WO2009053357A1 - Electrical power component, in particular power semiconductor module, having a cooling device and method for the planar and heat-conductive attachment of a cooling device to an electrical power component - Google Patents

Electrical power component, in particular power semiconductor module, having a cooling device and method for the planar and heat-conductive attachment of a cooling device to an electrical power component Download PDF

Info

Publication number
WO2009053357A1
WO2009053357A1 PCT/EP2008/064207 EP2008064207W WO2009053357A1 WO 2009053357 A1 WO2009053357 A1 WO 2009053357A1 EP 2008064207 W EP2008064207 W EP 2008064207W WO 2009053357 A1 WO2009053357 A1 WO 2009053357A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling device
substrate
metallic layer
component
heat
Prior art date
Application number
PCT/EP2008/064207
Other languages
German (de)
French (fr)
Inventor
Gerhard Ehbauer
Volker Karrer
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2009053357A1 publication Critical patent/WO2009053357A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1344Spraying small metal particles or droplets of molten metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components

Definitions

  • Electrical power component in particular power semiconductor module, with a cooling device and method for surface-connected and heat-conducting connection of a cooling device to an electrical power component
  • the invention relates to an electrical power component, in particular a power semiconductor module, with a cooling device and to a method for surface and heat-conducting connection of a cooling device to the component.
  • a power semiconductor module according to the preamble of claim 1 is known.
  • a carrier it has a planar substrate made of a ceramic material.
  • a metallic layer is applied, which is structured to produce printed conductors. This structuring preferably takes place via etching.
  • a number of power semiconductors are attached and conductively connected to one another on the first side.
  • the ceramic substrate is provided with a bottom metallization applied in a direct connection method so that a dimensional distortion due to the different coefficients of expansion of the ceramic substrate and the metallic structured layer is avoided, in particular during operation of the power semiconductor module.
  • Power semiconductors are designed for controlling and switching high electrical currents and high electrical voltages. When operating a power semiconductor module this is strongly heated by heat loss. This effect was further reinforced by the fact that, in the course of increasing miniaturization of the power semiconductor modules, the printed conductor density was successively increased. Therefore, to ensure proper functioning of a power semiconductor module is usually a so-called Entracermungsmother necessary that excludes overheating during operation of the power semiconductor module. Such a cooling concept encompasses all measures which together ensure that a limit temperature of an electrical circuit is not exceeded.
  • a common method for cooling a power semiconductor module is to connect a cooling device, in particular in the form of an air or fluid cooler, to the module.
  • the cooling device is fastened to the carrier substrate of the electrical circuit, in particular by screwing.
  • the gap between the electrical component and the cooling device is filled up by means of a transition layer of a thermal compound in order to improve the heat transfer from the electrical component to the cooling device.
  • the thermal conductivity of the thermal compound is comparatively poor, so that the transition layer hinders the heat removal to the cooling device.
  • the electrical component and the cooling device are soldered together, so that the solder forms a metallic transition layer whose thermal conductivity is greatly improved compared to the thermal conductivity of a transition layer formed from thermal compound.
  • a soldering process can be performed only with great effort or not at all.
  • aluminum is a material which is very easy to process and, above all, has good thermal conductivity. Therefore, often, the cooling device and / or pointing to the cooling device side of the electrical component made of aluminum. In these cases, often for reasons of cost to a soldering dispensed with and resorted to the first variant with the thermal grease.
  • the object of the invention is therefore to connect the cooling device in an improved manner surface and heat-conducting to an electrical power component.
  • the cooling device is connected to the substrate via at least one metallic layer produced by means of a cold gas spraying process.
  • the invention is based on the finding that metallic layers having a high thermal conductivity can be produced by means of a cold gas spraying process.
  • the principles of the cold gas spraying process are described in EP 0 484 533 B1. Further details of the cold gas spraying process can be found in the article by J. Vlcek "Applications of cold gas-sprayed coatings in the aerospace industry", Galvanotechnik 3/2005, page 684 et seq ..
  • a "cold" carrier gas stream is used a gas temperature below 800 0 C spray particles injected.
  • the laden with the spray particles carrier gas stream is expanded in a nozzle.
  • the carrier gas flow with the spray particles is accelerated to a speed which is above the speed of sound.
  • the thus accelerated spray particles strike a component to be coated.
  • the spraying particles are not melted in the "cold" carrier gas jet.
  • the metallic coating and the component merge into one another in a smooth transition, and due to the high velocity of the spray particles, a very dense and low-pore metallic layer is formed. see energy is exposed to the spray particles is low, it comes at the particle surface of the spray particles or hardly to an oxide layer formation.
  • oxide inclusions as known from layers formed by means of thermal spraying, can be almost completely avoided, whereby a very high thermal conductivity of the cold gas-sprayed layer applied to the component is brought about.
  • connection of the cooling device by means of a cold gas-sprayed layer to the power semiconductor module also allows the development of power semiconductor modules with a higher degree of integration, ie, with an increased number of interconnects per unit area, since now on the improved connection of the cooling device increased Amount of heat is dissipated.
  • the described connection of a cooling device can be realized for each electrical power component.
  • An electrical power component is to be understood here as meaning any electrical circuit which produces a large amount of heat, in particular a microcontroller or the like.
  • metal and “metal” are understood to mean that the metallic layer may consist of both an elemental metal and a metal alloy.
  • the metallic layer consists of a solderable metal, wherein the substrate and the cooling device are soldered to one another by means of a solder connected to the metallic layer.
  • the metallic layer is planar in this case applied to the substrate.
  • the metallic layer is applied flat on a contact surface of the cooling device.
  • the solder may be designed as a soft solder or brazing. Furthermore, it is possible to adapt the material combination of the at least one solderable metallic layer and the solder to one another such that an optimized heat transfer results between the substrate and the cooling device.
  • solders are, for example, in the textbook by Wolfgang Bergmann, "Materials, Part 2: Application”, Carl Hanser Verlag Kunststoff, 1991, ISBN 3- 446-15599-6 on page 165 et seq. Solder in question.
  • the cooling device comprises a metallic heat sink, in particular made of aluminum, of copper or of another thermally conductive material. Since the solder, as the connection between the substrate and the heat sink, ensures a particularly good heat-conducting connection, the cooling device can be optimized in terms of its size and thus of its installation volume.
  • the heat sink is preferably made of an extruded profile in an easily manufactured and cost-effective design.
  • a metallic rib cooler or a cooler with meander-shaped projections is provided as the cooling device.
  • the cooling fins or the meander-shaped projections are thin and projecting far from the substrate executable, so that a large area is provided for dissipating heat to a cooling medium by convection.
  • the cooling device itself is formed by means of the cold gas spraying process.
  • a material application to the substrate which predefines the structure of the cooling device.
  • This material application may have the structure of cooling ribs or projections in the manner of meanders.
  • the metallic layer applied as a cooling device can additionally be contoured, ie provided with an irregular and fissured surface.
  • the surface of the cooling device can be increased, so that a particularly good heat transfer can be achieved by convection.
  • a fluid cooler is provided as the cooling device.
  • a fluid as the cooling medium has a significantly higher heat capacity than air or a gas.
  • the fluid cooler can advantageously be formed by closing the cooling fins of a fin cooler or the projections of a cooler with meandering projections to form flow channels.
  • the fin cooler or the cooler with the meandering projections is expediently produced as already described above.
  • the flow channels are formed, in which adjacent ribs or projections are connected to each other at their free end surface. This is done in the simplest case by attaching a thin sheet to the free ends of the ribs or at the free ends of the projections.
  • the sheet may be secured by screwing or by soldering to the free ends of the ribs or to the free ends of the projections.
  • the free ends of the ribs or the free ends of the projections can be provided with a solderable metallic layer by means of cold gas spraying in order to solder a poorly or non-solderable material such as aluminum. This can manufacturing technology especially in a filigree cooler with thin cooling fins or meandering projections over a screwing of the sheet have advantages.
  • the object is further achieved by a method for laminar and heat-conducting bonding of a cooling device to an electrical power component, in particular to a power semiconductor module having the features of claim 11.
  • a method for laminar and heat-conducting bonding of a cooling device to an electrical power component in particular to a power semiconductor module having the features of claim 11.
  • the cooling device is formed by means of a mask reversibly applied to the substrate.
  • a mask is provided with recesses which represent the negative image of the cooling device to be formed.
  • the mask is first placed on the substrate or reversibly attached to the substrate. Subsequently, by means of a cold gas injection device, in particular with a cold gas spray gun, the recesses of the mask are filled with a metallic layer.
  • the cooling device can be produced in a time-saving and reproducible manner according to the requirements of a series production.
  • the cooling device is formed by a cold gas spraying device, in particular a cold gas spray gun, is moved in tracks over the substrate. If a mask with recesses is used in the manner already described, coating of the mask in this way can be largely avoided, so that the mask can also be used over a relatively long period of time.
  • the cooling device can also be produced without an applied mask.
  • the cold gas spraying device is moved over certain areas of the substrate more often than over other areas, so that during the course of the Stratification process an irregular material order on the type of ribs or meandering projections is formed. If, on the other hand, the cold gas spraying device is moved over the substrate in regular paths, a uniform layer structure can be produced for the formation of a solderable metallic layer or for a base of a cooler.
  • the spray parameter used is a property of a carrier gas underlying the cold gas spraying process, in particular its chemical composition, its mass flow or its temperature.
  • the spray parameters used are a property of a metallic powder on which the cold gas spraying process is based, in particular its chemical composition, its mass flow or its particle size distribution.
  • a nozzle geometry of a cold gas spraying gun on which the cold gas spraying process is based is furthermore used as the spray parameter.
  • a spray parameter is suitably used as a property of the substrate, in particular its material or its temperature during the coating.
  • FIG. 1 shows schematically a first semiconductor module with a first cooling device, as well
  • the power semiconductor module 1 comprises a so-called DCB substrate 3.
  • the DCB substrate 3 has a flat substrate 4 as a carrier, which is made of an insulating ceramic material, such as aluminum oxide.
  • a metallic layer 5 which is structured to produce printed conductors is applied.
  • the layer 5 is made of copper.
  • the conductor tracks are produced in an etching process.
  • a continuous metallic stabilization layer 6 is applied.
  • a plurality of power semiconductors 7 are fixed by soldering in each case by means of a connection solder 8. In the sectional side view of three of these power semiconductors 7 can be seen.
  • the power semiconductors 7 are interconnected with each other and with the interconnects of the structured metallic layer 5 by means of bonding wires 9.
  • the cooling device 2 comprises a fin cooler 10 made of aluminum.
  • the fin cooler 10 has a flat contact surface 11, which faces the continuous metallic stabilization layer 6 of the power semiconductor module 1.
  • a flat and continuous metallic layer 12 is applied by means of a cold gas spraying process.
  • no preparation of the contact surface 11 of the fin cooler 10 for example by sand blasting o. , necessary.
  • an intimate connection between the contact surface 11 and the continuous metallic layer 12 consisting of copper results from mechanical clamping, cold welding and friction welding processes.
  • the stabilizing layer 6 made of solderable copper is soldered to the metallic layer 12 of the contact surface 11 by means of a solder solder 13.
  • the connection between the power semiconductor module 1 and the cooling device 2, due to the high thermal conductivity of copper itself has a high thermal conductivity.
  • the fin cooler 10 has cooling ribs 14 which extend in the vertical direction 15 away from the substrate 4 and thus from the power semiconductor module 1. Furthermore, the individual cooling fins 14 extend parallel to each other and perpendicular to the image plane. Between adjacent cooling fins 14, a recess 16 is thus formed, which likewise runs perpendicular to the image plane. At the free ends of the same length cooling fins 14, a plate 17 is fixed, which closes the recesses for the formation of flow channels 16. Thus, a number of parallel and perpendicular to the image plane extending flow channels 16 is formed. From the image plane to the viewer to or from the viewer away at the front sides of the fin cooler 10, a not shown flow and an unillustrated return for acting on the fin cooler 10 is provided with a fluid. For this purpose, the flow and the return are box-shaped and each extending over the entire end face formed, so that at the same time from the flow and return all flow channels 16 can be detected.
  • the cooling device 2 also comprises a fluid pump, not shown in the figure, in order to pump the fluid through the flow channels 16.
  • the heat produced by this is by means of heat conduction from the stabilizing layer 6 via the solder 13 and the metallic layer 12 in the vertical direction 15 to the fin cooler 10 out transported.
  • the rib cooler 10 is thus acted upon by its coated with the metallic layer 12 contact surface 11 with heat, which also heats the individual cooling fins 14 by means of heat conduction. If a fluid then flows through the flow channels 16 of the cooling device 2, a heat transfer between the surfaces of the cooling fins 14 and the fluid takes place. Assuming a suitable dimensioning of the cooling device 2, it is possible to dissipate so much heat from the power semiconductor module 1 that damage to the power semiconductor module 1 is reliably avoided.
  • FIG. 2 schematically shows a sectional side view of a second power semiconductor module 1, which is identical to the first power semiconductor module of FIG. 1.
  • the second power semiconductor module 1 is followed in the vertical direction 15 by a second cooling device 2 ⁇ .
  • this cooling device 2 ⁇ only one fin cooler 10 ⁇ is shown.
  • This fin cooler 10 ⁇ with cooling fins 14 ⁇ and intervening recesses 16 ⁇ is formed in which by means of cold gas spraying a material application on the metallically continuous layer 6 of the substrate 4 takes place.
  • a cold gas spray gun is initially moved over the entire surface of the metallic layer 12 to form a flat radiator base. Subsequently, the cooling fins 14 ⁇ are generated, in which the cold gas spray gun is moved like a web.
  • the cooling fins 14 ⁇ lift off like a caterpillar in the vertical direction 15 from the radiator base. By attaching a bottom plate 17 to the free ends of the cooling fins 14 ⁇ of the fin cooler 10 ⁇ again from the image plane extending, parallel flow channels 16 ⁇ are formed. The connection of a flow, not shown, and a return, not shown, for acting on the flow channels 16 ⁇ with a fluid in the manner already described for FIG 1. Overall, in turn, the second cooling device 2 ⁇ formed by the fin cooler 10 ⁇ , the flow and the return, and a in FIG. 2, not shown fluid pump.
  • the fin cooler 10 ⁇ is made of copper, which has a good thermal conductivity. Due to the direct connection of the fin cooler 10 ⁇ to the continuous metallic layer 6 of the substrate 4, a very good heat transfer and thus a very good dissipation of heat produced by the power semiconductor module 1 is achieved.
  • a material application can take place in the manner of meander-shaped projections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The invention relates to an electrical power component, in particular a power semiconductor module, having a cooling device and a substrate, and to a method for the planar and heat-conductive attachment of a cooling device to a substrate. The electrical power component has a planar substrate (4) as a carrier. A cooling device (2, 2') is attached in a planar and heat-conductive manner to the substrate (4). Said attachment is performed using at least one metal layer (12) generated via a cold gas spraying method. Good heat dissipation from the electrical power semiconductors (7) to the cooling device (2, 2') is ensured in this way.

Description

Beschreibungdescription
Elektrische Leistungskomponente, insbesondere Leistungshalbleiter-Modul, mit einer Kühlvorrichtung und Verfahren zum flächigen und wärmeleitenden Anbinden einer Kühlvorrichtung an eine elektrische LeistungskomponenteElectrical power component, in particular power semiconductor module, with a cooling device and method for surface-connected and heat-conducting connection of a cooling device to an electrical power component
Die Erfindung bezieht sich auf eine elektrische Leistungskomponente, insbesondere auf ein Leistungshalbleiter-Modul, mit einer Kühlvorrichtung sowie auf ein Verfahren zur flächigen und wärmeleitenden Anbindung einer Kühlvorrichtung an die Komponente .The invention relates to an electrical power component, in particular a power semiconductor module, with a cooling device and to a method for surface and heat-conducting connection of a cooling device to the component.
Aus der EP 0 427 143 Bl ist ein Leistungshalbleiter-Modul nach dem Oberbegriff des Patentanspruchs 1 bekannt. Es weist als Träger ein flächiges Substrat auf, das aus einem keramischen Werkstoff gefertigt ist. Auf der ersten Seite des Substrats ist eine metallische Schicht aufgebracht, die zur Erzeugung von Leiterbahnen strukturiert ist. Diese Strukturie- rung geschieht vorzugsweise über Ätzen. Weiterhin ist auf der ersten Seite eine Anzahl an Leistungshalbleitern befestigt und miteinander leitend verbunden. Auf seiner zweiten Seite ist das keramische Substrat mit einer in einem Direktverbindungsverfahren aufgebrachten Bodenmetallisierung versehen, damit ein Maßverzug aufgrund der unterschiedlichen Ausdehnungskoeffizienten des keramischen Substrats und der metallischen strukturierten Schicht insbesondere beim Betrieb des Leistungshalbleiter-Moduls vermieden ist.From EP 0 427 143 Bl a power semiconductor module according to the preamble of claim 1 is known. As a carrier, it has a planar substrate made of a ceramic material. On the first side of the substrate, a metallic layer is applied, which is structured to produce printed conductors. This structuring preferably takes place via etching. Furthermore, a number of power semiconductors are attached and conductively connected to one another on the first side. On its second side, the ceramic substrate is provided with a bottom metallization applied in a direct connection method so that a dimensional distortion due to the different coefficients of expansion of the ceramic substrate and the metallic structured layer is avoided, in particular during operation of the power semiconductor module.
Leistungshalbleiter sind für das Steuern und Schalten hoher elektrischer Ströme und hoher elektrischer Spannungen ausgelegt. Beim Betrieb eines Leistungshalbleiter-Moduls wird dieses durch Verlustwärme stark erhitzt. Dieser Effekt wurde noch dadurch verstärkt, dass im Zuge zunehmender Miniaturi- sierung der Leistungshalbleiter-Module die Leiterbahnendichte sukzessive erhöht wurde. Um ein ordnungsgemäßes Funktionieren eines Leistungshalbleiter-Moduls zu gewährleisten, ist daher in der Regel ein sogenanntes Entwärmungskonzept notwendig, das im Betrieb des Leistungshalbleiter-Moduls eine Überhitzung ausschließt. Ein derartiges Entwärmungskonzept umfasst sämtliche Maßnahmen, die zusammengefasst garantieren, dass eine Grenztemperatur eines elektrischen Schaltkreises nicht überschritten wird. Eine übliche Methode zur Entwärmung eines Leistungshalbleitermoduls besteht darin, eine Kühlvorrichtung, insbesondere in Form eines Luft- oder Fluidkühlers, mit dem Modul zu verbinden.Power semiconductors are designed for controlling and switching high electrical currents and high electrical voltages. When operating a power semiconductor module this is strongly heated by heat loss. This effect was further reinforced by the fact that, in the course of increasing miniaturization of the power semiconductor modules, the printed conductor density was successively increased. Therefore, to ensure proper functioning of a power semiconductor module is usually a so-called Entwärmungskonzept necessary that excludes overheating during operation of the power semiconductor module. Such a cooling concept encompasses all measures which together ensure that a limit temperature of an electrical circuit is not exceeded. A common method for cooling a power semiconductor module is to connect a cooling device, in particular in the form of an air or fluid cooler, to the module.
Für die Herstellung einer flächigen und wärmeleitenden Verbindung wird die Kühlvorrichtung an dem Trägersubstrat des elektrischen Schaltkreises insbesondere durch Verschraubung befestigt. Der Spalt zwischen dem elektrischen Bauteil und der Kühlvorrichtung wird mittels einer Übergangsschicht aus einer Wärmeleitpaste aufgefüllt, um den Wärmeübergang vom e- lektrischen Bauteil zu der Kühlvorrichtung zu verbessern. Jedoch ist die Wärmeleitfähigkeit der Wärmeleitpaste vergleichsweise schlecht, so dass die Übergangsschicht die Wär- meabfuhr zur Kühlvorrichtung hin behindert.For the production of a planar and heat-conducting connection, the cooling device is fastened to the carrier substrate of the electrical circuit, in particular by screwing. The gap between the electrical component and the cooling device is filled up by means of a transition layer of a thermal compound in order to improve the heat transfer from the electrical component to the cooling device. However, the thermal conductivity of the thermal compound is comparatively poor, so that the transition layer hinders the heat removal to the cooling device.
Alternativ werden das elektrische Bauteil und die Kühlvorrichtung miteinander verlötet, sodass das Lot eine metallische Übergangsschicht bildet, deren Wärmeleitfähigkeit gege- nüber der Wärmeleitfähigkeit einer aus Wärmeleitpaste gebildeten Übergangsschicht stark verbessert ist. Besteht jedoch eine oder bestehen beide der angrenzenden Schichten des Trägersubstrats und / oder der Kühlvorrichtung aus einem nicht oder schwer lötbaren Werkstoff, wie z.B. Aluminium, so lässt sich ein Lötvorgang nur mit großem Aufwand oder überhaupt nicht durchführen. Auf der anderen Seite handelt es sich speziell bei Aluminium um einen sehr gut verarbeitbaren und vor allem gut wärmeleitenden Werkstoff. Deshalb sind oftmals die Kühlvorrichtung und/oder die auf die Kühlvorrichtung weisende Seite des elektrischen Bauteils aus Aluminium gefertigt. In diesen Fällen wird aus Kostengründen oftmals auf ein Verlöten verzichtet und auf die erste Variante mit der Wärmeleitpaste zurückgegriffen .Alternatively, the electrical component and the cooling device are soldered together, so that the solder forms a metallic transition layer whose thermal conductivity is greatly improved compared to the thermal conductivity of a transition layer formed from thermal compound. However, if there is one or both of the adjacent layers of the carrier substrate and / or the cooling device made of a non-solderable or difficult solderable material, such as aluminum, a soldering process can be performed only with great effort or not at all. On the other hand, aluminum is a material which is very easy to process and, above all, has good thermal conductivity. Therefore, often, the cooling device and / or pointing to the cooling device side of the electrical component made of aluminum. In these cases, often for reasons of cost to a soldering dispensed with and resorted to the first variant with the thermal grease.
Aufgabe der Erfindung ist es daher, die Kühlvorrichtung in verbesserter Weise flächig und wärmeleitend an eine elektrische Leistungskomponente anzubinden.The object of the invention is therefore to connect the cooling device in an improved manner surface and heat-conducting to an electrical power component.
Diese Aufgabe wird erfindungsgemäß gelöst durch die Merkmalskombination des Anspruchs 1. Hierzu ist die Kühlvorrichtung über zumindest eine mittels eines Kaltgasspritzverfahrens erzeugte metallische Schicht an das Substrat angebunden. Die Erfindung beruht auf der Erkenntnis, dass sich mittels eines Kaltgasspritzverfahrens metallische Schichten mit einer hohen Wärmeleitfähigkeit erzeugen lassen. Die Grundlagen des KaIt- gasspritzverfahrens sind in der EP 0 484 533 Bl beschrieben. Weitere Einzelheiten des Kaltgasspritzverfahrens sind dem Fachartikel von J. Vlcek „Einsatzmöglichkeiten von kaltgasge- spritzten Schichten in der Luft- und Raumfahrtindustrie", Galvanotechnik 3/2005, Seite 684 ff., zu entnehmen. Bei einem Kaltgasspritzverfahren werden in einen „kalten" Trägergasstrom mit einer Gastemperatur unter 8000C Spritzpartikel injiziert. Der mit den Spritzpartikeln beladene Trägergasstrom wird in einer Düse entspannt. Dadurch wird der Trägergasstrom mit den Spritzpartikeln auf eine Geschwindigkeit beschleu- nigt, die über der Schallgeschwindigkeit liegt. Die derart beschleunigten Spritzpartikel treffen auf ein zu beschichtendes Bauteil. Im Gegensatz zu den bekannten thermischen Spritzverfahren, wie Flammspritzen, Lichtbogenspritzen, Plasmaspritzen oder Hochgeschwindigkeits-Flammspritzen, werden die Spritzpartikel in dem „kalten" Trägergasstrahl nicht aufgeschmolzen. Beim Aufprall auf das zu beschichtende Bauteil sind mechanische Verklammerung, Kaltverschweißen und Reibschweißprozesse für den Schichtaufbau wirksam. Auf diese Weise gehen metallische Beschichtung und Bauteil in einem glei- tenden Übergang ineinander über. Aufgrund der hohen Geschwindigkeit der Spritzpartikel entsteht eine sehr dichte und porenarme metallische Schicht. Da weiterhin die thermi- sehe Energie, der die Spritzpartikel ausgesetzt sind, niedrig ist, kommt es an der Partikeloberfläche der Spritzpartikel nicht oder nur kaum zu einer Oxidschichtbildung. Somit lassen sich Oxideinschlüsse, wie sie von mittels thermischem Sprit- zen gebildeten Schichten bekannt sind, nahezu vollständig vermeiden, wodurch eine sehr hohe Wärmeleitfähigkeit der auf das Bauteil aufgetragenen kaltgasgespritzen Schicht bewirkt wird.This object is achieved according to the invention by the feature combination of claim 1. For this purpose, the cooling device is connected to the substrate via at least one metallic layer produced by means of a cold gas spraying process. The invention is based on the finding that metallic layers having a high thermal conductivity can be produced by means of a cold gas spraying process. The principles of the cold gas spraying process are described in EP 0 484 533 B1. Further details of the cold gas spraying process can be found in the article by J. Vlcek "Applications of cold gas-sprayed coatings in the aerospace industry", Galvanotechnik 3/2005, page 684 et seq .. In a cold gas spraying process, a "cold" carrier gas stream is used a gas temperature below 800 0 C spray particles injected. The laden with the spray particles carrier gas stream is expanded in a nozzle. As a result, the carrier gas flow with the spray particles is accelerated to a speed which is above the speed of sound. The thus accelerated spray particles strike a component to be coated. In contrast to the known thermal spraying methods, such as flame spraying, arc spraying, plasma spraying or high-speed flame spraying, the spraying particles are not melted in the "cold" carrier gas jet. In this way, the metallic coating and the component merge into one another in a smooth transition, and due to the high velocity of the spray particles, a very dense and low-pore metallic layer is formed. see energy is exposed to the spray particles is low, it comes at the particle surface of the spray particles or hardly to an oxide layer formation. Thus, oxide inclusions, as known from layers formed by means of thermal spraying, can be almost completely avoided, whereby a very high thermal conductivity of the cold gas-sprayed layer applied to the component is brought about.
Durch eine kaltgasgespritzte Übergangsschicht zwischen Substrat und Kühlvorrichtung ist daher erkanntermaßen ein besonders effizienter Wärmeübergang realisierbar.It is therefore recognized that a particularly efficient heat transfer can be achieved by means of a cold gas-sprayed transition layer between substrate and cooling device.
Auf diese Weise lassen sich bestehende Leistungshalbleiter- Module effektiv kühlen. Weiterhin gestattet die Anbindung der Kühlvorrichtung mittels einer kaltgasgespritzten Schicht an das Leistungshalbleiter-Modul auch die Entwicklung von Leistungshalbleiter-Modulen mit einem höheren Integrationsgrad, d.h., mit einer erhöhten Anzahl von Leiterbahnen je Flächen- einheit, da über die verbesserte Anbindung der Kühlvorrichtung nunmehr eine erhöhte Wärmemenge abführbar ist. Die beschriebene Anbindung einer Kühlvorrichtung ist für jede e- lektrische Leistungskomponente realisierbar. Unter einer e- lektrischen Leistungskomponente ist hier jeder elektrische Schaltkreis zu verstehen, der eine große Wärmemenge produziert, insbesondere ein MikroController oder dergleichen.In this way, existing power semiconductor modules can be effectively cooled. Furthermore, the connection of the cooling device by means of a cold gas-sprayed layer to the power semiconductor module also allows the development of power semiconductor modules with a higher degree of integration, ie, with an increased number of interconnects per unit area, since now on the improved connection of the cooling device increased Amount of heat is dissipated. The described connection of a cooling device can be realized for each electrical power component. An electrical power component is to be understood here as meaning any electrical circuit which produces a large amount of heat, in particular a microcontroller or the like.
Die Begriffe „metallisch" und „Metall" werden dahingehend verstanden, dass die metallische Schicht sowohl aus einem e- lementaren Metall, als auch aus einer Metalllegierung bestehen kann.The terms "metallic" and "metal" are understood to mean that the metallic layer may consist of both an elemental metal and a metal alloy.
In einer zweckmäßigen Weiterbildung besteht die metallische Schicht aus einem lötbaren Metall, wobei das Substrat und die Kühlvorrichtung mittels eines an die metallische Schicht angebundenen Lotes miteinander verlötet sind. In einer vorteilhaften Variante ist hierbei die metallische Schicht flächig auf das Substrat aufgetragen. Zusätzlich oder alternativ hierzu ist in einer weiteren vorteilhaften Variante die metallische Schicht flächig auf eine Kontaktfläche der Kühlvorrichtung aufgetragen. Durch das Auftragen der lötbaren metal- lischen Schicht wird ein nicht oder nur schlecht lötbares Bauteil, nämlich das Substrat bzw. die Kontaktfläche der Kühlvorrichtung, in ein gut lötbares Bauteil übergeführt. Die Verbindung zwischen dem Substrat und der Kühlvorrichtung mittels des Lots weist eine hohe Wärmeleitfähigkeit auf, so dass eine hohe Wärmemenge vom Substrat zur Kühlvorrichtung hin abführbar ist. Je nach der zu erwartenden thermischen Belastung des Leistungshalbleiter-Moduls kann das Lot als Weichlot oder als Hartlot ausgeführt sein. Weiterhin ist es möglich, die Werkstoffkombination aus der zumindest einen lötbaren metal- lischen Schicht und dem Lot so aufeinander anzupassen, dass sich ein optimierter Wärmeübergang zwischen dem Substrat und der Kühlvorrichtung ergibt. Als Lote kommen beispielsweise die in dem Fachbuch von Wolfgang Bergmann, „Werkstofftechnik, Teil 2: Anwendung", Carl Hanser Verlag München, 1991, ISBN 3- 446-15599-6 auf Seite 165 ff. genannten Lote in Frage.In an expedient development, the metallic layer consists of a solderable metal, wherein the substrate and the cooling device are soldered to one another by means of a solder connected to the metallic layer. In an advantageous variant, the metallic layer is planar in this case applied to the substrate. Additionally or alternatively, in a further advantageous variant, the metallic layer is applied flat on a contact surface of the cooling device. By applying the solderable metallic layer, a component which can not be soldered or only badly soldered, namely the substrate or the contact surface of the cooling device, is transferred into a component which can be soldered well. The connection between the substrate and the cooling device by means of the solder has a high thermal conductivity, so that a large amount of heat can be dissipated from the substrate to the cooling device. Depending on the expected thermal load of the power semiconductor module, the solder may be designed as a soft solder or brazing. Furthermore, it is possible to adapt the material combination of the at least one solderable metallic layer and the solder to one another such that an optimized heat transfer results between the substrate and the cooling device. As solders are, for example, in the textbook by Wolfgang Bergmann, "Materials, Part 2: Application", Carl Hanser Verlag Munich, 1991, ISBN 3- 446-15599-6 on page 165 et seq. Solder in question.
In einer vorteilhaften Variante umfasst die Kühlvorrichtung einen metallischen Kühlkörper, insbesondere aus Aluminium, aus Kupfer oder aus einem anderen thermisch leitfähigen Mate- rial. Da das Lot als Verbindung zwischen dem Substrat und dem Kühlkörper eine besonders gute wärmeleitende Verbindung gewährleistet, lässt sich die Kühlvorrichtung von ihrer Größe und damit von ihrem Einbauvolumen her optimieren. Der Kühlkörper ist vorzugsweise in einfach herstellbarer und kosten- günstiger Bauweise aus einem Strangpressprofil gefertigt.In an advantageous variant, the cooling device comprises a metallic heat sink, in particular made of aluminum, of copper or of another thermally conductive material. Since the solder, as the connection between the substrate and the heat sink, ensures a particularly good heat-conducting connection, the cooling device can be optimized in terms of its size and thus of its installation volume. The heat sink is preferably made of an extruded profile in an easily manufactured and cost-effective design.
Vorteilhaft ist als Kühlvorrichtung ein metallischer Rippenkühler oder ein Kühler mit mäanderförmigen Vorsprüngen vorgesehen. Die Kühlrippen bzw. die mäanderförmigen Vorsprünge sind dünn und weit vom Substrat abstehend ausführbar, so dass eine große Fläche zur Wärmeabgabe an ein Kühlmedium mittels Konvektion bereitgestellt ist. In einer vorteilhaften Variante ist die Kühlvorrichtung selbst mittels des Kaltgasspritzverfahrens gebildet. Mit anderen Worten erfolgt mittels des Kaltgasspritzverfahrens ein Materialauftrag auf das Substrat, der die Struktur der Kühlvorrichtung vorgibt. Dieser Materialauftrag kann die Struktur von Kühlrippen oder Vorsprünge nach Art von Mäandern aufweisen. Zweckmäßig lässt sich die als Kühlvorrichtung aufgetragene metallische Schicht zusätzlich konturieren, d. h., mit einer unregelmäßigen und zerklüfteten Oberfläche versehen.Advantageously, a metallic rib cooler or a cooler with meander-shaped projections is provided as the cooling device. The cooling fins or the meander-shaped projections are thin and projecting far from the substrate executable, so that a large area is provided for dissipating heat to a cooling medium by convection. In an advantageous variant, the cooling device itself is formed by means of the cold gas spraying process. In other words, by means of the cold gas spraying method, a material application to the substrate, which predefines the structure of the cooling device. This material application may have the structure of cooling ribs or projections in the manner of meanders. Suitably, the metallic layer applied as a cooling device can additionally be contoured, ie provided with an irregular and fissured surface.
Auf diese Weise lässt sich die Oberfläche der Kühlvorrichtung vergrößern, so dass ein besonders guter Wärmeübergang durch Konvektion erreichbar ist.In this way, the surface of the cooling device can be increased, so that a particularly good heat transfer can be achieved by convection.
In einer zweckmäßigen Weiterbildung ist als Kühlvorrichtung ein Fluidkühler vorgesehen. Ein Fluid als Kühlmedium weist gegenüber Luft oder einem Gas eine bedeutend höhere Wärmekapazität auf. Mittels eines Fluidkühlers ist daher eine bedeutend größere Wärmemenge vom Leistungshalbleiter-Modul abführ- bar, als mittels eines Luftkühlers. Der Fluidkühler kann vorteilhaft gebildet werden, indem die Kühlrippen eines Rippenkühlers oder die Vorsprünge eines Kühlers mit mäanderförmigen Vorsprüngen zur Bildung von Strömungskanälen verschlossen werden. Der Rippenkühler oder der Kühler mit den mäanderför- migen Vorsprüngen wird zweckmäßig wie bereits weiter oben beschrieben erzeugt. Die Strömungskanäle werden gebildet, in dem benachbarte Rippen oder Vorsprünge an ihren Freiende flächig miteinander verbunden werden. Dies geschieht im einfachsten Fall durch die Befestigung eines dünnen Blechs an den Freienden der Rippen oder an den Freienden der Vorsprünge.In an expedient development, a fluid cooler is provided as the cooling device. A fluid as the cooling medium has a significantly higher heat capacity than air or a gas. By means of a fluid cooler, therefore, a significantly larger amount of heat can be dissipated by the power semiconductor module than by means of an air cooler. The fluid cooler can advantageously be formed by closing the cooling fins of a fin cooler or the projections of a cooler with meandering projections to form flow channels. The fin cooler or the cooler with the meandering projections is expediently produced as already described above. The flow channels are formed, in which adjacent ribs or projections are connected to each other at their free end surface. This is done in the simplest case by attaching a thin sheet to the free ends of the ribs or at the free ends of the projections.
Die Befestigung des Blechs ist hierbei beliebig. So kann das Blech durch Verschrauben oder durch Verlöten an den Freienden der Rippen oder an den Freienden der Vorsprünge befestigt sein. Auch die Freienden der Rippen oder die Freienden der Vorsprünge können mit einer lötbaren metallischen Schicht mittels Kaltgasspritzen versehen werden, um ein schlecht oder nicht lötbares Material wie Aluminium löten zu können. Dies kann fertigungstechnisch insbesondere bei einem filigranen Kühler mit dünnen Kühlrippen oder mäanderförmigen Vorsprüngen gegenüber einem Verschrauben des Blechs Vorzüge haben.The attachment of the sheet is hereby arbitrary. Thus, the sheet may be secured by screwing or by soldering to the free ends of the ribs or to the free ends of the projections. The free ends of the ribs or the free ends of the projections can be provided with a solderable metallic layer by means of cold gas spraying in order to solder a poorly or non-solderable material such as aluminum. This can manufacturing technology especially in a filigree cooler with thin cooling fins or meandering projections over a screwing of the sheet have advantages.
Die Aufgabe wird weiterhin gelöst durch ein Verfahren zum flächigen und wärmeleitenden Anbinden einer Kühlvorrichtung an eine elektrische Leistungskomponente, insbesondere an ein Leistungshalbleiter-Modul mit den Merkmalen des Patentanspruchs 11. Hierbei sind die Ausgestaltungen des Leistungs- halbleiter-Moduls mit der Kühlvorrichtung und ihre Vorzüge den auf die Vorrichtung gerichteten vorstehenden Ausführungen zu entnehmen.The object is further achieved by a method for laminar and heat-conducting bonding of a cooling device to an electrical power component, in particular to a power semiconductor module having the features of claim 11. Here are the embodiments of the power semiconductor module with the cooling device and their advantages to refer to the device above statements.
In einer zweckmäßigen Variante wird die Kühlvorrichtung mit- tels einer auf das Substrat reversibel aufbrachten Maske gebildet. Eine derartige Maske ist mit Ausnehmungen versehen, die das negative Abbild der zu bildenden Kühlvorrichtung darstellen. Für die Bildung der Kühlvorrichtung wird die Maske zunächst auf das Substrat aufgelegt oder am Substrat reversi- bei befestigt. Anschließend werden mittels einer Kaltgas- spritzvorrichtung, insbesondere mit einer Kaltgasspritzpistole, die Ausnehmungen der Maske mit einer metallischen Schicht aufgefüllt. Somit lässt sich die Kühlvorrichtung in zeitsparender und reproduzierbarer Weise den Anforderungen einer Serienfertigung gemäß erzeugen.In an expedient variant, the cooling device is formed by means of a mask reversibly applied to the substrate. Such a mask is provided with recesses which represent the negative image of the cooling device to be formed. For the formation of the cooling device, the mask is first placed on the substrate or reversibly attached to the substrate. Subsequently, by means of a cold gas injection device, in particular with a cold gas spray gun, the recesses of the mask are filled with a metallic layer. Thus, the cooling device can be produced in a time-saving and reproducible manner according to the requirements of a series production.
In einer zweckmäßigen Weiterbildung wird die Kühlvorrichtung gebildet, indem eine Kaltgasspritzvorrichtung, insbesondere eine Kaltgasspritzpistole, in Bahnen über das Substrat bewegt wird. Falls eine Maske mit Ausnehmungen nach der bereits beschriebenen Weise verwendet wird, lässt sich eine Beschich- tung der Maske auf diese Weise weitgehend vermeiden, so dass die Maske auch über einen längeren Zeitraum verwendbar ist. In einer anderen Variante lässt sich die Kühlvorrichtung auch ohne eine aufgelegte Maske erzeugen. Hierzu wird die Kaltgasspritzvorrichtung über bestimmte Gebiete des Substrats öfter bewegt, als über andere Gebiete, so dass im Lauf des Be- Schichtungsvorganges ein unregelmäßiger Materialauftrag nach Art von Rippen oder meanderförmigen Vorsprüngen gebildet ist. Wird hingegen die Kaltgasspritzvorrichtung in regelmäßigen Bahnen über das Substrat bewegt, so lässt sich ein gleichmä- ßiger Schichtaufbau für die Bildung einer lötbaren metallischen Schicht oder für eine Basis eines Kühlers erzeugen.In an expedient development, the cooling device is formed by a cold gas spraying device, in particular a cold gas spray gun, is moved in tracks over the substrate. If a mask with recesses is used in the manner already described, coating of the mask in this way can be largely avoided, so that the mask can also be used over a relatively long period of time. In another variant, the cooling device can also be produced without an applied mask. For this purpose, the cold gas spraying device is moved over certain areas of the substrate more often than over other areas, so that during the course of the Stratification process an irregular material order on the type of ribs or meandering projections is formed. If, on the other hand, the cold gas spraying device is moved over the substrate in regular paths, a uniform layer structure can be produced for the formation of a solderable metallic layer or for a base of a cooler.
Zweckmäßig werden zur Erzeugung der metallischen Schicht einer oder mehrere Spritzparameter zur Beeinflussung der Schichteigenschaften vorgegeben.It is expedient to specify one or more spray parameters for influencing the layer properties in order to produce the metallic layer.
So wird als Spritzparameter eine Eigenschaft eines dem KaIt- gasspritzverfahrens zugrundeliegenden Trägergases, insbesondere dessen chemische Zusammensetzung, dessen Massenstrom o- der dessen Temperatur, herangezogen.Thus, the spray parameter used is a property of a carrier gas underlying the cold gas spraying process, in particular its chemical composition, its mass flow or its temperature.
Weiterhin wird als Spritzparameter eine Eigenschaft eines dem Kaltgasspritzverfahren zugrundeliegenden metallischen Pulvers, insbesondere dessen chemische Zusammensetzung, dessen Massenstrom oder dessen Partikelgrößenverteilung, herangezogen. Zweckmäßig wird weiterhin als Spritzparameter eine Düsengeometrie einer dem Kaltgasspritzverfahrens zugrundeliegenden Kaltgasspritzpistole herangezogen.Furthermore, the spray parameters used are a property of a metallic powder on which the cold gas spraying process is based, in particular its chemical composition, its mass flow or its particle size distribution. Expediently, a nozzle geometry of a cold gas spraying gun on which the cold gas spraying process is based is furthermore used as the spray parameter.
Weiterhin wird zweckmäßig ein Spritzparameter eine Eigenschaft des Substrats, insbesondere dessen Werkstoff oder dessen Temperatur während des Beschichtens herangezogen.Furthermore, a spray parameter is suitably used as a property of the substrate, in particular its material or its temperature during the coating.
Nachfolgend werden zwei Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:Two embodiments of the invention will be explained in more detail with reference to a drawing. Show:
FIG 1 schematisch ein erstes Halbleitermodul mit einer ersten Kühlvorrichtung, sowie1 shows schematically a first semiconductor module with a first cooling device, as well
FIG 2 schematisch ein zweites Leistungshalbleiter-Modul mit einer zweiten Kühlvorrichtung. FIG 1 zeigt ein erstes Leistungshalbleiter-Modul 1 mit einer ersten Kühlvorrichtung 2 schematisch in einer geschnittenen Seitenansicht. Das Leistungshalbleiter-Modul 1 umfasst ein sogenanntes DCB-Substrat 3. Das DCB-Substrat 3 weist ein flä- chiges Substrat 4 als Träger auf, das aus einem isolierenden keramischen Werkstoff, wie Aluminiumoxid, gefertigt ist. Auf der ersten Seite des Substrats 4 ist eine metallische und zur Erzeugung von Leiterbahnen strukturierte Schicht 5 aufgebracht. Die Schicht 5 ist aus Kupfer gefertigt. Die Leiterbah- nen werden in einem Ätzverfahren erzeugt. Auf der der ersten Seite des Substrats 4 abgewandten Seite ist eine durchgängige metallische Stabilisierungsschicht 6 aufgebracht.2 schematically shows a second power semiconductor module with a second cooling device. 1 shows a first power semiconductor module 1 with a first cooling device 2 schematically in a sectional side view. The power semiconductor module 1 comprises a so-called DCB substrate 3. The DCB substrate 3 has a flat substrate 4 as a carrier, which is made of an insulating ceramic material, such as aluminum oxide. On the first side of the substrate 4, a metallic layer 5 which is structured to produce printed conductors is applied. The layer 5 is made of copper. The conductor tracks are produced in an etching process. On the side facing away from the first side of the substrate 4, a continuous metallic stabilization layer 6 is applied.
Auf der strukturierten metallischen Schicht 5 sind mehrere Leistungshalbleiter 7 mittels jeweils eines Verbindungslotes 8 durch Löten befestigt. In der geschnittenen Seitenansicht sind drei dieser Leistungshalbleiter 7 zu sehen. Die Leistungshalbleiter 7 sind untereinander und mit den Leiterbahnen der strukturierten metallischen Schicht 5 mittels Bonddrähten 9 miteinander verbunden.On the structured metallic layer 5, a plurality of power semiconductors 7 are fixed by soldering in each case by means of a connection solder 8. In the sectional side view of three of these power semiconductors 7 can be seen. The power semiconductors 7 are interconnected with each other and with the interconnects of the structured metallic layer 5 by means of bonding wires 9.
Die Kühlvorrichtung 2 umfasst einen aus Aluminium gefertigten Rippenkühler 10. Der Rippenkühler 10 weist eine flächig ausgebildete Kontaktfläche 11 auf, die der durchgängigen metal- lischen Stabilisierungsschicht 6 des Leistungshalbleiter-Moduls 1 zugewandt ist. Auf die Kontaktfläche 11 des Rippenkühlers 10 ist mittels eines Kaltgasspritzverfahrens eine flächige und durchgängige metallische Schicht 12 aufgetragen. Bei diesem Kaltgasspritzverfahren ist keine Vorbereitung der Kontaktfläche 11 des Rippenkühlers 10, beispielsweise durch Sandstrahlen o. dgl . , notwendig. Vielmehr ergibt sich durch mechanische Verklammerung, Kaltverschweißen und Reibschweißprozesse eine innige Verbindung zwischen der Kontaktfläche 11 und der aus Kupfer bestehenden durchgängigen metallischen Schicht 12. Zur flächigen und wärmeleitenden Anbindung der Kühlvorrichtung 2 an das Substrat 4 wird die aus lötbarem Kupfer bestehende Stabilisierungsschicht 6 mit der metallischen Schicht 12 der Kontaktfläche 11 mittels eines Lots 13 aus Kupfer ver- lötet. Die Verbindung zwischen dem Leistungshalbleiter-Moduls 1 und der Kühlvorrichtung 2 weist aufgrund der hohen Wärmeleitfähigkeit von Kupfer selbst eine hohe Wärmeleitfähigkeit auf .The cooling device 2 comprises a fin cooler 10 made of aluminum. The fin cooler 10 has a flat contact surface 11, which faces the continuous metallic stabilization layer 6 of the power semiconductor module 1. On the contact surface 11 of the fin cooler 10, a flat and continuous metallic layer 12 is applied by means of a cold gas spraying process. In this cold gas spraying process, no preparation of the contact surface 11 of the fin cooler 10, for example by sand blasting o. , necessary. On the contrary, an intimate connection between the contact surface 11 and the continuous metallic layer 12 consisting of copper results from mechanical clamping, cold welding and friction welding processes. For the planar and heat-conducting connection of the cooling device 2 to the substrate 4, the stabilizing layer 6 made of solderable copper is soldered to the metallic layer 12 of the contact surface 11 by means of a solder solder 13. The connection between the power semiconductor module 1 and the cooling device 2, due to the high thermal conductivity of copper itself has a high thermal conductivity.
Der Rippenkühler 10 weist Kühlrippen 14 auf, die sich in vertikaler Richtung 15 vom Substrat 4 und damit vom Leistungshalbleiter-Modul 1 weg erstrecken. Weiterhin verlaufen die einzelnen Kühlrippen 14 einander parallel sowie senkrecht zur Bildebene. Zwischen benachbarten Kühlrippen 14 ist somit je- weils eine Ausnehmung 16 gebildet, die ebenfalls senkrecht zur Bildebene verläuft. An den Freienden der gleich langen Kühlrippen 14 ist ein Blech 17 befestigt, das die Ausnehmungen zur Bildung von Strömungskanälen 16 abschließt. Somit ist eine Anzahl einander paralleler und senkrecht zur Bildebene verlaufender Strömungskanäle 16 gebildet. Von der Bildebene auf den Betrachter zu bzw. vom Betrachter weg sind an den Stirnseiten des Rippenkühlers 10 ein nicht dargestellter Vorlauf und ein nicht dargestellter Rücklauf zur Beaufschlagung des Rippenkühlers 10 mit einem Fluid vorgesehen. Hierzu sind der Vorlauf und der Rücklauf kastenförmig und sich jeweils über die gesamte Stirnseite erstreckend ausgebildet, so dass gleichzeitig vom Vorlauf und vom Rücklauf sämtliche Strömungskanäle 16 erfassbar sind.The fin cooler 10 has cooling ribs 14 which extend in the vertical direction 15 away from the substrate 4 and thus from the power semiconductor module 1. Furthermore, the individual cooling fins 14 extend parallel to each other and perpendicular to the image plane. Between adjacent cooling fins 14, a recess 16 is thus formed, which likewise runs perpendicular to the image plane. At the free ends of the same length cooling fins 14, a plate 17 is fixed, which closes the recesses for the formation of flow channels 16. Thus, a number of parallel and perpendicular to the image plane extending flow channels 16 is formed. From the image plane to the viewer to or from the viewer away at the front sides of the fin cooler 10, a not shown flow and an unillustrated return for acting on the fin cooler 10 is provided with a fluid. For this purpose, the flow and the return are box-shaped and each extending over the entire end face formed, so that at the same time from the flow and return all flow channels 16 can be detected.
Weiterhin umfasst die Kühlvorrichtung 2 noch eine in der Figur nicht dargestellte Fluidpumpe, um das Fluid durch die Strömungskanäle 16 zu pumpen.Furthermore, the cooling device 2 also comprises a fluid pump, not shown in the figure, in order to pump the fluid through the flow channels 16.
Im Betrieb des Leistungshalbleiter-Moduls 1 wird die von die- sem produzierte Wärme mittels Wärmeleitung von der Stabilisierungsschicht 6 aus über das Lot 13 und die metallische Schicht 12 in vertikaler Richtung 15 zum Rippenkühler 10 hin transportiert. Der Rippenkühler 10 wird somit über seine mit der metallischen Schicht 12 beschichtete Kontaktfläche 11 mit Wärme beaufschlagt, die mittels Wärmeleitung auch die einzelnen Kühlrippen 14 erwärmt. Fließt nun ein Fluid durch die Strömungskanäle 16 der Kühlvorrichtung 2, so findet ein Wärmeübergang zwischen den Oberflächen der Kühlrippen 14 und dem Fluid statt. Eine passende Dimensionierung der Kühlvorrichtung 2 vorausgesetzt, lässt sich soviel Wärme vom Leistungshalbleiter-Modul 1 abführen, dass eine Beschädigung des Leis- tungshalbleiter-Moduls 1 sicher vermieden ist.During operation of the power semiconductor module 1, the heat produced by this is by means of heat conduction from the stabilizing layer 6 via the solder 13 and the metallic layer 12 in the vertical direction 15 to the fin cooler 10 out transported. The rib cooler 10 is thus acted upon by its coated with the metallic layer 12 contact surface 11 with heat, which also heats the individual cooling fins 14 by means of heat conduction. If a fluid then flows through the flow channels 16 of the cooling device 2, a heat transfer between the surfaces of the cooling fins 14 and the fluid takes place. Assuming a suitable dimensioning of the cooling device 2, it is possible to dissipate so much heat from the power semiconductor module 1 that damage to the power semiconductor module 1 is reliably avoided.
FIG. 2 zeigt schematisch einen in einer geschnittenen Seitenansicht ein zweites Leistungshalbleiter-Modul 1, das identisch zum ersten Leistungshalbleiter-Modul aus FIG 1 ausge- führt ist. An das zweite Leistungshalbleiter-Modul 1 schließt sich in vertikaler Richtung 15 eine zweite Kühlvorrichtung 2 λ an. Von dieser Kühlvorrichtung 2λ ist lediglich ein Rippenkühler 10 λ dargestellt. Dieser Rippenkühler 10 λ mit Kühlrippen 14 λ und zwischenliegenden Ausnehmungen 16 λ wird gebildet, in dem mittels Kaltgasspritzens ein Materialauftrag auf der metallisch durchgängigen Schicht 6 des Substrats 4 erfolgt. Hierzu wird eine Kaltgasspritzpistole zunächst flächig über die gesamte metallische Schicht 12 zur Bildung einer flächigen Kühlerbasis bewegt. Anschließend werden die Kühlrippen 14 λ erzeugt, in dem die Kaltgasspritzpistole bahnartig verfahren wird. Die Kühlrippen 14 λ heben sich raupenartig in vertikaler Richtung 15 von der Kühlerbasis ab. Durch die Befestigung eines Bodenbleches 17 an den Freienden der Kühlrippen 14 λ des Rippenkühlers 10 λ sind wiederum aus der Bildebene heraus verlaufende, einander parallele Strömungskanäle 16 λ gebildet. Das Anschließen eines nicht dargestellten Vorlaufs und eines nicht dargestellten Rücklaufs zur Beaufschlagung der Strömungskanäle 16 λ mit einem Fluid erfolgt in der bereits zur FIG 1 beschriebenen Weise. Insgesamt ist wiederum die zweite Kühlvorrichtung 2 λ gebildet durch den Rippenkühler 10 λ, dessen Vorlauf und dessen Rücklauf, sowie eine in der FIG. 2 nicht dargestellte Fluidpumpe. Der Rippenkühler 10 λ ist aus Kupfer gefertigt, das eine gute Wärmeleitfähigkeit aufweist. Durch die direkte Anbindung des Rippenkühlers 10 λ an die durchgängige metallische Schicht 6 des Substrats 4 ist ein sehr guter Wärmeübergang und damit eine sehr gute Abführung der vom Leistungshalbleiter-Modul 1 produzierten Wärme erreicht.FIG. 2 schematically shows a sectional side view of a second power semiconductor module 1, which is identical to the first power semiconductor module of FIG. 1. The second power semiconductor module 1 is followed in the vertical direction 15 by a second cooling device 2 λ . Of this cooling device 2 λ only one fin cooler 10 λ is shown. This fin cooler 10 λ with cooling fins 14 λ and intervening recesses 16 λ is formed in which by means of cold gas spraying a material application on the metallically continuous layer 6 of the substrate 4 takes place. For this purpose, a cold gas spray gun is initially moved over the entire surface of the metallic layer 12 to form a flat radiator base. Subsequently, the cooling fins 14 λ are generated, in which the cold gas spray gun is moved like a web. The cooling fins 14 λ lift off like a caterpillar in the vertical direction 15 from the radiator base. By attaching a bottom plate 17 to the free ends of the cooling fins 14 λ of the fin cooler 10 λ again from the image plane extending, parallel flow channels 16 λ are formed. The connection of a flow, not shown, and a return, not shown, for acting on the flow channels 16 λ with a fluid in the manner already described for FIG 1. Overall, in turn, the second cooling device 2 λ formed by the fin cooler 10 λ , the flow and the return, and a in FIG. 2, not shown fluid pump. The fin cooler 10 λ is made of copper, which has a good thermal conductivity. Due to the direct connection of the fin cooler 10 λ to the continuous metallic layer 6 of the substrate 4, a very good heat transfer and thus a very good dissipation of heat produced by the power semiconductor module 1 is achieved.
Alternativ kann anstelle eines Materialauftrags zur Erzeugung des Rippenkühlers 10 λ auch ein Materialauftrag nach Art von mäanderförmigen Vorsprüngen erfolgen kann. Alternatively, instead of a material application to produce the fin cooler 10 λ , a material application can take place in the manner of meander-shaped projections.

Claims

Patentansprüche claims
1. Elektrische Leistungskomponente, insbesondere Leistungshalbleiter-Modul (1), - mit einem flächigen Substrat (4) als Träger, mit einer flächig und wärmeleitend an das Substrat angebundenen Kühlvorrichtung (2,2λ), dadurch gekennzeichnet, dass die Kühlvorrichtung (2,2λ) über zumindest eine mittels eines Kaltgasspritz- Verfahrens erzeugte metallische Schicht (12) an das Substrat (4) angebunden ist.1. Electrical power component, in particular power semiconductor module (1), - with a planar substrate (4) as a carrier, with a surface and heat-conducting connected to the substrate cooling device (2.2 λ ), characterized in that the cooling device (2, 2 λ ) is connected to the substrate (4) via at least one metallic layer (12) produced by means of a cold gas spraying process.
2. Komponente (1) nach Anspruch 1, dadurch gekennzeichnet, dass die metallische Schicht (12) aus einem lötbaren Metall besteht und dass das Substrat (4) und die Kühlvorrichtung (2,2λ) mittels eines an die metallische Schicht (12) angebundenen Lots (13) miteinander verlötet sind.2. Component (1) according to claim 1, characterized in that the metallic layer (12) consists of a solderable metal and that the substrate (4) and the cooling device (2.2 λ ) by means of a to the metallic layer (12). tethered lots (13) are soldered together.
3. Komponente (1) nach Anspruch 2, dadurch gekennzeichnet, dass die metallische Schicht (12) flächig auf das Substrat (4) aufgetragen ist .3. component (1) according to claim 2, characterized in that the metallic layer (12) is applied flat on the substrate (4).
4. Komponente (1) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die metallische Schicht (12) flächig auf eine Kontaktfläche (11) der Kühlvorrichtung (2,2λ) aufgetragen ist.4. component (1) according to claim 2 or 3, characterized in that the metallic layer (12) is applied flat on a contact surface (11) of the cooling device (2.2 λ ).
5. Komponente (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kühlvorrichtung (2,2λ) einen Kühlkörper (10) aus Aluminium, aus Kupfer, oder einem anderen thermisch leitfähigen Material um- fasst . 5. component (1) according to one of claims 1 to 4, characterized in that the cooling device (2.2 λ ) comprises a heat sink (10) made of aluminum, copper, or another thermally conductive material summarizes.
6. Komponente (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Kühlvorrichtung (2,2λ) einen aus einem Strangpressprofil gefertig- ten Kühlkörper (10) umfasst.6. component (1) according to one of claims 1 to 5, characterized in that the cooling device (2.2 λ ) comprises a heat exchanger made of an extruded heat sink (10).
7. Komponente (1) nach einem der Ansprüche 1 bis 6, gekennzeichnet durch einen metallischen Rippenkühler (10) als Kühlvorrichtung (2,2λ) .7. component (1) according to any one of claims 1 to 6, characterized by a metallic fin cooler (10) as a cooling device (2.2 λ ).
8. Komponente (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die metallische Schicht (12) eine konturierte Oberfläche aufweist.8. component (1) according to one of claims 1 to 7, characterized in that the metallic layer (12) has a contoured surface.
9. Komponente (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Kühlvorrichtung (2,2λ) mittels des Kaltgasspritzverfahrens gebildet ist.9. component (1) according to one of claims 1 to 8, characterized in that the cooling device (2.2 λ ) is formed by means of the cold gas spraying process.
10. Komponente (1) nach einem der Ansprüche 1 bis 9, gekennzeichnet durch einen Fluidkühler als Kühlvorrichtung (2,2 λ) .10. Component (1) according to one of claims 1 to 9, characterized by a fluid cooler as a cooling device (2.2 λ ).
11. Verfahren zum flächigen und wärmeleitenden Anbinden einer Kühlvorrichtung (2,2λ) an ein als Träger wirkendes Substrat (4) einer elektrischen Leistungskomponente, insbesondere eines Leistungshalbleiter-Moduls (1), dadurch gekennzeichnet, dass die Kühlvorrichtung (2,2λ) mittels einer mittels eines Kaltspritzverfahrens erzeugten metallischen Schicht (12) an das Subs- trat (4) angebunden ist.11. A method for laminar and heat-conductive bonding of a cooling device (2.2 λ ) to a substrate acting as a carrier (4) of an electrical power component, in particular a power semiconductor module (1), characterized in that the cooling device (2.2 λ ) is connected to the substrate (4) by means of a metallic layer (12) produced by means of a cold spraying process.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die metallische Schicht (12) aus einem lötbaren Metall oder aus einer lötbaren metallischen Legierung gefertigt wird und dass das Substrat (4) und die Kühlvorrichtung (2) mittels eines an die metallische Schicht (12) angebundenen Lots (13) miteinander verlötet werden.12. The method according to claim 11, characterized in that the metallic layer (12) is made of a solderable metal or of a solderable metallic alloy, and the substrate (4) and the cooling device (2) are soldered together by means of a solder (13) connected to the metallic layer (12).
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die metallische Schicht (12) flächig auf das Substrat (4) aufgetragen wird.13. The method according to claim 12, characterized in that the metallic layer (12) is applied flat to the substrate (4).
14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die metallische Schicht (12) flächig auf eine Kontaktfläche (11) der Kühlvorrichtung (2,2λ) aufgetragen wird.14. The method according to claim 12 or 13, characterized in that the metallic layer (12) is applied flat on a contact surface (11) of the cooling device (2.2 λ ).
15. Verfahren nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die Oberfläche der metallischen Schicht (12) konturiert wird.15. The method according to any one of claims 11 to 14, characterized in that the surface of the metallic layer (12) is contoured.
16. Verfahren nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass die Kühlvorrichtung (2,2λ) mittels des Kaltgasspritzverfahrens gebildet wird.16. The method according to any one of claims 11 to 15, characterized in that the cooling device (2.2 λ ) is formed by means of the cold gas spraying process.
17. Verfahren nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass die Kühlvorrichtung17. The method according to any one of claims 11 to 16, characterized in that the cooling device
(2,2λ) mittels einer auf das Substrat (4) reversibel aufgebrachten Maske gebildet wird.(2.2 λ ) is formed by means of a reversibly applied to the substrate (4) mask.
18. Verfahren nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, dass die Kühlvorrichtung18. The method according to any one of claims 11 to 17, characterized in that the cooling device
(2,2λ) gebildet wird, indem eine Kaltgasspritzvorrich- tung, insbesondere eine Kaltgasspritzpistole, in Bahnen über die zweite Seite des Substrats (4) bewegt wird.(2.2 λ ) is formed by a Kaltgasspritzvorrich- device, in particular a cold gas spray gun, in webs over the second side of the substrate (4) is moved.
19. Verfahren nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass zur Erzeugung der metallischen Schicht (12) einer oder mehrere Spritzparameter vorgegeben werden zur Beeinflussung der Schichteigenschaften .19. The method according to any one of claims 12 to 17, characterized in that for the production of the metallic layer (12) one or more spray parameters can be specified for influencing the layer properties.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass als Spritzparameter eine Eigenschaft eines dem Kaltgasspritzverfahren zugrunde liegenden Trägergases, insbesondere dessen chemische Zusammensetzung, dessen Massenstrom oder dessen Temperatur, herangezogen wird.20. The method according to claim 19, characterized in that as a spray parameter, a property of the cold gas injection method underlying carrier gas, in particular its chemical composition, the mass flow or its temperature, is used.
21. Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass als Spritzparameter eine Eigenschaft eines dem Kaltspritzverfahren zugrunde liegenden metallischen Pulvers, insbesondere dessen chemi- sehe Zusammensetzung, dessen Massenstrom, oder dessen Partikelgrößenverteilung, herangezogen wird.21. The method according to claim 19 or 20, characterized in that as a spray parameter, a property of the cold spray underlying metallic powder, in particular its chemical see composition, the mass flow, or its particle size distribution, is used.
22. Verfahren nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, dass als Spritzparameter eine Düsengeometrie einer dem Kaltgasspritzverfahren zugrunde liegenden Kaltgasspritzpistole herangezogen wird.22. The method according to any one of claims 19 to 21, characterized in that a nozzle geometry of a Kaltgasspritzverfahren underlying cold gas spray gun is used as a spray parameter.
23. Verfahren nach einem der Ansprüche 19 bis 22, dadurch gekennzeichnet, dass als Spritzparameter eine Eigenschaft des Substrats, insbesondere dessen Werkstoff oder dessen Temperatur während des Beschichtens, herangezogen wird.23. The method according to any one of claims 19 to 22, characterized in that as a spray parameter, a property of the substrate, in particular its material or its temperature during coating, is used.
24. Verfahren nach einem der Ansprüche 19 bis 23, dadurch gekennzeichnet, dass der Spritzparameter so gewählt wird, dass eine metallische Schicht mit einer konturierten Oberfläche erzeugt wird. 24. The method according to any one of claims 19 to 23, characterized in that the spray parameter is selected so that a metallic layer is produced with a contoured surface.
PCT/EP2008/064207 2007-10-22 2008-10-21 Electrical power component, in particular power semiconductor module, having a cooling device and method for the planar and heat-conductive attachment of a cooling device to an electrical power component WO2009053357A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007050405.7 2007-10-22
DE200710050405 DE102007050405B4 (en) 2007-10-22 2007-10-22 Electrical power component, in particular power semiconductor module, with a cooling device and method for surface and heat-conducting bonding of a cooling device to an electrical power component

Publications (1)

Publication Number Publication Date
WO2009053357A1 true WO2009053357A1 (en) 2009-04-30

Family

ID=40239810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/064207 WO2009053357A1 (en) 2007-10-22 2008-10-21 Electrical power component, in particular power semiconductor module, having a cooling device and method for the planar and heat-conductive attachment of a cooling device to an electrical power component

Country Status (2)

Country Link
DE (1) DE102007050405B4 (en)
WO (1) WO2009053357A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163993A1 (en) * 2012-04-30 2013-11-07 Curamik Electronics Gmbh Metal-ceramic substrate and process for producing a metal-ceramic substrate
US10392539B2 (en) 2014-12-31 2019-08-27 Dow Global Technologies Llc Crash durable epoxy adhesive compositions having improved low-temperature impact resistance and wash off resistance

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009045063C5 (en) 2009-09-28 2017-06-01 Infineon Technologies Ag Power semiconductor module with molded-on heat sink, power semiconductor module system and method for producing a power semiconductor module
DE102014201306A1 (en) * 2014-01-24 2015-07-30 Siemens Aktiengesellschaft Power electronics module with 3D-made cooler
EP3468311B1 (en) 2017-10-06 2023-08-23 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Metal body formed on a component carrier by additive manufacturing
EP3468312B1 (en) 2017-10-06 2023-11-29 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Method of manufacturing a component carrier having a three dimensionally printed wiring structure
DE102018208844B3 (en) 2018-06-05 2019-10-02 Continental Automotive Gmbh Heat sink, power electronics module with a heat sink and method for producing the heat sink
DE102019215793A1 (en) * 2019-10-14 2021-04-15 Vitesco Technologies GmbH Wiring substrate for a semiconductor device and method for manufacturing a wiring substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627814B1 (en) * 2002-03-22 2003-09-30 David H. Stark Hermetically sealed micro-device package with window
DE10331923A1 (en) * 2003-07-15 2005-02-10 Behr Hella Thermocontrol Gmbh An electronic circuit comprising a power semiconductor device and a fuse means for protecting the power semiconductor device from overheating
DE102004058806A1 (en) * 2004-12-07 2006-06-08 Robert Bosch Gmbh Electronic circuit structure manufacturing method for heat sink, involves directly designing electrically insulating layer and electrically conductive layer on heat sink by thermal spraying method or cold gas-spraying method
US20060258055A1 (en) * 2005-05-13 2006-11-16 Fuji Electric Holdings Co., Ltd. Wiring board and method of manufacturing the same
EP1833088A1 (en) * 2006-03-07 2007-09-12 Danfoss Silicon Power GmbH Method of forming a crack-free connection between a heat sink and a substrate plate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186454A (en) * 1987-01-28 1988-08-02 Mitsubishi Electric Corp Heat sink device for semiconductor device
DE3937045A1 (en) * 1989-11-07 1991-05-08 Abb Ixys Semiconductor Gmbh PERFORMANCE SEMICONDUCTOR MODULE
WO1991019016A1 (en) * 1990-05-19 1991-12-12 Institut Teoreticheskoi I Prikladnoi Mekhaniki Sibirskogo Otdelenia Akademii Nauk Sssr Method and device for coating
US6808817B2 (en) * 2002-03-15 2004-10-26 Delphi Technologies, Inc. Kinetically sprayed aluminum metal matrix composites for thermal management
DE20221237U1 (en) * 2002-08-20 2005-08-18 Verax Ventilatoren Gmbh Cooling of an electronic processor module uses a finned heat sink held in contact with a heat distributing plate.
DE102004047357A1 (en) * 2004-09-29 2006-04-06 eupec Europäische Gesellschaft für Leistungshalbleiter mbH Electrical arrangement and method for producing an electrical arrangement
DE102004054062B3 (en) * 2004-11-05 2006-03-02 Danfoss Silicon Power Gmbh Soldering system for heavy-duty semiconductor circuit uses spray of solder droplets in stream of hot gas to build up deposit of solder on area to be soldered
DE102004055534B4 (en) * 2004-11-17 2017-10-05 Danfoss Silicon Power Gmbh Power semiconductor module with an electrically insulating and thermally highly conductive layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627814B1 (en) * 2002-03-22 2003-09-30 David H. Stark Hermetically sealed micro-device package with window
DE10331923A1 (en) * 2003-07-15 2005-02-10 Behr Hella Thermocontrol Gmbh An electronic circuit comprising a power semiconductor device and a fuse means for protecting the power semiconductor device from overheating
DE102004058806A1 (en) * 2004-12-07 2006-06-08 Robert Bosch Gmbh Electronic circuit structure manufacturing method for heat sink, involves directly designing electrically insulating layer and electrically conductive layer on heat sink by thermal spraying method or cold gas-spraying method
US20060258055A1 (en) * 2005-05-13 2006-11-16 Fuji Electric Holdings Co., Ltd. Wiring board and method of manufacturing the same
EP1833088A1 (en) * 2006-03-07 2007-09-12 Danfoss Silicon Power GmbH Method of forming a crack-free connection between a heat sink and a substrate plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATTISON ET AL: "Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication", INTERNATIONAL JOURNAL OF MACHINE TOOL DESIGN AND RESEARCH, PERGAMON PRESS, OXFORD, GB, vol. 47, no. 3-4, 15 December 2006 (2006-12-15), pages 627 - 634, XP005804252, ISSN: 0020-7357 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163993A1 (en) * 2012-04-30 2013-11-07 Curamik Electronics Gmbh Metal-ceramic substrate and process for producing a metal-ceramic substrate
DE102012103786B4 (en) * 2012-04-30 2017-05-18 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
US10392539B2 (en) 2014-12-31 2019-08-27 Dow Global Technologies Llc Crash durable epoxy adhesive compositions having improved low-temperature impact resistance and wash off resistance

Also Published As

Publication number Publication date
DE102007050405B4 (en) 2010-09-09
DE102007050405A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
DE102007050405B4 (en) Electrical power component, in particular power semiconductor module, with a cooling device and method for surface and heat-conducting bonding of a cooling device to an electrical power component
DE102006019602B4 (en) Power semiconductor module
EP2752084B1 (en) Electrical heating unit, heating device for a vehicle and method for producing a heating unit
DE102009001722B4 (en) Method for applying a heat transfer medium to a heat dissipation surface
DE102008031786B4 (en) LED module with a heat sink
DE112009000447T5 (en) Semiconductor device and method for its production
DE112017002842T5 (en) Heat sink and cooling device
DE102006004788A1 (en) Semiconductor device and manufacturing method for this
DE102014213490C5 (en) Cooling device, method for producing a cooling device and power circuit
EP2114113B1 (en) Printed Circuit Board and corresponding production method
DE102017221778A1 (en) Heat sink for an electronic component, electronic assembly with such a heat sink and method for producing such a heat sink
EP2114116B1 (en) Hybrid cooling
DE102007061599A1 (en) Carrier structure for electronic conducting component, has radiator box with radiator box upper side, and electrically isolating carrier layer is provided with carrier layer lower surface
DE102018106354A1 (en) Electric fluid heater
DE102019115573B4 (en) Power electronic switching device and method of manufacture
EP3345217B2 (en) Cooling device, method for producing a cooling device and power circuit
WO2003026009A2 (en) Power electronics component
WO2018153590A1 (en) Semiconductor module comprising a heat sink
WO2008128949A2 (en) Method for producing a composite including at least one non-flat component
DE102022208920A1 (en) Cooler through which fluid can flow for cooling power electronics
EP3872845A1 (en) Method for manufacturing a power module unit
DE102007061598B4 (en) Support structure for a power module with a bottom plate and method for its production
DE102021209504A1 (en) Cooling rib arrangement of a fluid-through-flow cooler for cooling power electronics
DE112022002382T5 (en) Electronic device with improved cooling
WO2000074138A1 (en) Device for cooling an electric component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08841661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08841661

Country of ref document: EP

Kind code of ref document: A1