WO2009060878A1 - 電気化学測定装置用電極およびバイオセンサ用電極 - Google Patents

電気化学測定装置用電極およびバイオセンサ用電極 Download PDF

Info

Publication number
WO2009060878A1
WO2009060878A1 PCT/JP2008/070156 JP2008070156W WO2009060878A1 WO 2009060878 A1 WO2009060878 A1 WO 2009060878A1 JP 2008070156 W JP2008070156 W JP 2008070156W WO 2009060878 A1 WO2009060878 A1 WO 2009060878A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrochemical measurement
measurement device
hydrogen peroxide
iridium
Prior art date
Application number
PCT/JP2008/070156
Other languages
English (en)
French (fr)
Inventor
Toru Matsumoto
Naoaki Sata
Yoko Mitarai
Original Assignee
Nec Corporation
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation, National Institute For Materials Science filed Critical Nec Corporation
Priority to US12/741,158 priority Critical patent/US8568578B2/en
Priority to JP2009540070A priority patent/JP5061375B2/ja
Publication of WO2009060878A1 publication Critical patent/WO2009060878A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood

Definitions

  • the present invention relates to an electrochemical measurement apparatus using an electrode for an electrochemical measurement apparatus and an electrode for an electrochemical measurement apparatus, a biosensor using an electrode for a biosensor and an electrode for a biosensor, and a bright production of an electrode for an electrochemical measurement apparatus.
  • the present invention relates to a method, a method of manufacturing an electrode for a biosensor, a method of measurement using an electrochemical measurement device, and a method of measurement using a Vodaf sensor.
  • the device for measuring the concentration of hydrogen peroxide in solution measures the concentration of hydrogen peroxide contained in the reducing agent used in the semiconductor manufacturing process and hydrogen peroxide contained in the sterilization and disinfectant solutions in the food manufacturing process. Therefore, it is widely used to measure hydrogen peroxide concentration in reactor water of a nuclear reactor.
  • An apparatus for measuring the concentration of hydrogen peroxide in a solution is, for example, one using an electrochemical reaction.
  • the electrode is immersed in a solution containing hydrogen peroxide, and a carbon electrode or a noble metal electrode such as platinum is used.
  • the measurement is performed by detecting the current value obtained at the time of application.
  • a measuring device for measuring the concentration of substances contained in a wide variety of solutions a measuring device combining catalytic reaction of proteins and electrochemical reaction in addition to the above-mentioned electrochemical reaction of hydrogen peroxide is widely used. There is.
  • a chemical substance in the solution is converted to hydrogen peroxide by the catalytic function of the enzyme, and the converted hydrogen peroxide is measured by a redox reaction using the above electrode, or a chemical in the solution.
  • Immunosensors that measure the concentration of chemical substances in solution by reacting substances (antigens) with antibodies and detecting the current generated by the reaction are widely used.
  • the glucose concentration in the sample can be measured by measuring the current value generated at that time.
  • a noble metal which is a material having a high level of acidity to hydrogen peroxide is used as compared with other electrode materials.
  • platinum is preferable as an electrode material in Japanese Patent Application Laid-Open Nos. 2001-2006 (Patent Document 1) and 2000-1 049 (Patent Document 2). It is stated that it is required.
  • platinum is expensive as an electrode material and is inferior in workability to other electrode materials, so electrode materials made of materials other than platinum may be used.
  • Patent Document 3 an iridium is disclosed as one of preferable materials.
  • Electrodes measure glucose concentration by measuring the current value after application to hydrogen peroxide. Disclosure of the invention:
  • An electrode using such a noble metal or oxide as described above is useful as an electrode for detection of hydrogen peroxide and an electrode for an electrochemical measurement apparatus or biosensor using the same.
  • the above-mentioned electrode can not be influenced by substances other than hydrogen peroxide contained in the solution. It is more desirable to use a structure and composition that can be avoided as much as possible.
  • ascorbic acid also known as vitamin C
  • urate acetatominophen
  • the application around 0 V is also susceptible to the natural potential of the electrode material itself. For this reason, in the measurement accuracy, particularly, the measurement accuracy of the repeatability may be lowered.
  • the present invention has been made in view of the above reasons, and an object thereof is to provide an electrode for an electrochemical measurement device that is less susceptible to interference substances than in the past, and an electrochemical measurement device (biosensor) using the same. It is to do.
  • the first invention contains at least iridium and rhenium, and contains iridium and rhenium in such a composition as to obtain selectivity of hydrogen peroxide. It is an electrode for an electrochemical measurement device that is characterized by being made of an alloy, and that detects hydrogen peroxide in a solution.
  • the second invention is characterized in that it is composed of an alloy containing at least iridium and rhenium and the weight ratio of iridium to rhenium is in the range of 9 9 ::! To 5 0: 50.
  • an electrode for an electrochemical measurement device according to the first invention or the second invention, which measures the concentration of hydrogen peroxide in a solution. It is a fixed device.
  • a fourth invention is characterized in that an immobilized enzyme layer and / or an immobilized antibody layer is provided on the surface of the electrode for an electrochemical measurement device according to the first invention or the second invention. It is a biosensor electrode that detects the substance to be measured in it.
  • a fifth invention is a biosensor having the electrode for a biosensor according to the fourth invention, which measures the concentration of a substance to be measured in a solution.
  • a sixth invention is a discharge arc method, an evaporation method, an alloy containing at least iridium and rhenium and containing iridium and rhenium in such a composition as to obtain selectivity of hydrogen peroxide.
  • a method for producing an electrode for an electrochemical measurement device comprising the step of producing by any of sputtering methods, wherein hydrogen peroxide in a solution is detected.
  • a seventh invention is characterized in that it comprises the step of providing an immobilized enzyme layer and / or an immobilized antibody layer on the surface of the electrode for an electrochemical measurement device according to the first invention or the second invention. It is a manufacturing method of the electrode for biosensors which detects the measurement object substance in the inside.
  • An eighth invention is a measuring method characterized by measuring the concentration of hydrogen peroxide in a solution by a current detection method using the electrochemical measuring device described in the third invention.
  • a ninth invention is a measuring method using the bio-sensor according to the fifth invention and measuring the concentration of a substance to be measured in a solution by a current detection method.
  • an electrode for an electrochemical measurement device that is less susceptible to interference substances than in the past, and an electrochemical measurement device (biosensor) using the same.
  • FIG. 1 is a schematic view showing an electrochemical measurement apparatus 3.
  • FIG. 2A is a schematic view showing a biosensor 3a.
  • FIG. 2B is a view showing a longitudinal cross-sectional view of the working electrode 9 a of FIG. 2A.
  • FIG. 3 is a schematic view showing a biosensor 3 b.
  • FIG. 4 is a cross-sectional view of the biosensor electrode 4 a of FIG. 3.
  • FIG. 5 is a diagram showing the experimental results of Example 1.
  • FIG. 6 is a diagram showing the experimental results of Example 2.
  • FIG. 7 shows the experimental results of Example 4. Explanation of sign:
  • an electrochemical measurement device for measuring the concentration of hydrogen peroxide in the solution 15 is exemplified as the electrochemical measurement device 3.
  • the electrochemical measuring device 3 shown in FIG. 1 is a device that oxidizes hydrogen peroxide in the solution 15 It has an electrode 9 (electrode 1 for an electrochemical measurement apparatus), a reference electrode 5 which is an electrode serving as a reference of electric potential, and a counter electrode 7 provided as needed.
  • the electrochemical measuring device 3 measures the control of oxidation current such as application of electric potential at the time of measurement and measures the hydrogen peroxide concentration by measuring the hydrogen peroxide concentration, each electrode and the measuring device 13 It has wiring 11 to connect.
  • the electrochemical measuring device 3 immerses the working electrode 9, the counter electrode 7, and the reference electrode 5 in a solution 15 containing hydrogen peroxide, applies a constant potential via the measuring device 13, and the surface of the working electrode 9 It is a device that measures the concentration of hydrogen peroxide in solution 15 by measuring the value of the oxidation current obtained when hydrogen peroxide is oxidized.
  • the electrochemical measurement device 3 measures the concentration of hydrogen peroxide in the solution by the current detection method.
  • the working electrode 9 be a structure and a material that are less susceptible to interfering substances during measurement.
  • the working electrode 9 have such a selectivity as to oxidize only hydrogen peroxide at the time of measurement.
  • the inventors of the present invention have a composition which contains at least iridium and rhenium in the electrode and has selectivity of hydrogen peroxide to iridium and rhenium. We found that it is possible to make the influence of interfering substances less susceptible than before by using the contained alloy.
  • Iridium is a material that has high acidity to hydrogen peroxide and is inexpensive and has excellent processability compared to gold and platinum used as materials for conventional working electrodes.
  • Peroxide in solution 15 It is essential to acidify hydrogen.
  • Rhenium is an element that imparts hydrogen peroxide selectivity to the electrode by being added to iridium as well as having oxidizing power for hydrogen peroxide, and is essential to make it less susceptible to interfering substances than before. It is.
  • the content of rhenium in the alloy is in% by weight with respect to the content of iridium. It is desirable that the weight ratio be 1 to 50%, or the weight ratio of iridium to rhenium be in the range of 9: 1 to 5:50.
  • iridium More preferably, it is 1 to 10% by weight based on the content of iridium, or the weight ratio of iridium to rhenium is preferably in the range of 9 9: 1 to 90:10.
  • the alloy may be composed only of iridium and rhenium, and in this case, the weight ratio of iridium to rhenium is preferably in the range of 9 9: 1 to 5: 0. That is, the electrode may be made of an iridium-rhenium alloy and the content of rhenium may be 1 to 50% by weight.
  • a more preferable ratio of iridium to lum is in the range of 9: 1 to 9: 0.
  • the above-mentioned alloy is manufactured, for example, by a discharge arc method, a vapor deposition method, or a sputtering method, but is preferably manufactured by a discharge arc method in that the material can be used without waste.
  • a known electrode can be used as the reference electrode 5 and, for example, a glass composite electrode can be mentioned.
  • a known electrode can be used as the counter electrode 7 and, for example, a platinum electrode can be mentioned.
  • the working electrode 9, the counter electrode 7, and the reference electrode 5 are immersed in a solution 15 containing hydrogen peroxide.
  • Solution 15 is, for example, a reducing agent used in a semiconductor manufacturing process, a sterilizing / disinfecting solution used in food manufacturing, and reactor water of a reactor.
  • Measuring device 13 measures the oxidation current, and measures the concentration of hydrogen peroxide in solution 15 based on the measured value.
  • the working electrode 9 uses an alloy containing iridium and rhenium in the electrode and containing iridium and rhenium in such a composition that the selectivity of hydrogen peroxide can be obtained. It is done.
  • the solution 15 contains interfering substances such as uric acid, ascorbic acid, and other organic acids, oxidation of the interfering substances on the surface of the working electrode 9 can be suppressed more than before, and oxidation of the interfering substances can be prevented. Can prevent the current output from occurring and lowering the measurement accuracy.
  • interfering substances such as uric acid, ascorbic acid, and other organic acids
  • the measurement accuracy of the concentration of hydrogen peroxide in the solution 15 can be improved more than before.
  • the electrochemical measurement device 3 has a working electrode 9, a counter electrode, a reference electrode 5, and a measurement device 13, and the working electrode 9 includes iridium and renium. And, an alloy containing iridium and rhenium in such a composition as to obtain selectivity of hydrogen peroxide is used.
  • the oxidation of the interfering substance on the surface of the working electrode 9 can be suppressed more than before, and the current output is generated by the oxidizing of the interfering substance to reduce the measurement accuracy. You can prevent that.
  • the working electrode 9 is less susceptible to interfering substances than ever before.
  • the working electrode 9 a is a biosensor electrode 4 whose surface is covered with the immobilized enzyme layer 6, and the entire device is a biosensor 3 a. .
  • the configuration of the bio-sensor 3a is the same as that of the electrochemical measuring device 3, but the substance to be measured in the solution 15a is converted to hydrogen peroxide, and the obtained hydrogen peroxide is obtained. It has a working electrode 9 a (biosensor electrode 4) that oxidizes Further, the biosensor 3a measures the concentration of the substance to be measured from the measured hydrogen peroxide concentration by performing control such as application of a potential at the time of measurement and measuring oxidation current. It has an apparatus 13a. As shown in FIG. 2B, the biosensor electrode 4 is provided on the surface of the electrode 1 for electrochemical measurement device and the electrode 1 for electrochemical measurement device, and is an immobilized enzyme layer that converts a substance to be measured into hydrogen peroxide. It has 6 (or an immobilized antibody layer).
  • the structure and composition of the electrode 1 for an electrochemical measurement device are the same as those of the electrode 1 for an electrochemical measurement device according to the first embodiment, and contain iridium and rhenium, and iridium and rhenium, hydrogen peroxide
  • An alloy is used that has a composition that provides the selectivity of
  • the immobilized enzyme layer 6 is a layer containing an enzyme that converts a substance to be measured into hydrogen peroxide.
  • the biosensor 3 a is an oxidation current generated when the enzyme of the immobilized enzyme layer 6 converts the substance to be measured into hydrogen peroxide and the obtained hydrogen peroxide is oxidized on the surface of the electrode 1 for an electrochemical measurement device. By measuring, it is possible to measure the concentration of the substance to be measured in solution 15 a.
  • the biosensor 3a can measure the concentration of the substance to be measured in the solution by measuring the concentration of hydrogen peroxide in the solution by the current detection method.
  • the enzyme needs to be an enzyme that produces hydrogen peroxide as a product of the catalytic reaction of the substance to be measured or consumes oxygen, and depending on the substance to be measured, lactate oxidase, glucose oxidase, uric acid oxidation Enzymes, urea oxidase, alcohol oxidase, etc. are used.
  • kidney cells two or more types of enzymes may be used simultaneously.
  • creatininase, creatinase, and sarcosyltransferases fall under this.
  • it may contain an enzyme and a capture enzyme.
  • a solution containing an enzyme solution, a cross-linking agent for proteins such as dartalaldehyde, and albumin is dropped onto the surface of the electrode 1 for an electrochemical measurement device, and the surface of the electrode 1 for an electrochemical measurement device is The enzyme is immobilized to form an immobilized enzyme layer 6.
  • the immobilized enzyme layer 6 is not particularly limited as long as it has a function of converting a substance to be measured into hydrogen peroxide at least including an enzyme.
  • an immobilized antibody layer is used instead of the immobilized enzyme layer 6, an antibody such as a chorionic gonadotropin antibody is used as the antibody according to the substance to be measured.
  • the electrode 1 for electrochemical measurement for example, after immersing the electrode 1 for electrochemical measurement in a solution containing the antibody for a certain period of time, the electrode is swept in a phosphate buffer solution containing sodium chloride. Fix the antibody to form an immobilized antibody layer.
  • the biosensor 3a functions as an immunosensor.
  • the working electrode 9a, the counter electrode 7, and the reference electrode 5 are immersed in a solution 15a containing the substance to be measured.
  • the solution 15 a is, for example, the urine of a diabetic patient when the substance to be measured is glucose, and in the case of chorionic gonadotropin, the urine of a woman who may be pregnant.
  • a constant potential is applied through the measuring device 13a.
  • the biosensor 3a is an enzyme sensor using the immobilized enzyme layer 6
  • the substance to be measured in the solution 15a is the working electrode 9a.
  • the hydrogen peroxide thus obtained is oxidized on the surface of the electrode 1 for an electrochemical measurement device of the working electrode 9 a by the application of a potential to generate an oxidation current.
  • the measuring device 13 a measures the oxidation current and measures the hydrogen peroxide concentration based on the measured oxidation current.
  • the measuring device 13 a measures the concentration of the substance to be measured in the solution 15 a.
  • the biosensor 3a is an immunosensor
  • the antibodies react with the substance to be measured when each electrode is immersed in the solution 15a, so square wave voltammetry through the measuring device 13a. Measure the current value obtained by the reaction, and based on the current value, Measure the concentration of the substance to be measured in solution 15 a.
  • the electrode 1 for the electrochemical measurement device of the working electrode 9 a contains iridium and rhenium in the electrode, and a composition such that selectivity of hydrogen peroxide is obtained between iridium and rhenium
  • the alloy contained is used to be Therefore, even if the solution 15 a contains an interfering substance such as ascorbic acid or acetoaminophen, the oxidation of the interfering substance on the surface of the electrode 1 for electrochemical measurement apparatus can be suppressed more than before, and the interfering substance Oxidation prevents the current output from occurring and lowering the measurement accuracy.
  • the biosensor 3 a includes the working electrode 9 a, the counter electrode 7, the reference electrode 5, and the measuring device 13 a, and the electrochemical measuring device for the working electrode 9 a
  • the electrode 1 is made of an alloy containing iridium and rhenium, and the above-mentioned alloy has a composition such that the selectivity of hydrogen peroxide can be obtained.
  • the biosensor 3 b includes the electrode 1 for an electrochemical measurement device on the insulating substrate 23, and the electrode 1 for an electrochemical measurement device and the immobilized enzyme layer 6.
  • a bonding layer 24 is further provided between them to form a working electrode 25a (electrode for biosensor 4a).
  • the working electrode 25a (biosensor electrode 4a) has an insulating substrate 23 and an electrode 1 for electrochemical measurement device provided on the surface of the insulating substrate 23 There is.
  • the working electrode 25 a (biosensor electrode 4 a) is an immobilized enzyme layer 6 (or immobilized antibody layer) above the electrode 1 for electrochemical measurement device in FIG. Is provided.
  • the working electrode 25 a is provided between the electrode 1 for electrochemical measurement device and the immobilized enzyme layer 6, and the insulating substrate 23 and the electrochemical chemistry so as to cover the electrode 1 for electrochemical measurement device. It has a bonding layer 24 provided on the measuring device electrode 1.
  • An immobilized enzyme layer 6 is provided on the binding layer 24.
  • the electrode 1 for the electrochemical measurement device, the immobilized enzyme layer 6, and the binding layer 24 constitute an electrode unit 10.
  • the insulating substrate 23 is a member for holding the electrode portion 10, and is preferably a material excellent in water resistance, heat resistance, chemical resistance, insulation, and adhesion with the electrode 1 for an electrochemical measuring apparatus. Yes.
  • Examples of materials that satisfy such requirements include ceramics, glass, quartz and plastics.
  • the bonding layer 24 is provided to improve the adhesion (bonding property) between the immobilized enzyme layer 6 and the insulating substrate 23 and the electrode 1 for an electrochemical measurement device.
  • the bonding layer 24 also has the effect of improving the wettability of the surface of the insulating substrate 23 and improving the uniformity of the film thickness when forming the immobilized enzyme layer 6. .
  • Examples of the material constituting the bonding layer 24 include a silane coupling agent.
  • silane coupling agent examples include aminosilane, vinylsilane and epoxysilane. Among them, ⁇ -aminopropyltriethoxysilane, which is a type of aminosilane, is more preferable from the viewpoint of adhesion.
  • the bonding layer 24 can be formed on the insulating substrate 23 and the electrode 1 for an electrochemical measurement device, for example, by spin coating with a silane coupling agent solution.
  • the concentration of the silane coupling agent is preferably about 1 ⁇ % (% (volume ⁇ volume / 0 ). At this concentration, the alkoxyl group is sufficiently hydrated and sufficient adhesion is exhibited.
  • Electrode portion 10 is provided on one insulating substrate 23 in FIG. 4, a plurality of electrode portions 10 may be provided on one insulating substrate 23.
  • the counter electrode 7 and the reference electrode 5 are also formed on separate insulating substrates 23 in FIG. 3, all the electrodes may be formed on one insulating substrate 23.
  • the electrode 1 for an electrochemical measurement device is provided on the insulating substrate 23 by using a vapor deposition method, sputtering method or the like.
  • the electrochemical measurement device A bonding layer 24 is provided by spin coating so as to cover the electrode 1.
  • a solution containing an enzyme solution, a protein crosslinking agent such as glutaraldehyde, and alpmin is dropped on the binding layer 24 to form an immobilized enzyme layer 6, thereby completing the working electrode 25a.
  • the method of measuring the concentration of the substance to be measured in the solution 15 a using the biosensor 3 b is the same as in the second embodiment, and thus the description thereof is omitted.
  • the piezo sensor 3 b has a working electrode 25 a, a counter electrode 7, a reference electrode 5, and a measuring device 1 3 a, and for electrochemical measuring devices of the working electrode 25 a
  • the electrode 1 is made of an alloy containing iridium and rhenium, and the above-mentioned alloy has such a composition that the selectivity of hydrogen peroxide can be obtained.
  • the working electrode 25 a is provided with the electrode 1 for electrochemical measurement device on the insulating substrate 23, and is bonded between the electrode 1 for electrochemical measurement device and the immobilized enzyme layer 6. It has a structure in which a layer 24 is further provided.
  • the adhesion (binding) between the immobilized enzyme layer 6 and the electrode 1 for an electrochemical measurement device can be improved, and the immobilized enzyme layer 6 is formed.
  • the uniformity of the film thickness can be improved.
  • the electrochemical measurement device 3 shown in FIG. 1 was prepared, and the current ratio of hydrogen peroxide to ascorbic acid, which is one of interfering substances, was calculated by constant potential measurement in a solution containing hydrogen peroxide and interfering substances. The selectivity of hydrogen peroxide in working electrode 9 was evaluated.
  • Electrode 1 for electrochemical measurement apparatus
  • production of the working electrode 9 was performed as follows. First, iridium wire and rhenium wire were prepared, and an arc discharge produced an iridium-rhenium alloy.
  • the weight ratio of iridium to rhenium is six types of 100: 0, 9 9: 1, 90: 10, 5 5: 45, 10: 90, 0: 100. Made things. Next, the manufactured iridium-rhenium alloy is fixed to a flexible substrate on which printed wiring is applied using an adhesive, wire bonding is performed, and then waterproofing is performed with a silicone sealant, and a working electrode 9 is obtained. (Electrode 1).
  • an existing glass composite electrode (GST-5741 C, manufactured by Toago Dikeke Co., Ltd.) was prepared as the reference electrode 5
  • an existing platinum electrode (002233, manufactured by BAS) was prepared as the counter electrode 7.
  • the response current was measured when 0.5 V, 0.7 V and 0.9 V were applied.
  • the response current is selected selectively especially to hydrogen peroxide. It turned out to show.
  • Example 1 the evaluation of uric acid and acetatominophen as interfering substances was performed in the same manner as in Example 1 under the same conditions except that the applied potential at the time of evaluation was only 0.7 V.
  • the weight ratio of iridium to rhenium is 9 9: 1, 9 for both uric acid and acetoaminophen as well as for ascorbic acid.
  • 0: 10, 5: 45 it was found that the acid repulsion was small and that hydrogen peroxide was selectively oxidized.
  • the biosensor 3a shown in FIG. 2 is manufactured as a biosensor for glucose measurement, and the concentration of glucose in a solution 15a containing ascorbic acid and glucose whose concentration is known is measured, and the working electrode 25a is Evaluation of selectivity to hydrogen peroxide was performed.
  • an electrode 1 for an electrochemical measurement apparatus of an iridium-rhenium alloy was produced in the same manner as in Example 1 so that the weight ratio of iridium to rhenium was 90:10.
  • bovine serum albumin solution (1 V / V% glutaraldehyde and 5 6.5 UX 10) adjusted to 2 2.5 w Zv% with 100 mol / m 3 (100 mM) TES. — 6 _ litore (containing 6. 5 6./ ⁇ 1) of glucose oxidase is applied in the same manner, and dried in a refrigerator at 2.5 ⁇ 1 ° C for 24 hours to obtain a working electrode 9 a (for biosensor) An electrode 4 a) was produced.
  • a reference electrode 5 and a counter electrode 7 were also prepared, and these electrodes were immersed in the solution 15 a, and these electrodes were connected to the measuring device 13 a through the wiring 11 to produce a biosensor 3 a. .
  • an electrode for a biosensor using an electrode using platinum instead of a iridium-rhenium alloy as a working electrode was prepared, and a biosensor using this was prepared.
  • the measurement was repeated three times at 0.9 V constant potential measurement.
  • the biosensor 3a of this example using the iridium murenium alloy was able to measure the almost accurate concentration of darcose, but the biosensor of the comparative example using a platinum electrode did not show the interference due to the oxidation current of ascorbic acid. As a result, it was not possible to measure the correct glucose concentration.
  • the biosensor 3a used in Example 3 was prepared.
  • Each electrode of the biosensor 3 a was immersed in TE S solution at room temperature, 1 0X 10 every predetermined number of days - 5 kg / glucose and 1 X 10 _ 5 kg of Li Tsu Bok Honoré (1 Omg / d 1) Ascorbic acid was measured to evaluate the stability of the electrode. The evaluation was performed by calculating the ratio of the current value of ascorbic acid to the current value of hydrogen peroxide when 0.9 V was applied. The results are shown in Figure 7.
  • P t in the graph in FIG. 7 is a measured value of a biosensor (comparative example) using a platinum electrode
  • I r -Re is a biosensor 3 a (an iridium-rhenium alloy electrode). It is a measured value of the present Example.
  • biosensors using platinum electrodes show higher current for ascorbic acid than hydrogen peroxide, and the current ratio is 5.5-6. 1 (askorubic acid hydrogen peroxide) And was stable for 27 days.
  • biosensor 3a using an iridium murenium alloy electrode shows an electric current selectively to hydrogen peroxide generated from darcosis, and almost shows an electric current to ascorbic acid. It was not.
  • the current ratio was 0. 06-0. 1 (ascorbic acid and hydrogen peroxide) and was stable with almost no fluctuation for 27 weeks.
  • Example 3 an immunosensor using a working electrode provided with an immobilized antibody layer instead of the immobilized enzyme layer 6 is prepared, and it is prepared in a solution containing ascorbic acid and chorionic gonadoto bottle whose concentration is known. The concentration of flagellar gonadotrophin was measured to evaluate the selectivity of the working electrode to hydrogen peroxide.
  • the working electrode was manufactured as follows.
  • Example 1 an electrode 1 for an electrochemical measurement apparatus was prepared so that the weight ratio of iridium to laser was 90:10.
  • the electrode 1 for an electrochemical measurement apparatus manufactured to a solution of 1 X 10- 3 kg / 0. 2 Rittonore (1 mg / 0. 2 ml) human chorionic gonadotropin antibody (Haitesutone earth manufactured by mouse immunization with monoclonal antibodies) of 1 Soaked for a while.
  • the immunosensor of this example using an iridium-rhenium alloy for the working electrode showed almost exactly the concentration of chorionic gonadotropin, but the immunosensor of the comparative example using a platinum electrode is associated with the oxidation current of askorubinic acid. Due to interference, accurate concentration could not be measured.
  • the electrode 1 for an electrochemical measurement device of the present example can eliminate the influence of interfering substances even when used as an immunosensor.
  • the biosensor 3a and the immunosensor are mainly applied to a sensor for measuring the concentration of glucose and chorionic gonadotropin in solution
  • the present invention is not limited thereto, and the catalytic reaction can be used to measure the concentration of all substances that can be converted to hydrogen peroxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明の課題は、干渉物質による影響を受けにくい電気化学測定装置用電極およびそれを用いた電気化学測定装置を提供することにある。本発明の電気化学測定装置3に用いられる作用電極9(電気化学測定装置用電極1)は、イリジウムとレニウムを含む合金が用いられており、上記合金は過酸化水素の選択性が得られるような組成となっている。

Description

電気化学測定装置用電極およぴパイォセンサ用電極 発明の背景:
本発明は、 電気化学測定装置用電極および電気化学測定装置用電極を用いた電 気化学測定装置、 バイオセンサ用電極およびバイオセンサ用電極を用いたバイオ センサ、 電気化学測定装置用電極の明製造方法、 バイオセンサ用電極の製造方法、 電気化学測定装置を用いた測定方法、 バ田イオセンサを用いた測定方法に関する。 溶液中の過酸化水素濃度を測定する装置は、 半導体製造プロセスにおいて用い られる還元剤に含まれる過酸化水素や、 食品製造プロセスにおける殺菌 ·消毒液 に含まれる過酸ィヒ水素の濃度を測定するため、 あるいは、 原子炉の炉水中の過酸 化水素濃度を測定するために広く用いられている。
溶液中の過酸化水素濃度を測定する装置としては、 例えば電気化学反応を用い たものがあり、 過酸化水素を含む溶液中に電極を浸漬し、 カーボン電極や白金等 の貴金属電極を用いて、 印加時に得られる電流値を検出することによって測定を 行う。
これは、 電極表面で過酸化水素が酸化されることにより、 酸化電流が発生する ため、 酸化電流を測定すれば、 溶液中の過酸化水素濃度を測定することができる からである。
一方、 多種多様な溶液に含まれる物質の濃度を測定する装置として、 上記の過 酸化水素の電気化学反応に加えて、 タンパク質の触媒反応と電気化学反応を組み 合わせた測定装置が広く用いられている。
また、 溶液中の化学物質を酵素の触媒機能により過酸ィヒ水素に変換し、 変換し た過酸化水素を、 上記の電極を用いて酸化還元反応により計測するバイオセンサ や、 溶液中の化学物質 (抗原) を抗体と反応させ、 反応により生じる電流を検出 することにより、 溶液中の化学物質の濃度を計測する免疫センサが汎用化してい る。
例えば、 グルコースをグルコースォキシダーゼによって酸化すると、 ダルコノ 070156
ラクトンと過酸化水素が生成されるが、 生成される過酸化水素量はグルコース濃 度に比例する。
そこで、 グルコースバイオセンサに用いられる電極として、 過酸化水素を酸化 する電極の表面にグルコース酸化酵素を固定した電極を用意し、 これを含む電極 を溶液中に浸漬すると、 グルコース酸化酵素がグルコースを酸化し、 ダルコノラ クトンと過酸化水素を生成させる。
生成した過酸ィヒ水素は電極表面で酸化されるため、 その際に生じる電流値を測 定することにより、 試料中のグルコース濃度を測定することができる。
ここで、 過酸化水素を検出する電極としては、 他の電極材料に比べて、 過酸ィ匕 水素に対する酸ィヒカの高レ、材料である貴金属が使用されている。
例えば特開 2 0 0 1— 1 1 6 7 1 6号公報 (特許文献 1 ) および特開 2 0 0 0 一 8 1 4 0 9号公報 (特許文献 2 ) では、 電極材料として白金が好ましく用いら れると記載されている。
—方、 白金は電極材料としては高価であり、 他の電極材料に比べて加工性に劣 ることから、 白金以外の物質を用レ、た電極材料が用 、られる場合がある。
例 ば、 Faming Tian and Guoyi Zhu, Sol - ge丄 derived iridium composite glucouse biosensor" , Sensors and Actuators B : Chemical, Elsevier B. V, (Netherlands) , Volume86, September 2002, p. 266-270 (非特許文献 1 ) では酸化 ィリジゥムを用いた電極が開示されている。
また、 特許第 3 8 5 4 8 9 2号公報 (特許文献 3 ) では、 好ましい材料の 1つ としてィリジゥムが開示されている。
これらの電極は、 過酸化水素に対する印加後の電流値を測定することによって グルコース濃度を測定している。 発明の開示:
上記のような貴金属や酸化ィリジゥムを用いた電極は、 過酸化水素の検出用電 極およびそれを用いた電気化学測定装置やバイォセンサ用の電極としては有用で ある。
しかしながら、 上記電極は、 溶液中に含まれる過酸化水素以外の物質の影響を 極力避けることが可能な構造、 組成とするのがより望ましい。
具体的には、 過酸化水素が電極表面で酸化される際に、 溶液中の他の物質が千 渉物質として同時に酸化され、 これらが電流出力を生じて、 測定精度を低下させ る場合があり、 これに対する対策を講じる必要がある。
例えば、 白金ゃィリジゥムを電極材料に用いて製作された電流検出型の電極や バイオセンサ用電極においては、 ァスコルビン酸(別名、 ビタミン C )、尿酸塩、 ァセトァミノフェン等が干渉物質として電極に作用するため、 これらに対する対 策が必要となる。
一方で、 酸化イリジウムを電極材料に用いて製作されたグルコースバイオセン サの場合においては、 干渉物質に対して電流出力が低下するが、 十分とはいえな い。
また、 印加電位を O V以下にする必要があり、 溶液中の酸素の影響を受けやす くなるなど、 新たな干渉物質対策を施す必要が出てくる。
さらに、 0 V付近の印加は電極材料自身が持つ自然電位の影響も受けやすくな る。 このため、 測定精度において、 特に繰り返し再現性の測定精度が低下する恐 れがある。
本発明は上記理由に鑑みてなされたものであり、 その目的は、 従来よりも干渉 物質による影響を受けにくい電気化学測定装置用電極およびそれを用いた電気化 学測定装置 (バイオセンサ) を提供することにある。
前述した目的を達成するために、 第 1の発明は、 少なくともイリジウムとレニ ゥムを含み、 かつ、 イリジウムとレニウムとを、 過酸化水素の選択性が得られる ような組成となるように含有した合金で構成されていることを特徴とする、 溶液 中の過酸化水素を検出する、 電気化学測定装置用電極である。
第 2の発明は、 少なくともイリジウムとレニウムを含み、 かつ、 イリジウムと レニウムの重量比率が 9 9 : :!〜 5 0 : 5 0の範囲である合金で構成されている ことを特徴とする、 溶液中の過酸化水素を検出する、 電気化学測定装置用電極で める。
第 3の発明は、 第 1の発明または第 2の発明に記載の電気化学測定装置用電極 を有することを特徴とする、 溶液中の過酸化水素の濃度を測定する、 電気化学測 定装置である。
第 4の発明は、 第 1の発明または第 2の発明に記載の電気化学測定装置用電極 の表面に、 固定化酵素層および /または固定化抗体層を設けてなることを特徴と する、 溶液中の測定対象物質を検出する、 バイオセンサ用電極である。
第 5の発明は、 第 4の発明記載のバイオセンサ用電極を有することを特徴とす る、 溶液中の測定対象物質の濃度を測定する、 バイオセンサである。
第 6の発明は、 少なくともイリジウムとレニウムを含み、 かつ、 イリジウムと レニウムとを、 過酸ィヒ水素の選択性が得られるような組成となるように含有した 合金を放電アーク法、 蒸着法、 スパッタリング法のいずれかで製造する工程を有 することを特徴とする、 溶液中の過酸化水素を検出する、 電気化学測定装置用電 極の製造方法である。
第 7の発明は、 第 1の発明または第 2の発明に記載の電気化学測定装置用電極 の表面に固定化酵素層および/または固定化抗体層を設ける工程を有することを 特徴とする、 溶液中の測定対象物質を検出する、 バイオセンサ用電極の製造方法 である。
第 8の発明は、 第 3の発明に記載の電気化学測定装置を用い、 電流検出方式に より、 溶液中の過酸化水素の濃度を測定することを特徴とする測定方法である。 第 9の発明は、第 5の発明に記載のパイォセンサを用 、、電流検出方式により、 溶液中の測定対象物質の濃度を測定することを特徴とする測定方法である。
(発明の効果)
本発明によれば、 従来よりも干渉物質による影響を受けにくい電気化学測定装 置用電極およびそれを用いた電気化学測定装置 (バイオセンサ) を提供すること ができる。 図面の簡単な説明:
図 1は電気化学測定装置 3を示す模式図である。
図 2 Aはバイオセンサ 3 aを示す模式図である。
図 2 Bは図 2 Aの作用電極 9 a レ ィォセンサ用電極 4 ) の縦断面図を示す図 である。 図 3はバイオセンサ 3 bを示す模式図である。
図 4は図 3のバイオセンサ用電極 4 aの断面図である。
図 5は実施例 1の実験結果を示す図である。
図 6は実施例 2の実験結果を示す図である。
図 7は実施例 4の実験結果を示す図である。 符号の説明:
1 電気化学測定装置用電極
3 電気化学測定装置
3 a バイオセンサ
3 b バイオセンサ
4 バイオセンサ用電極
5
6 固定化酵素層 (固定化抗体層)
7 対極
9 作用電極
1 1 配線
1 3 測定装置
1 5 溶液
2 3 絶縁基板
2 4 結合層 発明を実施するための最良の形態:
以下、 図面に基づいて本発明に好適な実施形態を詳細に説明する。
まず、 図 1を参照して、 本発明の第 1の実施形態に係る電気化学測定装置用電 極 1を有する電気化学測定装置 3の構成を説明する。
ここでは、 電気化学測定装置 3として、 溶液 1 5中の過酸化水素濃度を測定す る電気化学測定装置が例示されている。
図 1に示された電気化学測定装置 3は、 溶液 1 5中の過酸化水素を酸化する作 用電極 9 (電気化学測定装置用電極 1 )、電位の基準となる電極である参照電極 5、 および必要に応じて設けられる対極 7を有している。
さらに、 電気化学測定装置 3は、 測定の際の電位の印加等の制御おょぴ酸化電 流を計測して過酸化水素濃度の測定を行う測定装置 1 3、 各電極と測定装置 1 3 を接続する配線 1 1を有している。
電気化学測定装置 3は、 作用電極 9、 対極 7、 参照電極 5を過酸化水素を含む 溶液 1 5中に浸漬し、 測定装置 1 3を介して定電位を印加し、 作用電極 9の表面 で過酸化水素が酸化される際に得られる酸化電流の値を測定することにより、 溶 液 1 5中の過酸化水素濃度を測定する装置である。
即ち、 電気化学測定装置 3は、 電流検出方式により、 溶液中の過酸化水素の濃 度を測定する。
ここで、 前述の通り、 作用電極 9は、 測定の際に干渉物質の影響を受けにくい 構造、 材料であることが望ましい。
換言すれば、 作用電極 9は、 測定の際に過酸化水素のみを酸化するような選択 性を有しているのが望ましい。
上記問題に対して、 発明者らは鋭意検討の結果、 電極に、 少なくともイリジゥ ムとレニウムを含み、 かつ、 ィリジゥムとレニウムとを、 過酸化水素の選択性が 得られるような組成となるように含有した合金を用レ、ることにより、 干渉物質の 影響を従来よりも受けにくくすることが可能であることを見出した。
以下、 合金中の各物質についてより詳細に説明する。
イリジウムは、 過酸化水素に対する高い酸ィヒカを有し、 かつ従来の作用電極の 材料として用いられる金や白金と比べて、 安価で加工性に優れた材料であり、 溶 液 1 5中の過酸ィヒ水素を酸ィヒするために必須である。
レニウムは過酸化水素に対する酸化力を有するとともに、 ィリジゥムに添加す ることにより、 電極に過酸化水素の選択性を付与する元素であり、 干渉物質の影 響を従来よりも受けにくくするために必須である。
しかしながら、 合金中のレニウムの含有率がィリジゥムの含有量に対して 1重 量%以下だと、 十分な選択性が付与できなくなる。
そのため、 合金中のレニウムの含有率はィリジゥムの含有量に対して重量%で 1〜5 0 %である、または、ィリジゥムとレニウムの重量比率が 9 9: 1〜5 0 : 5 0の範囲であるのが望ましい。
また、より好ましくはイリジウムの含有量に対して重量%で 1〜1 0 %である、 または、 イリジウムとレニウムの重量比率が 9 9 : 1〜9 0 : 1 0の範囲である のが望ましい。
なお、 合金をィリジゥムとレニウムのみで構成してもよく、 この場合、 イリジ ゥムとレニウムの重量比率は 9 9 : 1〜5 0 : 5 0の範囲であるのが望ましい。 即ち、 電極をイリジウム一レニウム合金で構成し、 レニウムの含有率を 1〜5 0重量%とすればよい。
この場合も、より好ましいィリジゥムとレエゥムの重量比率は 9 9: 1〜9 0 : 5 0の範囲である。
上記合金は、 例えば放電アーク法、 蒸着法、 スパッタリング法によって製造さ れるが、 材料を無駄なく利用できる点において、 放電アーク法によって製造され るのが好ましい。
なお、 参照電極 5としては公知の電極を用いることができ、 例えばガラス複合 電極が挙げられる。
また、 対極 7としても公知の電極を用いることができ、 例えば白金電極が挙げ られる。
ここで、 電気化学測定装置 3を用いた、 溶液 1 5中の過酸化水素の濃度の測定 方法について詳細に説明する。
まず、 作用電極 9、 対極 7、 参照電極 5を、 過酸化水素を含む溶液 1 5中に浸 漬する。
溶液 1 5は例えば半導体製造プロセスに用いられる還元剤、 食品製造に用いら れる殺菌 ·消毒液、 原子炉の炉水である。
各電極が溶液 1 5中に浸漬されると、測定装置 1 3を用いて定電位を印加する。 電位の印加により、 作用電極 9の表面では過酸化水素が酸化され、 酸化電流が 生じる。
測定装置 1 3は酸化電流を測定し、 測定値をもとに、 溶液 1 5中の過酸化水素 濃度を測定する。 ここで、 作用電極 9は前述のように、 電極に、 イリジウムとレニウムを含み、 かつ、 イリジウムとレニウムとを、 過酸化水素の選択性が得られるような組成と なるように含有した合金が用いられている。
そのため、 溶液 1 5中に尿酸、 ァスコルビン酸、 他の有機酸等の干渉物質が含 まれていても、 干渉物質の作用電極 9の表面での酸化を従来よりも抑制でき、 干 渉物質の酸化により電流出力が生じて、 測定精度を低下させるのを防ぐことがで きる。
即ち、 従来よりも、 溶液 1 5中の過酸化水素の濃度の測定精度を向上させるこ とができる。
このように、 第 1の実施形態によれば、 電気化学測定装置 3は、 作用電極 9、 対極 Ί、 参照電極 5、 測定装置 1 3を有し、 作用電極 9は、 イリジウムとレニゥ ムを含み、 かつ、 イリジウムとレニウムとを、 過酸化水素の選択性が得られるよ うな組成となるように含有した合金が用いられている。
そのため、 溶液 1 5中に干渉物質が含まれていても、 干渉物質の作用電極 9の 表面での酸化を従来よりも抑制でき、 干渉物質の酸化により電流出力を生じて、 測定精度を低下させるのを防ぐことができる。
即ち、 作用電極 9は従来よりも干渉物質による影響を受けにくい。
次に、 第 2の実施形態について、 図 2 A、 図 2 Bを参照して説明する。
第 2の実施形態は、 第 1の実施形態において、 作用電極 9 aを、 表面が固定化 酵素層 6で覆われたバイオセンサ用電極 4とし、 装置全体をバイオセンサ 3 aと したものである。
なお、 第 2の実施形態において、 第 1の実施形態と同様の効果を奏する要素に ついては同一の番号を付し、 説明を省略する。
図 2 Aに示すように、 バイォセンサ 3 aの構成は電気化学測定装置 3と同様で あるが、 溶液 1 5 a中の測定対象物質を、 過酸化水素に変換し、 さらに得られた 過酸化水素を酸化する作用電極 9 a (バイオセンサ用電極 4 ) を有している。 さらに、 バイオセンサ 3 aは、 測定の際の電位の印加等の制御および酸化電流 を計測して過酸化水素濃度の測定を行い、 測定した過酸化水素濃度から測定対象 物質の濃度を測定する測定装置 1 3 aを有している。 図 2 Bに示すように、バイォセンサ用電極 4は、電気化学測定装置用電極 1と、 電気化学測定装置用電極 1の表面に設けられ、 測定対象物質を過酸化水素に変換 する固定化酵素層 6 (または固定化抗体層) を有している。
電気化学測定装置用電極 1の構造、 組成は、 第 1の実施形態に係る電気化学測 定装置用電極 1と同様であり、 イリジウムとレニウムを含み、 かつ、 イリジウム とレニウムとを、 過酸化水素の選択性が得られるような組成となるように含有し た合金が用いられている。
固定化酵素層 6は、測定対象物質を過酸化水素に変換する酵素を含む層である。 バイォセンサ 3 aは、 固定化酵素層 6の酵素が測定対象物質を過酸化水素に変 換し、 得られた過酸化水素が電気化学測定装置用電極 1の表面で酸化される際に 生じる酸化電流を測定することにより、 溶液 1 5 a中の測定対象物質の濃度を測 定することができる。
即ち、 バイオセンサ 3 aは、 電流検出方式により、 溶液中の過酸化水素の濃度 を測定することにより、 溶液中の測定対象物質の濃度を測定することができる。 酵素としては、測定対象物質の触媒反応の生成物として過酸化水素を生成する、 または酸素を消費する酵素である必要があり、 測定対象物質に応じて乳酸酸化酵 素、 グルコース酸化酵素、 尿酸酸化酵素、 尿素酸化酵素、 アルコール酸化酵素等 が用いられる。
また、 2種類以上の酵素を同時に用いてもよい。 例えば、 クレアチニナーゼ、 クレアチナーゼ, およぴサルコシンォキシダーゼがこれに該当する。
これらの酵素を用いることによってクレアチニンの検出が可能になる。
さらに、 酵素と捕酵素を含んでいてもよい。
酵素を電気化学測定装置用電極 1の表面に固定する方法としては、 公知の方法 を用いることができるが、 例えば架橋反応を利用したものが挙げられる。
具体的には、 酵素溶液、 ダルタルアルデヒド等の蛋白質の架橋剤、 およびアル ブミンを含む溶液を、 電気化学測定装置用電極 1の表面に滴下することにより電 気化学測定装置用電極 1の表面に酵素が固定され、固定化酵素層 6が形成される。 以上のように、 固定化酵素層 6は少なくとも酵素を含み、 測定対象物質を過酸 化水素に変換する機能を持つ構成であれば、 特に限定されない。 なお、 固定化酵素層 6の代わりに固定化抗体層を用いる場合は、 抗体として、 測定対象物質に応じて、 絨毛性ゴナドトロピン抗体等の抗体を用いる。
また、 抗体の固定方法としては、 例えば、 抗体を含む溶液中に電気化学測定装 置用電極 1を一定時間浸漬した後、 塩ィ匕ナトリゥムを含むリン酸緩衝液中で電極 を掃引することにより、 抗体を固定して、 固定化抗体層を形成する。
なお、 必要に応じて、 ポリビュルアルコールで固定化抗体層を被覆することに より、 抗体の離脱を防ぎ、 より強固に抗体を固定化することも可能である。 このように、 固定化酵素層 6の代わりに固定化抗体層を有する構成とすること により、 バイオセンサ 3 aは免疫センサとして機能する。
ここで、 バイオセンサ 3 aを用いた溶液 1 5 a中の測定対象物質の濃度の測定 方法について詳細に説明する。
まず、 作用電極 9 a、 対極 7、 参照電極 5を、 測定対象物質を含む溶液 1 5 a 中に浸漬する。
溶液 1 5 aは、 例えば測定対象物質がグルコースの場合は糖尿病患者の尿であ り、絨毛性ゴナドトロピンの場合は、妊娠している可能性がある女性の尿である。 各電極が溶液 1 5 a中に浸漬されると、 測定装置 1 3 aを介して定電位を印加 する。
ここで、 バイオセンサ 3 aが固定化酵素層 6を用いた酵素センサの場合は、 各 電極が溶液 1 5 a中に浸漬されると、 溶液 1 5 a中の測定対象物質は作用電極 9 aの固定化酵素層 6と接触し、 触媒反応により、 過酸化水素に変換される。 得られた過酸化水素は、 電位の印加により、 作用電極 9 aの電気化学測定装置 用電極 1の表面で酸化され、 酸化電流が生じる。
測定装置 1 3 aは酸化電流を測定し、 測定した酸化電流をもとに、 過酸化水素 濃度を測定する。
さらに、 測定装置 1 3 aは測定した過酸化水素濃度をもとに、 溶液 1 5 a中の 測定対象物質の濃度を測定する。
なお、 バイオセンサ 3 aが免疫センサの場合は、 各電極が溶液 1 5 a中に浸漬 されると、 抗体と測定対象物質が反応するため、 測定装置 1 3 aを介して、 方形 波ボルタンメトリ法にて、反応により得られる電流値を測定し、電流値をもとに、 溶液 1 5 a中の測定対象物質の濃度を測定する。
ここで、 作用電極 9 aの電気化学測定装置用電極 1は前述のように、 電極に、 イリジウムとレニウムを含み、 かつ、 イリジウムとレニウムとを、 過酸化水素の 選択性が得られるような組成となるように含有した合金が用レ、られている。 そのため、 溶液 1 5 a中にァスコルビン酸ゃァセトァミノフェン等の干渉物質 が含まれていても、 干渉物質の電気化学測定装置用電極 1の表面での酸化を従来 よりも抑制でき、 干渉物質の酸化により電流出力が生じて、 測定精度を低下させ るのを防ぐことができる。
すなわち、 従来よりも、 測定対象物質の測定精度を向上させることができる。 このように、 第 2の実施形態によれば、 バイオセンサ 3 aは、 作用電極 9 a、 対極 7、 参照電極 5、 測定装置 1 3 aを有し、 作用電極 9 aの電気化学測定装置 用電極 1は、 イリジウムとレニウムを含む合金が用いられており、 上記合金は過 酸化水素の選択性が得られるような組成となっている。
そのため、 第 1の実施形態と同様の効果を奏する。
次に、 第 3の実施形態について図 3および図 4を参照して説明する。
第 3の実施形態におけるバイオセンサ 3 bは、 第 2の実施形態において、 電気 化学測定装置用電極 1を絶縁基板 2 3上に設け、 電気化学測定装置用電極 1と固 定化酵素層 6の間に結合層 2 4をさらに設けて作用電極 2 5 a (パイォセンサ用 電極 4 a ) を構成したものである。
図 3および図 4に示すように、 作用電極 2 5 a (バイオセンサ用電極 4 a ) は 絶縁基板 2 3、 絶縁基板 2 3の表面に設けられた電気化学測定装置用電極 1を有 している。
また、 図 4に示すように、 作用電極 2 5 a (バイオセンサ用電極 4 a ) は、 図 4における電気化学測定装置用電極 1の上方に固定化酵素層 6 (または固定化抗 体層) が設けられている。
さらに、 作用電極 2 5 aは、 電気化学測定装置用電極 1と固定化酵素層 6の間 に設けられ、 かつ電気化学測定装置用電極 1を覆うように絶縁基板 2 3およぴ電 気化学測定装置用電極 1上に設けられた結合層 2 4を有している。
結合層 2 4上には、 固定化酵素層 6が設けられている。 なお、 電気化学測定装置用電極 1、 固定化酵素層 6、 結合層 2 4で電極部 1 0 を構成している。
絶縁基板 2 3は電極部 1 0を保持する部材であり、耐水性、耐熱性、耐薬品性、 絶縁性および電気化学測定装置用電極 1との密着性に優れた材料であることが好 ましい。
このような要件を満たす材料としては、 例えばセラミックス、 ガラス、 石英、 プラスチックスが挙げられる。
結合層 2 4は、 固定化酵素層 6と絶縁基板 2 3および電気化学測定装置用電極 1との密着性 (結合性) を向上させるために設けられるものである。
また、 結合層 2 4は、 絶縁基板 2 3の表面のぬれ性を改善し、 固定化酵素層 6 を形成する際の膜厚の均一性を向上させる効果も有している。 .
結合層 2 4を構成する材料としては、 例えばシランカップリング剤が挙げられ る。
シランカップリング剤の種類としては、 アミノシラン、 ビニルシラン、 ェポキ シシランが挙げられるが、 このうち、 密着性の観点から、 アミノシランの一種で ある γ—ァミノプロピルトリエトキシシランがより好まし 、。
結合層 2 4は例えばシランカップリング剤溶液をスピンコートすることにより 絶縁基板 2 3および電気化学測定装置用電極 1上に形成することができる。
この際、 シランカップリング剤濃度は 1 ν Ζν % (体積 Ζ体積。 /0) 程度とする ことが好ましい。 この濃度であれば、 アルコキシル基が十分に水和し、 十分な密 着性が発揮されるからである。
なお、図 4では一枚の絶縁基板 2 3上に 1つの電極部 1 0が設けられているが、 一枚の絶縁基板 2 3上に複数の電極部 1 0を設けてもよい。
また、 図 3では対極 7および参照電極 5も別々の絶縁基板 2 3上に形成されて いるが、 全ての電極を一枚の絶縁基板 2 3上に形成してもよい。
ここで、 作用電極 2 5 aの製造方法について、 簡単に説明する。
まず、 絶縁基板 2 3上に、 電気化学測定装置用電極 1を蒸着法、 またはスパッ タリング法等を用いて設ける。
次に、 絶縁基板 2 3および電気化学測定装置用電極 1上に、 電気化学測定装置 用電極 1を覆うようにして結合層 24をスピンコートにより設ける。
次に、 結合層 24上に、 酵素溶液、 グルタルアルデヒド等の蛋白質の架橋剤、 およびアルプミンを含む溶液を、滴下することにより固定化酵素層 6が形成され、 作用電極 25 aが完成する。
なお、 バイオセンサ 3 bを用いた、 溶液中 1 5 a中の測定対象物質の濃度の測 定方法については、 第 2の実施形態と同様であるため、 説明を省略する。
このように、第 3の実施形態によれば、パイォセンサ 3 bは、作用電極 25 a、 対極 7、 参照電極 5、 測定装置 1 3 aを有し、 作用電極 25 aの電気化学測定装 置用電極 1は、 イリジウムとレニウムを含む合金が用いられており、 上記合金は 過酸化水素の選択性が得られるような組成となっている。
そのため、 第 2の実施形態と同様の効果を奏する。
また、 第 3の実施形態によれば、 作用電極 2 5 aは、 電気化学測定装置用電極 1を絶縁基板 23上に設け、 電気化学測定装置用電極 1と固定化酵素層 6の間に 結合層 24をさらに設けた構造を有している。
そのため、 第 2の実施形態と比較して、 固定化酵素層 6と電気化学測定装置用 電極 1との密着性 (結合性) を向上させることができ、 また、 固定化酵素層 6を 形成する際の膜厚の均一性を向上させることができる。
(実施例)
次に、 具体的な実施例に基づき、 本発明をさらに詳細に説明する。
(実施例 1 )
図 1に示す電気化学測定装置 3を作製し、 過酸化水素と干渉物質を含む溶液中 で、 定電位測定により、 干渉物質の 1つであるァスコルビン酸に対する過酸化水 素の電流比率を算出し、 作用電極 9の過酸ィヒ水素の選択性の評価を行つた。
まず、作用電極 9 (電気化学測定装置用電極 1)の製作を以下のように行った。 はじめに、 イリジウムワイヤとレニウムワイヤを用意し、 アーク放電によって ィリジゥム一レニウム合金を製造した。
ィリジゥム一レニウム合金としては、 ィリジゥムとレニウムの重量比率が 1 0 0 : 0、 9 9 : 1、 9 0 : 1 0、 5 5 : 4 5、 1 0 : 90、 0 : 1 00の 6種類 のものを製造した。 次に、 製造したイリジウム一レニウム合金を、 プリント配線が施されたフレキ シブル基板に接着剤を用いて固定化し、 ワイヤボンデングによって結線した後、 シリコーン封止剤で防水処理を施し、 作用電極 9 (電気化学測定装置用電極 1) とした。
なお、 作用電極 9の電極面積は 59. 0〜71. 4 X 10— 6m2 (59. 0〜 71. 4 mm2) とした。
次に、 参照電極 5として既存のガラス複合電極 (東亞ディーケーケ一 (株) 社 製、 GST— 5741 C) を用意し、対極 7として既存の白金電極(BAS社製、 002233) を用意した。
次に、溶液 1 5として、 10 Omo 1 / 3 (100 mM) のェヌートリス (ハ イドロキシーメチル) ーメチルー 2—アミノエタンサルフォニックアシッド (同 仁化学研究所製 p H緩衝液、 p Hを 7に調整済み、 1 50mo lZm3 (1 50m M) の塩化ナトリウムを含む、 以下 TESと記述) を用意し、 溶液 15の入った 0. 1リットル容量のビーカーに作用電極 9、 参照電極 5、 対極 7を浸漬し、 配 線 1 1を通じてこれらの電極を測定装置 13に接続し、 電気化学測定装置 3を作 製した。
測定は過酸ィ匕水素およぴァスコルビン酸に対する定電位測定として、 0. 5V、 0. 7 ぉょび0. 9 V印加時の応答電流を測定した。
これらの電位を印加し、 定常状態となった電流から、 両者を添カ卩したときに得 られる応答電流の差とした。
各印加時に得られるァスコルビン酸 (干渉物質) に対する過酸化水素の電流比 率を算出した。 結果を図 5に示す。
図 5に示すように、イリジゥムとレニウムの重量比率が 99: 1、 90: 10、 55 : 45の場合に、 過酸化水素に対して選択的に応答電流を示した。
特に、 ィリジゥムとレニウムの重量比率が 99 : 1、 90 : 10の場合 (ィリ ジゥムに対するレニウム含有量が 1〜10重量%の場合) に、 特に過酸化水素に 対して選択的に応答電流を示すことがわかった。
即ち、上記組成範囲の場合は、過酸化水素を選択的に酸化し酸化力が大きいが、 ァスコルビン酸への酸化力は小さいことが示された。 一方で、ィリジゥムとレニウムの重量比率が 1 0 0 : 0および 1 0 : 9 0、 0 : 1 0 0の場合は、 ァスコルビン酸の酸ィ匕カも過酸化水素と同等であり、 作用電極 9は干渉物質の影響を受けることがわかった。
(実施例 2)
実施例 1において、 評価時の印加電位を 0. 7 Vのみとし、 他は同様の条件に おいて、 干渉物質としての尿酸およびァセトァミノフェンに対する評価を実施例 1と同様に行った。
結果を図 6に示す。
図 6に示すように、 本実施例のイリジウム一レニウム合金の電極は、 ァスコル ビン酸と同様に尿酸およびァセトァミノフェンに対しても、 イリジウムとレニゥ ムの重量比率が 9 9 : 1、 9 0 : 1 0、 5 5 : 4 5の場合の時に酸ィ匕力が小さく、 過酸化水素を選択的に酸化させることがわかつた。
また、 過酸化水素の選択的酸ィヒの効果は、 イリジウムに対するレニウム含有率 が 1 0重量%の時に最も優れていることがわかった。
(実施例 3)
図 2に示すバイオセンサ 3 aをグルコース測定用のバイオセンサとして作製し、 ァスコルビン酸と、 濃度が既知のグルコースを含む溶液 1 5 a中でのグルコース の濃度を測定し、 作用電極 2 5 aの過酸化水素への選択性の評価を行った。
はじめに、 イリジウム一レニウム合金の電気化学測定装置用電極 1を、 実施例 1と同様に、 ィリジゥムとレニウムの重量比率が 9 0 : 1 0となるように作製し た。
次に、 作製した電気化学測定装置用電極 1の表面に 1 v/v。/。の y—アミノブ 口ピルトリエトキシシラン (信越化学 (株) 社製) を塗布した後、 1 1 0 で1 時間加熱した。
加熱終了後、 1 0 0mo l /m3 (1 0 0 mM) TE Sで2 2. 5 wZv%に 調整した牛血清アルブミン溶液 ( 1 V / V %のグルタルアルデヒドと 5 6. 5 U X 1 0— 6_ リットノレ (5 6. 5 Ό/β 1 ) のグルコース酸化酵素を含む) を同様 に塗布し、 2. 5 ± 1 °Cの冷蔵庫で 24時間乾燥させて作用電極 9 a (パイォセ ンサ用電極 4 a) を製造した。 また、 参照電極 5、 対極 7も用意し、 溶液 1 5 aにこれらの電極を浸漬し、 配 線 1 1を通じてこれらの電極を測定装置 1 3 aに接続し、 バイオセンサ 3 aを作 製した。
なお、 比較例として作用電極に、 ィリジゥム一レニウム合金の代わりに白金を 用いた電極を用いたバイオセンサ用電極を作成し、 これを用いたバイオセンサを 作製した。
溶液 15 aとしてはパイオラッド ·ラボラトリーズ社製のライフォチェックの コントローノレ尿を用レヽ、 ァスコノレビン酸を 50 X 10一5 k g/リッ トル (5 Om g/d 1 ) となるように添カ卩し、 グルコースを 10 X 10— 5k g リットル (1 Omg/d 1 ) となるように添加した。
つづいて、バイオセンサ 3 aを 0、 5、 10、 20 X 10—5 kgZリットノレ(0、 5、 10、 20 m g / d 1 ) のグルコース溶液で検量線を作成しておき、 コント 口ール尿中のダルコース濃度を測定した。
測定は 0. 9 V定電位測定で 3回繰り返した。
その結果、ィリジゥム一レニウム合金の電極を用いたバイオセンサ 3 aは 10. 8±0. 3 X 10— 5 k gノリットル (10. 8士 0. 3mgノ d l) 、 白金電極 を用いたバイオセンサは 30. 1 ± 3. 6 X 10— 5 k g/リットル (30. 1土 3. 6mg/d 1 ) をそれぞれ示した。
ィリジゥムーレニウム合金を用いた本実施例のバイオセンサ 3 aはほぼ正確な ダルコース濃度を測定できたが、 白金電極を用いた比較例のパイォセンサはァス コルビン酸の酸化電流に伴う干渉を受けて正確なグルコース濃度を測定すること ができなかった。
(実施例 4)
実施例 3で用いたバイオセンサ 3 aを用意した。
バイオセンサ 3 aの各電極を室温下で TE S溶液中に浸漬し、 一定日数毎に 1 0X 10 -5 k g/リ ツ 卜ノレ (1 Omg/d 1 ) のグルコースと 1 X 10 _5 k g/ リットノレ(lmgZd l)のァスコルビン酸を測定し、電極の安定性を評価した。 評価は 0. 9 V印加時における過酸化水素の電流値に対するァスコルビン酸の 電流値の比率を算出した。 結果を図 7に示す。
なお、 図 7におけるグラフ中の 「P t」 は白金電極を用いたバイオセンサ (比 較例) の測定値であり、 「I r—Re」 はイリジウム一レニウム合金電極を用い たパイォセンサ 3 a (本実施例) の測定値である。
図 7に示すように、 白金電極を用いたバイオセンサは過酸化水素よりもァスコ ルビン酸に対して高い電流を示し、 その電流比率は 5. 5-6. 1 (ァスコルビ ン酸 過酸化水素) であり、 27日間にわたって安定していた。
—方で、 ィリジゥムーレニウム合金電極を用いたバイオセンサ 3 aはダルコ一 スから生成される過酸化水素に対して選択的に電流を示し、 ァスコルビン酸に対 してはほとんど電流を示さなかった。
電流比率は 0. 06— 0. 1 (ァスコルビン酸ノ過酸化水素) であり、 27曰 間ほとんど変動せずに安定していた。
(実施例 5)
実施例 3において、 固定化酵素層 6の代わりに固定化抗体層を設けた作用電極 を用いた免疫センサを用意し、 ァスコルビン酸と、 濃度が既知の絨毛性ゴナドト 口ビンを含む溶液中での戎毛性ゴナドトロビンの濃度を測定し、 作用電極の過酸 化水素への選択性の評価を行つた。
作用電極の製作は次のように行った。
はじめに、 電気化学測定装置用電極 1を、 実施例 1と同様に、 イリジウムとレ -ゥムの重量比率が 90 : 10となるように作製した。
作製した電気化学測定装置用電極 1を、 1 X 10— 3k g/0. 2リットノレ (1 mg/0. 2ml ) のヒト絨毛性ゴナドトロピン抗体 (ハイテストネ土製のマウス 免疫のモノクローナル抗体) の溶液に 1時間浸漬した。
浸漬後、 3 m o 1 /m3 ( 3 mM) の 1、 3—ジァミノベンゼン (アルドリツチ (株) 社製、 USA、 pH7. 4のリン酸緩衝液および 0. l X 103mo l / m3 (0. 1M) の塩ィ匕ナトリウムを含む) 中にさらに浸漬し、 0から 0. 8Vを 2X 10~3V/s (2mVZs) で 100回掃引し、 次いで 0. 65 Vで 5時間 印加し、 その後に 1 w/v%のポリビュルアルコール溶液中に 1時間浸漬するこ とによって、 前述の抗体を固定化した。 比較例として白金を用いた電極に同様の工程で同種の抗体を固定化した。
溶液としてはバイオラッド ·ラボラトリーズ社製のライフォチェックのコント ロール尿を用い、 ァスコルビン酸 (和光純薬工業 (株) 社製) として 50 X 1 0一5 k gZリットル (5 Omg/d 1 ) と、 絨毛性ゴナドトロビン (アスペン · バイオ'ファ一マ社製のヒ ト妊婦の尿由来の j3サブュ-ット) として 60X 10一 6mo lZm3 (60 nM) を、 それぞれ終濃度として添加した。
つづいて、 実施例と比較例の免疫センサを 0, 66、 132 X 10— 6mo l/ m3 (0, 66, 132 nM)絨毛性ゴナドトロピン溶液で検量線を作成しておき、 溶液中の絨毛性ゴナドトロピン濃度を測定した。 測定は 0. 1— 1. 2 V掃引範 囲、 40 X 10—3 (4 OmV) のパルス電位、 4Hzの周波数、 10 X 10— 3 V (1 OmV) のステップ電位とする方形波ボルタンメ トリ法で 3回繰り返した。 その結果、 イリジウム一レニウム合金の電極を用いた免疫センサは 1. I Vに おいて、 6 1. 1 ±0. 6 X 10— 6mo 1 m3 (6 1. 1 ±0· 6 nM) 、 白 金電極を用いた免疫センサは 1 18 ± 1 2. 2 X 1 0_6mo 1 /m3 (1 1 8土 12. 2 nM) をそれぞれ示した。
作用電極にィリジゥム一レニウム合金を用いた本実施例の免疫センサはほぼ正 確に絨毛性ゴナドトロピンの濃度を示したが、 白金電極を用いた比較例の免疫セ ンサはァスコルビン酸の酸化電流に伴う干渉を受けて正確な濃度を測定すること ができなかった。
このように、 本実施例の電気化学測定装置用電極 1は、 免疫センサに用いた場 合においても干渉物質の影響を排除できることがわかった。
上記した実施形態おょぴ実施例では、 パイォセンサ 3 aおよび免疫センサを、 主として溶液中のグルコースおよび絨毛性ゴナドトロピンの濃度の測定用のセン サに適用した場合について説明したが、 本発明は、 何等、 これに限定されること なく、 触媒反応により、 測定対象物質を過酸化水素に変換可能な全ての物質の濃 度測定に用いることができる。
また、 本出願は、 2007年 11月 7日に出願された、 日本国特許出願第 20 07— 289836号からの優先権を基礎として、 その利益を主張するものであ り、 その開示はここに全体として参考文献として取り込む。

Claims

請 求 の 範 囲
1 . 少なくともイリジウムとレニウムを含み、 かつ、 イリジウムとレニウムと を、 過酸化水素の選択性が得られるような組成となるように含有した合金で構成 されていることを特徴とする、 溶液中の過酸化水素を検出する、 電気化学測定装 置用電極。
2 . 前記合金は、 イリジウムとレニウムの重量比率が 9 9 : 1 ~ 5 0 : 5 0の 範囲であることを特徴とする請求項 1記載の電気化学測定装置用電極。
3 . 少なくともイリジゥムとレニウムを含み、 かつ、 イリジウムとレニウムの 重量比率が 9 9 : 1〜5 0 : 5 0の範囲である合金で構成されていることを特徴 とする、 溶液中の過酸ィヒ水素を検出する、 電気化学測定装置用電極。
4 . 前記合金は、 イリジウムとレニウムの重量比率が 9 9 : ;!〜 9 0 : 1 0の 範囲であることを特徴とする請求項 1〜 3のいずれかに記載の電気化学測定装置 用電極。
5 . 前記合金は、
ィリジゥム一レニウム合金であることを特徴とする請求項 1〜4のいずれかに 記載の電気化学測定装置用電極。
6 . 請求項 1〜 5のいずれかに記載の電気化学測定装置用電極を有することを 特徴とする、 溶液中の過酸化水素の濃度を測定する、 電気化学測定装置。
7 . 請求項 1〜5のいずれかに記載の電気化学測定装置用電極の表面に、 固定 化酵素層および/または固定化抗体層を設けてなることを特徴とする、 溶液中の 測定対象物質を検出する、 バイオセンサ用電極。
8 . 前記固定化酵素層は、
前記測定対象物質を、 過酸化水素に変換可能な少なくとも 1つの種類の酵素を 有し、
前記固定化酵素層が変換した過酸ィヒ水素を前記電気化学測定装置用電極が検出 することにより、 前記測定対象物質を検出することを特徴とする請求項 7記載の バイオセンサ用電極。
9 . 前記酵素は、 乳酸酸化酵素、 グルコース酸化酵素、 尿酸酸化酵素、 尿素酸化酵素、 アルコー ル酸化酵素、 クレアチニナーゼ、 クレアチナーゼ、 サルコシンォキシダーゼのう ちの少なくとも 1つであることを特徴とする請求項 8記載のバイオセンサ用電極。
1 0 . 前記固定化抗体層は、
前記測定対象物質と反応可能な少なくとも 1つの種類の抗体を有し、
前記固定化抗体層中の前記抗体と前記測定対象物質との反応により生じる電流 を、 前記電極が検出することにより、 前記測定対象物質を検出することを特徴と する請求項 7記載のバイォセンサ用電極。
1 1 . 前記抗体は、
ヒト絨毛性ゴナドトロピン抗体であることを特徴とする請求項 1 0記載のバイ ォセンサ用電極。
1 2 . 前記電気化学測定装置用電極を保持する絶縁基板と、
前記電気化学測定装置用電極と前記固定化酵素層および/または固定化抗体層 の間に設けられ、 かつ前記電気化学測定装 «用電極を覆うように、 前記絶縁基板 および電気化学測定装置用電極上に設けられた結合層と、
をさらに有することを特徴とする請求項 7〜 1 1記載のバイォセンサ用電極。
1 3 . 請求項 7〜1 2のいずれかに記載のバイオセンサ用電極を有することを 特徴とする、 溶液中の測定対象物質の濃度を測定する、 バイオセンサ。
1 4 . 少なくともイリジゥムとレニウムを含み、 かつ、 ィリジゥムとレニウム とを、 過酸化水素の選択性が得られるような組成となるように含有した合金を、 放電アーク法、 蒸着法、 スパッタリング法のいずれかで製造する工程を有するこ とを特徴とする、 溶液中の過酸化水素を検出する、 電気化学測定装置用電極の製 造方法。
1 5 . 前記工程は、 ィリジゥムとレニウムの重量比率が 9 9 : 1〜5 0 : 5 0 の範囲である合金を製造する工程であることを特徴とする請求項 1 4記載の電気 化学測定装置用電極の製造方法。
1 6 . 少なくともイリジウムとレニウムを含み、 かつ、 イリジウムとレニウム の重量比率が 9 9: :!〜 5 0: 5 0の範囲である合金を、放電アーク法、蒸着法、 スパッタリング法のいずれかで製造する工程を有することを特徴とする、 溶液中 の過酸化水素を検出する、 電気化学測定装置用電極の製造方法。
1 7 . 前記工程は、 ィリジゥムとレニウムの重量比率が 9 9 : 1 - 9 0 : 1 0 である合金を製造する工程であることを特徴とする請求項 1 4〜1 6のいずれか に記載の電気化学測定装置用電極の製造方法。
1 8 . 請求項 1〜 5のいずれかに記載の電気化学測定装置用電極の表面に固定 化酵素層おょぴ Zまたは固定化抗体層を設ける工程を有することを特徴とする、 溶液中の測定対象物質を検出する、 バイオセンサ用電極の製造方法。
1 9 . 前記工程は、
前記測定対象物質を、 過酸化水素に変換可能な少なくとも 1つの酵素を前記電 気化学測定装置用電極の表面に固定して固定化酵素層を設ける工程であることを 特徴とする請求項 1 8記載のパイォセンサ用電極の製造方法。
2 0 . 前記工程は、
乳酸酸化酵素、 グルコース酸化酵素、 尿酸酸化酵素、 尿素酸化酵素、 アルコー ノレ酸化酵素、 クレアチニナーゼ、 クレアチナ一ゼ、 サノレコシン才キシダーゼのう ち、 少なくとも 1つを前記電気化学測定装置用電極の表面に固定して固定化酵素 層を設ける工程であることを特徴とする請求項 1 9記載のバイォセンサ用電極の 製造方法。
2 1 . 前記工程は、
前記測定対象物質前記測定対象物質と反応可能な少なくとも 1つの抗体を前記 電気化学測定装置用電極の表面に固定して固定化抗体層を設ける工程であること を特徴とする請求項 1 8記載のバイオセンサ用電極の製造方法。
2 2 . 前記工程は、
ヒト絨毛性ゴナドトロピン抗体を前記電気化学測定装置用電極の表面に固定し て固定化抗体層を設ける工程であることを特徴とする請求項 2 1記載のバイォセ ンサ用電極の製造方法。
2 3 . 請求項 6記載の電気化学測定装置を用い、 電流検出方式により、 溶液中 の過酸化水素の濃度を測定することを特徴とする測定方法。
2 4 . 請求項 1 3記載のバイオセンサを用い、 電流検出方式により、 溶液中の 測定対象物質の濃度を測定することを特徴とする測定方法。
PCT/JP2008/070156 2007-11-07 2008-10-29 電気化学測定装置用電極およびバイオセンサ用電極 WO2009060878A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/741,158 US8568578B2 (en) 2007-11-07 2008-10-29 Electrode for electrochemical measurement apparatus and electrode for biosensor
JP2009540070A JP5061375B2 (ja) 2007-11-07 2008-10-29 電気化学測定装置用電極およびバイオセンサ用電極

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007289836 2007-11-07
JP2007-289836 2007-11-07

Publications (1)

Publication Number Publication Date
WO2009060878A1 true WO2009060878A1 (ja) 2009-05-14

Family

ID=40625765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070156 WO2009060878A1 (ja) 2007-11-07 2008-10-29 電気化学測定装置用電極およびバイオセンサ用電極

Country Status (3)

Country Link
US (1) US8568578B2 (ja)
JP (1) JP5061375B2 (ja)
WO (1) WO2009060878A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487861A (zh) * 2019-08-02 2019-11-22 重庆东渝中能实业有限公司 一种集成一体化维生素检测电极及配套清洗的装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3311150A1 (en) 2015-06-18 2018-04-25 Ultradian Diagnostics LLC Methods and devices for determining metabolic states
CN115266868A (zh) * 2022-08-22 2022-11-01 苏州大学 一种基于金属氧化物的特异性电化学传感器及其构建方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153952A (ja) * 1987-12-11 1989-06-16 Terumo Corp 酵素センサ
JPH08240562A (ja) * 1995-03-03 1996-09-17 Hitachi Ltd 炉水用過酸化水素センサ
JPH09127053A (ja) * 1995-10-30 1997-05-16 Kdk Corp 過酸化水素の測定方法、その方法を用いた過酸化水素測定センサーおよびその製造方法
JP2003121407A (ja) * 2001-10-12 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> ナノ金属微粒子含有炭素薄膜電極及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802894A (en) * 1955-04-30 1957-08-13 Degussa Thermocouple
US5922183A (en) * 1997-06-23 1999-07-13 Eic Laboratories, Inc. Metal oxide matrix biosensors
JP3214561B2 (ja) 1998-07-02 2001-10-02 日本電気株式会社 酵素電極およびそれを用いたバイオセンサ、測定器
US6767440B1 (en) 2001-04-24 2004-07-27 Roche Diagnostics Corporation Biosensor
JP3365497B2 (ja) 1999-10-19 2003-01-14 日本電気株式会社 過酸化水素電極およびそれを用いた過酸化水素センサ、測定器
DE10027651C2 (de) * 2000-06-03 2002-11-28 Bosch Gmbh Robert Elektrode, Verfahren zu deren Herstellung und Zündkerze mit einer derartigen Elektrode
US20070056852A1 (en) * 2004-07-23 2007-03-15 Canon Kabushiki Kaisha Enzyme electrode sensor fuel cell and electrochemical reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153952A (ja) * 1987-12-11 1989-06-16 Terumo Corp 酵素センサ
JPH08240562A (ja) * 1995-03-03 1996-09-17 Hitachi Ltd 炉水用過酸化水素センサ
JPH09127053A (ja) * 1995-10-30 1997-05-16 Kdk Corp 過酸化水素の測定方法、その方法を用いた過酸化水素測定センサーおよびその製造方法
JP2003121407A (ja) * 2001-10-12 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> ナノ金属微粒子含有炭素薄膜電極及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487861A (zh) * 2019-08-02 2019-11-22 重庆东渝中能实业有限公司 一种集成一体化维生素检测电极及配套清洗的装置
CN110487861B (zh) * 2019-08-02 2024-04-02 重庆东渝中能实业有限公司 一种集成一体化维生素检测电极及配套清洗的装置

Also Published As

Publication number Publication date
JP5061375B2 (ja) 2012-10-31
US20100258452A1 (en) 2010-10-14
JPWO2009060878A1 (ja) 2011-03-24
US8568578B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
US6096497A (en) Electrostatic enzyme biosensor
Pundir et al. Biosensing methods for determination of triglycerides: A review
JP2943700B2 (ja) バイオセンサ
Chen et al. Glucose microbiosensor based on alumina sol–gel matrix/electropolymerized composite membrane
CA2567899C (en) Analyte sensors and methods for making and using them
Cavalcanti et al. A disposable chitosan-modified carbon fiber electrode for dengue virus envelope protein detection
WO1988004050A1 (en) Enzymatic sensor
JP2009031283A (ja) 共有結合性酵素を有するcmセンサ
JP2006322889A5 (ja)
Kumar et al. Biocompatible self-assembled monolayer platform based on (3-glycidoxypropyl) trimethoxysilane for total cholesterol estimation
US20120325680A1 (en) Information acquisition apparatus on concentration of thioredoxins in sample, stress level information acquisition apparatus and stress level judging method
Liao et al. Preliminary investigations on a new disposable potentiometric biosensor for uric acid
Rahman Fabrication of L-lactate biosensor based on redox species mediated lactate oxidase using micro-device
WO2009060878A1 (ja) 電気化学測定装置用電極およびバイオセンサ用電極
JPH102874A (ja) グルコースバイオセンサ
KR101328485B1 (ko) 당 검출을 위한 바이오 센서소자 제조방법, 이를 이용한 바이오 센서 소자 및 당 검출방법
JP5135548B2 (ja) 電気化学測定装置用電極およびバイオセンサ用電極
US20100315107A1 (en) Electrode for electrochemical measurement apparatus and electrode for biosensors
KR100729147B1 (ko) 고감도 바이오센서 및 이를 포함하는 복합 바이오센서
KR101990703B1 (ko) 현장 자가진단용 전기화학센서를 이용한 시료 내 목적 물질의 농도를 측정하는 방법
KR101467299B1 (ko) 불순물 차단 구조의 당 검출용 전극체 및 이를 적용한 당 검출 센서
US20070240983A1 (en) Amperometric sensor for uric acid and method for the same
JPH11271258A (ja) センサーフュージョンによる生理現象の計測システム
US20230400455A1 (en) Electrochemical sensor
JP2012242335A (ja) 電気化学測定装置用電極、電気化学測定装置およびバイオセンサ用電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08847082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12741158

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009540070

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08847082

Country of ref document: EP

Kind code of ref document: A1