WO2009053319A1 - Verfahren zur energienutzung beim kühlen von extrusionsprofilen - Google Patents

Verfahren zur energienutzung beim kühlen von extrusionsprofilen Download PDF

Info

Publication number
WO2009053319A1
WO2009053319A1 PCT/EP2008/064081 EP2008064081W WO2009053319A1 WO 2009053319 A1 WO2009053319 A1 WO 2009053319A1 EP 2008064081 W EP2008064081 W EP 2008064081W WO 2009053319 A1 WO2009053319 A1 WO 2009053319A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
energy
plastic
temperature
extrusion
Prior art date
Application number
PCT/EP2008/064081
Other languages
English (en)
French (fr)
Inventor
Erik Sehnal
Original Assignee
Cincinnati Extrusion Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cincinnati Extrusion Gmbh filed Critical Cincinnati Extrusion Gmbh
Priority to CN2008801126546A priority Critical patent/CN101835592B/zh
Priority to US12/677,997 priority patent/US8097195B2/en
Priority to EP08841389A priority patent/EP2205423B1/de
Publication of WO2009053319A1 publication Critical patent/WO2009053319A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/275Recovery or reuse of energy or materials
    • B29C48/276Recovery or reuse of energy or materials of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92542Energy, power, electric current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/905Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using wet calibration, i.e. in a quenching tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to a method for energy use in the cooling of extrusion profiles, preferably pipes, in which energy is supplied in the form of heat for melting the plastic and after shaping at least in the devices tool, calibration and cooling bath as long as the plastic heat is withdrawn until this is self-supporting.
  • molten plastic mass is extruded by an extruder through an extrusion die, thereby adding the desired shape to the plastic material.
  • the plastic material is first melted by supplying heat and then cooled the extruded plastic profile until it is dimensionally stable.
  • strongly cooled water usually in the range around 15 0 C, used to supply the extruded pipe after leaving the extrusion die a corresponding cooling bath or a cooling section.
  • a corresponding distance is to go through, in which the plastic profile must be permanently cooled.
  • the melt temperature of the plastic is steadily decreasing, it is also necessary to work with a correspondingly cool cooling medium. To keep the cooling medium at a sufficiently low temperature level, a high energy consumption is required.
  • the solution of the problem is characterized in connection with the preamble of claim 1, characterized in that a cooling medium for cooling opposite to the extrusion direction passes through the extrusion line, wherein the medium used for cooling is passed from one device to the next, and wherein the Cooling medium further heated in each device.
  • a cooling medium for cooling opposite to the extrusion direction passes through the extrusion line, wherein the medium used for cooling is passed from one device to the next, and wherein the Cooling medium further heated in each device.
  • the individual devices which are flowed through by the cooling medium, are connected in series or series one behind the other.
  • the temperature of the cooling medium can be adjusted so that the temperature difference between the cooling medium and the plastic profile remains largely constant in each of the devices to be passed, in each case it can be ensured that a predetermined difference value is not exceeded. It is therefore ensured that in each of the devices sufficient cooling of the plastic profile is realized.
  • Fig. 1 shows the prior art
  • Fig. 2 shows the sequence according to the invention
  • Fig. 3 shows the energy profile
  • FIG. 1 schematically shows the cooling process on the basis of a pipe extrusion line according to the prior art.
  • the melt 1 produced by an extruder is fed to a tool 2, through which the melt 1 is pressed, whereby a tube 3 is formed.
  • Each of the cooling stations 6 is connected to a cooling line 5, which is fed directly from a chiller 4, usually with a cooling tower.
  • each of the cooling stations 6 with the one cooling medium at substantially the same temperature, for example, fed with water from 15 0 C.
  • Each individual cooling station 6 communicates with the return 7 in connection, in which the cooling water is introduced after each pass of the individual cooling stations 6.
  • the cooling water heats up, for example, in each cooling station 6 to 3-8 0 C and thus reaches a temperature of, for example, 2O 0 C in the return 7.
  • the extrusion direction is shown by the arrow 8.
  • the temperature difference between flow and return is correspondingly very low (here 5 0 C), the required cooling medium flow correspondingly high. Furthermore, due to the low temperature level of the return (here 2O 0 C), the proportion of energy-intensive cooling by Chillers extremely high and the proportion of the energetically very favorable cooling tower (free cooling) very low.
  • FIG. 2 shows the principle of the invention. It again shows a tube extrusion line, in which melt 1 produced by an extruder is fed to a tool 2, through which the melt 1 is pressed, whereby a tube 3 is formed.
  • the tube 3 produced here also passes through various cooling stations 6.
  • Each of the cooling stations 6 is connected to a cooling line 5.
  • the decisive difference from the conventional cooling is that the cooling medium is introduced counter to the extrusion direction 8 first in the remote from the tool 2 cooling station 6 and then not in a return 7, but the opposite to the extrusion direction 8 seen next cooling station 6 is supplied. This forwarding to the next cooling station 6 is repeated until the cooling station 6 has been passed directly behind the tool 2.
  • the cooling medium Only then does the cooling medium enter the return 7 and is then returned to the chiller / cooling tower 4.
  • the cooling water heated from 15 0 C to, for example, 25 0 C wherein the tube 3 in the last cooling station has a temperature of 40 0 C.
  • the tube In the preceding cooling station 6, the tube, for example, still has a temperature of 8O 0 C, which is then cooled with the cooling water of 25 0 C from the last cooling station 6.
  • a tube 3 of 8O 0 C is thus cooled to 4O 0 C with water of 15 0 C and heated to 25 0 C.
  • the 25 0 C warm water cools a 12O 0 C hot tube 3 to 8O 0 C.
  • the increased return temperature allows the increased use of cooling towers, so-called free cooling, which works without chillers. If the limit temperature of the free cooling is, for example, 2O 0 C (limit temperature usually a few degrees above the average temperature of the environment or of the groundwater), 7/8 of the required cooling capacity can be provided via free cooling in this example. In the illustrated prior art, this proportion was 0.
  • the high temperature level of the return line additionally allows the use of the waste heat from the cooling process of the plastic pipes.
  • FIG. 3 represents the principal energy flow in the process, the width of the respectively illustrated arrows symbolizing the amounts of energy.
  • area 9 the reflow Process of the plastic reproduced in which remains of the applied energy about 80% in the extruded tube 3. A part is lost in the form of radiation on the tool 2, the cylinder, the feeder or drive losses, which is illustrated by the different small arrows shown.
  • the remaining energy primarily thermal energy, must be removed from the plastic tube in the cooling or vacuum baths 6.
  • the energy transferred to the cooling medium must again be withdrawn from the cooling medium in chiller / cooling tower 4.
  • the invention is inter alia to increase the energy density and return temperature accordingly by this type of cooling and thereby energetically to improve this required recooling, to substantially reduce the energy requirement of the cooling medium cooling and the use of the higher energy level of the return of the cooling medium to allow the heat energy stored in the cooling medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Energienutzung beim Kühlen von Extrusionsprofilen, vorzugsweise Rohren (3), bei dem Energie in Form von Wärme zum Aufschmelzen des Kunststoffes zugeführt wird und nach der Formgebung mindestens in den Vorrichtungen Werkzeug (2), Kalibrierung (6) und Kühlbad (6) solange dem Kunststoff wieder Wärme entzogen wird, bis dieser selbsttragend ist. Erfindungsgemäß ist dabei vorgesehen, dass ein Kühlmedium zur Kühlung entgegen der Extrusionsrichtung (8) die Extrusionslinie durchläuft, wobei das zur Kühlung verwendete Medium von einer Vorrichtung (6) zur nächsten geführt wird und wobei sich das Kühlmedium in jeder Vorrichtung (6) weiter erwärmt.

Description

Verfahren zur Energienutzung beim Kühlen von Extrusionsprofilen
Die Erfindung betrifft ein Verfahren zur Energienutzung beim Kühlen von Extrusionsprofilen, vorzugsweise Rohren, bei dem Energie in Form von Wärme zum Aufschmelzen des Kunststoffes zugeführt wird und nach der Formgebung mindestens in den Vorrichtungen Werkzeug, Kalibrierung und Kühlbad solange dem Kunststoff wieder Wärme entzogen wird, bis dieser selbsttragend ist.
Bei der Extrusion wird aufgeschmolzene Kunststoffmasse mittels eines Extruders durch ein Extrusionswerkzeug gepresst, wodurch dem Kunststoffmaterial die gewünschte Form zugefugt wird. Hierzu wird zunächst das Kunststoffmaterial durch Zuführen von Wärme aufgeschmolzen und anschließend das extrudierte Kunststoffprofil so lange gekühlt, bis es formstabil ist. Üblicherweise wird hierzu stark gekühltes Wasser, in der Regel im Bereich um 150C, dazu verwendet, das extrudierte Rohr bereits nach dem Verlassen des Extrusionswerkzeuges einem entsprechenden Kühlbad oder einer Kühlstrecke zuzuführen. Bis zur Formstabilisierung des Kunststoffrohres ist eine entsprechende Strecke zu durchlaufen, in der das Kunststoffprofil permanent gekühlt werden muss. Da jedoch die Massetemperatur des Kunststoffes stetig abnimmt, muss auch mit entsprechend kaltem Kühlmedium gearbeitet werden. Um das Kühlmedium auf einem ausreichend niedrigen Temperaturniveau zu halten, ist ein hoher Energieaufwand erforderlich.
Derartige Systeme haben folglich den Nachteil, dass zunächst Energie zum Aufschmelzen des Kunststoffes erforderlich ist, aber auch weiterhin Energie aufgebracht werden muss, da die erhitzte Kunststoffmasse wieder zum Zwecke der Formstabilisierung heruntergekühlt werden muss.
A u f g a b e der vorliegenden Erfindung ist es daher, ein Verfahren anzubieten, mittels dem der Energieeinsatz insbesondere zum Küh- len der Extrusionsprofile, vorzugsweise Rohre, zu reduzieren ist und zusätzlich ein verbessertes Temperaturniveau der Abwärme erreicht wird.
Die L ö s u n g der Aufgabe ist in Verbindung mit dem Oberbe- griff des Anspruches 1 dadurch gekennzeichnet, dass ein Kühlmedium zum Kühlen entgegen der Extrusionsrichtung die Extrusionslinie durchläuft, wobei das zur Kühlung verwendete Medium von einer Vorrichtung zur nächsten geführt wird, und wobei sich das Kühlmedium in jeder Vorrichtung weiter erwärmt. Versuche haben nämlich gezeigt, dass eine ausreichende Formstabilisierung nach dem Extrusionsprozess erreicht wird, wenn eine ausreichende Temperaturdifferenz zwischen dem relativ heißen Extrudat und dem Kühlmedium vorherrscht. Hierbei ist es nicht erforderlich, dass diese extrem groß ist. Die Erfindung setzt also dort an, wo die größte Effizienz zu erreichen ist. Innerhalb der Extrusionslinie kühlt bzw. wird das Profil respektive Rohr stetig abgekühlt und verliert somit an Wärme. Folglich wird gegen Ende der Extrusionslinie, um die nötige Temperaturdifferenz zwischen dem Profil und dem Kühlmedium zu haben, ein Kühlmedium mit der, absolut betrachtet, niedrigsten Temperatur benötigt, wobei hingegen am Anfang der Extrusionslinie ein deutlich wärmeres Kühlmedium ausreicht, um die erforderliche Temperaturdifferenz zwischen Kunststoffmasse und Kühlmedium zu erreichen. Aus diesem Grund wird mit dem kalten Kühlmedium am Ende der Extrusionslinie begonnen und dieses entgegen der Extrusionsrichtung Richtung Extrusionswerkzeug zum Kühlen eingesetzt, da, wie oben er- wähnt, ein im Laufe des Prozesses erwärmtes Kühlmedium durchaus an der nächsten Station eine ausreichende Temperaturdifferenz aufweist.
Hierbei ist vorgesehen, dass die einzelnen Vorrichtungen, die mit dem Kühlmedium durchströmt werden, in Serie bzw. Reihe hintereinander geschaltet sind. Je nach Einsatzgebiet kann die Temperatur des Kühlmediums so abgestimmt werden, dass in jedem der zu durchlaufenden Vorrichtungen die Temperaturdifferenz zwischen dem Kühlmedium und dem Kunststoffprofil weitestgehend konstant bleibt, in jedem Fall kann sichergestellt werden, dass ein vorbestimmter Differenzwert nicht unterschritten wird. Es wird also dafür Sorge getragen, dass in jeder der Vorrichtungen eine ausreichende Kühlung des Kunststoffprofiles realisiert wird.
Durch dieses Verfahren wird das einmal herunter gekühlte Kühlmedium ohne weitere Zwischenkühlung in der gesamten Extrusionslinie einge- setzt, wodurch die zur Kühlung aufzubringende Energie um 30 - 90%, vorzugsweise 50 - 80%, insbesondere 70-80% reduziert wird. Die Reduktion wirkt sich vor allem in der Pumpenenergie und/oder der Kältemaschinenleistung aus. Es erhöht sich die Temperaturspreizung von herkömmlich 5 Grad auf durchschnittlich 35 Grad und dadurch erfolgt eine Reduktion des Volumensstromes um den Faktor 7 (35/5) bei gleichem Energieinhalt sowie Erhöhung des Anteils der freien Kühlung, wodurch sich der energieintensive Kältemaschineneinsatz ebenfalls um ein vielfaches reduzieren lässt. Der Anteil ist abhängig vom Außentemperaturverlauf.
Zusätzlich erhöht sich auch die Nutzungsmöglichkeit der verbleibenden Abwärme des Kühlwassers, weshalb vorteilhafterweise die verbleibende Abwärme des Kühlwassers zum Heizen oder zur Warmwasserbereitung genutzt wird.
Versuche haben gezeigt, dass die Temperatur des Kühlwassers, nachdem es den Prozess durchlaufen hat, zwischen 30 und 7O0C, vorzugsweise bei 5O0C liegt. In den Zeichnungen ist das Prinzip der Erfindung schematisch wiedergegeben.
Fig. 1 zeigt den Stand der Technik
Fig. 2 den Ablauf gemäß der Erfindung und
Fig. 3 den Energieverlauf
In Figur 1 wird schematisch der Kühlprozess anhand einer Rohrextrusi- onslinie gemäß den Stand der Technik wiedergegeben. Die von einem Extruder erzeugte Schmelze 1 wird einem Werkzeug 2 zugeführt, durch das die Schmelze 1 gepresst wird, wodurch ein Rohr 3 entsteht. Zur Formstabilisierung durchläuft das erzeugte Rohr 3 diverse Kühlstationen 6. Jede der Kühlstationen 6 steht mit einer Kühlleitung 5 in Verbindung, die direkt von einer Kältemaschine 4, meist mit Kühlturm, gespeist wird. Somit wird jede der Kühlstationen 6 mit dem einen Kühlmedium mit weitgehend gleicher Temperatur, zum Beispiel mit Wasser vom 150C gespeist. Jede einzelne Kühlstation 6 steht mit dem Rücklauf 7 in Verbindung, in den das Kühlwasser nach jedem Durchlauf der einzelnen Kühlstationen 6 eingeleitet wird. Das Kühlwasser erwärmt sich beispielsweise in jeder Kühlstation 6 um 3-80C und gelangt so mit einer Temperatur von beispielsweise 2O0C in dem Rücklauf 7. Analoges geschieht in jeder weiteren Kühlstation 6, so dass der Kältemaschine/Kühlturm 4 das gesamte Kühlwasser mit einer Temperatur hier von etwa 2O0C zugeführt wird. Die Extrusionsrichtung ist mit dem Pfeil 8 wiedergegeben.
Die Temperaturdifferenz zwischen Vor- und Rücklauf ist entsprechend sehr gering (hier 50C), der benötigte Kühlmediumstrom entsprechend hoch. Weiterhin ist aufgrund des niedrigen Temperaturniveaus des Rücklaufs (hier 2O0C) der Anteil der energieintensiven Kühlung durch Kältemaschinen extrem hoch und der Anteil des energetisch sehr günstigen Kühlturms (freie Kühlung) sehr niedrig.
In der Figur 2 ist das Prinzip der Erfindung wiedergegeben. Sie zeigt wiederum eine Rohrextrusionslinie, bei der von einem Extruder erzeugte Schmelze 1 einem Werkzeug 2 zugeführt wird, durch das die Schmelze 1 gepresst wird, wodurch ein Rohr 3 entsteht. Zur Formstabilisierung durchläuft das erzeugte Rohr 3 auch hier diverse Kühlstationen 6. Jede der Kühlstationen 6 steht mit einer Kühlleitung 5 in Verbindung. Der entscheidende Unterschied zur der herkömmlichen Kühlung liegt darin, dass das Kühlmedium entgegen der Extrusionsrichtung 8 zunächst in die vom Werkzeug 2 entfernteste Kühlstation 6 eingebracht wird und dann nicht in einen Rücklauf 7, sondern der entgegen der Extrusionsrichtung 8 gesehen nächsten Kühlstation 6 zugeführt wird. Diese Weiterleitung in die nächste Kühlstation 6 wiederholt sich solange, bis die Kühl- Station 6 direkt hinter dem Werkzeug 2 durchlaufen wurde. Erst dann gelangt das Kühlmedium in den Rücklauf 7 und wird dann wieder der Kältemaschine/Kühlturm 4 zugeführt. Gemäß dieser Verfahrensweise erwärmt sich beispielsweise das Kühlwasser von 150C auf beispielsweise 250C, wobei das Rohr 3 in der letzten Kühlstation eine Temperatur vom 4O0C aufweist. In der davor liegenden Kühlstation 6 hat das Rohr z.B. noch eine Temperatur von 8O0C, welches dann mit dem Kühlwasser von 250C aus der letzten Kühlstation 6 gekühlt wird. Um diese Temperaturbeispielskette fortzuführen wird somit mit Wasser von 150C ein Rohr 3 von 8O0C auf 4O0C gekühlt und erwärmt sich auf 250C. Das 250C warme Wasser kühlt ein 12O0C heißes Rohr 3 auf 8O0C und erwärmt sich dabei auf 350C. Dieses Wasser kühlt in der nächsten Kühlstation ein Rohr 3 von 16O0C auf 12O0C. Die Temperatur des Wassers erhöht sich dabei auf 450C. Beim Abkühlen des das Werkzeug 2 verlassenden Rohren 3 mit einer Temperatur von 2000C auf 16O0C erhöht sich die Temperatur des Wassers auf rund 550C, welches dann über den Rücklauf 7 der Kältemaschine/Kühlturm 4 zum erneuten Herunterkühlen zugeführt wird.
Dadurch erhöht sich die Temperaturspreizung zwischen Vor- und Rücklauf in diesem Beispiel von 50C gemäß dem Stand der Technik auf 4O0C wie im Ausfuhrungsbeispiel gemäß der Erfindung. Dadurch kommt es zu mehreren Effekten:
• Der benötigte Volumenstrom (und damit die benötigte Pumpleistung) des Kühlmediums reduziert sich im selben Verhältnis wie sich die Temperaturspreizung erhöht (in diesem Beispiel also um Faktor 8).
• Die erhöhte Rücklauftemperatur erlaubt den verstärkten Einsatz von Kühltürmen, so genannte freie Kühlung, die ohne Kältemaschinen auskommt. Beträgt die Grenztemperatur der freien Kühlung beispielsweise 2O0C (Grenztemperatur meist einige Grad über Durchschnittstemperatur der Umgebung oder des Grundwassers), so können in diesem Beispiel 7/8 der benötigten Kühlleistung über freie Kühlung bereitgestellt werden. Beim dargestellten Stand der Technik war dieser Anteil 0.
• Das hohe Temperaturniveau des Rücklaufs erlaubt zusätzlich die Nutzung der Abwärme vom Kühlvorgang der Kunststoffrohre.
Denn nur wenn das Temperaturniveau deutlich über der Umgebungstemperatur liegt, ist die Nutzbarmachung energetisch sinnvoll und wirtschaftlich vertretbar. Durch beispielsweise 550C ist das jedenfalls gegeben. Die Nutzung für Raumwärme, Warmwas- ser oder Gärtnereibetriebe sind Beispiele.
Das in der Figur 3 dargestellte Schema stellt den prinzipiellen Energie- fluss im Prozess dar, wobei die Breite der jeweils dargestellten Pfeile die Energiemengen symbolisiert. Somit wird im Bereich 9 der Aufschmelz- Vorgang des Kunststoffes wiedergegeben, bei dem von der aufgebrachten Energie ca. 80% im extrudierten Rohr 3 verbleibt. Ein Teil geht in Form von Abstrahlung am Werkzeug 2, am Zylinder, am Einzug oder durch Antriebsverluste verloren, was durch die unterschiedlichen klein dargestellten Pfeile verdeutlicht wird. Die noch verbleibende Energie, in erster Linie Wärmeenergie, muss dem Kunststoffrohr in den Kühl- bzw. Vakuumbädern 6 entzogen werden. Die ans Kühlmedium übertragene Energie muss in Kältemaschine/Kühlturm 4 wiederum dem Kühlmedium entzogen werden.
Die Erfindung liegt unter anderem darin, durch diese Art der Abkühlung die Energiedichte und Rücklauftemperatur entsprechend zu erhöhen und dadurch diese benötigte Rückkühlung energetisch zu verbessern, den Energiebedarf der Rückkühlung des Kühlmediums wesentlich zu verringern und durch das höhere Energieniveau des Rücklaufs des Kühlmedi- ums die Nutzung der im Kühlmedium gespeicherten Wärmeenergie zu ermöglichen.
Mit dem erfindungsgemäßen Verfahren wird das gesamte Temperaturniveau erhöht, wodurch die Abwärme für die energetische Nutzung nutz- bar gemacht wird. Es ist eine effektive Reduzierung des Energieeinsatzes beim Kühlen in der Extrusion, insbesondere der Rohrextrusion, möglich. Bezugszeichenliste :
1 Schmelze
2 Werkzeug
3 Rohr 4 Kältemaschine
5 Kühlleitung
6 Kühlstation
7 Rücklauf
8 Extrusionsrichtung 9 Aufschmelzbereich

Claims

Patentansprüche :
1. Verfahren zur Energienutzung beim Kühlen von Extrusionsprofi- len, vorzugsweise Rohren, bei dem Energie in Form von Wärme zum Aufschmelzen des Kunststoffes zugeführt wird und nach der Formgebung mindestens in den Vorrichtungen Werkzeug 2, Kalibrierung 6 und Kühlbad 6 so lange dem Kunststoff wieder Wärme entzogen wird, bis dieser selbsttragend ist,
dadurch gekennzeichnet, dass
ein Kühlmedium zur Kühlung entgegen der Extrusionsrichtung 8 die Extrusionslinie durchläuft, wobei das zur Kühlung verwendete Medium von einer Vorrichtung 6 zur nächsten geführt wird und wobei sich das Kühlmedium in jeder Vorrichtung 6 weiter erwärmt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Vorrichtungen, durch die das Kühlmedium geführt wird, in Reihe hintereinander liegen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Temperaturdifferenz zwischen dem Kühlmedium und dem Kunststoffprofil einen vorbestimmten Wert nicht unterschreitet, vorzugsweise weitgehend konstant bleibt.
4. Verfahren nach mindestens einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die zur Kühlung aufzubringende Energie um 30-90%, vorzugsweise 50-80%, insbesondere um 70-80%, reduziert wird.
5. Verfahren nach mindestens einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Pumpenenergie und/oder die Kältemaschinenleistung um 30-90%, vorzugsweise 50-80%, insbesondere um 70-80%, reduziert wird.
6. Verfahren nach mindestens einem der vorigen Ansprüche, dadurch gekennzeichnet, dass Abwärme des Kühlwassers zur Heizung und/oder Warmwasserbereitung genutzt wird.
7. Verfahren nach mindestens einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Temperatur des Kühlwassers, nachdem es den Prozess durchlaufen hat, zwischen 30° und 7O0C, vorzugsweise bei 5O0C liegt.
PCT/EP2008/064081 2007-10-23 2008-10-17 Verfahren zur energienutzung beim kühlen von extrusionsprofilen WO2009053319A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008801126546A CN101835592B (zh) 2007-10-23 2008-10-17 在冷却挤出型材时用于能量使用的方法
US12/677,997 US8097195B2 (en) 2007-10-23 2008-10-17 Method for energy usage when cooling extrusion profiles
EP08841389A EP2205423B1 (de) 2007-10-23 2008-10-17 Verfahren zur energienutzung beim kühlen von extrusionsprofilen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007050949.0 2007-10-23
DE102007050949A DE102007050949A1 (de) 2007-10-23 2007-10-23 Verfahren zur Energienutzung beim Kühlen von Extrusionsprofilen

Publications (1)

Publication Number Publication Date
WO2009053319A1 true WO2009053319A1 (de) 2009-04-30

Family

ID=40289402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/064081 WO2009053319A1 (de) 2007-10-23 2008-10-17 Verfahren zur energienutzung beim kühlen von extrusionsprofilen

Country Status (6)

Country Link
US (1) US8097195B2 (de)
EP (1) EP2205423B1 (de)
CN (1) CN101835592B (de)
DE (1) DE102007050949A1 (de)
PT (1) PT2205423E (de)
WO (1) WO2009053319A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2787679C (en) * 2010-01-22 2018-05-22 Tubi Pty Ltd Modular pipe formation apparatus
CN103358531A (zh) * 2012-03-31 2013-10-23 上海金湖挤出设备有限公司 一种聚烯烃管材内表面在线冷却系统
DE102013202997A1 (de) 2013-02-24 2014-08-28 Battenfeld-Cincinnati Germany Gmbh Verfahren zur Nutzung der in einem Extrusionsprozess abgegebenen Wärmemenge
DE102013202996A1 (de) 2013-02-24 2014-08-28 Battenfeld-Cincinnati Germany Gmbh Verfahren zur Nutzung der in einem Extrusionsprozess abgegebenen Wärmemenge
DE102013107809A1 (de) 2013-07-22 2015-02-19 Egeplast International Gmbh Verfahren zur Abkühlung von Kunststoffprofilen
US9851148B2 (en) * 2015-06-18 2017-12-26 Dsv Holdings Llc Extruded polycarbonate sticker for spacing wood
CN113771328B (zh) * 2021-09-14 2023-09-12 北京工商大学 一种具有全阶段热量循环利用功能的双螺杆挤出机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8805979U1 (de) * 1988-05-05 1988-10-20 Neu, Werner, Dr., 4410 Warendorf Vorrichtung zur Herstellung von Strangprofilen aus thermoplastischem Kunststoff durch Extrusion
EP0659537A2 (de) * 1993-12-23 1995-06-28 Technoplast Kunststofftechnik Gesellschaft m.b.H. Vorrichtung zur Abkühlung von Kunststoffprofilen
US5514325A (en) * 1994-02-22 1996-05-07 C. A. Greiner & Sohne Gesellschaft M.B.H. Process for cooling and calibrating elongated objects made of plastic together with cooling and calibrating device
DE19709895A1 (de) * 1996-04-11 1997-12-04 Greiner & Soehne C A Kühleinrichtung sowie Verfahren zum Abkühlen von extrudierten Gegenständen
DE19745843A1 (de) * 1996-10-21 1998-04-23 Greiner & Soehne C A Kühleinrichtung sowie Verfahren zum Kühlen von extrudierten Gegenständen
DE10109958C1 (de) * 2001-03-01 2002-04-18 Veka Ag Gekühlte Kalibriervorrichtung für eine Kunststoffextrusionsanlage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1809285A1 (de) * 1968-11-16 1970-06-11 Roehm & Haas Gmbh Kalibrierbuechse mit Fluessigkeitskuehlung
FR2322724A1 (fr) * 1975-09-02 1977-04-01 Lacan Jacques Appareil de calibrage a depression
US4573893A (en) * 1984-04-02 1986-03-04 Application Engineering Corporation Extrusion die with external and internal cooling means

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8805979U1 (de) * 1988-05-05 1988-10-20 Neu, Werner, Dr., 4410 Warendorf Vorrichtung zur Herstellung von Strangprofilen aus thermoplastischem Kunststoff durch Extrusion
EP0659537A2 (de) * 1993-12-23 1995-06-28 Technoplast Kunststofftechnik Gesellschaft m.b.H. Vorrichtung zur Abkühlung von Kunststoffprofilen
US5514325A (en) * 1994-02-22 1996-05-07 C. A. Greiner & Sohne Gesellschaft M.B.H. Process for cooling and calibrating elongated objects made of plastic together with cooling and calibrating device
DE19709895A1 (de) * 1996-04-11 1997-12-04 Greiner & Soehne C A Kühleinrichtung sowie Verfahren zum Abkühlen von extrudierten Gegenständen
DE19745843A1 (de) * 1996-10-21 1998-04-23 Greiner & Soehne C A Kühleinrichtung sowie Verfahren zum Kühlen von extrudierten Gegenständen
DE10109958C1 (de) * 2001-03-01 2002-04-18 Veka Ag Gekühlte Kalibriervorrichtung für eine Kunststoffextrusionsanlage

Also Published As

Publication number Publication date
PT2205423E (pt) 2012-12-19
CN101835592B (zh) 2013-09-11
DE102007050949A1 (de) 2009-04-30
EP2205423A1 (de) 2010-07-14
EP2205423B1 (de) 2012-09-26
US8097195B2 (en) 2012-01-17
CN101835592A (zh) 2010-09-15
US20100308493A1 (en) 2010-12-09

Similar Documents

Publication Publication Date Title
EP2205423B1 (de) Verfahren zur energienutzung beim kühlen von extrusionsprofilen
DE60003163T2 (de) Rohr aus thermoplastischem kunststoff
DE102008047210B4 (de) Extrusionslinie und Verfahren zum Kühlen von Kunststoffprofilen
DE102011014474B4 (de) Schnecke
DE1629196A1 (de) Verfahren zur Herstellung einer Rohreinheit aus einem Kunststoffrohr und einem Metallrohr
EP3444097B1 (de) Verfahren zur herstellung eines rohrs
EP2498971B1 (de) Vorrichtung und verfahren zum kalibrieren von folienschläuchen
DE102015106398A1 (de) Verfahren und Vorrichtung zum Kühlen von extrudierten Profilen
AT411890B (de) Verfahren zum beheizen und kühlen von extruderzylindern sowie vorrichtung hierfür
DE102009032287A1 (de) Extrusionsanlage mit Staudruck regelnder Bremseinrichtung
DE102016112784A1 (de) Kollektorfeld, Energieversorgungssystem mit einem Kollektorfeld sowie Verfahren zum Betreiben eines Energieversorgungssystems
EP3139108B1 (de) Speichervorrichtung und verfahren zum vorübergehenden speichern von elektrischer energie in wärmeenergie
DE2506517B2 (de) Vorrichtung zur fluessigkeits-innenkuehlung von stranggepressten rohren oder schlaeuchen
DE2111763A1 (de) Strangpressform sowie Verfahren und Vorrichtung zu deren Herstellung
DE102006013691B3 (de) Plastifizierzylinder
DE102008047211A1 (de) Vorrichtung und Verfahren zum Kühlen von Kunststoffprofilen
DE102008047208B4 (de) Extrusionslinie, Verfahren zum Kühlen von Kunststoffprofilen und Kunststoffrohr
DE102012208677B4 (de) Verfahren und Vorrichtung zum Temperieren von plastischer Kunststoffmasse
DE10316119B4 (de) Verfahren und Vorrichtung zur Herstellung eines Strangpressprofiles
DE102013222677B4 (de) Wärmeübertragervorrichtung, Wärmespeichervorrichtung und Verfahren zum Übertragen und/oder Speichern von Wärme
DE2721095B2 (de) Anlage zum Strangpressen von Kunststoffgegenständen
DE102008028218B4 (de) Verfahren zum Abkühlen von extrudierten Werkstücken aus Kunststoff
DE102020007133A1 (de) Verfahren und vorrichtung zur herstellung einer rohrwendel aus einem thermoplastischen kunststoff
DE202006003726U1 (de) Temperiervorrichtung
EP3991875B1 (de) Kaltfliesspresse mit einer temperiervorrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880112654.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08841389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2315/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008841389

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12677997

Country of ref document: US