the lens or focus can be set the same as the distance of the lens or focus to a pivot point of a pendulum motion of the illuminating laser beam.
  • a laser beam generated by a laser does not have an exactly constant propagation direction, but performs a pendulum motion, this pendulum motion being around a pivot point.
  • This movement is also referred to as the so-called beampoint instability of the laser.
  • Such a pendulum movement can therefore also lead to a falsification of the measurement results.
  • a method of the type described herein for evaluating the backscattered light also has the advantages that compared to other methods that make measurements on the basis of the light transmitted to the trapped object, now need no adjusting measuring devices on the optical trap.
  • the space above an optical trap thus remains free for arbitrary experimental setups.
  • the movement of the trapping objective no longer leads to readjustment, which would otherwise be required if, in the case of a force measurement in transmission after the object, another objective provided for the measurement would have to be used, which is always confocal with the other Lens to arrange would be.
  • a confocal arrangement eliminates any impairment, for example, due to mechanical vibrations.
  • Figure 1 shows an arrangement for measuring the force with backscattered
  • FIG. 1 shows a typical structure of an optical trap formed by a laser beam 1, which here passes through a lens 3 through a beam splitter 2 in order to be focused through it and in the focal region 4 to an optical trap for capturing an object not shown here form.
  • a laser beam 5 is first coupled in parallel by a beam splitter 6 and the beam splitter 2 mentioned in the beam path of the laser beam generating the trap 1 and also passes through the trap lens 3 and thus through the formed optical trap, where this detection beam 5 as well meets the captured object and is back-scattered at this.
  • the backscattered light is in turn reflected back after passing through the trap lens at the beam splitter 2, passes through the beam splitter 6, optionally a subsequent filter and incident on a detector 7 for receiving a detection signal and evaluation for determining the forces.
  • the arrangement shown here clearly shows the disadvantages of two beam splitters 2 and 6, at each of which significant reflection losses occur, wherein furthermore the additional detection laser beam 5 optionally generates a second optical trap which falsifies the measurement result.
  • the beam path of the detection beam 5 must be adjusted very accurately with respect to the beam path of the laser beam 1 in order to operate this measuring device.
  • Figure 2 shows a structure for forming an optical tweezers or case according to the invention and for carrying out the method according to the invention.
  • a laser beam 1 the only laser beam in this structure, which passes through the polarizing beam splitter 2 unhindered with an exemplary P polarization and passes through a subsequently arranged lambda quarter plate 8 with this P polarization, which is adjusted so that the incident Laser beam is right circular polarized now in this embodiment.
  • the circularly polarized laser light 1 then passes through the trap lens 3, is thereby focused and thus forms the optical trap for capturing an object, not shown here in the focal plane F.
  • the backscattered on a trapped object light also passes through in a rear beam path falling Objective 3, is now polarized left circular due to the exact reverse propagation direction, passes through the lambda quarter plate 8 in the rearward optical path, so that thereafter results in an S-polarized linear polarization of the backscattered light.
  • the backscattered light and the originally irradiated laser light of the same laser therefore have polarizations which are perpendicular to one another, which means that the backscattered light which is now polarized in S polarization is reflected at the polarizing beam splitter 2 out of the beam path in the direction of the right side in this illustration
  • the backscattered light can also pass through a filter 9 for blocking ambient light, which only allows the backscattered light to pass.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un procédé pour mesurer la force qui agit sur un objet capturé dans une pincette/un piège optique, avec lequel la lumière renvoyée par l'objet capturé à travers l'objectif de la pincette/du piège optique est captée par un détecteur et la force est déterminée à partir du signal du détecteur, avec lequel un rayon laser (1) à polarisation linéaire dans une première direction qui est utilisé pour générer la pincette/le piège optique passe par un séparateur de faisceaux polarisant (2) et traverse ensuite un élément de rotation de la polarisation (8) et un objectif (3). Selon l'invention, le rayon laser (1) se voit appliquer une polarisation circulaire par l'élément de rotation de la polarisation (8) et est concentré par l'objectif (3) puis capture un objet dans la zone de la concentration. Toujours selon l'invention, la lumière du même rayon laser (1) renvoyée à travers l'objectif (3) par l'objet capturé travers l'élément de rotation de la polarisation (8) dans le sens inverse, se voit appliquer une polarisation linéaire par cet élément de rotation de la polarisation (8) dans une deuxième direction perpendiculaire à la première direction et passe ensuite par le séparateur de faisceaux polarisant. Le séparateur de faisceaux polarisant (2) sépare le rayon laser d'éclairage (1) et la lumière laser renvoyée, et cette dernière est captée au moyen du détecteur (7). L'invention concerne également une pincette/un piège optique comprenant un objectif (3) pour concentrer un rayon laser (1) pour la capture d'un objet dans la zone de concentration de ce rayon laser (1) et comprenant aussi un détecteur (7) pour capter un signal de détecteur qui est généré par la lumière laser renvoyée par un objet sur le détecteur (7) à travers l'objectif (3). Selon l'invention, le signal du détecteur permet de déterminer une force qui agit sur l'objet et l'objet de l'invention comprend également un séparateur de faisceaux polarisant (2) dans une zone commune du trajet du rayon laser incident et renvoyé et, à la suite de celui-ci dans la direction du rayon laser d'éclairage (1), un élément de rotation de la polarisation (8) pour former un aiguillage optique entre le rayon laser incident (1) et la lumière laser renvoyée par l'objet à travers l'objectif (3). Toujours selon l'invention, le détecteur (7) est disposé dans le trajet du rayon de lumière renvoyé séparé de la lumière laser incidente (1).
PCT/EP2008/009582 2007-11-20 2008-11-13 Procédé pour mesurer la force qui agit sur un objet capturé dans une pincette/un piège optique et pincette/piège optique WO2009065519A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710055598 DE102007055598A1 (de) 2007-11-20 2007-11-20 Verfahren zur Messung der Kraft, die auf ein in einer optischen Pinzette/Falle gefangenes Objekt wirkt und optische Pinzette/Falle
DE102007055598.0 2007-11-20

Publications (2)

Publication Number Publication Date
WO2009065519A1 true WO2009065519A1 (fr) 2009-05-28
WO2009065519A8 WO2009065519A8 (fr) 2009-09-11

Family

ID=40394203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/009582 WO2009065519A1 (fr) 2007-11-20 2008-11-13 Procédé pour mesurer la force qui agit sur un objet capturé dans une pincette/un piège optique et pincette/piège optique

Country Status (2)

Country Link
DE (1) DE102007055598A1 (fr)
WO (1) WO2009065519A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010009858A1 (fr) * 2008-07-21 2010-01-28 Universität Bielefeld Procédé et dispositif de mesure de la force agissant sur un objet piégé dans un dispositif de piège optique
WO2011128192A1 (fr) 2010-04-14 2011-10-20 Carl Zeiss Microimaging Gmbh Procédés et dispositifs pour la détection de position et de force dans des pinces optiques
WO2011128193A1 (fr) 2010-04-14 2011-10-20 Carl Zeiss Microimaging Gmbh Procédés et dispositifs pour la détection de position et de force dans des pinces optiques
CN112730334A (zh) * 2020-12-23 2021-04-30 之江实验室 基于电偶极旋转散射光探测的纳米微粒识别装置和方法
CN112880912A (zh) * 2021-01-08 2021-06-01 浙江大学 基于真空全息光镊的空间分辨压强测量系统及方法
CN117253644A (zh) * 2023-11-20 2023-12-19 之江实验室 用于研究光诱导耦合相互作用的双光束真空光镊系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156755B2 (en) * 2019-03-28 2021-10-26 Facebook Technologies, Llc Aligning a polarization device using a spatially variant polarization element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012966A (ja) * 2002-06-10 2004-01-15 Keyence Corp 複数の光源を備えた顕微鏡
US20050146718A1 (en) * 2003-09-19 2005-07-07 Bustamante Carlos J. Light-force sensor and method for measuring axial optical-trap forces from changes in light momentum along an optic axis

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19757785B4 (de) * 1997-12-28 2005-09-01 Günter Prof. Dr. Fuhr Verfahren zur Bestimmung optisch induzierter Kräfte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012966A (ja) * 2002-06-10 2004-01-15 Keyence Corp 複数の光源を備えた顕微鏡
US20050146718A1 (en) * 2003-09-19 2005-07-07 Bustamante Carlos J. Light-force sensor and method for measuring axial optical-trap forces from changes in light momentum along an optic axis

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CARTER A R ET AL: "Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D", OPTICS EXPRESS 20071001 OPTICAL SOCIETY OF AMERICA US, vol. 15, no. 20, 1 October 2007 (2007-10-01), pages 13434 - 13445, XP002518631 *
DATABASE COMPENDEX [online] ENGINEERING INFORMATION, INC., NEW YORK, NY, US; "Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D", Database accession no. E20074110864646 *
DATABASE COMPENDEX [online] ENGINEERING INFORMATION, INC., NEW YORK, NY, US; Database accession no. E2005119000387 *
HUISSTEDE J H G ET AL: "Force detection in optical tweezers using backscattered light", OPTICS EXPRESS FEBRUARY 2005 OPTICAL SOCIETY OF AMERICA US, vol. 13, no. 4, February 2005 (2005-02-01), pages 1113 - 1123, XP002518632 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010009858A1 (fr) * 2008-07-21 2010-01-28 Universität Bielefeld Procédé et dispositif de mesure de la force agissant sur un objet piégé dans un dispositif de piège optique
WO2011128192A1 (fr) 2010-04-14 2011-10-20 Carl Zeiss Microimaging Gmbh Procédés et dispositifs pour la détection de position et de force dans des pinces optiques
WO2011128193A1 (fr) 2010-04-14 2011-10-20 Carl Zeiss Microimaging Gmbh Procédés et dispositifs pour la détection de position et de force dans des pinces optiques
DE102010027721A1 (de) 2010-04-14 2011-10-20 Carl Zeiss Microlmaging Gmbh Verfahren und Vorrichtungen zur Positions- und Kraftdetektion
DE102010027720A1 (de) 2010-04-14 2011-10-20 Carl Zeiss Microlmaging Gmbh Verfahren und Vorrichtungen zur Positions- und Kraftdetektion
CN112730334A (zh) * 2020-12-23 2021-04-30 之江实验室 基于电偶极旋转散射光探测的纳米微粒识别装置和方法
CN112730334B (zh) * 2020-12-23 2024-03-22 之江实验室 基于电偶极旋转散射光探测的纳米微粒识别装置和方法
CN112880912A (zh) * 2021-01-08 2021-06-01 浙江大学 基于真空全息光镊的空间分辨压强测量系统及方法
CN117253644A (zh) * 2023-11-20 2023-12-19 之江实验室 用于研究光诱导耦合相互作用的双光束真空光镊系统
CN117253644B (zh) * 2023-11-20 2024-02-20 之江实验室 用于研究光诱导耦合相互作用的双光束真空光镊系统

Also Published As

Publication number Publication date
DE102007055598A1 (de) 2009-05-28
WO2009065519A8 (fr) 2009-09-11

Similar Documents

Publication Publication Date Title
EP1372011B1 (fr) Microscope, en particulier microscope à balayage laser avec dispositif optique adaptif
WO2009065519A1 (fr) Procédé pour mesurer la force qui agit sur un objet capturé dans une pincette/un piège optique et pincette/piège optique
DE102011055294B4 (de) Mikroskopische Einrichtung und Verfahren zur dreidimensionalen Lokalisierung von punktförmigen Objekten in einer Probe
DE102010027720A1 (de) Verfahren und Vorrichtungen zur Positions- und Kraftdetektion
DE102015101251A1 (de) Optische Kohärenztomographie zur Messung an der Retina
EP0618439A1 (fr) Dispositif d'imagerie optique pour l'examen de milieux fortement diffusants
EP3948392B1 (fr) Procédé et dispositif de détection de déplacements d'un échantillon par rapport à un objectif
EP3100011B1 (fr) Caméra à propagation de faisceaux et procédé d'analyse de faisceaux lumineux
DE3610530A1 (de) Oberflaechenstrukturmessgeraet
DE102007003777A1 (de) Messvorrichtung und Verfahren zur optischen Vermessung eines Objektes
DE10024685A1 (de) Anordnung zur konfokalen Autofokussierung
DE102009036383B3 (de) Vorrichtung und Verfahren zur winkelaufgelösten Streulichtmessung
DE102011085599B3 (de) Vorrichtung und Verfahren zur interferometrischen Vermessung eines Objekts
DE102009012293A1 (de) Autofokusverfahren und Autofokuseinrichtung
DE102012106779A1 (de) Optik für Strahlvermessung
DE102011053003A1 (de) Verfahren und Vorrichtungen zur Weitfeld-Mikroskopie
DE102022210354A1 (de) Messverfahren der EUV-Reflektometrie und EUV-Reflektometer
DE102016108384B3 (de) Vorrichtung und Verfahren zur lichtblattartigen Beleuchtung einer Probe
DE102020134109B3 (de) Vorrichtung und Verfahren zur Fokuslagen-Bestimmung
DE102010027721A1 (de) Verfahren und Vorrichtungen zur Positions- und Kraftdetektion
DE102008034089A1 (de) Verfahren und Vorrichtung zur Messung der Kraft, die auf ein in einer optischen Fallenanordnung gefangenes Objekt wirkt
DD279962A1 (de) Konfokales laserrastermikroskop
DE102009021096A1 (de) Verfahren und Vorrichtung zum Bestimmen des Polarisationszustandes elektromagnetischer Strahlung
DE102022128898A1 (de) Interferenzreflexionsmikroskop und Verfahren zum Analysieren einer Probe
LU92846B1 (de) Verfahren und Beleuchtungsanordnung zum Beleuchten einer Probenschicht mit einem Lichtblatt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08851220

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08851220

Country of ref document: EP

Kind code of ref document: A1