WO2009063208A2 - Détection de protéases - Google Patents

Détection de protéases Download PDF

Info

Publication number
WO2009063208A2
WO2009063208A2 PCT/GB2008/003833 GB2008003833W WO2009063208A2 WO 2009063208 A2 WO2009063208 A2 WO 2009063208A2 GB 2008003833 W GB2008003833 W GB 2008003833W WO 2009063208 A2 WO2009063208 A2 WO 2009063208A2
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
amino acid
chromogenic
fragment
protease
Prior art date
Application number
PCT/GB2008/003833
Other languages
English (en)
Other versions
WO2009063208A3 (fr
Inventor
James Alexander Schouten
Original Assignee
Mologic Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2008322724A priority Critical patent/AU2008322724B2/en
Priority to NZ585207A priority patent/NZ585207A/en
Priority to JP2010533653A priority patent/JP5667877B2/ja
Priority to CN2008801158369A priority patent/CN101896272B/zh
Priority to EP08849127.9A priority patent/EP2222404B1/fr
Priority to CA2705432A priority patent/CA2705432A1/fr
Application filed by Mologic Ltd filed Critical Mologic Ltd
Priority to US12/742,867 priority patent/US8993253B2/en
Publication of WO2009063208A2 publication Critical patent/WO2009063208A2/fr
Publication of WO2009063208A3 publication Critical patent/WO2009063208A3/fr
Priority to ZA2010/03313A priority patent/ZA201003313B/en
Priority to IL205699A priority patent/IL205699A0/en
Priority to US14/553,182 priority patent/US9376706B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/505Containers for the purpose of retaining a material to be analysed, e.g. test tubes flexible containers not provided for above
    • B01L3/5055Hinged, e.g. opposable surfaces
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0808Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/583Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with non-fluorescent dye label
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped

Definitions

  • the present invention relates to a polypeptide comprising a chromogenic amino acid, a product incorporating such a polypeptide and a method of manufacturing such a polypeptide.
  • the invention also relates to a method of detecting a protease enzyme.
  • a number of reagents or compounds are known in the art for use in the measurement of proteolysis. These include synthetically modified polypeptide substrates which release an indicator moiety or labile molecule when cleaved proteolytically, such as synthetic polypeptides that have been modified as p-nitroanilides or napthylamines at their C-termini.
  • EP-A-0864864 discloses the detection of protease enzymes using DnP-PrO- ⁇ -CyCIoIIeXyI-AIa-GIy-CyS(Mu)-HiS-AIa-LyS(N-Me-AbZ)-NH 2 which is a fluorescent based peptide, rather than a chromogenic peptide. Plapinger et al. J. Org. Chem 1965, 30, 1781 report on chromogenic substrates, cleaved by trypsin, that are derivatives of arginine.
  • a p-nitroaniline is cleaved from the C-terminus of such a peptide substrate and liberated into the solution, an increase in UV absorbance can be measured.
  • the released chromogenic moiety can be trapped by an additional reporter molecule to produce a visible colour change.
  • the synthetic trypsin substrate N ⁇ -benzoyl-DL-arginine-/?-naphthalamine (BANA) is commonly used in assays for proteolytic activity, for example, to aid the diagnosis of periodontal disease.
  • the chromogenic protease substrates known in the art such as BANA, have their respective chromogenic moieties positioned at the C-terminus of the polypeptide (with the exception of Thiopeptolides, see below).
  • the problem with such chromogenic protease substrates is that, with the chromogenic moiety positioned at the C-terminus of the polypeptide, there is limited protease specificity due to the restricted format of the polypeptide lacking flanking amino acids.
  • the chromogenic peptides known in the art also have poor water solubility, and the synthesis of longer polypeptides adds complexity to the synthesis process. This makes formulation of the polypeptides difficult and adds to the cost of increasing manufacture of the polypeptides on a commercial scale.
  • the C-terminal chromogen cannot be conjugated to a solid surface in a straightforward manner, which limits the methods that can be employed for visualising a result of proteolysis using these polypeptides in a diagnostic.
  • Thiopeptolides as described in Weinberg er a/. Biochem, 1985, 24, 6730-6734, have chromogenic moieties internal to the peptide sequence, but do not use an amide bond.
  • the problem with peptide substrates based on Thiopeptolides is that, because they do not comprise the usual amide bond at the site of proteolytic cleavage, they may not offer maximal substrate recognition or turnover.
  • the present invention seeks to alleviate one or more of the above problems.
  • a polypeptide comprising a chromogenic amino acid, wherein the chromogenic amino acid is flanked by at least one amino acid to the N and C termini thereof.
  • the amine group of the chromogenic amino acid has a pKa of less than 5 and the chromogenic amino acid is capable of reacting with a conjugated aldehyde.
  • the polypeptide comprises a target sequence for a target protease which is capable of cleaving the peptide bond comprising the amino group of the chromogenic amino acid.
  • polypeptide comprising a chromogenic amino acid, wherein the chromogenic amino acid is flanked by at least one amino acid to the N and C termini thereof, the amine group of the chromogenic amino acid has a pKa of less than 5 and the chromogenic amino acid is capable of reacting with a conjugated aldehyde, and wherein the polypeptide comprises a target sequence for a target protease which is capable of cleaving the peptide bond comprising the amino group of the chromogenic amino acid.
  • the chromogenic amino acid comprises an aromatic ring moiety directly bonded to the nitrogen atom of the amino group of the chromogenic amino acid.
  • the chromogenic amino acid isosterically matches a natural amino acid.
  • the target sequence comprises the chromogenic amino acid.
  • the chromogenic amino acid is capable of reacting with the conjugated aldehyde to give a detectable signal, when the target sequence is cleaved.
  • the conjugated aldehyde is a substituted benzaldehyde or a cinnamaldehyde or a trans, trans phenyl pentadienal.
  • the conjugated aldehyde is DMAC or DMAB.
  • the aromatic moiety is a phenyl or naphthyl moiety.
  • the polypeptide is a linear polypeptide.
  • the polypeptide is immobilised on a solid surface at or near the C or N terminus of the polypeptide.
  • the polypeptide is covalently bound to the solid surface.
  • the polypeptide further comprises first and second binding moieties at or near the C or N terminus of the polypeptide.
  • the polypeptide is between 2 and 100 amino acids long, more preferably between 3 and 40 amino acids long.
  • a method of detection of a protease enzyme in a sample comprising the steps of:
  • step (i) comprises the protease enzyme cleaving the peptide bond of the polypeptide comprising the amino group of the chromogenic amino acid.
  • a method of manufacture of the invention comprising the steps of: i. synthesising an amino acid dimer comprising one chromogenic amino acid; and ii. incorporating the dimer into the remainder of the polypeptide during synthesis of the polypeptide.
  • step (ii) comprises coupling the dimer to a nascent oligopeptide.
  • a product for detecting a protease enzyme in a sample comprising: a polypeptide according to the invention; and a solid support, on which the polypeptide is immobilisable.
  • the product further comprises a conjugated aldehyde.
  • the solid support comprises first and second hingedly connected sheets, the polypeptide being immobilised on the first sheet and the conjugated aldehyde being located on the second sheet, such that folding the sheets together permits transfer of material from the first sheet to the second sheet.
  • the product further comprises a membrane interposable between the polypeptide immobilised on the first sheet and the conjugated aldehyde located on the second sheet, the membrane preventing passage of material having a size greater than a threshold size from the first sheet to the second sheet, the polypeptide being cleavable by a protease enzyme to release a fragment comprising the chromogenic amino acid, the fragment being smaller than the threshold size.
  • the solid support comprises a chromatographic medium.
  • the chromatographic medium further comprises a fragment binding molecule capable of binding a fragment of the polypeptide comprising the chromogenic amino acid releasable from the polypeptide following cleavage by a protease enzyme, the polypeptide being immobilisable on the chromatographic medium at a marking zone and the fragment binding molecule being immobilised on the chromatographic medium at a visualisation zone.
  • the polypeptide is cleavable into first and second fragments the first fragment comprising the chromogenic amino acid
  • the product further comprises: a detectable label associatable with the second fragment; and first and second capture molecules immobilised in or on the chromatographic medium, the first capture molecule being capable of binding the first fragment and the second capture molecule being capable of binding the second fragment or the detectable label.
  • the label comprises a binding component capable of binding the second fragment.
  • the chromatographic medium comprises a test strip.
  • the chromatographic medium comprises a column of porous material.
  • a synthetic polypeptide comprising a plurality of material amino acids and at least one chromogenic amino acid that isosterically matches a natural amino acid.
  • chromogenic amino acid in this specification means an amino acid molecule (containing an amino group and a carboxylic group) capable of changing colour.
  • it can form a coloured adduct measurable between 400 and 900nm, when it is positioned at the PT position in a protease cleavage site in a peptide substrate, liberated via proteolysis and subsequently reacted with a second molecule via covalent chemistry.
  • a "target protease” in this specification is defined as a protease that recognises and cleaves a target region on a chromogenic polypeptide, wherein the target region comprises a chromogenic amino acid at the P1 ' position of the cleavage site.
  • Natural amino acid means any one of the following amino acids: Alanine, Arginine, Asparagine, Aspartic acid, Cysteine, Glutamine, Glutamic acid, Glycine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Proline, Serine, Threonine, Tyrosine, Tryptophan and Valine.
  • a “flanked” amino acid in this specification is an amino acid that is linked to at least one further amino acid, wherein this linkage occurs via a peptide bond between the amino terminus of one amino acid and the carboxyl group of the other.
  • an “isosteric match" in this specification is used in association with a natural amino acid and a corresponding chromogenic amino acid. It means that the matched substituted chromogenic amino acid has a similar spacial occupancy to that of the natural amino acid it replaces.
  • a chromogenic amino acid can be considered to be an isosteric match for a natural amino acid if a protease specific for a peptide sequence comprising the natural amino acid will also cleave a polypeptide in which the chromogenic amino acid is substituted for the natural amino acid.
  • Figure 1 shows the reaction of a polypeptide of the present invention with a protease enzyme.
  • the sequence Ala-[pABA]-Gly is used as an example with pancreatic elastase for simplicity, where pABA replaces alanine amino acid.
  • Figure 2 shows a selection of chromogenic amino acids for use in embodiments of the present invention.
  • Figure 3 shows a perspective view of a product for detecting a protease enzyme in accordance with one embodiment of the present invention.
  • Figure 4 shows a cross sectional view of a product for detecting a protease enzyme in accordance with another embodiment of the present invention.
  • Figure 5 shows a plan view of a product for detecting a protease enzyme in accordance with a further embodiment of the present invention.
  • Figure 6 is a flow chart showing a method of synthesising a polypeptide in accordance with another embodiment of the present invention.
  • the sequence Val-Arg-[p-ABA]-Gly is used as an example synthesised on solid phase (resin depicted by circle).
  • the key reaction in the synthesis of the molecule is step iii). This reaction is not readily achievable with standard peptide chemistry using an activated ester of the incoming amino acid. However, using the acid chloride of the incoming amino acid substantially improves the reaction chemistry.
  • FIG. 7 shows images of the results of using a product for detecting a protease enzyme in accordance with one embodiment of the present invention and the resultant positive chromogenic reaction (positive protease sample).
  • B is a graphical representation of data obtained from an electronic reader with a positive [Top Line] and negative [Bottom Line] sample in a device in the style described in figure 3.
  • C is a graphical representation of the same positive protease sample compared with the commercially available chromogenic substrate Benzoyl-arginyl-naphthylamide (BANA). The chromogenic substrate shows improved enzyme turnover and colour production compared to BANA under identical conditions.
  • BANA commercially available chromogenic substrate Benzoyl-arginyl-naphthylamide
  • Figure 8A shows the results of a plate assay comparing AAPV-[pABA]-GGC and AAPV-[ANA]-GGC as elastase substrates.
  • Figure 8B shows the results of a vertical flow assay comparing AAPV-[pABA]-GGC and AAPV-[ANA]-GGC as elastase substrates.
  • Figure 9 shows the comparative structures of the chromogenic amino acids ANA (2- amino naphthoic acid) and pABA (para-amino benzoic acid).
  • Figure 10A show the electrospray mass spectrum of AAPV-[pABA]-GGC; the expected mass being 692.78, and the measured mass being 692.2.
  • Figure 10B shows the electrospray mass spectrum of AAPC-[ANA]-GGC; the expected mass being 742.84, and the measured mass being 742.4.
  • Figure 11 shows the 1 H NMR spectrum of Fmoc-Val-pABA-OH.
  • Figure 12 shows the elecrospray mass spectrum of AAPV-[pABA]-GGC synthesised using Fmoc-Val-pABA-GGC; the expected mass being 692.78, and the measured mass being 692.3.
  • a method of detecting a protease enzyme such as papain or trypsin in a sample comprises providing a receptacle in which is located a cleavable polypeptide in solution.
  • the cleavable polypeptide comprises from N-terminus to C-terminus the sequence alanine- [p-aminobenzoyl]-glycine. That is to say, the polypeptide comprises a chromogenic amino acid (p-aminobenzoic acid) flanked by two other amino acids (alanine and glycine) at its N and C termini.
  • Polypeptides such as this which comprise p- aminobenzoic acid, are colourless until cleaved and reacted with a second reagent.
  • the second reagent used in this embodiment is a conjugated aldehyde Dimethyl- amino-cinnamaldehyde (DMAC).
  • DMAC conjugated aldehyde Dimethyl- amino-cinnamaldehyde
  • the sample is placed within a vial and mixed with the polypeptide for a sufficient length of time for the target enzyme to cleave the peptide substrate, typically less than 10 minutes.
  • the protease cleaves the polypeptide sequence rapidly in less than 3 minutes due to the selected . amino acid sequence.
  • the protease enzyme cleaves the polypeptide at the peptide bond between the -CO- moiety of the alanine residue and the -NH- moiety of the p-aminobenzoic acid residue, as is shown in Figure 1.
  • This cleavage leads to the release of two molecules; a first molecule which is the free alanine residue and a second molecule which comprises the p-aminobenzoic acid residue coupled to the glycine residue.
  • the second molecule is a chromogenic intermediate.
  • the DMAC is added to the vial and mixed.
  • DMAC reacts with the chromogenic intermediate to form a coloured adduct under acidic conditions. More specifically, in a positive protease sample, the newly created chromogenic intermediate reacts with DMAC to produce a red colour. In contrast, in a negative protease sample, the substrate remains intact masking the pABA moiety rendering it un-reactive to the incoming DMAC.
  • the DMAC molecule itself is a yellow coloured compound under mildly acidic conditions and produces a yellow colour in the absence of exposed pABA.
  • the method of this embodiment of the invention gives rise to a production of colour in response to the presence (red) or absence (yellow) of a protease enzyme in a sample.
  • the peptide bond on the amino side of the chromogenic amino acid within the polypeptide is hydrolysed by the target protease, so exposing the amine group of the chromogenic amino acid.
  • the conjugated aldehyde is DMAC but alternative aldehydes can be used in other embodiments such as substituted benzaldehydes and cinnamaldehydes e.g. Dimethyl-amino-Benzaldehyde (DMAB).
  • each amino acid coupling is achieved by using the activated ester of the incoming amino acid.
  • an acid chloride is used to couple the incoming amino acid to the chromogenic residue. Efficiency improvements can be gained by synthesising a building block comprising the P1 amino acid and chromogen (PV) prior to the peptide synthesis, and introduced as the entire building block as a single moiety.
  • a building block is Fmoc-alanyi-para-aminobenzoic acid which may be added to a nascent polypeptide in the same way as an amino acid.
  • the length of the polypeptide typically ranges from 2 to 100 residues. It is easy to synthesise chromogenic polypeptides of various lengths using this method and automation of this method of manufacture is readily available. This is advantageous with regard to scaling-up production for commercial use. Also, the chromogenic polypeptides of the present invention have no known carcinogenic properties, therefore this would not be a safety issue in large scale manufacture.
  • the polypeptide comprises the chromogenic amino acid p- aminobenzoic acid.
  • a different chromogenic amino acid is used such as one shown in Figure 2.
  • These chromogenic amino acids contain an aromatic moiety (e.g. phenyl or naphthyl) or another heterocyclic analogue and the aromatic ring moiety is proximal to the amino group of the chromogenic amino acid (i.e. it is an aniline).
  • chromogenic acids are provided which do not comprise an aromatic ring moiety. What is important is that the amine group of the chromogenic amino acid has a pKa significantly lower (e.g.
  • any other amino acid (amino terminus or side chain) present in the polypeptide.
  • the chromogenic amine is at least partially deprotonated whereas the other amines in the structures present are virtually completely protonated. This permits the reaction with the conjugated aldehyde to occur predominantly with the chromogenic amino acid. It is also necessary, of course, for the chromgenic acid to be such that steric hindrance does not prevent interaction with the conjugated aldehyde.
  • the chromogenic amino acid used in the polypeptide is isosterically matched to a natural amino acid so as to mimic the structure of the substrate of the target protease as closely as possible. Therefore, chromogenic polypeptides with target regions that are specific for individual target proteases are synthesised.
  • the chromogenic amino acid may be positioned anywhere within the polypeptide peptide, with the proviso that it is not located at the C-terminus of the amino acid.
  • the polypeptides of the present invention are, in some embodiments, incorporated into a product for detecting a protease enzyme in a sample which takes the form of a booklet.
  • a suitable such booklet is disclosed in PCT application No. PCT/GB2007/000643 which is incorporated herein by reference.
  • FIG 3 a booklet 1 in accordance with this embodiment will now be described.
  • the booklet comprises first and second sheets 2, 3 of planar substrate such as cardboard, connected by a hinge 4.
  • a thin reaction film 25 on top of an absorbent pad 5.
  • the reaction film 25 is impregnated with the chromogenic polypeptide and can be made from PVA.
  • an aperture 6 which is aligned with the reaction film 25 and the absorbent pad 5.
  • the aperture 6 is covered by a visualisation film 7, such that the visualisation film 7 lies between the aperture 6 and the reaction film 25 when the first and second sheets 2, 3 are pressed against each other.
  • the visualisation film 7 is impregnated with DMAC and HCI.
  • the reaction film 25 and the absorbent pad 5 are covered with a removable film (not shown) prior to use so that the reaction film 25 and the absorbent pad 5 are kept sealed from the environment.
  • any removable film covering the reaction film 25 and the absorbent pad 5 is peeled away and a sample suspected of containing a protease enzyme is deposited on the reaction film 25 and soaks into the absorbent pad 5. If a protease is present in the sample then the protease cleaves the chromogenic polypeptide to release the chromogenic intermediate as has been described in the first embodiment.
  • the first and second sheets 2, 3 of the booklet 1 are then pressed together so that the components on the reaction film 25 are brought into contact with the visualisation film 7 and, more specifically, with DMAC.
  • the chromogenic intermediate passes from the reaction film 25 and the absorbent pad 5 on to the visualisation film 7 where it reacts with DMAC to form the coloured adduct.
  • the coloured adduct is red in colour and this is visible through the aperture 6 to a user of the booklet 1.
  • the chromogenic intermediate is not formed and the chromogenic polypeptide remains yellow in colour.
  • the visualisation film either retains its colour or is coloured yellow.
  • a membrane which covers the visualisation film and which does not allow material above a certain threshold size to pass through it.
  • the threshold is selected so that any material in the sample which naturally has a colour is too big to pass through the membrane but that the chromogenic intermediate is small enough to pass through the membrane and can therefore come into contact with the visualisation film and, more specifically, DMAC thereon.
  • a detection device 8 comprises a receptacle 9 having an upper section 10 with an opening 11 at its top end and, at its bottom, a funnel 12, connected to a neck 13.
  • the neck 13 is made from a transparent material such as perspex or glass and leads to an inverted funnel 14 which, in turn, is at the top of a lower section 15.
  • the neck 13 encloses a matrix 16 in which are immobilised a plurality of chromogenic polypeptides of the present invention.
  • the matrix 16 comprises a plurality of particles onto which the chromogenic polypeptide is covalently bonded at or near its C-terminus with an amide bond or via a thiol interaction (forming a thio ether).
  • “near” means within 10 or 20 amino acid residues of the C-terminus.
  • a sample suspected of containing a protease enzyme is added by the open end 11 of the upper section 10 of the receptacle 9 so that it flows into the funnel 12 and is slowly released into the matrix 16.
  • the sample passes through the matrix 16 at a constant rate by gravity and capillary action.
  • the protease in the sample cleaves the chromogenic polypeptide in the matrix 16 at the peptide bond between the -NH- moiety of the chromogenic amino acid and the -CO- moiety of the amino acid immediately adjacent in the N-terminal direction.
  • the N-terminal fragment of the chromogenic polypeptide is released and the chromogenic intermediate remains immobilised in the matrix 16.
  • the sample is washed through with a buffer so as to ensure that all N-terminal fragments are washed through the matrix 16 and into the lower portion 15 in the receptacle 9.
  • a container (not shown) holding a buffer including DMAC is located above the open end 11 of the upper portion 10 of the receptacle 9 and is punctured at its lower end so as to release the buffer into the funnel 12 of the receptacle 9.
  • the buffer containing DMAC flows through the matrix 16 and, where it comes into contact with the chromogenic intermediate, reacts with it to form the coloured adduct. Any excess DMAC flows through the substrate 16 and into the lower portion 15 of the receptacle 9.
  • the coloured adduct is red in colour and thus the presence of a protease in a sample results in the matrix 16 turning red. This is visible through the neck 13.
  • the chromogenic peptide in the matrix 16 remains uncleaved and thus there is no chromogenic intermediate for the DMAC to react with.
  • DMAC is yellow in colour and some remains in the matrix 16 by non-specific adhesion.
  • the matrix 16 turns yellow in colour.
  • the synthesis reaction often produces a proportion of incomplete polypeptides in which no amino acids are present attached to the N-terminus of the chromogenic amino acid. If the proportion of such incomplete polypeptides is significant then this can lead to false positive results because the incomplete polypeptides have the same structure as the chromogenic intermediate and are attached to the matrix 16 along with the complete polypeptides. Therefore, the incomplete polypeptides will react with DMAC and produce a colour change even in the absence of a protease in the sample. Accordingly, in some alternative embodiments, the chromogenic polypeptides are immobilised (e.g. covalently bonded) to the matrix 16 via their N-termini.
  • the chromogenic intermediate is released from the matrix 16 when a sample is applied that contains an active protease and an absorbent sump (e.g. a cotton wool bung) is provided beneath the matrix 16 in order to capture the released chromogenic intermediate and display the colour change.
  • an absorbent sump e.g. a cotton wool bung
  • the chromogenic polypeptide comprises first and second binding moieties at either end.
  • An example of the synthesis of such a polypeptide is provided in Example 2.
  • Biotin is bound to the C-terminal end of the polypeptide and Fluorescein is bound to the N- terminal end.
  • the chromogenic polypeptide is used in a bifunctional ligand capture protease detection assay involving lateral flow. Further details of a iateral flow assay are provided in PCT Application No. PCT/GB2007/000637 and GB0716492.4 which are incorporated herein by reference.
  • a lateral flow device 17 comprises a nitrocellulose strip 18 having an upstream end 22 and a downstream end 23.
  • a sample receiving zone 19 made from an absorbent material is located adjacent the upstream end 22. Further towards the downstream end 23 there is a first visualisation zone 20. Still further towards the downstream end 23 is a second visualisation zone 21.
  • the first visualisation zone 20 comprises a plurality of polypeptide binding molecules immobilised on the surface of the strip 18. Each of the polypeptide binding molecules is capable of binding the chromogenic polypeptide by its C-terminal end. In this particular embodiment, therefore, the first polypeptide binding molecule is streptavidin which can bind the biotin on the C-terminus of the polypeptide.
  • the second visualisation zone 21 comprises a plurality of anti-mouse antibodies, immobilised on the surface of the strip 18.
  • a sample suspected of containing a protease enzyme is mixed with a plurality of chromogenic polypeptides as described above.
  • the protease enzymes are allowed to cleave the polypeptide to release a chromogenic intermediate corresponding to the C- terminal end of the polypeptide and a fragment corresponding to the N-terminal end of the polypeptide.
  • mouse anti-FITC-gold antibodies which bind the fluorescein group attached to the N-terminal fragment.
  • the sample mixture is placed on the sample receiving zone 19.
  • the sample mixture is then adsorbed along the length of the nitrocellulose strip 18 due to capillary action towards the downstream end 23 in the direction of the arrow 24. Thus it passes through the first visualisation zone 20, then through the second visualisation zone 21.
  • the biotin tag binds to the streptavidin and the chromogenic intermediate is immobilised on the first visualisation zone 20.
  • the chromogenic intermediate remains bound to the first visualisation zone and the N-terminal fragment is adsorbed further along the nitrocellulose strip 20 to the second visualisation zone 21.
  • the anti-mouse antibodies bind to the mouse anti-FITC- GoId antibody, so immobilising the N-terminal fragment at the second visualisation zone 21
  • DMAC is added to the sample receiving zone 19 and it is adsorbed along the strip 18 in the direction of the arrow 24.
  • the DMAC reaches the first visualisation zone it reacts with the immobilised chromogenic intermediate and a red coloured adduct is formed.
  • the gold particles bound to the anti-FITC antibody can be observed as they form a visible line at the second detection zone 21 on the nitrocellulose strip 18.
  • the entire polypeptide is immobilised at the first detection zone as it is adsorbed along the nitrocellulose strip 18.
  • DMAC is added to the sample receiving zone 19, it is adsorbed along the nitrocellulose strip 18 but, since the chromogenic amino acid is not exposed on the polypeptide, the DMAC passes through the first detection zone without reacting.
  • the first detection zone 20 except for any residual DMAC, which is yellow in colour
  • the gold particles are concentrated at the first detection zone 20. Therefore, the absence of a functional protease enzyme from the sample is indicated by the presence of a visible line formed by the gold particles, instead of a red colour, at the first detection zone 20 and the absence of a visible line from the second detection zone 21.
  • this embodiment enables the detection of two waves of reactivity, one using DMAC and another using gold particle detection.
  • the first amino acid coupling was carried out using 0.23mmol PYBOP (benzotriazole-1 -yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate) and 0.23mmol HOBT (hydroxybenzotriazole) and 0.23mmol of protected glycine residue dissolved in 2 ml of dry DMF. 0.46mmol DIPEA (diisopropylethylamine) was added to the solution which was then dispensed into the resin. The resin slurry was stirred at room temperature for 90 minutes, before drainage under vacuum and rinsing with DMF (2 x 2 ml). A repeat reaction was carried out to make sure total coverage of the resin reactive sites.
  • PYBOP benzotriazole-1 -yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate
  • HOBT hydroxybenzotriazole
  • the resin was Fmoc-deprotected by adding a solution of 20% piperidine in the DMF (5 ml) and stirring for 5 min. The resin was then rinsed with DMF (2 x 2 ml) and the reaction repeated once more. The resin was rinsed thoroughly in DMF (3 x 2 ml), DCM (3 x 2 ml) and then finally DMF (2 ml). This reaction was then repeated for the remaining amino acid residues.
  • the acid chloride was prepared prior to coupling as follows.
  • Triphosgene (0.077mmol) and the Fmoc protected amino acid (0.23mmol) were dissolved in 1 ml of tetrahydrofuran (THF). 0.76mmol Collidine was added dropwise to the solution to create a white suspension. This was then added to the resin and mixed for 1 hour at room temperature. The reaction mixture was drained and rinsed with THF (2 x 2 ml) and DCM (3x2ml). The reaction was repeated to ensure completeness, and the resin was then drained and rinsed thoroughly with THF (2 x 2 ml), DCM (3 x 2 ml) and then DMF (2 ml). Deprotection was facilitated as described above.
  • THF tetrahydrofuran
  • the chromogenic polypeptide Val-Arg-[pABA]-Gly was used in an assay to detect the presence of papain in a sample solution.
  • a sample comprising the protease enzyme papain was applied to the first sheet of a booklet (see Figure 8A) in accordance with the embodiment depicted in Figure 3.
  • the first sheet of the booklet had previously been impregnated with the chromogenic polypeptide. After five minutes, the first and second sheets of the booklet were folded together.
  • the second sheet of the booklet had previously been impregnated with DMAC and after ten minutes DMAC changed from yellow to red as was observable through an aperture in the second sheet of the booklet.
  • the assay was also repeated, as a control, with water replacing the sample and the results of the colour change are shown in the graph in Figure 8B.
  • the protease assay was also repeated under identical conditions using BANA rather than the chromogenic polypeptide.
  • the rate of colour change detected during the assays were compared and the results are displayed graphically in Figure 8C.
  • Val-Arg- [pABA]-Gly was shown to elicit a faster detectable colour change than BANA (benzoyl arginyl naphthylamide), which is advantageous for an in situ detection device.
  • Example 3A The determination of a suitable chromoqenic substrate for detecting the presence of elastatse
  • AAPV-[pABA]-GGC and AAPV-[ANA]-GGC Two peptides, AAPV-[pABA]-GGC and AAPV-[ANA]-GGC, were synthesised, wherein pABA is para-amino benzoic acid and ANA is 2-amino naphthoic acid. Both peptides were tested for their suitability as a substrate for the Neutrophil Elastase enzyme.
  • the electrospray mass spectrums of AAPV-[pABA]-GGC and AAPV-[ANA]-GGC are shown in Figures 10A and 10B respectively.
  • Varying concentrations of Elastase (5 ⁇ l of 18, 9, 6 and 3 units/ml dilutions) were added to 0.5 mg/ml peptide (5 ⁇ l) in separate plate wells. The mixtures were diluted with 20 ⁇ l of Buffer (50 mM phosphate, 5 mM EDTA; pH 7.4) and incubated at 37 0 C for 30 minutes. 15 ⁇ l of working DMAC solution (0.3 mg/ml DMAC, 50 mM HCI) was added to each plate well and mixed thoroughly to visualize.
  • Buffer 50 mM phosphate, 5 mM EDTA; pH 7.4
  • working DMAC solution 0.3 mg/ml DMAC, 50 mM HCI
  • the wells with 0.5 units/ml elastase gave a weak positive result when mixed with AAPV-[pABA]-GGC (Pantone TM108U).
  • the control wells gave a negative result.
  • Another assay format was used to test for the activity of the enzyme Neutrophil Elastase in the presence of the two peptides, AAPV-[pABA]-GGC and AAPV-[ANA]- GGC.
  • the C-terminal cysteine group of the peptides was used as a means of conjugation to a solid surface.
  • Sintered polyethylene frits functionalised with iodoacetyl groups were rinsed in 50 mM sodium phosphate, 5 mM EDTA, pH 7.4 for 10 minutes. The frits were then transferred to a solution of 0.5 mg/ml peptide (in PBS) for sensitisation for 30 minutes. The frits were then rinsed once more in phosphate EDTA buffer for 10 minutes.
  • the frits were loaded into empty columns and 200 ⁇ l of elastase was added with an approximate flow contact time of 30 seconds.
  • 100 ⁇ l of working DMAC solution 0.3 mg/ml DMAC, 50 mM HCI was passed through the column.
  • Elastase substrates preferably have serine, threonine (both have hydrophilic side chains) or glycine in the PT position (Source: MEROPS database). Therefore, it is unlikely that a bulky chromogenic amino acid with a large hydrophobic surface would be a suitable steric match for these preferred amino acids.
  • the naphthoic acid (ANA) is bulkier and more hydrophobic than para-amino benzoic acid (pABA) and thus AAPV-[ANA]-GGC is a poor elastase substrate. The structures of both these molecules are shown in Figure 9.
  • AAPV- [pABA]-GGC is significantly more suitable as a substrate for elastase and results in elastase activity when the substrate and enzyme are mixed. Therefore, AAPV-[pABA]- GGC can be used in detecting the presence of elastase.
  • a new type of building block developed to improve the synthesis of peptides containing chromogenic amino acids was made, wherein the synthesis of said building block is compatible with automated synthesis.
  • the method used to synthesise this building block does not require the use of the BTC/collidine procedure described in Example 1.
  • the BTC/collidine procedure is effective but requires harsh conditions and produces an insoluble precipitate, making it unsuitable for use in conjunction with automated peptide synthesis.
  • the new type of building block was synthesised off-line and incorporates the P1 amino acid and the P1' chromogenic amino acid. It can be conveniently incorporated into a synthesis using the standard conditions employed for all the other amino acids in the sequence. Unwanted side reactions in the difficult coupling step are avoided, leading to a fast, clean procedure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

L'invention porte sur un polypeptide comportant un acide aminé chromogène. L'acide aminé chromogène est encadré par au moins un acide aminé aux extrémités terminales N et C de celui-ci. Le groupe amine de l'acide aminé chromogène a un pKa de moins de 5. L'acide aminé chromogène est capable de réagir avec un aldéhyde conjugué. Le polypeptide comporte une séquence cible pour une protéase cible qui est capable de cliver la liaison peptidique comportant le groupe amino de l'acide aminé chromogène.
PCT/GB2008/003833 2007-11-13 2008-11-13 Détection de protéases WO2009063208A2 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
NZ585207A NZ585207A (en) 2007-11-13 2008-11-13 Protease detection using a polypeptide comprising a chromogenic amino acid
JP2010533653A JP5667877B2 (ja) 2007-11-13 2008-11-13 プロテアーゼ検出
CN2008801158369A CN101896272B (zh) 2007-11-13 2008-11-13 蛋白酶检测
EP08849127.9A EP2222404B1 (fr) 2007-11-13 2008-11-13 Détection de protéases
CA2705432A CA2705432A1 (fr) 2007-11-13 2008-11-13 Detection de proteases
AU2008322724A AU2008322724B2 (en) 2007-11-13 2008-11-13 Protease detection
US12/742,867 US8993253B2 (en) 2007-11-13 2008-11-13 Protease detection
ZA2010/03313A ZA201003313B (en) 2007-11-13 2010-05-11 Protease detection
IL205699A IL205699A0 (en) 2007-11-13 2010-05-11 Protease detection
US14/553,182 US9376706B2 (en) 2007-11-13 2014-11-25 Protease detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0722287.0 2007-11-13
GB0722287A GB2454672A (en) 2007-11-13 2007-11-13 Chromogenic protease substrates

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/742,867 A-371-Of-International US8993253B2 (en) 2007-11-13 2008-11-13 Protease detection
US14/553,182 Division US9376706B2 (en) 2007-11-13 2014-11-25 Protease detection
US14/553,182 Continuation US9376706B2 (en) 2007-11-13 2014-11-25 Protease detection

Publications (2)

Publication Number Publication Date
WO2009063208A2 true WO2009063208A2 (fr) 2009-05-22
WO2009063208A3 WO2009063208A3 (fr) 2009-08-13

Family

ID=38896238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2008/003833 WO2009063208A2 (fr) 2007-11-13 2008-11-13 Détection de protéases

Country Status (11)

Country Link
US (2) US8993253B2 (fr)
EP (1) EP2222404B1 (fr)
JP (1) JP5667877B2 (fr)
CN (1) CN101896272B (fr)
AU (1) AU2008322724B2 (fr)
CA (1) CA2705432A1 (fr)
GB (1) GB2454672A (fr)
IL (1) IL205699A0 (fr)
NZ (1) NZ585207A (fr)
WO (1) WO2009063208A2 (fr)
ZA (1) ZA201003313B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013041879A2 (fr) 2011-09-23 2013-03-28 Systagenix Wound Management Ip Co. B.V. Pronostic d'une plaie
US9932622B2 (en) 2011-01-31 2018-04-03 Woundchek Laboratories B.V. Wound prognosis
US10234457B2 (en) 2012-04-20 2019-03-19 Mologic Limited Enzyme detection device
WO2020169987A1 (fr) 2019-02-22 2020-08-27 Mologic Limited Stratification de traitement pour une exacerbation d'inflammation
EP3745132A2 (fr) 2016-03-24 2020-12-02 Mologic Ltd Détection de la septicémie

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2435510A (en) 2006-02-23 2007-08-29 Mologic Ltd Enzyme detection product and methods
HUE033611T2 (en) 2008-09-17 2017-12-28 Chiasma Inc Pharmaceutical preparations and associated dosing procedures
US9212386B2 (en) 2011-07-22 2015-12-15 Rapid Pathogen Screening, Inc. Enzymatic cleavage based lateral flow assays
GB201206976D0 (en) 2012-04-20 2012-06-06 Mologic Ltd An enzyme detection device
JP6510747B2 (ja) * 2013-08-02 2019-05-08 東洋ビーネット株式会社 プロテアーゼ活性測定法
MA41462A (fr) 2015-02-03 2021-05-12 Chiasma Inc Méthode de traitement de maladies
GB201614053D0 (en) * 2016-08-17 2016-09-28 Microarray Ltd Determining the condition of a wound
CN106442969B (zh) * 2016-08-23 2018-08-31 中国人民解放军军事医学科学院微生物流行病研究所 一种用于检测肉毒毒素的试剂盒
US11141457B1 (en) 2020-12-28 2021-10-12 Amryt Endo, Inc. Oral octreotide therapy and contraceptive methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096642A1 (fr) * 2006-02-23 2007-08-30 Mologic Ltd Détection d'enzyme

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588836A (en) * 1982-09-01 1986-05-13 Toyo Jozo Kabushiki Kaisha Novel synthetic substrate and assay method using the same
JPS5988099A (ja) * 1982-11-15 1984-05-21 Toyo Jozo Co Ltd 新規な酵素活性の測定法
JPS5942350A (ja) * 1982-09-01 1984-03-08 Toyo Jozo Co Ltd 新規な合成基質を用いるL‐ロイシンアミノペプチダーゼおよびγ‐グルタミルトランスペプチダーゼからなる群より選ばれるペプチダーゼの活性測定法
DE3413311A1 (de) * 1984-04-09 1985-10-17 Behringwerke Ag, 3550 Marburg Reagenz zur bestimmung der thromboplastinzeit
HU194913B (en) * 1986-01-03 1988-03-28 Innofinance Altalanos Innovaci Process for producing novel gonadoliberin derivatives containing in the sixth position aromatic amino carboxylic acid and medical preparations containing these compounds
GB2435511A (en) * 2006-02-23 2007-08-29 Mologic Ltd Protease detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096642A1 (fr) * 2006-02-23 2007-08-30 Mologic Ltd Détection d'enzyme

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CRISTAU MICHELE ET AL: "Synthesis and biological evaluation of bombesin constrained analogues" JOURNAL OF MEDICINAL CHEMISTRY, vol. 43, no. 12, 15 June 2000 (2000-06-15), pages 2356-2361, XP002515934 ISSN: 0022-2623 *
CUI YONG-MEI ET AL: "Design and synthesis of chromogenic thiopeptolide substrates as MetAPs active site probes" BIOORGANIC & MEDICINAL CHEMISTRY, vol. 12, no. 11, 1 June 2004 (2004-06-01), pages 2853-2861, XP002515935 ISSN: 0968-0896 *
KNIGHT C G: "FLUROIMETRIC ASSAYS OF PROTEOLYTIC ENZYMES" METHODS IN ENZYMOLOGY, ACADEMIC PRESS INC, SAN DIEGO, CA, US, vol. 248, 1 January 1995 (1995-01-01), pages 18-34, XP000676587 ISSN: 0076-6879 *
QIAN Y ET AL: "Probing the hydrophobic pocket of farnesyltransferase: aromatic substitution of CAAX peptidomimetics leads to highly potent inhibitors." BIOORGANIC & MEDICINAL CHEMISTRY DEC 1999, vol. 7, no. 12, December 1999 (1999-12), pages 3011-3024, XP002515932 ISSN: 0968-0896 *
WEERAPANA ERANTHIE ET AL: "Peptides to peptidomimetics: towards the design and synthesis of bioavailable inhibitors of oligosaccharyl transferase." ORGANIC & BIOMOLECULAR CHEMISTRY 7 JAN 2003, vol. 1, no. 1, 7 January 2003 (2003-01-07), pages 93-99, XP002515933 ISSN: 1477-0520 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932622B2 (en) 2011-01-31 2018-04-03 Woundchek Laboratories B.V. Wound prognosis
WO2013041879A2 (fr) 2011-09-23 2013-03-28 Systagenix Wound Management Ip Co. B.V. Pronostic d'une plaie
US10234457B2 (en) 2012-04-20 2019-03-19 Mologic Limited Enzyme detection device
EP3745132A2 (fr) 2016-03-24 2020-12-02 Mologic Ltd Détection de la septicémie
WO2020169987A1 (fr) 2019-02-22 2020-08-27 Mologic Limited Stratification de traitement pour une exacerbation d'inflammation

Also Published As

Publication number Publication date
GB2454672A (en) 2009-05-20
IL205699A0 (en) 2010-11-30
NZ585207A (en) 2011-09-30
CN101896272A (zh) 2010-11-24
GB0722287D0 (en) 2007-12-27
AU2008322724A1 (en) 2009-05-22
EP2222404B1 (fr) 2018-08-01
JP2011503160A (ja) 2011-01-27
US9376706B2 (en) 2016-06-28
CA2705432A1 (fr) 2009-05-22
CN101896272B (zh) 2013-07-31
AU2008322724B2 (en) 2014-03-27
EP2222404A2 (fr) 2010-09-01
JP5667877B2 (ja) 2015-02-12
US20150152471A1 (en) 2015-06-04
WO2009063208A3 (fr) 2009-08-13
ZA201003313B (en) 2011-08-31
US20110086370A1 (en) 2011-04-14
US8993253B2 (en) 2015-03-31

Similar Documents

Publication Publication Date Title
US9376706B2 (en) Protease detection
JP5036307B2 (ja) プロテアーゼ検定
EP0518557B1 (fr) Procédé pour la détection des enzymes hydrolytiques
AU716309B2 (en) Screening of combinatorial peptide libraries for selection of peptide ligand useful in affinitypurification of target proteins
CA2203758C (fr) Compositions pour la detection de proteases dans des echantillons biologiques, et procedes d'utilisation de ces compositions
WO2002099078A2 (fr) Profilage proteomique fonctionnel
JP4562018B2 (ja) ペプチド固定化基板及びそれを用いた標的タンパク質の測定方法
CN101180405A (zh) 酶分析方法
WO2002038540A9 (fr) Reactif de profilage de cysteines proteases dependant de l'activite
KR970705025A (ko) 금속 킬레이트-표지화 펩티드
JPWO2005071056A1 (ja) バイオチップ及びそれを用いた試料溶液の機能性検査方法
WO2006075429A1 (fr) Particule pour la detection de l’activite enzymatique et procede et outil de detection de l’activite enzymatique l’utilisant
US20080050736A1 (en) Fluorescent Affinity Tag to Enhance Phosphoprotein Detection and Characterization
US20090018027A1 (en) Method for Producing Chemical Microarrays
EP1628998B1 (fr) Marqueur permettant de purifier des peptides
US20090258381A1 (en) Methods for Determining the Cleavability of Substrates
EP2545384B1 (fr) Méthode permettant de déterminer la concentration d'un peptide
KR102105157B1 (ko) 펩신에 의해 특이적으로 분해되는 펩타이드 및 이를 포함하는 역류성 인후두염 진단용 키트
CA2561411A1 (fr) Substance de marquage et substance chimere, leur procede de preparation, methode de piegeage de biosubstance, analyse structurelle et/ou identification a l'aide de la substance demarquage
JP2010122002A (ja) 抗体の検出方法及び該方法に用いられる試薬キット
WO2005035554A1 (fr) Materiau se liant a la dioxine et procede de detection ou de quantification de dioxine
Guo et al. A novel quantitative proteomics reagent based on soluble nanopolymers
CA2433880A1 (fr) Substrats peptidiques solubles dans l'eau, fluorescents, mobiles par electrophorese pour des reactions enzymatiques et leurs procedes d'utilisation dans des essais de criblage extremement productifs
JP2004357706A (ja) 酵素活性検出用基板及びそれを用いた酵素活性の検出方法
WO2005111229A1 (fr) Substrat pour la détection d'une activité enzymatique et procédé de détection d'une activité enzymatique avec celui-ci

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880115836.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08849127

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008322724

Country of ref document: AU

Ref document number: 585207

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2705432

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 205699

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2010533653

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3679/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2008322724

Country of ref document: AU

Date of ref document: 20081113

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008849127

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12742867

Country of ref document: US