WO2009061002A1 - Frigorigène contenant du hfc-1225ye et composition frigorigène contenant le frigorigène - Google Patents

Frigorigène contenant du hfc-1225ye et composition frigorigène contenant le frigorigène Download PDF

Info

Publication number
WO2009061002A1
WO2009061002A1 PCT/JP2008/070641 JP2008070641W WO2009061002A1 WO 2009061002 A1 WO2009061002 A1 WO 2009061002A1 JP 2008070641 W JP2008070641 W JP 2008070641W WO 2009061002 A1 WO2009061002 A1 WO 2009061002A1
Authority
WO
WIPO (PCT)
Prior art keywords
hfc
refrigerant
mol
refrigerator
mixed
Prior art date
Application number
PCT/JP2008/070641
Other languages
English (en)
Inventor
Takashi Shibanuma
Tatsumi Tsuchiya
Yasufu Yamada
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2009061002A1 publication Critical patent/WO2009061002A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds

Definitions

  • CFC chlorofluorocarbon
  • HCFC hydrochlorofluorocarbon
  • HFCs hydrofluorocarbons
  • dichlorodifluoromethane (R12) mainly used as a refrigerant for domestic refrigerators, car air conditioners, turbo refrigerators and container freezers, has been replaced by 1,1,1,2- tetrafluoroethane (HFC-134a) , in compliance with the above regulations.
  • Difluorochloromethane (R22) has been replaced by R410A, which is an HFC mixed refrigerant.
  • R410A which is an HFC mixed refrigerant.
  • the HFC used as a replacement has a high global warming potential (GWP) ; use of HFC is allowed only so long as the HFC is not emitted outside.
  • GWP global warming potential
  • HFC-134a is a refrigerant restricted by these regulations.
  • CO 2 carbon dioxide
  • Patent Document 1 Japanese Unexamined Patent Publication No. 1992- 110388 discloses using an HFC propene compound as a refrigerant. Specific examples thereof include fluoropropene (HFC-1261yf;
  • Patent Document 1 further describes using a mixture of an HFC propene compound and a known HFC compound, such as HFC-32.
  • Patent Document 2 (WO2004/037913) , as well as in Patent Document 1.
  • Patent Document 2 further describes using, as a refrigerant, a combination of a propene HFC compound and a known HFC compound.
  • Patent Document 2 mentions trifluoropropene
  • HFC-1243zf; CF 3 CH CH 3
  • Patent Document 3 U.S. Patent No. 7,279,451 discloses using HFC-1234yf and HFC-1225ye as refrigerants, and also discloses using a mixture of HFC-32 with HFC-1234yf or HFC-
  • Patent Document 4 discloses an HFC propene compound, and many mixture compositions containing ' the HFC propene compound. A combination of HFC-1225ye with HFC-32 is described as one of such mixtures. Patent Document 4 states that the HFC-32 content of the mixture composition is in the range of
  • Patent Document 4 describes HFC-32/HFC-1225ye mixtures having HFC-32 contents of 3%, 5%, 40%, 45%, and 50% in the Examples; however, it nowhere describes whether such mixture compositions are flammable.
  • HFC propene compounds have a global warming potential (GWP) of 10 at most, which is far lower than the GWP of refrigerants in current use, such as HFC134a
  • Non-Patent Document 1 (FluoroChemical Catalogue 2004,
  • SynQuest Laboratories, Inc. states that HFC-1225ye has a boiling point of -18°C, and is flammable.
  • Patent Document 4 states that HFC-1225ye is nonflammable, but there is no description regarding the flammability of a mixed refrigerant of HFC-1225ye and HFC-32.
  • HFC-1225ye may exist structurally as geometric isomers, i.e., as a cis-(Z) isomer and a trans- (E) isomer, and methods for producing these isomers are known; however, there is no description stating that these geometric isomers can be used as refrigerants (Non-Patent Document 2: J. Fluorine Chem. , 23 (1983)
  • Patent Document 3 J. Fluorine Chem., 44 (1989) 167).
  • Patent Document 5 (WO 2007/053688) discloses an azeotropic composition containing such geometric isomers and HF.
  • Patent Document 1 Japanese Unexamined Patent Publication No. -A-
  • Patent Document 2 WO 2004/037913
  • Patent Document 3 U.S. Patent No. 7,279,451
  • Patent Document 4 WO 2006/094303
  • Patent Document 5 WO 2007/053688
  • Non-Patent Document 1 FluoroChemical Catalogue 2004, SynQuest Laboratories, Inc.
  • Non-Patent Document 2 J. Fluorine Chem. , 23 (1983) 339
  • Non-Patent Document 3 J. Fluorine Chem., 44 (1989) 167 DISCLOSURE OF THE INVENTION
  • a principal object of the present invention is to provide: a refrigerant that has little effect on the ozone layer and on global warming (low GWP) , is nonflammable, and has refrigerant characteristics substantially equivalent to those of known HFC-134a (for car air conditioners) or R410A (for air conditioners) ; and a method of operating a refrigerator using the refrigerant .
  • HFC-134a for car air conditioners
  • R410A for air conditioners
  • HFC-32 difluoromethane
  • HFC-1225ye pentafluoropropene
  • the resulting mixture forms a nonflammable refrigerant, and a mixture containing HFC-1225ye and HFC-32 in specific proportions can achieve refrigeration performance equivalent to that of R410A.
  • pentafluoropropene containing 90 mol% or more of (Z)HFC-1225ye, which is a geometric isomer having a GWP of not more than 10 can be used as a replacement for HFC-134a in terms of performance, and is a nonflammable refrigerant.
  • the present invention provides the following nonflammable refrigerants, and methods of operating a refrigerator using such refrigerants.
  • Item 1 A refrigerant comprising HFC-1225ye containing 90 mol% or more of (Z)HFC-1225ye.
  • Item 2 A refrigerant comprising HFC-1225ye containing 95 mol% or more of (Z)HFC-1225ye.
  • Item 3 A method of operating a refrigerator using the refrigerant of Item 1 or 2.
  • Item 5 A mixed refrigerant of HFC-32 and HFC-1225ye containing 95 mol% or more of (Z)HFC-1225ye.
  • Item 4 or 5 in which the HFC-32 content is 10 to 35 mass%.
  • Item 7 A mixed refrigerant of HFC-32 and HFC-1225ye according to
  • Item 4 or 5 in which the HFC-32 content is 10 to 25 mass%.
  • Item 8 A method of operating a refrigerator using the mixed refrigerant of any one of Items 4 to 7.
  • a refrigerant composition comprising a mixed refrigerant of HFC-32 and HFC-1225ye containing 90 mol% or more of (Z)HFC-
  • the HFC-32 content in the vapor phase of the mixed refrigerant being not more than 74 mol% (53 mass%) at room temperature .
  • Item 10 A refrigerant composition according to Item 9 wherein the HFC-1225ye contains 95 mol% or more of (Z)HFC-1225ye.
  • Item 11 A refrigerant composition according to Item 9 or 10 comprising a refrigerator oil.
  • a refrigerant composition according to Item 11 comprising a drying agent.
  • Item 13 A refrigerant composition according to Item 11 or 12 comprising a stabilizer.
  • Item 14 A method of operating a refrigerator using the refrigerant composition of any one of Items 9 to 13.
  • HFC-1225ye is known to be usable as a refrigerant.
  • Non-Patent Document 1 states that HFC-1225ye has a boiling point of -18°C.
  • HFC-1225ye may exist structurally as geometric isomers called a "Z isomer” (cis isomer) and an “E isomer” (trans isomer) .
  • the "HFC-1225ye refrigerant” refers to one of, or a mixture of the geometrical isomers.
  • the inventors synthesized HFC- 1225ye by a standard method for producing HFC-1225ye that comprises bringing the starting material HFC-236ea (CF 3 CFHCHF 2 ) into contact with a catalyst at 350 0 C to remove HF.
  • HFC-1225ye produced under the above-mentioned reaction conditions is a mixture containing 86 mol% of the Z isomer and 14 mol % of the E isomer. Although separating these isomers had been nowhere disclosed, the present inventors found that the mixture can be completely separated into the Z isomer (hereinafter referred to as " (Z)HFC-1225ye”) and the E isomer (hereinafter referred to as "(E)HFC-1225ye”) by a usual distillation method.
  • the boiling point of HFC-1225ye currently known is -18 0 C (FluoroChemical Catalogue 2005, SynQuest Laboratories, Inc.).
  • Patent Document 5 states that the boiling point of (Z)HFC- 1225ye is -20 0 C.
  • the inventors determined the vapor pressure-temperature relationships of (Z) HFC-1225ye and (E) HFC-1225ye separated from each other. The results were fitted to the Antoine equation to calculate the boiling points of (Z)HFC- 1225ye and (E)HFC-1225ye, which were found to be -19.5°C and -15.3°C, respectively. The boiling point of the E isomer had been nowhere described. The ratio of (Z)HFC-1225ye and (E)HFC-
  • thermal equilibrium between (Z)HFC-1225ye and (E)HFC-1225ye, i.e., geometric isomers of HFC-1225ye.
  • the (Z)HFC-1225ye/(E)HFC-1225ye ratio (molar ratio) is 97/3 at 100 0 C, 91/9 at 25O 0 C, and 87/13 at 350 0 C.
  • the proportion of (E)HFC-1225ye in HFC- 1225ye increases.
  • the presence of thermal equilibrium indicates that the (E)HFC-1225ye content of the mixture that contains a high proportion, such as 50 mol% or more, of (E)HFC-1225ye may change over time.
  • the boiling point of the Z isomer is lower than that of the E isomer.
  • a higher Z isomer content is preferable as a low temperature refrigerant.
  • the E isomer content of the mixed refrigerant changes in a refrigerator, the refrigerant performance changes during use, which is not preferable.
  • the temperature in refrigerators is assumed not to exceed 250 0 C.
  • the Z isomer content would not become less than 90 mol%.
  • the mixture contains 95 mol% or more of the (Z) isomer, the change in the Z isomer content, if any, would have little effect on the refrigerant performance.
  • HFC-134a currently used as a refrigerant for car air conditioners, has a boiling point of -26 0 C.
  • the boiling points of the E isomer and Z isomer of HFC-1225ye obtained by the above measurements are -15.3°C and -19.5°C, respectively.
  • the Z isomer has a boiling point closer to that of HFC-134a, and is more suitable as a replacement for HFC-134a.
  • HFC-32 As a replacement for the R410A currently used as an air conditioner refrigerant has been studied. However, while HFC-32 has excellent refrigerant performance, it is slightly flammable; because of this major defect, HFC-32 cannot be used singly as a refrigerant.
  • a prior art publication states that 1225ye, with a boiling point of -18°C, is flammable.
  • the present inventors performed measurements (the ASHRAE method) and found that when a mixed refrigerant of (Z)HFC-1225ye and HFC-32 (a HFC- 32/HFC-1225ye mixed refrigerant) contains 26 mol% (47 mass%) or more of (Z) HFC-1225ye, the mixed refrigerant is nonflammable.
  • a nonflammable refrigerant can be produced by mixing (Z)HFC-1225 and HFC-32 in an appropriate ratio. This also indicates that HFC-1225ye is nonflammable.
  • the relationship between flammability and the mixing ratio of pentafluoropropene ((Z)HFC- 1225ye) and difluoromethane (HFC-32) having a flammable range was studied in the following manner.
  • the flammability was determined according to the ASHRAE method (a 1OL balloon flask, ignition by discharge, measured at 6O 0 C) .
  • the ASHRAE method is described in
  • flammability is evaluated based on the risk of the leaked gas mixture composition.
  • the leaked gas mixture composition is evaluated for combustion at a higher temperature selected from either -40 0 C or the temperature 1OK higher than the boiling point of the gas mixture.
  • a HFC-32/(Z)HFC-1225ye mixed refrigerant having a molar ratio of 30/70 is evaluated based on the leaked gas mixture composition (having a HFC-32/ (Z) HFC-1225ye molar ratio of 57/43) at -20 0 C, i.e., a temperature 1OK higher than the boiling point of the gas mixture.
  • the present inventors carried out measurements to determine the vapor-liquid equilibrium relationship of an HFC- 32/ (Z) HFC-1225ye mixed refrigerant. Using the obtained results, the inventors calculated the HFC-32/ (Z) HFC-1225ye mixing ratio in the liquid phase at a temperature 1OK higher than the boiling point of the mixed refrigerant to achieve an HFC-32/ (Z) HFC-1225ye mixing ratio in the vapor phase of 74/26 (mol % ratio) , which is the upper limit for nonflammability. The HFC-32/ (Z) HFC-1225ye mixing ratio was found to be 44/56 (mol% ratio) . The results revealed that a HFC-32/ (Z) HFC-1225ye mixed refrigerant containing 56 mol% or more of (Z)HFC-1225ye is nonflammable in both the liquid and vapor phases.
  • the refrigerant is usually mixed with a refrigerator oil, stabilizer, drying agent, etc., and used as a refrigerant composition in a refrigerator.
  • the refrigerant is required to be nonflammable particularly to avoid the ignition of refrigerant gas leaked from the refrigerator.
  • the flammable HFC-32 content in the vapor phase of the HFC-32/HFC-1225ye mixed refrigerant is higher than that in the liquid phase. Therefore, if the vapor phase of the HFC-32/HFC-1225ye mixed refrigerant is nonflammable, the leaked mixed refrigerant is nonflammable, whether the liquid or vapor phase of the mixture is leaked.
  • (Z)HFC-1225ye and HFC-32 form a non-azeotropic composition.
  • the HFC-32 content in the vapor phase is clarified after determining the vapor-liquid equilibrium of the refrigerant.
  • a practical HFC-32 content in the vapor phase also becomes clear from the vapor-liquid equilibrium of a refrigerant composition containing the refrigerant, a refrigerator oil, etc. For example, when HFC-32 is more soluble in a refrigerator oil than (Z)HFC- 1225ye, the HFC-32 content is reduced, compared to when using the refrigerant alone.
  • the upper limit for nonflammability is not an HFC content of 44%, but may be further increased, for example, by 10 mol%.
  • (Z)HFC- 1225ye and (E)HFC-1225ye are substantially the same in terms of making a HFC-32-containing refrigerant non-flammable.
  • the temperature 1OK higher than the boiling point of the HFC-32/HFC-1225ye mixed refrigerant of the invention is not higher than room temperature. Therefore, if the temperature is increased to room temperature, the HFC-32 content of the vapor phase of the mixed refrigerant is reduced. Thus, if the HFC-32 content in the vapor phase at room temperature is not beyond the upper limit for nonflammability, the refrigerant is completely safe in terms of flammability.
  • HFC- 1225ye contains 90 mol% or more, preferably 95 mol%, of (Z)HFC- 1225ye.
  • HFC-1225ye containing 99 mol% or more of (Z)HFC-1225ye, i.e., consisting substantially of only (Z)HFC-1225ye, may also be used as the refrigerant. It is also possible to use (Z)HFC-1225ye alone as the refrigerant.
  • the HFC-32 content of the mixed refrigerant is usually about 10 to about 35 mass%, and preferably about 10 to about 25 mass%.
  • the upper limit of the HFC-32 content depends on the flammability of the mixed refrigerant.
  • the maximum HFC- 32 content for nonflammability is 23 mass%.
  • This value of a refrigerant composition containing the refrigerant and a refrigerator oil, stabilizer, or the like varies depending on the solubility of the mixed refrigerant components in such an additive, and thus depends on the kind of additive used.
  • the starting HFC-32 content in a practical nonflammable refrigerant may be more than 23 mass%.
  • the starting HFC-32 content may be about 30 mass%; this value depends on the components of the refrigerant composition.
  • the refrigerating capacity is reduced. To compensate for the reduction of the refrigerating capacity, it is necessary to increase the proportion of HFC-32.
  • the global warming potential, GWP, of HFC-32 is about 600, and that of HFC-1225ye is not more than 10. If the HFC-32 content of the mixed refrigerant is halved, the global warming potential thereof can also be substantially halved. The reduction of the HFC-32 content can directly reduce the GWP of the mixed refrigerant. When using a mixed refrigerant containing (Z)HFC- 1225ye in place of (E)HFC-1225ye, the HFC-32 content can be reduced for the same refrigerating performance. The use of (Z)HFC-1225ye rather than (E)HFC-1225ye is also preferable from the viewpoint of global warming potential.
  • the mixture of HFC-1225ye and HFC-32 forms a non- azeotropic composition, and thus has a temperature glide (a temperature difference before and after evaporation) .
  • a comparison of (Z)HFC-1225ye and (E)HFC-1225ye shows that a mixture of (E) HFC-1225ye with HFC- 32 (at the maximum ratio for nonflammability) has a temperature glide of 10K, and a mixture of (Z)HFC-1225ye with HFC-32 (at the maximum ratio for nonflammability) has a temperature glide of 8K, which is lower.
  • the mixture of (Z)HFC-1225ye and HFC-32 can be more easily handled in a refrigerator.
  • the HFC-1225ye refrigerant or HFC-1225ye/HFC-32 mixed refrigerant of the invention may be mixed with at least one member selected from the group consisting of R-125, R-134a, R- 143a, R-152a, propane, propylene, isobutane, and cyclopropane, and used as a mixed refrigerant.
  • the mixing ratio is preferably selected so as to make the liquid and vapor phases of the mixed refrigerant nonflammable.
  • refrigerator oils used with the refrigerant of the invention include ester-based refrigerator oils and ether-based refrigerator oils.
  • the ester compound used as an ester-based refrigerator oil reacts easily with water because of its ester structure, and is thus prone to hydrolysis. Therefore, when water enters the system, the ester compound is hydrolyzed to produce carboxylic acid.
  • the carboxylic acid reacts with metals to form insoluble metallic soaps, thus leading to plugged capillaries of the refrigerator. Accordingly, when an ester-based refrigerator oil is used, water must be removed from the system.
  • One of the methods for doing so is removing water from the refrigerator oil using a drying agent such as zeolite.
  • zeolites are reactive with HFC-32 and refrigerator oils (ester-based oils, ether-based oils) .
  • the reaction increases the total acid value of the refrigeration system, which may result in corrosion and poor performance. Therefore, the drying agent to be used should be carefully selected.
  • zeolite is a crystalline aluminosilicate represented by Formula (3)
  • M represents a metal cation
  • n is a valence of the metal cation, and is usually a number from 1 to 2
  • a is a number from 2 to 10
  • b is a number from 2 to 7.
  • the metal cation include monovalent cations such as Li, Na, K and Cs, and divalent cations such as Mg, Ca, and Ba.
  • the zeolite include zeolites containing one or more types of metal cations.
  • a synthetic zeolite whose average pore diameter is smaller than the molecular diameter of HFC-32, more specifically a synthetic zeolite having an average pore diameter not larger than 3.0A is used as a drying agent for the working medium, halogenated hydrocarbons containing one carbon atom, such as HFC-32, in the refrigerant are prevented from being adsorbed and decomposed, and coexisting refrigerator oils for lubrication are protected from destabilization.
  • a synthetic zeolite whose average pore diameter is larger than the diameter of a water molecule more specifically a synthetic zeolite having an average pore diameter larger than 2.6 A, preferably 2.7 A or more, more preferably 2.8 A or more, and particularly preferably 2.9 A or more is used as a drying agent for the working medium
  • the working medium can be efficiently dehydrated (dried) .
  • the average pore diameter of the synthetic zeolite can be determined by the nitrogen adsorption method, observation under an electron microscope (TEM, SEM) , or like methods.
  • TEM, SEM electron microscope
  • an A-type zeolite containing Na and/or K as a metal cation more specifically a synthetic zeolite represented by Formula (4) , is used.
  • the amount of synthetic zeolite to be used is not lower than 0.2 wt. parts, preferably not lower than about 0.5 wt. parts, but not higher than about 3 wt. parts, and preferably not higher than about 2 wt. parts, per wt. part of the working medium circulating inside the refrigerator.
  • the configuration of the drying agent is not particularly limited.
  • the synthetic zeolite may be used in a powdery, granular or molded form.
  • the shape of the molded zeolite is not particularly limited and may be, for example, cylindrical, prism-shaped, or spherical. Binders may be used to mold the synthetic zeolite.
  • Usable binders include clay binders and silica binders.
  • clay binders include kaolin clays.
  • kaolin clays include kaolin minerals, serpentine minerals, chamosite, amesite, greenalite, cronstedtite, hydrated halloysite, halloysite, kaolinite, dickite, nacrite, chrysotile, antigorite, Zettlitz kaolin, Cornwall kaolin, Georgia kaolin, Hong Kong kaolin, Korean kaolin, Fuzhou clay, Gaerome clay, Seta kaolin, Iwate kaolin, Hijiori kaolin, Ibusuki kaolin, Kanpaku kaolin, and the like.
  • Such kaolins can be used singly or in a combination of two or more types.
  • the mixing ratio of the binder to the synthetic zeolite is not particularly limited. Generally, the proportion of the binder to the synthetic zeolite is not lower than 1 wt.%, preferably not lower than 10 wt.%, more preferably not lower than 20 wt.%, but not higher than 50 wt.%, preferably not higher than 40 wt.%, and more preferably not higher than 30 wt.%.
  • ether-based refrigerator oil an ether compound having at least one ether bonding group
  • ester-based refrigerator oil an ester compound having at least one ester bonding group
  • the ether-based refrigerator oil include alkyl ethers of polyglycols having oxyethylene units and/or oxypropylene units. Specific examples thereof are compounds represented by the following Formula (1) or (2) : R ⁇ O-XR 2 ( 1 )
  • X represents a (co)polymer unit of ethylene oxide and/or propylene oxide .
  • R 1 and R 2 are the same or different and each represent an alkyl group having 1 to 4 carbon atoms (methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl) .
  • R 3 , R 4 , and R 5 are the same or different and each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl) .
  • ester-based refrigerator oil examples include polyol esters synthesized by intermolecular dehydration of a straight- or branched-chain fatty acid having 2 to 9 carbon atoms, and an aliphatic polyhydric alcohol having 2 to 6 carbon atoms.
  • the fatty acid examples include methylhexanoic acid, n- heptanoic acid, trimethylhexanoic acid, and the like.
  • the polyhydric alcohol include pentaerythritol, trimethylolpropane, neopentylglycol, and the like.
  • the amount of refrigerator oil to be added to the refrigerant is about 0.5 to about 3 wt. parts, per wt. part of the refrigerant.
  • the nonflammable refrigerant of the invention has high stability.
  • stabilizers may be added to meet the requirement of high stability under severe conditions.
  • examples of such stabilizers include (i) aliphatic nitro compounds such as nitromethane and nitroethane; aromatic nitro compounds such as nitrobenzene and nitrostyrene; (ii) ethers such as 1, 4-dioxane; amines such as 2,2,3,3,3- pentafluoropropylamine and diphenylamine; butylhydroxyxylene, benzotriazole, etc.
  • the stabilizer contains at least one type of compound selected from the above compounds (i) , and may optionally contain at least one type of compound selected from the above compounds
  • the amount of stabilizer used may be any amount that does not impair the performance of the nonflammable composition, although it may vary depending on the type of stabilizer used.
  • the stabilizer is preferably used in an amount of about 0.1 to about 10 wt. parts, and more preferably about 0.1 to about 5 wt. parts, per 100 wt. parts of the composition.
  • the refrigerant of the invention has the following excellent characteristics.
  • Pentafluoropropene contained in the refrigerant of the invention does not contain chlorine or bromine. Therefore, even if the refrigerant of the invention is emitted into the atmosphere, there is no risk of ozone layer depletion.
  • Pentafluoropropene contained in the refrigerant of the invention has a low global warming potential (GWP) .
  • GWP global warming potential
  • Pentafluoropropene contained in the refrigerant of the invention is nonflammable. Therefore, a nonflammable refrigerant can be produced.
  • the refrigerant of the invention has refrigerant characteristics equivalent to those of known HFC-134a (for car air conditioners) or R410A (for air conditioners) . Therefore, the refrigerant is suitable for various uses.
  • the refrigerant capacity of (Z)HFC1225ye and HFC134a was determined using a calorimeter at an evaporation temperature of 5°C and a condensation temperature of 5O 0 C, with degrees of supercooling and superheating of 5°C.
  • the refrigerating capacities of (Z)HFC1225ye and HFC134a were 1,712 kJ/m 3 and 2,360 kJ/m 3 , respectively; and the COPs thereof were nearly equal, at about 5.0. It was revealed that (Z)HFC1225ye alone has a 73% refrigerating capacity relative to HFC134a. The capacity is presumably further increased by sacrificing the COP. Comparative Example 1
  • the refrigerant capacity was determined in the same manner as Example 1, except that (E)HFC1225ye was used in place of (Z)HFC1225ye or HFC134a. As a result, the refrigerating capacity was 1,539 kJ/m 3 , and the COP was 5.1. The refrigerating capacity of (E)HFC1225ye was 90% relative to that of (Z) HFC1225ye, and 65% relative to that of HFC134a.
  • the above demonstrates that when the HFC32 content in a HFC32/ (Z)HFC1225ye mixed refrigerant (liquid phase) is 2-3 mass% or less, both the liquid phase and gaseous phase of the mixed refrigerant have non-flammability, as determined by the ASHRAE method.
  • the measurement of the nonflammable range revealed that non-flammable refrigerants that can replace R410A can be formed.

Abstract

La présente invention concerne : un frigorigène qui a peu d'effet sur la couche d'ozone et sur le réchauffement de la planète (faible GWP), est non inflammable et présente des caractéristiques frigorigènes sensiblement équivalentes à celles du HFC-134a (pour climatiseurs de voitures) ou du R410A (pour climatiseurs) connus ; et un procédé d'utilisation d'un réfrigérant utilisant le frigorigène. L'invention concerne un frigorigène contenant du HFC-1225ye, qui contient 90 % en moles de (Z)HFC-1225ye, et un procédé d'utilisation d'un réfrigérant utilisant le frigorigène.
PCT/JP2008/070641 2007-11-09 2008-11-06 Frigorigène contenant du hfc-1225ye et composition frigorigène contenant le frigorigène WO2009061002A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US99629007P 2007-11-09 2007-11-09
US60/996,290 2007-11-09

Publications (1)

Publication Number Publication Date
WO2009061002A1 true WO2009061002A1 (fr) 2009-05-14

Family

ID=40394060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070641 WO2009061002A1 (fr) 2007-11-09 2008-11-06 Frigorigène contenant du hfc-1225ye et composition frigorigène contenant le frigorigène

Country Status (1)

Country Link
WO (1) WO2009061002A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037752A2 (fr) * 2002-10-25 2004-05-06 Honeywell International, Inc. Compositions a base de pentafluoropropene
US20050233932A1 (en) * 2004-04-16 2005-10-20 Honeywell International, Inc. Azeotrope-like compositions of tetrafluoropropene and pentafluoropropene
US20060243945A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
GB2437373A (en) * 2006-07-17 2007-10-24 Ineos Fluor Holdings Ltd Heat transfer compositions
WO2008076272A2 (fr) * 2006-12-15 2008-06-26 E. I. Du Pont De Nemours And Company Compositions contenant du 1,2,3,3,3-pentafluoropropène et présentant un rapport isomère z / isomère e optimisé aux fins d'efficacité de réfrigération

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037752A2 (fr) * 2002-10-25 2004-05-06 Honeywell International, Inc. Compositions a base de pentafluoropropene
US20050233932A1 (en) * 2004-04-16 2005-10-20 Honeywell International, Inc. Azeotrope-like compositions of tetrafluoropropene and pentafluoropropene
US20060243945A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
GB2437373A (en) * 2006-07-17 2007-10-24 Ineos Fluor Holdings Ltd Heat transfer compositions
WO2008076272A2 (fr) * 2006-12-15 2008-06-26 E. I. Du Pont De Nemours And Company Compositions contenant du 1,2,3,3,3-pentafluoropropène et présentant un rapport isomère z / isomère e optimisé aux fins d'efficacité de réfrigération

Similar Documents

Publication Publication Date Title
KR102017493B1 (ko) 열 전달 조성물 및 방법
US8246850B2 (en) Hydrofluoroolefin compositions
JP6852119B2 (ja) 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
JP6326061B2 (ja) 低gwpの熱伝達組成物
US8486294B2 (en) Hydrofluoroolefin compositions
ES2775880T3 (es) Composiciones que comprenden una fluoroolefina
JP6062061B2 (ja) 低gwpの熱伝達組成物
WO2019208384A1 (fr) Composition contenant un agent de refroidissement, milieu de transfert de chaleur et système à cycle de chaleur
TW201843291A (zh) 含有冷媒之組成物及其之應用
WO2019245045A1 (fr) Composition contenant un réfrigérant, son utilisation, réfrigérateur équipé de celle-ci, et procédé de fonctionnement pour ledit réfrigérateur
JP2013500373A (ja) 熱伝達方法
JP2017519060A (ja) 低gwpの熱伝達組成物
JP2009024152A (ja) 温暖化係数が低いトリフルオロヨードメタンとジフルオロメタンの不燃性組成物
JP2019194310A (ja) 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
WO2009104784A1 (fr) Composition réfrigérante mixte comprenant du hfc1234yf et du hfc125 et procédé de mise en service de réfrigérateurs l'utilisant
JP2022519506A (ja) フルオロオレフィンとフルオロアルカンの組成物
WO2018052000A1 (fr) Composition de milieu de travail à cycle thermique et système à cycle thermique
WO2009061002A1 (fr) Frigorigène contenant du hfc-1225ye et composition frigorigène contenant le frigorigène
WO2022030511A1 (fr) Composition contenant un fluide frigorigène, son utilisation, réfrigérateur la comprenant, et procédé de fonctionnement dudit réfrigérateur
WO2022131265A1 (fr) Composition contenant un fluide frigorigène, son utilisation, réfrigérateur doté de ladite composition, et procédé d'actionnement dudit réfrigérateur
JP2015500897A (ja) HFC−134aとHFO−1234yfとを含む組成物の新規な用途及びその共沸性組成物
JP2010285620A (ja) 冷媒組成物
JP2016513166A (ja) ジフルオロメタン及びフッ素置換オレフィンを含む組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08848017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08848017

Country of ref document: EP

Kind code of ref document: A1