WO2009052846A1 - Fadenliefergerät mit adaptivem regler - Google Patents

Fadenliefergerät mit adaptivem regler Download PDF

Info

Publication number
WO2009052846A1
WO2009052846A1 PCT/EP2007/009230 EP2007009230W WO2009052846A1 WO 2009052846 A1 WO2009052846 A1 WO 2009052846A1 EP 2007009230 W EP2007009230 W EP 2007009230W WO 2009052846 A1 WO2009052846 A1 WO 2009052846A1
Authority
WO
WIPO (PCT)
Prior art keywords
thread
yarn
feeding device
motor
yarn feeding
Prior art date
Application number
PCT/EP2007/009230
Other languages
English (en)
French (fr)
Inventor
Rolf Huss
Norbert Bammert
Original Assignee
Memminger-Iro Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memminger-Iro Gmbh filed Critical Memminger-Iro Gmbh
Priority to CN2007801012339A priority Critical patent/CN101849056B/zh
Priority to EP07819283A priority patent/EP2207922B1/de
Priority to PCT/EP2007/009230 priority patent/WO2009052846A1/de
Priority to TW097135549A priority patent/TWI427202B/zh
Publication of WO2009052846A1 publication Critical patent/WO2009052846A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/38Devices for supplying, feeding, or guiding threads to needles
    • D04B15/48Thread-feeding devices

Definitions

  • the invention relates to a yarn feeding device for supplying at least one thread to a yarn consumption point.
  • the invention relates to a yarn feeding device for live yarn delivery.
  • Yarn feeding devices for live yarn delivery are known.
  • EP 0943713 A2 discloses such a device. It has a yarn feed wheel, which is driven by an electric motor. The thread wraps around the yarn feed wheel one or more times and then runs over a yarn tension sensor to the yarn consumption point.
  • the thread tension sensor is associated with a lift-off device to lift the thread from time to time from the sensor. As a result, the thread tension sensor is relieved and a zero point adjustment can be made.
  • the yarn feeding device serves to supply the yarn with substantially constant tension to the yarn consumption point.
  • the electric motor and the thread tension sensor are connected to each other via a control loop.
  • the removal of the yarn feeding device from the yarn consumption point and the thread properties can influence the function of the control loop positively or negatively. This can lead to practical difficulties.
  • the yarn feeding device has a motor-driven Fadenunterrad which is adapted to convey the thread.
  • a yarn tension sensor is arranged, which detects the yarn tension and supplies a yarn tension signal to a control device.
  • the drive device controls the motor so that thread tension fluctuations are counteracted.
  • the yarn delivery device contains an adjustment module. This is adapted to detect the compliance of the thread.
  • the drive means is adjusted based on the detected thread tension so that the operation of the motor will meet the characteristics of the yarn to be supplied.
  • the control device adapts its operation to the flexibility of the thread determined by the adjustment module.
  • very hard threads have a spring coefficient of more than 10,000 cN / m.
  • very soft threads have a spring constant of less than 100 cN / m.
  • classify the threads may be delivered into several, for example four, compliance classes. These four classes may be, for example, classes which typically include elastane (up to 100 cN / m), medium hard filaments (100 to 1000 cN / m), hard filaments such as cotton (1000 to 10,000 cN / m) and very hard filaments (eg more than 10,000 cN / m).
  • the adjustment module detects the actual thread tension and then selects, for example, one of the four classes mentioned for setting the activation device. The yarn feeding device can then be operated with this selected setting until a new adjustment takes place.
  • Such a signal may be, for example, a keystroke of an operator on a corresponding control button, a trim signal obtained via a wired or non-wired network, or a start signal provided by a central machine controller of a knitting machine. Further modifications are possible.
  • the operator places a thread on the yarn feeding device and then actuates a corresponding acknowledgment button, whereupon the yarn feeding device determines the thread tension and after this process goes into normal operation.
  • the completion of the determination of the yarn hardness can be provided by an acknowledgment signal to the central control of the knitting machine to release it.
  • the adjustment module makes the determination of the thread hardness or the flexibility of the thread independently from time to time.
  • Such compliance tests can be carried out, for example, in phases in which the yarn delivery wheel is in spite of running knitting machine or other thread-consuming machine. For patterned fabrics, this happens from time to time when the thread in question is not needed.
  • This procedure has the advantage that the yarn feeding device works independently, without the need for an operator or other parts of the control system to ensure that a calibration is carried out. will be.
  • the yarn feeding device has, for example, a rotary encoder connected to the motor or the yarn feeding device, which detects the rotational position of the yarn feeding wheel.
  • a rotary encoder is used here, which detects a high resolution of, for example, 360 increments per revolution of the yarn feed wheel.
  • the encoder has a resolution of 800 increments per revolution.
  • the yarn delivery wheel is rotated in an idle phase, in which it should in itself be in a given angular position, by an angular amount, in order to consciously change the thread tension.
  • the rotation of the yarn feed wheel can take place both in the sense of an increase in the thread tension and in the sense of a reduction in the thread tension, which is preferred.
  • the thread tension can be reduced to zero, whereby on the one hand not linear spring characteristics of the thread can be detected and on the other hand, a zero point adjustment of the yarn tension sensor is possible.
  • the increase of the thread tension for test purposes has the advantage that a drop of turns from the yarn feed wheel is safely excluded. If the yarn hardness determined by increasing the thread tension (reverse rotation of the yarn feed wheel) is preferably only a small angle of rotation of the yarn feed used. In addition, it may be advantageous to arrange a yarn store in front of the yarn feed wheel, which receives the thread section delivered back by the reverse rotation of the yarn feed wheel.
  • the spring action of the thread between Fadenarrirad and yarn consumption point is determined. This value depends on the thread properties and the length of the thread running path and thus characterizes the total elasticity of the thread.
  • the control device is preferably a control loop with a controller which has at least one P component (proportionately amplifying component) and at least preferably also one D component (differentiating component).
  • P component proportionately amplifying component
  • D component differentially amplifying component
  • the magnitude of the amplification of the P component as well as the amplification of the D component, as well as its frequency at which it takes effect and its time constant are parameters of the control loop. These parameters are tuned by the balancing module on the properties of the thread in particular its compliance.
  • the yarn feeding device automatically sets the parameters of its control loop with respect to the compliance of the yarn to be supplied.
  • the adjustment module determines the thread compliance empirically.
  • the controller initially works with parameters that are to be applied to frequently used threads. If the parameters are specified, for example, for several thread compliance classes, you can initially work with a class that is frequently used. From the resulting temporary control deviations, ie from the dynamic behavior of the controller can then be determined whether to work with a matching class, or whether the class should be changed. Accordingly, the controller can automatically reset its control parameters after a short (trial) operating time. This can be done without separate adjustment Procedure done during operation. With sufficiently fine graduation of the classes can be optimized in this way the operation of the controller, ie the control quality.
  • FIG. 2 is a schematic representation of the regulator of the yarn feeding device according to FIG. 1,
  • Figure 4 shows different spring characteristics of threads that can deliver the yarn feeding device of Figure 1.
  • FIG. 1 shows a yarn delivery device 1. represents, which may be part of a larger system or as a separate yarn feeding device.
  • the yarn feeding device 1 serves to supply a yarn 2 from a suitable source, such as a large bobbin, to a yarn consumption point 3 formed, for example, by needles 4 of a knitting machine.
  • the thread 2 is the Fadenmpedsstelle 3 supplied with controlled voltage.
  • the yarn feed wheel 5 is driven by a motor 7.
  • a motor 7 This can be designed as a DC motor, as a stepping motor, pancake motor or the like.
  • Its output shaft 8 carries the yarn feed wheel 5.
  • the motor 7 is connected via a plurality of lines 9, which are illustrated schematically in Figure 1, with a drive means 10. If the motor 7 is a stepper motor, the rotational position of the wear shaft 8 and the yarn feed wheel 5 is given by the step pulses supplied by the drive device 10.
  • a corresponding memory register can be provided in the control device 10, which contains a value characterizing the rotational position of the yarn feed wheel 5, for example in the form of digital data.
  • the motor 7 may be connected to a position sensor 11, which detects the rotational position of the output shaft 8, preferably with high resolution of, for example, more than 360 pulses per revolution.
  • This position sensor 11 can also with the yarn feed wheel 5 cooperate to detect the rotational position directly.
  • a yarn tension sensor 12 is provided between the yarn consumption point 3 and the yarn feed wheel 5, a yarn tension sensor 12 is provided.
  • This one has e.g. two thread guiding elements, e.g. in the form of pins 13, 14, between which a pin 14 connected to a force transducer is connected.
  • the force transducer (not further illustrated) forms the actual sensor which generates the electrical sensor output signal of the yarn tension sensor 12.
  • This output signal is passed to a comparator stage 15, which compares the thread tension actual value with the thread tension setpoint value and generates a difference signal therefrom. This is supplied to the drive device 10 which controls the motor 7 based on the deviation or error signal in order to minimize the error signal.
  • the sensor output signal is also supplied to an adjustment module 16, which can influence the drive device 10.
  • an adjustment module 16 which can influence the drive device 10.
  • active compounds 17 are entered in FIG.
  • the active compounds serve to set parameters of the control device 10 and to trigger a calibration mode. This can be carried out internally, for example, time-controlled or state-controlled, for example after detection of a prolonged inactivity of the electric motor 7 or by a pulse to an input 18 of the balancing module 16 and / or the control device 10.
  • the control device 10 is formed for example as a regulator. This receives at its input 19 from the comparator stage 15, the error signal representing the deviation between the actual value of the thread tension and the desired value. The signal is sent to three parallel mo- delivered in hardware or software . can be.
  • the three modules 20, 21, 22 represent different "parts" of the controller 10.
  • the module 20 represents an I component of the controller.
  • the I component is an integrating component, its transfer characteristic, ie the ratio of its output signal to the input signal via The frequency ⁇ is illustrated as a falling straight line in Figure 3.
  • the I component of the control device 10 eliminates the permanent control deviation.
  • a position control loop or a speed control circuit can be arranged between the control device 10 and the motor 7, a position control loop or a speed control circuit can be arranged.
  • the drive circuit specifies a desired yarn wheel angular position as a function of time or a desired yarn wheel speed.
  • the position or speed control circuit then controls the motor 7 accordingly so that the desired angular position or the desired speed can be set.
  • the module 21 represents the proportional portion of the driver 10. Its transfer characteristic is illustrated in FIG. 3 by a horizontal straight portion.
  • the module 22 represents the differentiating component (D component) of the controller of the drive device 10.
  • the D component forms a transfer characteristic with an increasing straight line, as illustrated in FIG.
  • the slopes and positions of the straight lines of the I component and the D component and the gain of the P component represent parameters of the controller of the control device 10.
  • the controller can use other eg non-linear blocks or Contain functional groups.
  • the controller can be connected to an observer who draws conclusions from his reactions and, if necessary, adjusts controller parameters.
  • the observer can also be part of the adjustment module 16.
  • the thread located between the yarn feed wheel 5 and the yarn consumption point 3 can be regarded as a spring. Depending on the yarn hardness, it has a large or a small change in the tensile force F with a corresponding change in length X. This is shown in FIG. 4 at different yarn characteristics 23, 24, 25, 26. These characteristics 23 to 26 may be linear or non-linear - depending on the type of thread.
  • the yarn feeding device 1 described so far operates as follows:
  • the control device 10 controls the motor 7 in such a way that the desired yarn tension on the sensor device 12 is set. This applies to both stationary and running thread. If, for example, the yarn consumption point picks up 3 threads and this thread take-off tends to increase the thread tension, the activation device 10 sets a corresponding engine speed of the motor 7, so that the supplied amount of thread corresponds to the requirement. If the thread requirement increases, which would lead to an increase in the thread tension at a constant engine speed, the drive device 10 increases the engine speed, so that the yarn delivery also increases.
  • the driver 10 can adequately respond to rapid changes in yarn consumption. This is particularly due to the module 22 with the D portion of the controller. If, for example, a sudden change in the thread requirement is noted, this initially leads to a temporary thread tension deviation, ie a difference between the thread actual tension and the thread set tension.
  • the D component of the controller amplifies these short-term changes particularly strong and thus leads to an accelerated acceleration of the motor. 7
  • the size of the D component ie its parameters, are variable.
  • the control device 10 can thus be adjusted with respect to the slope and / or the frequency ⁇ , from which the D component is effective. If, for example, according to FIG. 3, the D component is normally effective as of a frequency of ⁇ x , the D component can be adjusted such that it already becomes effective at a lower or even at a higher frequency ⁇ 2 .
  • the slope of the D component in the transmission diagram of Figure 3 can be adjusted.
  • the D component can thus be adjusted with regard to at least one parameter, but preferably also with regard to two or more parameters. The adjustment takes place on the basis of the yielding of the thread determined by the adjustment module 16, ie on the basis of the characteristic of the controlled system. For this, the active compounds 17 are provided.
  • the adjustment of the controller can be done in a setting mode in which, for example, the motor 7 is not running.
  • the adjustment module 16 detects this idle state. Alternatively, it may also be activated by a pulse at its input 18.
  • the balancing module 16 now indicates a command via the operative connection 17 This controls the motor 7 now, for example, so that the yarn feed wheel 5 rotates in the conveying direction.
  • the angle of rotation of the yarn feed wheel is detected either via counted drive step pulses supplied to the motor 7 or based on a signal from the angle sensor 11. This is then connected via a not further illustrated signal transmission line to the balancing module 16.
  • the adjustment module 16 now allows the motor 7 to rotate while monitoring the thread tension by means of the sensor 12 until the thread tension has reached a reduced value of, for example, zero.
  • the angle traveled by the yarn feed wheel 5 corresponds to a change in length of the yarn 2.
  • the experienced force change when set in relation to the change in length, results in the steepness of the yarn characteristic.
  • the linear spring coefficient of the thread is determined. This works well for threadlines such as the curves 23, 24 in FIG. 4. They represent straight lines through the zero point of the Fx diagram.
  • the thread tension is not lowered to zero as described above, but rather to a value other than zero
  • the gradient of the Characteristic 25 or 26 determined in the vicinity of the thread tension with which the thread is to be delivered.
  • the control parameters can then be determined based on this value of compliance.
  • the yielding thus determined is also called differential compliance.
  • the zero point of the thread tension can be recognized by the fact that the signal delivered by the thread tension sensor 12 no longer reduces despite (slight) further rotation of the thread feed wheel 5.
  • the yarn feed wheel 5 is then stopped and a zero adjustment of the yarn tension sensor can be made.
  • the balancing module 16 classifies the detected resilience of the thread into classes, for example four classes K1, K2, K3 and K4.
  • the threads with the characteristic curves 23 and 24 are independent of the measuring method and starting point of the measurement in the classes K1 and K3.
  • the thread with the characteristic curve 25 can be sorted into the class K3 or K4 depending on the starting point 27 or 28.
  • the "small-signal behavior" ie the dynamic or differential thread compliance
  • a small variation of the thread tension is sufficient to determine the compliance, in which case the thread 25 is class K.
  • the thread with the non-linear characteristic curve 26 is clearly in the Class K4, however, if it is supplied in a strongly tensioned state, ie if the operating point lies in its right steeply increasing characteristic part, the measurement of the thread hardness results in the membership of the classes K2 or K3.
  • the balancing module 16 can determine for each of the predefined classes the suitable parameters for the controller of the control system. Keep the device 10 ready and transmit it to the controller once the thread has been determined. The controller then works with a relatively well adapted to the thread, ie the controlled system control characteristics.
  • a yarn feeding device 1 for tension-controlled yarn feeding has an adaptive controller for controlling its drive motor 7.
  • the adaptive controller controls the drive motor 7 according to the detected by means of a yarn tension sensor 12 thread tension.
  • An adjustment module 16 is provided to determine in a test, the compliance of the thread 2 and set the control parameters of the controller accordingly. This concerns in particular the D-portion of the controller but can also affect the P-portion and / or the Ü-portion.
  • the yarn feeding device thus adapts automatically to different operating conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Tension Adjustment In Filamentary Materials (AREA)
  • Knitting Machines (AREA)

Abstract

Eine Fadenliefervorrichtung (1) zur spannungsgeregelten Fadenzuführung weist einen adaptiven Regler zur Steuerung seines Antriebsmotors (7) auf. Der adaptive Regler steuert den Antriebsmotor (7) entsprechend der mittels eines Fadenspannungssensors (12) erfassten Fadenspannung. Ein Abgleichmodul (16) ist dazu vorgesehen, in einem Test die Nachgiebigkeit des Fadens (2) zu bestimmen und die Regelparameter des Reglers entsprechend festzulegen. Dies betrifft insbesondere den D-Anteil des Reglers kann aber auch den P- Anteil und/oder den Ü-Anteil betreffen. Die Fadenliefervorrichtung passt sich somit automatisch an verschiedene Einsatzbedingungen an.

Description

Fadenliefergerät mit adaptivem Regler
Die Erfindung betrifft eine Fadenliefervorrichtung zur Lieferung mindestens eines Fadens an eine Fadenverbrauchs- stelle. Insbesondere betrifft die Erfindung eine Fadenliefervorrichtung zur spannungsgeführten Fadenlieferung.
Fadenliefergeräte zur spannungsgeführten Fadenlieferung sind bekannt. Beispielsweise offenbart die EP 0943713 A2 ein solches Gerät. Es weist ein Fadenlieferrad auf, das von einem Elektromotor angetrieben ist . Der Faden umschlingt das Fadenlieferrad ein oder mehrere Male und läuft dann über einen Fadenspannungssensor zur der Fadenverbrauchsstelle. Dem Fadenspannungssensor ist eine Abhebevorrichtung zugeordnet, um den Faden von Zeit zu Zeit von dem Sensor abzuheben. Dadurch wird der Fadenspannungssensor entlastet und es kann ein Nullpunktabgleich vorgenommen werden.
Das Fadenliefergerät dient dazu, den Faden mit im Wesentlichen konstanter Spannung zu der Fadenverbrauchsstelle zu liefern. Dazu sind der Elektromotor und der Fadenspannungssensor über eine Regelschleife miteinander verbunden.
Die Entfernung des Fadenliefergeräts von der Fadenverbrauchsstelle und die Fadeneigenschaften können die Funktion der Regelschleife positiv oder negativ beeinflussen. Dies kann zu praktischen Schwierigkeiten führen.
Davon ausgehend ist es Aufgabe der Erfindung, ein Fadenliefergerät zu schaffen, das weitgehend unabhängig von der Beschaffenheit der zu liefernden Fäden sowie möglichst unabhängig von der Montageposition des Fadenliefergeräts, insbesondere hinsichtlich seines Abstands von der Fadenverbrauchsstelle zuverlässig arbeitet .
Diese Aufgabe wird mit dem Fadenliefergerät nach Anspruch 1 gelöst :
Das erfindungsgemäße Fadenliefergerät weist ein motorgetriebenes Fadenlieferrad auf, das dazu eingerichtet ist, den Faden zu fördern. Im Fadenlaufweg ist ein Fadenspan- nungssensor angeordnet, der die Fadenspannung erfasst und ein Fadenspannungssignal an eine Ansteuereinrichtung liefert. Die Ansteuereinrichtung steuert den Motor so an, dass FadenspannungsSchwankungen entgegen gewirkt wird. Die erfindungsgemäße Fadenliefervorrichtung enthält ein Abgleichmodul. Dieses ist dazu eingerichtet, die Nachgiebigkeit des Fadens zu erfassen. Vorzugsweise wird die Ansteuereinrichtung anhand der erfassten Fadenspannung so eingestellt, dass der Betrieb des Motors den Eigenschaften des zu liefernden Fadens gerecht wird. Mit anderen Worten, die Ansteuereinrichtung passt ihren Betrieb an die von dem Abgleichmodul bestimmte Nachgiebigkeit des Fadens an.
Es können die erfassten Fadenhärten bzw. Nachgiebigkeiten in weitem Bereich variieren. Beispielsweise haben sehr harte Fäden einen Federkoeffizienten von mehr als 10.000 cN/m. Sehr weiche Fäden haben hingegen eine Federkonstante von weniger als 100 cN/m. Es ist möglich und wird hier bevorzugt, die zu liefernden Fäden in mehrere, beispielsweise vier, Nachgiebigkeitsklassen einzuordnen. Diese vier Klassen können beispielsweise Klassen sein, die typischerweise Elastan (bis zu 100 cN/m) , mittelharte Fäden (100 bis 1000 cN/m) , harte Fäden wie beispielsweise Baumwolle (1000 bis 10.000 cN/m) und sehr harte Fäden (z.B. mehr als 10.000 cN/m) umfassen. Das Abgleichmodul erfasst die tatsächliche Fadenspannung und wählt dann z.B. eine der genannten vier Klassen zur Einstellung der Ansteuereinrichtung. Das Fadenliefergerät kann dann so lange mit dieser gewählten Einstellung betrieben werden, bis ein neuer Abgleich erfolgt .
Es ist möglich, die Bestimmung der Fadeneigenschaft mittels des Abgleichmoduls durch ein äußeres Signal zu veranlassen. Ein solches Signal kann beispielsweise ein Tastendruck eines Bedieners an einer entsprechenden Bedientaste, ein Abgleichsignal, das über ein drahtgebundenes oder nicht drahtgebundenes Netzwerk erhalten wird, oder ein Startsignal sein, das von einer zentralen Maschinensteuerung einer Strickmaschine geliefert wird. Weitere Abwandlungen sind möglich. In diesem Fall legt beispielsweise der Bediener einen Faden auf das Fadenliefergerät auf und betätigt dann eine entsprechende Quittierungstaste, woraufhin das Fadenliefergerät die Fadenspannung bestimmt und nach diesem Vorgang in normalen Betrieb übergeht . Die Beendigung der Bestimmung der Fadenhärte kann durch ein Quittierungs- signal an die zentrale Steuerung der Strickmaschine geliefert werden, um diese freizugeben.
Es ist auch möglich, dass das Abgleichmodul die Bestimmung der Fadenhärte bzw. der Nachgiebigkeit des Fadens von Zeit zu Zeit eigenständig vornimmt . Solche Nachgiebigkeitstests können z.B. in Phasen vorgenommen werden, in denen das Fadenlieferrad trotz laufender Strickmaschine oder sonstiger fadenverbrauchender Maschine steht . Bei Mustergestricken erfolgt dies von Zeit zu Zeit, wenn der betreffende Faden nicht benötigt wird. Diese Vorgehensweise hat den Vorzug, dass das Fadenliefergerät eigenständig arbeitet, ohne dass sich ein Bediener oder sonstige Teile der Steuerung darum kümmern müssen, dass ein Abgleich vorgenom- men wird .
Das Fadenliefergerät weist beispielsweise einen mit dem Motor oder dem Fadenliefergerät verbundenen Drehgeber auf, der die Drehposition des Fadenlieferrads erfasst. Vorzugsweise wird hier ein Drehgeber verwendet, der eine hohe Auflösung von beispielsweise 360 Inkrementen pro Umdrehung des Fadenlieferrads erfasst. Bei der bevorzugten Ausführungsform hat der Drehgeber eine Auflösung von 800 Inkrementen pro Umdrehung. Zur Bestimmung der Nachgiebigkeit des Fadens wird das Fadenlieferrad in einer Ruhephase, in der es an sich in einer gegebenen Winkelposition stehen sollte, um einen Winkelbetrag verdreht, um die Fadenspannung be- wusst zu ändern. Die Drehung des Fadenlieferrads kann sowohl im Sinne einer Erhöhung der Fadenspannung als auch im Sinne einer Minderung der Fadenspannung erfolgen, was bevorzugt wird. Die Fadenspannung kann dabei bis auf Null reduziert werden, wodurch einerseits nicht lineare Federkenn- linien des Fadens erfassbar sind und andererseits auch ein Nullpunktabgleich des Fadenspannungssensors möglich wird. Andererseits hat die Erhöhung der Fadenspannung zu Testzwecken den Vorteil, dass ein Herunterfallen von Windungen vom Fadenlieferrad sicher ausgeschlossen wird. Wird die Fadenhärte durch Erhöhung der Fadenspannung ermittelt (Rückwärtsdrehung des Fadenlieferrads) wird vorzugsweise nur ein geringer Drehwinkel des Fadenlieferrads genutzt. Außerdem kann es vorteilhaft sein, vor dem Fadenlieferrad einen Fadenspeicher anzuordnen, der den durch Rückwärtsdrehung des Fadenlieferrads zurück gelieferten Fadenabschnitt aufnimmt.
Es ist möglich, den Fadenspannungstest mit einem konstanten Stellweg des Motors durchzuführen. Es wird dann die eintretende Fadenspannungsveränderung erfasst. Es ist jedoch auch möglich, eine vorgegebene Spannungsänderung zu erzeugen (beispielsweise Spannungsänderung auf einem gege- benen Wert oder auf Null) und den dazu erforderlichen Drehwinkel des Motors zu verfolgen. Beide Tests liefern Information über die Nachgiebigkeit des Fadens.
Vorzugsweise wird die Federwirkung des Fadens zwischen Fadenlieferrad und Fadenverbrauchsstelle bestimmt. Dieser Wert hängt von den Fadeneigenschaften und der Länge des Fadenlaufwegs ab und charakterisiert somit die Gesamtelastizität des Fadens. Die Ansteuereinrichtung ist vorzugsweise eine Regelschleife mit einem Regler, der zumindest einen P- Anteil (proportional verstärkender Anteil) sowie zumindest vorzugsweise auch einen D-Anteil (differenzierender Anteil) aufweist. Die Größe der Verstärkung des P-Anteils sowie die Verstärkung des D-Anteils, sowie seine Frequenz, bei der er wirksam wird, bzw. seine Zeitkonstante sind Parameter der Regelschleife. Diese Parameter werden durch das Abgleichmodul auf die Eigenschaften des Fadens insbesondere auf seine Nachgiebigkeit hin abgestimmt. Somit stellt die Fadenliefervorrichtung die Parameter seiner Regelschleife automatisch im Hinblick auf die Nachgiebigkeit des zu liefernden Fadens ein.
Alternativ kann vorgesehen werden, dass das Abgleichmodul die Fadennachgiebigkeit empirisch bestimmt. Dazu kann vorgesehen werden, dass der Regler zunächst mit Parametern arbeitet, die bei häufig verwendeten Fäden anzuwenden sind. Sind die Parameter z.B. für mehrere Fadennachgiebigkeits- klassen vorgegeben, kann zunächst mit einer häufig vorkom- raenden Klasse gearbeitet werden. Aus den sich ergebenden temporären Regelabweichungen, d.h. aus dem dynamischen Verhalten des Reglers kann dann bestimmt werden, ob mit einer passenden Klasse gearbeitet wird, oder ob die Klasse gewechselt werden sollte. Dementsprechend kann der Regler nach kurzer (Probe-) Betriebszeit seine Regelparameter automatisch neu festlegen. Dies kann ohne gesonderte Abgleich- Prozedur während des laufenden Betriebs geschehen. Bei genügend feiner Abstufung der Klassen kann auf diese Weise der Betrieb des Reglers, d.h. die Regelqualität optimiert werden.
Weitere Einzelheiten vorteilhafter Ausführungsformen der Erfindung sind Gegenstand der Beschreibung, der Zeichnung oder von Ansprüchen. Die Beschreibung beschränkt sich auf wesentliche Aspekte der Erfindung und sonstiger Gegebenheiten. Die Zeichnung ist ergänzend heranzuziehen und offenbart weitere Details. Es zeigen:
Figur 1 ein Fadenliefergerät mit Regelschleife in schematischer Darstellung,
Figur 2 den Regler des Fadenliefergeräts nach Figur 1 in schematischer Darstellung,
Figur 3 Übertragungsfunktionen des Reglers nach Figur 2 in schematischer Darstellung und
Figur 4 verschiedene Federkennlinien von Fäden, die das Fadenliefergerät nach Figur 1 liefern kann.
In Figur 1 ist eine Fadenliefervorrichtung 1 darge-,. stellt, die Teil einer größeren Anlage oder als ein gesondertes Fadenliefergerät ausgebildet sein kann. Die Fadenliefervorrichtung 1 dient zur Lieferung eines Fadens 2 von einer geeigneten Quelle, wie beispielsweise einer großen Spule zu einer Fadenverbrauchsstelle 3, die beispielsweise durch Nadeln 4 einer Strickmaschine gebildet wird. Der Faden 2 soll der Fadenverbrauchsstelle 3 mit kontrollierter Spannung zugeführt werden. Dazu dient ein Fadenlieferrad 5, das mit dem Faden 2 in Eingriff steht. Beispielsweise wird es ein- oder mehrfach von dem Faden 2 umschlungen, um den Faden 2 von der Fadenquelle gegebenenfalls durch eine Fa- denbremse 6 hindurch abzuziehen und zu der Fadenverbrauchs - stelle 3 zu liefern.
Das Fadenlieferrad 5 ist von einem Motor 7 angetrieben. Dieser kann als Gleichstrommotor, als Schrittmotor, Scheibenläufermotor oder dergleichen ausgebildet sein. Seine Abtriebswelle 8 trägt das Fadenlieferrad 5. Der Motor 7 ist über mehrere Leitungen 9, die in Figur 1 schematisch veranschaulicht sind, mit einer Ansteuereinrichtung 10 verbunden. Ist der Motor 7 ein Schrittmotor, ist die Drehposition der Abriebswelle 8 und des Fadenlieferrads 5 durch die von der Ansteuereinrichtung 10 gelieferten Schrittimpulse gegeben. Somit kann in der Ansteuereinrichtung 10 ein entsprechendes Speicherregister bereit gestellt werden, das einen die Drehposition des Fadenlieferrads 5 kennzeichnenden Wert, beispielsweise in Form von Digitaldaten enthält.
Handelt es sich bei dem Motor 7 um einen anderweitigen Motor, beispielsweise einen Gleichstrommotor, kann der Motor 7 mit einem Positionssensor 11 verbunden sein, der die Drehposition der Abtriebswelle 8 vorzugsweise mit hoher Auflösung von beispielsweise mehr als 360 Impulsen pro Umdrehung erfasst . Dieser Positionssensor 11 kann auch mit dem Fadenlieferrad 5 zusammenwirken, um dessen Drehposition direkt zu erfassen.
Zwischen der Fadenverbrauchsstelle 3 und dem Fadenlieferrad 5 ist ein Fadenspannungssensor 12 vorgesehen. Dieser hat z.B. zwei Fadenleitelemente, z.B. in Form von Stiften 13, 14, zwischen denen ein mit einem Kraftaufnehmer verbundener Stift 14 verbunden ist. Der nicht weiter veranschaulichte Kraftaufnehmer bildet den eigentlichen Sensor der das elektrische Sensorausgangssignal des Fadenspannungssen- sors 12 erzeugt. Dieses Ausgangssignal wird zu einer Vergleicherstufe 15 geleitet, die den Fadenspannungs - Ist- Wert mit dem Fadenspannungs-Soll -Wert vergleicht und daraus ein Differenzsignal erzeugt. Dieses wird der Ansteuereinrichtung 10 zugeführt, die anhand des Abweichungs- oder Fehlersignals den Motor 7 ansteuert, um das Fehlersignal zu minimieren.
Das Sensorausgangssignal wird außerdem einem Abgleichmodul 16 zugeführt, das die Ansteuereinrichtung 10 beeinflussen kann. Dazu sind in Figur 1 mehrere Wirkverbindungen 17 eingetragen. Die Wirkverbindungen dienen dazu, Parameter der Ansteuereinrichtung 10 einzustellen und einen Abgleichmodus auszulösen. Dieser kann intern beispielsweise zeitgesteuert oder zustandsgesteuert , beispielsweise nach Feststellung einer längeren Untätigkeit des Elektromotors 7 o- der auch durch einen Impuls an einen Eingang 18 des Abgleichmoduls 16 und/oder der Ansteuereinrichtung 10 erfolgen.
Die Ansteuereinrichtung 10 ist beispielsweise als Regler ausgebildet. Dieser erhält an seinem Eingang 19 von der Vergleicherstufe 15 das Fehlersignal, das die Abweichung zwischen dem Ist-Wert der Fadenspannung und dem Soll-Wert darstellt. Das Signal wird an drei parallel arbeitende Mo- dule geliefert, die hardware- oder softwaremäßig realisi.ert sein können. Die drei Module 20, 21, 22 stellen verschiedene „Anteile" des Reglers 10 dar. Das Modul 20 stellt einen I -Anteil des Reglers dar. Der I -Anteil ist ein integrierender Anteil. Seine Übertragungskennlinie, d.h. das Verhältnis seines Ausgangssignals zum Eingangssignal über der Frequenz ω ist in Figur 3 als abfallende Gerade veranschaulicht. Der I-Anteil der Ansteuereinrichtung 10 beseitigt die bleibende Regelabweichung.
Zwischen der Ansteuereinrichtung 10 und dem Motor 7 kann ein Positionsregelkreis oder ein Drehzahlregelkreis angeordnet werden. Die Ansteuerschaltung gibt dann eine gewünschte Fadenrad-Winkelposition in Abhängigkeit von der Zeit oder eine gewünschte Fadenraddrehzahl vor. Der Positi- ons- oder Drehzahlregelkreis steuert den Motor 7 dann entsprechend so an, dass die gewünschte Winkelposition oder die gewünschte Drehzahl eingestellt werden.
Das Modul 21 stellt den proportionalen Anteil der Ansteuereinrichtung 10 dar. Seine Übertragungskennlinie wird in Figur 3 durch einen horizontalen geraden Abschnitt veranschaulicht .
Das Modul 22 stellt den differenzierenden Anteil (D- Anteil) des Reglers der Ansteuereinrichtung 10 dar. Der D- Anteil bildet eine Übertragungskennlinie mit ansteigender Gerade, wie Figur 3 veranschaulicht.
Die Steigungen und Positionen der Geraden des I- Anteils und des D-Anteils sowie die Verstärkung des P- Anteils stellen Parameter des Reglers der Ansteuereinrichtung 10 dar.
Der Regler kann weitere z.B. nichtlineare Blöcke oder Funktionsgruppen enthalten. Z.B. kann der Regler mit einem Beobachter verbunden sein, der aus seinen Reaktionen Rückschlüsse zieht und bei Bedarf Reglerparameter verstellt. Der Beobachter kann auch Teil des Abgleichmoduls 16 sein.
Der zwischen dem Fadenlieferrad 5 und der Fadenverbrauchsstelle 3 befindliche Faden kann als Feder betrachtet werden. Je nach Fadenhärte hat er bei entsprechender Längenänderung X eine große oder eine geringe Änderung der Zugkraft F. Dies ist in Figur 4 an verschiedenen Fadenkennlinien 23, 24, 25, 26 dargestellt. Diese Kennlinien 23 bis 26 können linear oder nicht linear sein - je nach Fadenart .
Die insoweit beschriebene Fadenliefervorrichtung 1 arbeitet wie folgt:
Es wird zunächst davon ausgegangen, dass die Parameter des Reglers der Ansteuereinrichtung 10 festgelegt sind und dass der Vergleicherstufe 15 ein Soll -Wert für die Fadenspannung zugeführt wird. Der Fadensensor 12 erfasst die Fadenspannung und meldet diese an die Vergleicherstufe 15. Die Ansteuereinrichtung 10 steuert den Motor 7 so an, dass die gewünschte Fadenspannung an der Sensoreinrichtung 12 eingestellt wird. Dies gilt sowohl bei ruhendem als auch bei laufendem Faden. Nimmt beispielsweise die Fadenverbrauchsstelle 3 Faden ab und neigt diese Fadenabnahme dazu, die Fadenspannung zu erhöhen, stellt die Ansteuereinrichtung 10 eine entsprechende Motordrehzahl des Motors 7 ein, so dass die gelieferte Fadenmenge dem Bedarf entspricht. Nimmt der Fadenbedarf zu, was bei gleich bleibender Motordrehzahl zu einer Erhöhung der Fadenspannung führen würde, erhöht die Ansteuereinrichtung 10 die Motordrehzahl, so dass auch die Fadenlieferung zunimmt. Umgekehrtes gilt bei Verminderung des Fadenverbrauchs . Die Ansteuereinrichtung 10 kann auf schnelle Änderungen des Fadenverbrauchs angemessen reagieren. Dies ist insbesondere dem Modul 22 mit dem D-Anteil des Reglers zu verdanken. Ist beispielsweise eine sprunghafte Änderung des Fadenbedarfs zu verzeichnen, führt dies zunächst zu einer temporär vorhandenen Fadenspannungsabweichung, d.h. einer Differenz zwischen Faden- Ist -Spannung und Faden-Soll-Spannung. Der D-Anteil des Reglers verstärkt diese kurzzeitigen Änderungen besonders stark und führt damit zu einer beschleunigten Beschleunigung des Motors 7.
Insbesondere die Größe des D-Anteils d.h. dessen Parameter sind variabel. Die Ansteuereinrichtung 10 kann somit hinsichtlich der Steigung und/oder der Frequenz ω verstellt werden, ab der der D-Anteil wirksam wird. Wird beispielsweise gemäß Figur 3 der D-Anteil normalerweise ab einer Frequenz von ωx Wirksam, kann der D-Anteil so verstellt werden, dass er bereits bei einer niedrigeren oder auch erst bei einer höheren Frequenz ω2 wirksam wird. Außerdem kann die Steigung des D-Anteils im Übertragungsdiagram nach Figur 3 eingestellt werden. Der D-Anteil kann somit hinsichtlich zumindest eines Parameters, vorzugsweise aber auch hinsichtlich zweier oder mehrerer Parameter verstellt werden. Die Verstellung erfolgt anhand der von dem Abgleichmodul 16 ermittelten Nachgiebigkeit des Fadens, d.h. anhand der Charakteristik der Regelstrecke. Dazu sind die Wirkverbindungen 17 vorgesehen.
Im Einzelnen kann der Abgleich des Reglers in einem Einstellmodus erfolgen, bei dem beispielsweise der Motor 7 nicht läuft. Beispielsweise erfasst das Abgleichmodul 16 diesen Ruhezustand. Alternativ kann es auch durch einen Impuls an seinem Eingang 18 aktiviert werden. Das Abgleichmodul 16 gibt nun über die Wirkverbindung 17 einen Befehl an die Ansteuereinrichtung 10. Diese steuert den Motor 7 nun beispielsweise so an, dass das Fadenlieferrad 5 in Förderrichtung dreht. Der Drehwinkel des Fadenlieferrads wird entweder über gezählte Ansteuerschrittimpulse, die zu dem Motor 7 geliefert werden, oder anhand eines Signals des Winkelgebers 11 erfasst . Dieser ist dann über eine nicht weiter veranschaulichte Signalübertragungsleitung mit dem Abgleichmodul 16 verbunden. Das Abgleichmodul 16 lässt nun den Motor 7 so lange unter Überwachung der Fadenspannung mittels des Sensors 12 drehen bis die Fadenspannung einen verminderten Wert von beispielsweise Null erreicht hat. Der dazu von dem Fadenlieferrad 5 zurückgelegte Winkel entspricht einer Längenänderung des Fadens 2. Die erfahrene Kraftänderung ergibt, wenn sie mit der Längenänderung ins Verhältnis gesetzt wird, die Steilheit der Fadenkennlinie. Es wird somit der lineare Federkoeffizient des Fadens bestimmt. Dies funktioniert ohne Weiteres für Fadenkennlinien wie die Kennlinien 23, 24 nach Figur 4. Sie stellen Geraden durch den Nullpunkt des F-x-Diagramms dar.
Handelt es sich um nicht lineare Kennlinien, wie beispielsweise die Kennlinien 25 oder 26, führt dieses Verfahren abhängig davon ob mit dem Anfangspunkt 27 oder mit dem Anfangspunkt 28 für die Fadenspannung begonnen worden ist, zu unterschiedlichen Vorstellungen von der Kennlinie. Diese sind gepunktet eingetragen.
Diese Kennlinien nähern aber das Verhalten des Fadens relativ gut an und können deshalb für den weiteren Abgleich des Reglers zugrunde gelegt werden.
Wird hingegen die Fadenspannung beim Bestimmen der Nachgiebigkeit nicht wie vorstehend beschrieben bis auf Null abgesenkt, sondern auf einen von Null verschiedenen Wert, wird mit dem beschriebenen Verfahren die Steigung der Kennlinie 25 oder 26 in der Umgebung der Fadenspannung bestimmt, mit der der Faden auch geliefert werden soll. Die Regelparameter können dann anhand dieses Werts der Nachgiebigkeit festgelegt werden. Die so bestimmte Nachgiebigkeit wird auch differentielle Nachgiebigkeit genannt.
Wird die Fadenspannung beim Abgleich bis auf Null reduziert, kann der Nullpunkt der Fadenspannung dadurch erkannt werden, dass sich das von dem Fadenspannungssensor 12 gelieferte Signal trotz (geringer) Weiterdrehung des Fadenlieferrads 5 nicht mehr reduziert. Das Fadenlieferrad 5 wird dann gestoppt und ein Nullabgleich des Fadenspannungs- sensors kann vorgenommen werden.
Es hat sich als zweckmäßig herausgestellt, wenn das Abgleichmodul 16 die erfasste Nachgiebigkeit des Fadens in Klassen, beispielsweise vier Klassen Kl, K2 , K3 und K4 einordnet. Die Fäden mit den Kennlinien 23 und 24 liegen unabhängig vom Messverfahren und Anfangspunkt der Messung in den Klassen Kl bzw. K3. Der Faden mit der Kennlinie 25 kann je nach Anfangspunkt 27 oder 28 in die Klasse K3 oder K4 einsortiert werden. Interessiert insbesondere das „Kleinsignalverhalten", d.h. die dynamische oder differentielle Fadennachgiebigkeit, genügt zur Bestimmung der Nachgiebigkeit eine kleine Variation der Fadenspannung. In diesem Fall ist der Faden 25 der Klasse K4 zuzuordnen. Der Faden mit der nicht linearen Kennlinie 26 liegt wiederum klar in der Klasse K4. Wird er allerdings in stark gespanntem Zustand geliefert, liegt also der Arbeitspunkt in seinem rechten steil ansteigenden Kennlinienteil, ergibt die Messung der Fadenhärte die Zugehörigkeit zu den Klassen K2 o- der K3.
Das Abgleichmodul 16 kann für jede der vorfestgelegten Klassen die passenden Parameter für den Regler der Ansteu- ereinrichtung 10 bereit halten und diese nach Bestimmung der Fadennachgiebigkeit an den Regler übertragen. Der Regler arbeitet dann mit einer relativ gut an den Faden, d.h. die Regelstrecke angepassten Regelcharakteristik.
Eine Fadenliefervorrichtung 1 zur spannungsgeregelten FadenZuführung weist einen adaptiven Regler zur Steuerung seines Antriebsmotors 7 auf. Der adaptive Regler steuert den Antriebsmotor 7 entsprechend der mittels eines Fadenspannungssensors 12 erfassten Fadenspannung. Ein Abgleichmodul 16 ist dazu vorgesehen, in einem Test die Nachgiebigkeit des Fadens 2 zu bestimmen und die Regelparameter des Reglers entsprechend festzulegen. Dies betrifft insbesondere den D-Anteil des Reglers kann aber auch den P-Anteil und/oder den Ü-Anteil betreffen. Die Fadenliefervorrichtung passt sich somit automatisch an verschiedene Einsatzbedingungen an .
Bezugszeichen :
1 Fadenliefervorrichtung
2 Faden
3 Fadenverbrauchssteile
4 Nadeln
5 Fadenlieferrad
6 Fadenbremse
7 Motor
8 Abtriebswelle
9 Leitungen
10 Ansteuereinrichtung
10' Regler
11 Winkelgeber
12 Fadenspannungssensor
13, 14 Stifte
15 Vergleieherstufe
16 Abgleichmodul
17 Wirkverbindung
18, 19 Eingang
20, 21, 22 Modul
23, 24, 25, 26 Kennlinien
27, 28 Anfangspunkte

Claims

Patentansprüche :
1. Fadenliefervorrichtung (1) zur Lieferung eines Fadens
(2) an eine Fadenverbrauchsstelle (3) ,
mit einem Fadenlieferrad (5) , das mit einem Faden (2) in Eingriff steht, um diesen zu fördern,
mit einem Motor (7) , der mit dem Fadenlieferrad (5) verbunden ist, um dieses drehend anzutreiben,
mit einer Ansteuereinrichtung (10) , die mit dem Motor (7) verbunden ist, um diesen kontrolliert mit Betriebsstrom zu versorgen,
mit einem Fadenspannungssensor (12), der mit der Ansteuerereinrichtung (10) verbunden ist, um ein Fadenspannungssignal an diese zu liefern,
wobei die Ansteuereinrichtung (10) dazu eingerichtet ist, den Motor (7) anhand der Fadenspannung geregelt anzusteuern, und
wobei die Ansteuereinrichtung (10) ein Abgleichmodul (16) aufweist, das dazu eingerichtet ist, die Nachgiebigkeit des Fadens (2) zu bestimmen.
2. Fadenliefervorrichtung nach Anspruch, mit einem Drehgeber (11) , der mit dem Motor (7) oder dem Fadenlieferrad (5) verbunden ist, um dessen Drehposition zu erfassen, und der an die Ansteuereinrichtung (10) angeschlossen ist, um ein Drehpositionssignal an diese zu liefern.
3. Fadenliefervorrichtung nach Anspruch 1, bei der die Ansteuereinrichtung (10) einen Regler (10') aufweist.
4. Fadenliefervorrichtung nach Anspruch 3, bei der der Regler (10') einen frequenzunabhängig proportional verstärkenden Anteil (P) aufweist.
5. Fadenliefervorrichtung nach Anspruch 4, bei der der Regler (10') zusätzlich einen differenzierende Anteil
(D) aufweist .
6. Fadenliefervorrichtung nach Anspruch 5, bei der der Regler (10') zusätzlich einen integrierenden Anteil
(I) aufweist.
7. Fadenliefervorrichtung nach Anspruch 3, bei der der Regler (10') Parameter aufweist, die einstellbar sind.
8. Fadenliefervorrichtung nach Anspruch 7, bei der die Parameter durch das Abgleichmodul einstellbar sind.
9. Fadenliefervorrichtung nach Anspruch 1, bei der das Abgleichmodul (16) zur Bestimmung der Nachgiebigkeit des Fadens (2) den Motor (7) veranlasst, eine Stellbewegung zur Veränderung der Fadenspannung zu vollführen, wobei der Stellweg des Motors (7) erfasst wird.
10. Fadenliefervorrichtung nach Anspruch 9, bei der die Fadenspannung bis auf Null reduziert wird, um zusätzlich zur Bestimmung der Nachgiebigkeit des Fadens (2) einen Nullpunktabgleich der Sensoreinrichtung (12) durchzuführen .
PCT/EP2007/009230 2007-10-24 2007-10-24 Fadenliefergerät mit adaptivem regler WO2009052846A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007801012339A CN101849056B (zh) 2007-10-24 2007-10-24 用于将纱线提供给用纱位置的喂纱装置
EP07819283A EP2207922B1 (de) 2007-10-24 2007-10-24 Fadenliefergerät mit adaptivem regler
PCT/EP2007/009230 WO2009052846A1 (de) 2007-10-24 2007-10-24 Fadenliefergerät mit adaptivem regler
TW097135549A TWI427202B (zh) 2007-10-24 2008-09-17 具有適應控制器之紗線傳送裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/009230 WO2009052846A1 (de) 2007-10-24 2007-10-24 Fadenliefergerät mit adaptivem regler

Publications (1)

Publication Number Publication Date
WO2009052846A1 true WO2009052846A1 (de) 2009-04-30

Family

ID=39081973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/009230 WO2009052846A1 (de) 2007-10-24 2007-10-24 Fadenliefergerät mit adaptivem regler

Country Status (4)

Country Link
EP (1) EP2207922B1 (de)
CN (1) CN101849056B (de)
TW (1) TWI427202B (de)
WO (1) WO2009052846A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2080724A3 (de) * 2008-01-17 2010-03-17 B.T.S.R. International S.p.A. System zur Steuerung der Zufuhr eines Garns oder Drahts zu einer Maschine und verwandtes Verfahren
DE102011113614A1 (de) * 2011-09-16 2013-03-21 Oerlikon Textile Gmbh & Co. Kg Fadenlieferwerk

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102704166A (zh) * 2012-06-08 2012-10-03 慈溪太阳洲纺织科技有限公司 用于针织机上的送纱装置
ITMI20122185A1 (it) 2012-12-20 2014-06-21 Btsr Int Spa Metodo e dispositivo per alimentare a tensione ed a quantita' costante un filo metallico ad una macchina operatrice
ITUB20159771A1 (it) * 2015-12-30 2017-06-30 Btsr Int Spa Metodo per la rilevazione e gestione a distanza di sensori e/o dispositivi di alimentazione di filati tessili e/o metallici installati su una o piu macchine tessili e relativo sistema.
JP7111491B2 (ja) * 2018-03-30 2022-08-02 株式会社島精機製作所 横編機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19537325C1 (de) * 1995-10-06 1996-11-28 Memminger Iro Gmbh Fadenliefergerät mit elektronischer Ansteuerung
DE19537215A1 (de) * 1995-10-06 1997-04-10 Memminger Iro Gmbh Fadenliefergerät für elastische Garne
EP0943713A2 (de) * 1998-03-14 1999-09-22 Memminger-IRO GmbH Fadenspannungssensor mit wiederholtem Abgleich
WO2007006411A1 (en) * 2005-07-12 2007-01-18 B.T.S.R. International S.P.A. Double control loop method and device for ensuring constant tension yarn feed to a textile machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10234545B4 (de) * 2002-07-30 2005-12-15 Memminger-Iro Gmbh Verfahren und Vorrichtung zum Liefern von Fäden

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19537325C1 (de) * 1995-10-06 1996-11-28 Memminger Iro Gmbh Fadenliefergerät mit elektronischer Ansteuerung
DE19537215A1 (de) * 1995-10-06 1997-04-10 Memminger Iro Gmbh Fadenliefergerät für elastische Garne
EP0943713A2 (de) * 1998-03-14 1999-09-22 Memminger-IRO GmbH Fadenspannungssensor mit wiederholtem Abgleich
WO2007006411A1 (en) * 2005-07-12 2007-01-18 B.T.S.R. International S.P.A. Double control loop method and device for ensuring constant tension yarn feed to a textile machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2080724A3 (de) * 2008-01-17 2010-03-17 B.T.S.R. International S.p.A. System zur Steuerung der Zufuhr eines Garns oder Drahts zu einer Maschine und verwandtes Verfahren
DE102011113614A1 (de) * 2011-09-16 2013-03-21 Oerlikon Textile Gmbh & Co. Kg Fadenlieferwerk
US8650849B2 (en) 2011-09-16 2014-02-18 Oerlikon Textile Gmbh & Co. Kg. Yarn feed device
EP2570527A3 (de) * 2011-09-16 2018-01-10 Saurer Germany GmbH & Co. KG Fadenlieferwerk

Also Published As

Publication number Publication date
EP2207922B1 (de) 2012-08-15
TWI427202B (zh) 2014-02-21
TW200940768A (en) 2009-10-01
CN101849056A (zh) 2010-09-29
CN101849056B (zh) 2012-06-13
EP2207922A1 (de) 2010-07-21

Similar Documents

Publication Publication Date Title
EP2207922B1 (de) Fadenliefergerät mit adaptivem regler
DE2736416C3 (de) Vorrichtung zum Zuführen von Garn zu einer Strickmaschine
EP0945534B1 (de) Trägheitsarmer Positivfournisseur für Elastomerfäden
DE102010014385B4 (de) Verfahren und Vorrichtung zur Herstellung von Schraubenfedern durch Federwinden, sowie Federwindemaschine
DE2452756C3 (de) Zuführungsvorrichtung für eine in eine Druckmaschine einlaufende Materialbahn
EP1958905B1 (de) Verfahren und Vorrichtung zur Reibkompensation
EP0801158A1 (de) Sensor für den Kardierspalt bzw. Nachstellen des Kardierspaltes
DE69429792T2 (de) Verfahren und Vorrichtung zur Überwachung und Beibehaltung der korrekten Regulierung eines zu einer Textilmaschine geführten Fadens
DE2715988A1 (de) Einrichtung zum steuern des bandauftrages beim schaeren
CH684320A5 (de) Vorrichtung zum Zuführen und Messen von Draht.
WO2007000203A1 (de) Verfahren zur ermittlung der qualitätsparameter eines fadens
WO1981000866A1 (en) Control device for the rotation speed of the spindles of a roving frame
EP0423067A1 (de) Konusschärmaschine und Schärverfahren
DE102014118743B4 (de) Verfahren zur Steuerung der Fadenlieferung eines Fadenliefergerät und Fadenliefergerät
DE102015122391A1 (de) Verfahren zur Steuerung eines Anspinnprozesses zum Wiederanspinnen eines Garns an einer Spinnmaschine
DE102020119846A1 (de) Verfahren zur Ermittlung des Massenträgheitsmoments von an Arbeitsstellen einer Textilmaschine hergestellten Kreuzspulen sowie eine Kreuzspulen herstellende Textilmaschine
DE2124693B1 (de) Fadenbruchwächter für eine Faserbe- und/oder -Verarbeitungsvorrichtung
EP2138297B1 (de) Verfahren und Vorrichtung zur Herstellung einer faserbeladenen Kunststoffschmelze
EP3751027B1 (de) Verfahren zum betreiben einer karde und zur einstellung eines kardierspaltes der karde und karde
EP1520826A1 (de) Verfahren und Einrichtung zur Erhöhung der Produktivität von Textilmaschinen, sowie Anwendung des Verfahrens
EP3976426B1 (de) Verfahren zum betreiben einer fahrzeugbehandlungsanlage, fahrzeugbehandlungsanlage, verwendung einer fahrzeugbehandlungsanlage, und computerprogrammprodukt
DE10032705B4 (de) Fadenliefereinrichtung für Textilmaschinen
DE69819861T2 (de) Vorrichtung zum Liefern eines elastisch ausdehnbaren Fadens zu Strickmaschinen
DE102015118027B3 (de) Verfahren zur Steuerung der Fadenlieferung eines Fadenliefergerät und Fadenliefergerät
DE10253489A1 (de) Verfahren zur Steuerung einer Auflagekraft zwischen einer Andrückwalze und einem Fadenwickel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780101233.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07819283

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007819283

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE