WO2009050356A1 - Tube à surface interne augmentée utilisé dans des fours, procédé de fabrication et applications - Google Patents

Tube à surface interne augmentée utilisé dans des fours, procédé de fabrication et applications Download PDF

Info

Publication number
WO2009050356A1
WO2009050356A1 PCT/FR2008/050170 FR2008050170W WO2009050356A1 WO 2009050356 A1 WO2009050356 A1 WO 2009050356A1 FR 2008050170 W FR2008050170 W FR 2008050170W WO 2009050356 A1 WO2009050356 A1 WO 2009050356A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
wall
inner face
bar
furnaces
Prior art date
Application number
PCT/FR2008/050170
Other languages
English (en)
Inventor
Gilles Verdier
Pierre Emmanuel Nioche
Original Assignee
Manoir Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manoir Industries filed Critical Manoir Industries
Priority to MX2010004267A priority Critical patent/MX2010004267A/es
Priority to BRPI0816593-9A2A priority patent/BRPI0816593A2/pt
Priority to CN2008801204140A priority patent/CN101896789A/zh
Priority to EP08762030A priority patent/EP2201317A1/fr
Priority to CA2702863A priority patent/CA2702863A1/fr
Priority to US12/738,673 priority patent/US20100230083A1/en
Priority to JP2010529430A priority patent/JP2011500910A/ja
Publication of WO2009050356A1 publication Critical patent/WO2009050356A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • B23K15/006Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0073Sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/008Pyrolysis reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/203Tube furnaces chemical composition of the tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles

Definitions

  • the invention is primarily directed to an augmented inner surface tube which is used in furnaces.
  • the invention also relates to a method of manufacturing such a tube.
  • Furnaces within the scope of the invention are petrochemical furnaces, but also furnaces for the reheating of iron ore direct reduction plants also known as Direct Reduction Iron (DRI) furnaces.
  • DRI Direct Reduction Iron
  • furnaces comprise a convection portion for preheating the products to be treated and a radiation portion in which the reforming or cracking reaction takes place.
  • the radiation of these furnaces consists of tubes of great length at the entrance of which is injected the product to be treated previously preheated in the convection, namely methane for reforming, and ethane, propane, butane, naphtha and heavier hydrocarbons for cracking.
  • These tubes made of a refractory material are heated radially. They are arranged generally vertically but can also be arranged horizontally especially in old ovens.
  • Ethylene and propylene are recovered at the outlet of the tube for steam-cracking furnaces and hydrogen and carbon monoxide for reforming furnaces.
  • furnaces operate similarly to the reforming and cracking furnaces previously described.
  • the iron ore reduction gas previously prepared in a reforming furnace is circulated in these tubes. These tubes thus undergo stresses similar to the tubes of petrochemical ovens.
  • the tubes previously described must be made of an alloy that enables them to operate at temperatures of the order of 1000 ° C. for steam reforming furnaces, 1100 ° C. for steam cracking furnaces and between 1000 and 1100 ° C. for DRI ovens.
  • the tubes must therefore withstand creep, that is to say mechanical deformations at high temperature, it being understood that the pressure in the reforming furnaces can reach 30 bar, but they must also withstand the oxidation in the atmosphere ovens.
  • These alloys are made from iron, nickel and chromium.
  • Nickel stabilizes the austenitic structure. Nickel and chromium contribute to the reduction of corrosion (carburization, oxidation, etc.).
  • These alloys also contain carbon. Carbon forms carbides that oppose the deformation of the metal at high temperature and thus increases the creep resistance.
  • carbide-forming elements such as niobium, titanium, tungsten or molybdenum may be added.
  • Silicon is also used to help increase corrosion resistance.
  • the rest is made of iron.
  • the tubes used in the furnaces have a length of the order of several meters, generally from 3 to 6 meters. Their internal diameter is 35 to 200 millimeters.
  • These tubes are generally sectional in internal and external circular section. Their thickness is of the order of five to twenty millimeters.
  • the tubes used in petrochemical furnaces can sometimes be made by forging.
  • European patent EP 980 729 proposes for this purpose a tube having on its inner face bumps and recesses made by an electrochemical process.
  • This method consists in using an electrode whose outer surface is made of hollows and bumps such as those which one wishes to obtain on the inner face of the tube.
  • the circulation of an electrolyte between the electrode and the inner face of the tube, and the depression of this electrode inside the tube will cause, by the concomitant passage of an electric current, the dissolution of the material at the inner face of the tube, and the formation of hollow and corresponding bumps in the hollow and bumps of the electrode.
  • International patent application WO 03/011507 also discloses a mechanical method by broaching which makes it possible to make depressions and bumps on the internal face of the tubes of petrochemical furnaces.
  • This method consists in scratching the material inside the tube by means of a pin inserted into this tube.
  • the spindle has cutting tools whose shape corresponds to the hollow shape and bumps that it is desired to obtain on the inner face of the tube. This process requires several passes of the spindle in the tube, the change of cutting tools between each pass and the recovery of the chips generated by a passage of the spindle in the tube.
  • the tube of the invention is essentially characterized in that it comprises at least one radial insert strip secured by welding to the inner face of the wall of the tube.
  • this tube is provided with several radial strips reported regular distributed circumferentially on the inner face of its wall. Moreover, it can be provided that each bar is rectangular in rectangular cross section.
  • the tube of the invention comprises six attached radial strips which are regularly distributed circumferentially on the inner face of the wall of the tube and which extend over the entire length of the tube whose internal diameter is between 50 and 60 millimeters, and each bar has in section a height of between 8 and 15 millimeters and a width of between 3 and 5 millimeters.
  • each bar is secured to the inner face of the wall of the tube by a continuous weld line.
  • each bar is secured to the inner face of the tube wall by a discontinuous weld line.
  • the tube of the invention comprises on its outer face at least one continuous or discontinuous rib resulting from the welding of the bars on the inner face of the tube wall from outside the tube.
  • each strip is made of an alloy whose composition is as follows:
  • the tube is cast centrifuged and made of a creep resistant alloy.
  • the tube is preferably made of an alloy chosen from the two following compositions:
  • the rest being made of iron, or
  • the invention also relates to a method of manufacturing the previously described tube, which method comprises at least one step of electron beam welding from outside the tube of at least one radial strip attached to the inner face of the wall of the tube.
  • this method comprises at least the following steps: insertion into the tube of a bar-holder comprising at least one receiving housing of a bar to be welded, positioning of the bars to be welded on the front bar-holder; after the insertion of the bar-holder into the tube, the positioning of the bars to be welded in the tube at a distance close to the internal face of the wall of the tube, or by the insertion of the bar-holder previously provided with the bars, either by insertion of the bars on the bar-holder previously introduced into the tube, - electron beam welding from outside the tube of the bars on the inner face of the wall of the tube, and removal of the bar-holder.
  • the invention also relates to another method of manufacturing the tube described above, which comprises at least one laser beam welding step from outside the tube of at least one radial strip on the inner face of the tube. wall of this tube.
  • the previously described tubes are used in petrochemical furnaces such as reforming or steam-cracking furnaces, or in furnaces for reheating iron ore direct reduction plants.
  • Figure 1 is a schematic representation of a cross section of the tube of the invention according to a first variant
  • Figure 2 is an enlarged view of the circled portion noted II in Figure 1
  • Figures 3,4,5,6 and 7 are schematic representations according to the first variant of the invention which illustrate in sequence the steps of the method of the invention
  • - Figure 3 is a cross-sectional view of a tube from the inside of this tube into which is inserted a bar-holder around which are arranged retaining rings of the bars mounted on the bar-holder
  • - Figure 4 is a longitudinal sectional view of the tube from the inside of this tube in which is introduced the door bars according to the arrows IV-IV of Figure 5;
  • FIG. 5 is a cross-sectional view of a tube in which the door bars and the bars have been introduced;
  • Figure 6 a cross-sectional view of the tube and illustrates the electron beam welding step of the bars;
  • - Figure 7 a cross-sectional view of the tube of the invention after removal of the bar holder;
  • Figure 8 is a side view of the tube of the invention which shows a bar, showing the continuous weld line made to fix a bar over the entire length of the tube;
  • Figure 9 is a sectional view along the line IX-IX of Figure 8;
  • Figure 10 is a side view of the tube of the invention on which is represented a bar, schematically showing the discontinuous weld line made to fix a bar over the entire length of the tube; and
  • Figure 11 is a sectional view along the line XI-XI of Figure 10.
  • a tube 1 comprises a cylindrical wall 2 of thickness between 5 and 20 millimeters on the inner face 3 of which are regularly distributed circumferentially six radial bars 4a, 4b, 4c, 4d, 4e, 4f.
  • the length of the tube is 2.8 meters and its internal diameter is 54 millimeters.
  • the six bars 4a, 4b, 4c, 4d, 4e, 4f extend over the entire length of the tube 1.
  • the tube is cast centrifuged and made of an alloy whose composition is as follows:
  • the rest being made of iron, or
  • composition of the sheet metal bars is as follows:
  • the materials used for the tube and for the bars both have similar thermophysical properties, especially with regard to the coefficient of expansion.
  • each bar 4a, 4b, 4c, 4d, 4e, 4f is section in rectangular section.
  • a height h of a bar of 12 millimeters is provided for a width 1 of 4 millimeters.
  • a bar carrier 10 has the shape of a solid tube of diameter smaller than the diameter of the inner face 3 of the wall 2 of the tube 1.
  • the strip holder 10 has six radial housings 11a, 11b, 11c, 11d, 11c, 4b, 4d, 4f, 4f, 4f, 4f, 4f and 4f. These dwellings Ha, Hb, Hc, Hd, He, Hf are regularly distributed circumferentially on the outer edge 12 of the bar carrier 10. Each housing Ha, Hb, Hc, Hd, He, Hf is of conjugated form with the bar 4a, 4b , 4c, 4d, 4e, 4f he receives.
  • the bars 4a, 4b, 4c, 4d, 4e, 4f are rectangular section.
  • Each housing Ha, Hb, Hc, Hd, He, Hf is such that each bar 4a, 4b, 4c, 4d, 4e, 4f can be held in place in its respective housing.
  • Each bar 4a, 4b, 4c, 4d, 4e, 4f is introduced into its respective housing Ha, Hb, Hc, Hd, He, Hf on the bar carrier 10.
  • the bars 4a, 4b, 4c, 4d, 4e, 4f are held in position on the strip holder 10 by a plurality of circular rings 9a, 9b, 9c which surround the strip holder while holding the strips 4a, 4b, 4c, 4d, 4e, 4f in place in their home
  • the assembly constituted by the door bars 10 and the bars 4a, 4b, 4c, 4d, 4e, 4f is introduced into the tube 1.
  • the bar carrier 10 continues its travel in the tube 1 by sliding relative to the first ring 9a still bearing against the outer edge 8 of the wall 2 of the tube 1. Then, the second ring 9b then bears against the first ring 9a and the bar holder 10 continues its course in the tube 1. This configuration is not shown in the figures. It is the same for the following rings 9c.
  • each housing 11a, 11b lie, Hd, Ile, Hf on the door bars
  • each bar 4a, 4b, 4c, 4d, 4e, 4f is welded to the wall 2 of the tube 1 by vacuum electron beam welding carried out from outside the tube 1.
  • the electron beam 14 penetrates into the thickness of the wall 2 of the tube 1 by generating enough heat to cause the melting of the wall 2 of the tube 1 at this point on the one hand, and the melting of the end of the tube the bar 4a close to the inner face 3 of the wall 2 of the tube on the other hand, which causes the welding of the bar 4a to the wall 2 of the tube 1 and the joining of each bar 4a, 4b, 4c, 4d, 4th, 4f to the inner face 3 of the wall 2 of the tube 1.
  • the bars 4a, 4b, 4c, 4d, 4e, 4f are welded one by one all along the tube 1. To do this, the electron beam 14 is applied to the tube 1 in the direction of a bar 4a since the tube inlet 8
  • this electron beam 14 undergoes a linear stroke over the entire length of the tube 1 and up to the end of the tube 1 not shown in the figures.
  • the tube 1 it is possible to provide for the tube 1 to translate beneath the electron beam.
  • a registration of the position of the bars 4a, 4b, 4c, 4d, 4e, 4f at the inlet of the tube 1 is provided.
  • a tube 1 such as that of Figure 9 having an increased internal surface and can be used in steam cracking furnaces, reforming or DRI.
  • the welding bead 6b, 6c, 6d resulting from the electron beam welding step 14 described above is detectable by analysis.
  • this cord has a particular structure resulting from solidification after melting of the wall of the tube and the bar.
  • a micrographic analysis can make it possible to note the presence of a melting zone making it possible to secure a bar on the inner face 3 of the tube 1.
  • the electron beam welding causes at each welding point, a blister 15a projecting on the outer face 16 of the tube.
  • the fixing of a bar 4a on the inner face 3 of the tube 1 may be carried out either by a continuous weld line 15a over the entire length of the tube (FIGS. 10 and 11), or by a discontinuous weld line along the length of the tube 1 (FIGS. 12 and 13).
  • a continuous weld the outer face 16 of the tube 1 will have a rib 15a extending along the tube 1 and indicating the presence a bar 4a secured to the inner face 2 of the wall 2 of the tube 1 under this blister 15a.
  • the outer face 16 of the tube 1 will comprise a line of discontinuous blisters 15a ', also marking the presence of a bar 4a secured to the inner face 2 of the wall 2 of the tube 1 under this line 15a.
  • Creep tests through the welding bead were performed. These tests demonstrate that the properties of the tube have not been altered.
  • the tests consist in evaluating the rupture time in hours under stress of 17 MPa at a temperature of 1100 ° C.
  • the break time is greater than or equal to 100 hours.
  • the break time is 114 hours.
  • the weld bead therefore has satisfactory properties to withstand the stresses imposed in petrochemical ovens.
  • Table 1 below presents the thermal gain and the pressure loss evaluated by simulation for two prior art tubes and two tubes of the invention.
  • the anterior tube 1 is a circular inner surface tube in section.
  • the anterior tube 2 is a tube whose inner surface has depressions and bumps such as that obtained by the writing methods in applications EP 980 729 and WO 03/011507.
  • the tube of the invention 1 is that of FIGS. 1 and 2, and the tube of the invention 2 is that of FIGS. 3 and 4.
  • dT is the difference between the temperature of the gas at the outlet of the tube in question and the temperature of the gas at the outlet of the front tube 1.
  • dP is the pressure drop of the gas between the inlet and the outlet of the tube in question. It is found that the heat transfer gain is greater for the tubes of the invention than for a tube having depressions and bumps on its inner surface.
  • the pressure drop for the tube of the invention 1 is greater but remains acceptable and the pressure drop in the tube of the invention 2 is quite satisfactory.
  • Fixing the strips on the inner face of a tube by welding from the outside of the tube has many advantages.
  • the welding bead which provides the connection between the bars and the tube is able to withstand the thermal and mechanical stresses of operation of the high temperature tube.
  • the extra weight provided by the bars is significantly lower than that provided by the bumps and troughs of the tubes described in patent applications EP 980729 and WO 03,011507 since there is a reduction of excess weight of about half on the tube of the invention. This allows the tube of the invention to be more easily installed in suspension in the furnaces.
  • this cord provides a thermal bridge between the tube and the bar.
  • this process applies to any type of metal tubes that are forged or cast centrifuged.
  • an electron beam weld it will be possible to use laser welding.
  • the radial bars are in the form of segments regularly distributed over the length of the tube.
  • the welding process for manufacturing leaves a great freedom of choice both in terms of the materials to be used and the configuration of the bars to be adopted and this, for an efficiency at least equal to that of the tubes with increased internal surface known.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Heat Treatment Of Articles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Arc Welding In General (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

L' invention porte principalement sur un tube utilisé dans des fours qui comporte au moins une barrette radiale rapportée (4a, 4b, 4c, 4d, 4e, 4f) solidarisée par soudage à la face interne (3) de la paroi (2) du tube (1). L' invention porte également sur un procédé de fabrication d'un tel tube comprenant au moins une étape de soudage par faisceau d'électrons ou faisceau laser depuis l'extérieur du tube (1) d'au moins une barrette radiale rapportée (4a, 4b, 4c, 4d, 4e, 4f ) sur la face interne (3) de la paroi (2) du tube (1). Les tubes de l'invention peuvent être utilisés dans les fours de reformage, de vapocraquage ou de DRI.

Description

Tube à surface interne augmentée utilisé dans des fours, procédé de fabrication et applications.
L'invention porte principalement sur un tube à surface interne augmentée qui est utilisé dans des fours .
L'invention porte également sur un procédé de fabrication d'un tel tube.
5 Les fours du domaine d'application de l'invention sont des fours de pétrochimie, mais également des fours de réchauffage d'installations de réduction directe de minerai de fer dénommés également four de DRI (Direct Réduction Iron) . 0 II existe deux types fours utilisés dans les usines de pétrochimie .
Les fours de vapocraquage dans lesquels sont produits de l'éthylène, et les fours de reformage à la vapeur produisant de l'hydrogène et du monoxyde de5 carbone .
Ces fours comportent une partie de convection servant au préchauffage des produits à traiter et une partie radiation dans laquelle a lieu la réaction de reformage ou de craquage. 0 La radiation de ces fours est constituée de tubes de grande longueur à l'entrée desquels on injecte le produit à traiter préalablement préchauffé dans la convection, à savoir du méthane pour le reformage, et de l'éthane, du propane, du butane, du naphta et des hydrocarbures plus lourds pour le craquage.
Dans ces deux types de fours, est également injectée de la vapeur d'eau.
Ces tubes, faits dans un matériau réfractaire sont chauffés radialement . Ils sont disposés généralement verticalement mais peuvent être également disposés horizontalement en particulier dans les anciens fours.
Les gaz circulent dans les tubes et la chaleur présente à l ' intérieur du tube provoque la rupture de leurs chaînes carbonées . On récupère en sortie de tube de l'éthylène et du propylène pour les fours de vapocraquage et de l'hydrogène et du monoxyde de carbone pour les fours de reformage .
En ce qui concerne les fours de DRI, ces fours impliquent également l'utilisation de tubes de grandes longueurs.
Ces fours fonctionnent de façon similaire aux fours de reformage et de craquage précédemment décrits.
Plus précisément, on fait circuler dans ces tubes le gaz de réduction du minerai de fer préalablement élaboré dans un four de reformage. Ces tubes subissent ainsi des contraintes similaires aux tubes des fours de pétrochimie .
Les tubes précédemment décrits doivent être réalisés dans un alliage leur permettant de fonctionner à des températures de l'ordre de 10000C pour les fours de reformage à la vapeur, de 1100 0C pour les fours de vapocraquages et entre 1000 et 11000C pour les fours de DRI.
Les tubes doivent donc résister au fluage, c'est-à- dire aux déformations mécaniques à haute température, étant entendu que la pression dans les fours de reformage peut atteindre 30 bar, mais ils doivent également résister à l'oxydation dans l'atmosphère des fours.
Par ailleurs, pour les fours de vapocraquage, il est indispensable d'utiliser un matériau limitant la carburation là ou apparaissaient les dépôts de coke sur la surface interne du tube.
Depuis de nombreuses années, la Demanderesse développe des alliages de structure austénitique répondant à ces critères.
Ces alliages sont faits à base de fer, de nickel et de chrome .
Le nickel permet de stabiliser la structure austénitique. Le nickel et le chrome participent à la réduction de la corrosion (carburation, oxydation ....) .
Ces alliages contiennent également du carbone. Le carbone forme des carbures qui s'opposent à la déformation du métal à haute température et permet donc d'augmenter la résistance au fluage.
Pour améliorer la résistance des tubes au fluage, des éléments formant des carbures comme le niobium, le titane, le tungstène ou le molybdène peuvent être aj outés .
Est également utilisé le silicium qui contribue à augmenter la résistance à la corrosion.
Le mélange de tous ces composants dans des proportions particulières permet d'obtenir des tubes de hautes qualités, utilisables dans les fours de vapocraquage, de reformage à la vapeur et de DRI.
A titre d'exemple, la Demanderesse commercialise depuis de nombreuses années des tubes pour les fours de vapocraquage sous les marque MANAURITE® XM et MANAURITE® XTM dont les compositions chimiques respectives sont les suivantes :
MANAURITE XM
Figure imgf000005_0001
Le reste étant fait de fer.
MANAURITE XTM
Figure imgf000005_0002
Figure imgf000006_0001
Les tubes utilisés dans les fours présentent une longueur de l'ordre de plusieurs mètres, généralement de 3 à 6 mètres. Leur diamètre interne est de 35 à 200 millimètres.
Ces tubes sont généralement à section en coupe circulaire interne et externe. Leur épaisseur est de l'ordre de cinq à vingt millimètres.
Les tubes utilisés dans les fours de pétrochimie peuvent parfois être réalisés par forgeage.
Néanmoins, lorsqu'une quantité importante de carbone est présente dans l'alliage, comme c'est le cas pour la Manaurite XM et la Manaurite XTM, le forgeage des tubes est rendu impossible. Ces tubes sont alors fabriqués par un procédé de coulage par centrifugation .
Pour augmenter l'efficacité des tubes utilisés dans les fours de vapocraquage , de reformage à la vapeur et de DRI, il est connu d'augmenter la surface interne des tubes. En effet, l'augmentation de la surface de chauffe engendre un transfert de chaleur plus important entre l'extérieur et l'intérieur du tube, et donc une efficacité réactionnelle accrue.
Le brevet européen EP 980 729 propose à cet effet un tube comportant sur sa face interne des bosses et des creux réalisés par un procédé électrochimique.
Ce procédé consiste à utiliser une électrode dont la surface externe est faite de creux et de bosses tels que ceux que l'on souhaite obtenir sur la face interne du tube . La circulation d'un électrolyte entre l'électrode et la face interne du tube, et l'enfoncement de cette électrode à l'intérieur du tube va entraîner, par le passage concomitant d'un courant électrique, la dissolution de la matière au niveau de la face interne du tube, et la formation de creux et de bosses correspondants au creux et bosses de l'électrode.
On connaît également de la demande de brevet internationale WO 03/011507 un procédé mécanique par brochage permettant de réaliser des creux et des bosses sur la face interne des tubes de fours de pétrochimie. Ce procédé consiste à venir gratter la matière à l'intérieur du tube au moyen d'une broche introduite dans ce tube. La broche comporte des outils de coupe dont la forme correspond à la forme en creux et en bosses que l'on souhaite obtenir sur la face interne du tube. Ce procédé nécessite plusieurs passages de la broche dans le tube, le changement d'outils de coupe entre chaque passage et la récupération des copeaux générés par un passage de la broche dans le tube.
Si les deux procédés précités permettent d'augmenter la surface interne des tubes utilisés dans les fours de pétrochimie, ils sont difficiles de mise en œuvre et engendrent l'utilisation de dispositifs complexes et coûteux.
L' invention se place dans ce contexte et permet de pallier les inconvénients précités en proposant un tube à surface interne augmentée et un procédé de fabrication associé simple à mettre en œuvre et applicable à tout type de tube métallique et notamment les tubes de grande longueur et de faible diamètre. A cet effet, le tube de l'invention est essentiellement caractérisé en ce qu' il comporte au moins une barrette radiale rapportée solidarisée par soudage à la face interne de la paroi du tube.
De préférence, ce tube est pourvu de plusieurs barrettes radiales rapportées régulièrement réparties circonférentiellement sur la face interne de sa paroi. Par ailleurs, on peut prévoir que chaque barrette soit rectangulaire en section transversale rectangulaire .
Selon un mode de réalisation avantageux, le tube de l'invention comprend six barrettes radiales rapportées qui sont régulièrement réparties circonférentiellement sur la face interne de la paroi du tube et qui s'étendent sur toute la longueur du tube dont le diamètre interne est compris entre 50 et 60 millimètres, et chaque barrettes présente en coupe une hauteur comprise entre 8 et 15 millimètres et une largeur comprise entre de 3 et 5 millimètres .
Avantageusement, chaque barrette est solidarisée à la face interne de la paroi du tube par une ligne de soudure continue.
Mais on peut alternativement prévoir que chaque barrette soit solidarisée à la face interne de la paroi du tube par une ligne de soudure discontinue.
De préférence, le tube de l'invention comporte sur sa face externe au moins une nervure continue ou discontinue résultant de la soudure des barrettes sur la face interne de la paroi du tube depuis l'extérieur du tube .
Selon un aspect avantageux de l'invention, chaque barrette est faite dans un alliage dont la composition est la suivante :
Figure imgf000008_0001
Le reste étant du fer Selon un autre aspect avantageux de l'invention, le tube est coulé centrifugé et fait dans un alliage résistant au fluage.
Dans ce dernier cas, le tube est de préférence fait en un alliage choisi parmi les deux compositions suivantes :
Figure imgf000009_0001
Le reste étant fait de fer, ou
Figure imgf000009_0002
Le reste étant du fer. L'invention porte également sur un procédé de fabrication du tube précédemment décrit, lequel procédé comporte au moins une étape de soudage par faisceau d'électrons depuis l'extérieur du tube d'au moins une barrette radiale rapportée sur la face interne de la paroi du tube. De préférence, ce procédé comprend au moins les étapes suivantes : insertion dans le tube d'un porte-barrettes comportant au moins un logement de réception d'une barrette à souder, mise en place des barrettes à souder sur le porte-barrettes avant ou après l'introduction du porte- barrettes dans le tube, la mise an place des barrettes à souder dans le tube à une distance proche de la face interne de la paroi du tube, soit par l'insertion du porte barrettes préalablement muni des barrettes, soit par l'insertion des barrettes sur le porte-barrettes préalablement introduit dans le tube, - soudage par faisceau d'électrons depuis l'extérieur du tube des barrettes sur la face interne de la paroi du tube, et retrait du porte-barrettes.
En outre, l'invention porte également sur un autre procédé de fabrication du tube décrit plus haut, qui comporte au moins une étape de soudage par faisceau laser depuis l'extérieur du tube d'au moins une barrette radiale sur la face interne de la paroi de ce tube.
Enfin, les tubes précédemment décrits trouvent application dans les fours de pétrochimie tels que les fours de reformage ou de vapocraquage, ou encore dans des fours de réchauffage d' installations de réduction directe de minerai de fer.
L'invention sera mieux comprise, et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative qui va suivre faite en référence aux dessins schématiques annexés donnés uniquement à titre d'exemple illustrant plusieurs modes de réalisation de l'invention et dans lesquels : la figure 1 est une représentation schématique d'une coupe transversale du tube de l'invention selon une première variante ; la figure 2 est une vue agrandie de la partie cerclée notée II sur la figure 1 ; les figures 3,4,5,6 et 7 sont des représentations schématiques selon la première variante de l'invention qui illustrent dans l'ordre les étapes du procédé de l'invention ; - la figure 3 est une vue en coupe transversale d'un tube depuis l'intérieur de ce tube dans lequel est introduit un porte-barrettes autour duquel sont disposées des bagues de maintien des barrettes montées sur le porte-barrettes; - la figure 4 est une vue en coupe longitudinale du tube depuis l'intérieure de ce tube dans lequel est introduit le porte barrettes selon les flèches IV-IV de la figure 5 ; la figure 5 une vue en coupe transversale d'un tube dans lequel a été introduit le porte barrettes et les barrettes ; la figure 6 une vue en coupe transversale du tube et illustre l'étape de soudage par faisceau d'électrons des barrettes ; - la figure 7 une vue en coupe transversale du tube de l'invention après retrait du porte barrettes; la figure 8 est une vue de coté du tube de l'invention sur laquelle n'est représentée qu'une barrette, montrant la ligne de soudure continue réalisée pour fixer une barrette sur toute la longueur du tube ; la figure 9 est une vue en coupe selon la ligne IX-IX de la figure 8 ; la figure 10 est une représentation de coté du tube de l'invention sur laquelle n'est représentée qu'une barrette, montrant schématiquement la ligne de soudure discontinue réalisée pour fixer une barrette sur toute la longueur du tube ; et la figure 11 est une vue en coupe selon la ligne XI-XI de la figure 10.
En référence à la figure 1 et 3, un tube 1 comporte une paroi cylindrique 2 d'épaisseur comprise entre 5 et 20 millimètres sur la face interne 3 de laquelle sont régulièrement réparties circonférentiellement six barrettes radiales 4a, 4b, 4c, 4d, 4e, 4f .
La longueur du tube est de 2,8 mètres et son diamètre interne est de 54 millimètres.
Les six barrettes 4a, 4b, 4c, 4d, 4e, 4f s'étendent sur toute la longueur du tube 1.
Le tube est coulé centrifugé et réalisé en un alliage dont la composition est au choix la suivante :
Figure imgf000012_0001
Le reste étant fait de fer, ou
Figure imgf000012_0002
Le reste étant du fer.
La composition des barrettes en tôle est la suivante :
Figure imgf000013_0001
Le reste étant du fer.
Les matériaux utilisés pour le tube et pour les barrettes présentent tous les deux des propriétés thermophysiques similaires, notamment pour ce qui est du coefficient de dilatation.
Ces deux matériaux possèdent par ailleurs une haute résistance à la carburation du fait de leur structure austénitique et de leur haute teneur en chrome.
Selon une première variante visible sur les figures 1 et 2, chaque barrette 4a, 4b, 4c, 4d, 4e, 4f est de section en coupe rectangulaire.
Plus précisément, on prévoit dans cette variante une hauteur h de barrette de 12 millimètres pour une largeur 1 de 4 millimètres. Comme visible sur les figures 1 et 2, un cordon de soudage 6a, 6b, 6c, 6d, 6e, 6f ; solidarise chaque barrette correspondante 4a, 4b, 4c, 4d, 4e, 4f à la face interne 3 de la paroi 2 du tube 1.
La présence de ce cordon de soudage 6a, 6b, 6c, 6d, 6e, 6f résulte du procédé utilisé pour fixer chaque barrette 4a, 4b, 4c, 4d, 4e, 4f ; à la paroi 2 du tube 1.
Ce procédé est décrit en référence aux figures 3 à 7. Un porte-barrettes 10 présente la forme d'un tube plein de diamètre inférieur au diamètre de la face interne 3 de la paroi 2 du tube 1.
Le porte barrettes 10 présente six logements radiaux lia, 11b, lie, Hd, Ile, Hf de réception des barrettes 4a, 4b, 4c, 4d, 4e, 4f . Ces logements Ha, Hb, Hc, Hd, He, Hf sont régulièrement répartis circonférentiellement sur le bord externe 12 du porte barrettes 10. Chaque logement Ha, Hb, Hc, Hd, He, Hf est de forme conjugué à la barrette 4a, 4b, 4c, 4d, 4e, 4f qu'il reçoit .
Dans l'exemple présenté sur la figure 3, les barrettes 4a, 4b, 4c, 4d, 4e, 4f sont à section rectangulaire. Chaque logement Ha, Hb, Hc, Hd, He, Hf est tel que chaque barrette 4a, 4b, 4c, 4d, 4e, 4f puisse être maintenue en place dans son logement respectif.
Chaque barrette 4a, 4b, 4c, 4d, 4e, 4f est introduite dans son logement respectif Ha, Hb, Hc, Hd, He, Hf sur le porte barrettes 10.
Les barrettes 4a, 4b, 4c, 4d, 4e, 4f sont maintenues en position sur le porte barrettes 10 par plusieurs bagues circulaires 9a, 9b, 9c qui entourent le porte barrettes en maintenant les barrettes 4a, 4b, 4c, 4d, 4e, 4f en place dans leur logement
Puis, l'ensemble constitué par le porte barrettes 10 et les barrettes 4a, 4b, 4c, 4d, 4e, 4f est introduit dans le tube 1.
Lors du coulissement du porte-barrettes 10 dans le tube 1, la bague 9a la plus proche de l'entrée 7 du tube 1 vient en appui contre le bord externe 8 de la paroi 2 du tube 1 comme représenté sur la figure 6.
Le porte-barrettes 10 continue sa course dans le tube 1 en coulissant relativement à la première bague 9a toujours en appui contre le bord externe 8 de la paroi 2 du tube 1. Puis, la deuxième bague 9b vient alors en appui contre la première bague 9a et le porte-barrettes 10 continue sa course dans le tube 1. Cette configuration n'est pas représentée sur les figures. II en va de même pour les bagues suivantes 9c.
Lorsque le porte-barrettes 10 est totalement en place dans le tube 1, les bagues 9a, 9b, 9c sont réceptionnées. Cette étape est représentée sur la figure
7 qui, en comparaison avec la figure 5, ne fait pas apparaître la bague 9a.
En référence à la figure 5, la hauteur de chaque logement lia, 11b, lie, Hd, Ile, Hf sur le porte barrettes
10 est telle que la base 13a, 13b, 13c, 13d, 13e, 13f de chacune des barrettes 4a, 4b, 4c, 4d, 4e, 4f affleure la face interne 3 de la paroi 2 du tube 1.
Lors le porte-barrettes 10 est en place dans le tube 1, commence alors l'étape de fixation des barrettes 4a, 4b, 4c, 4d, 4e, 4f .
Comme visible sur la figure 6, chaque barrette 4a, 4b, 4c, 4d, 4e, 4f est soudée à la paroi 2 du tube 1 par soudage par faisceau d'électrons sous vide effectué depuis l'extérieur du tube 1.
Le faisceau d'électrons 14 pénètre dans l'épaisseur de la paroi 2 du tube 1 en générant suffisamment de chaleur pour provoquer la fonte de la paroi 2 du tube 1 à cet endroit d'une part, et la fonte de l'extrémité de la barrette 4a proche de la face interne 3 de la paroi 2 du tube d'autre part, ce qui entraîne le soudage de la barrette 4a à la paroi 2 du tube 1 et la solidarisation de chaque barrettes 4a, 4b, 4c, 4d, 4e, 4f à la face interne 3 de la paroi 2 du tube 1.
Les barrettes 4a, 4b, 4c, 4d, 4e, 4f sont soudées une par une tout le long du tube 1. Pour ce faire, le faisceau d'électrons 14 est appliqué sur le tube 1 dans la direction d'une barrette 4a depuis l'entrée 8 du tube
1 et ce faisceau d'électrons 14 subit une course linéaire sur toute la longueur du tube 1 et ce, jusqu'à l'extrémité du tube 1 non représentée sur les figures.
On peut prévoir en variante de réalisation que ce soit le tube 1 qui translate sous le faisceau d'électrons.
Un repérage de la position des barrettes 4a, 4b, 4c, 4d, 4e, 4f à l'entrée du tube 1 est prévue.
Une fois que chaque barrette 4a, 4b, 4c, 4d, 4e, 4f a été soudée sur toute la longueur du tube 1, le porte barrettes 10 est retiré du tube 1 par coulissement longitudinal .
Est ainsi obtenu un tube 1 tel que celui de la figure 9 présentant une surface interne augmentée et pouvant être utilisé dans les fours de vapocraquage, de reformage ou de DRI.
Le cordon de soudage 6b, 6c, 6d résultant de l'étape de soudage par faisceau d'électrons 14 décrite précédemment est décelable par analyse.
En effet, ce cordon présente une structure particulière, résultant d'une solidification après fusion de la paroi du tube et de la barrette. Une analyse micrographique peut permettre de constater la présence d'une zone de fusion permettant de solidariser une barrette sur la face interne 3 du tube 1. Par ailleurs, le soudage par faisceau d'électrons provoque au niveau de chaque point de soudage, une boursouflure 15a en saillie sur la face externe 16 du tube .
En référence aux figures 10 à 13, la fixation d'une barrette 4a sur la face interne 3 du tube 1 peut être effectuée soit par une ligne de soudure continue 15a sur toute la longueur du tube (figures 10 et 11), soit par une ligne de soudure discontinus sur la longueur du tube 1 (figure 12 et 13) . Dans le cas d'une soudure continue, la face externe 16 du tube 1 présentera une nervure 15a s' étendant le long du tube 1 et indiquant la présence d'une barrette 4a solidarisée à la face interne 2 de la paroi 2 du tube 1 sous cette boursouflure 15a.
Et dans le cas d'une soudure discontinue, la face externe 16 du tube 1 comportera une ligne de boursouflures discontinues 15a' , marquant également la présence d'une barrette 4a solidarisée à la face interne 2 de la paroi 2 du tube 1 sous cette ligne 15a.
Des essais de fluage au travers du cordon de soudage ont été effectués. Ces essais démontrent que les propriétés du tube n'ont pas été altérées.
Les essais consistent à évaluer le temps de rupture en heures sous contrainte de 17 MPa à une température de 11000C.
Les résultats sont les suivants.
Pour le métal du tube 1, le temps de rupture est supérieure à ou égal à 100 heures.
Et pour le métal fondu au niveau du cordon de soudure, le temps de rupture est de 114 heures.
Le cordon de soudure présente donc des propriétés satisfaisantes pour résister aux contraintes imposées dans les fours de pétrochimie.
Le Tableau 1 ci-dessous présente le gain thermique et la perte de charge évalués par simulation pour deux tubes de l'art antérieur et deux tubes de l'invention.
Figure imgf000017_0001
Le tube antérieur 1 est un tube de surface interne circulaire en coupe.
Le tube antérieur 2 est un tube dont la surface interne présente des creux et des bosses tel que celui obtenu par les procédés d'écrit dans les demandes EP 980 729 et WO 03/011507.
Le tube de l'invention 1 est celui des figures 1 et 2, et le tube de l'invention 2 est celui des figures 3 et 4. dT est la différence entre la température du gaz à la sortie du tube considéré et la température du gaz à la sortie du tube antérieur 1. dP est la perte de charge du gaz entre l'entrée et la sortie du tube considéré. On constate que le gain de transfert thermique est plus important pour les tubes de l'invention que pour un tube comportant des creux et des bosses sur sa surface interne .
Pour ce qui est de la perte de charge, la perte de charge pour le tube de l'invention 1 est plus importante mais reste acceptable et la perte de charge dans le tube de l'invention 2 est tout à fait satisfaisante.
Ces résultats montrent l'efficacité en termes d' échange thermique et de perte de charge du tube de l'invention.
La fixation des barrettes sur la face interne d'un tube par soudage depuis l'extérieur du tube présente de nombreux avantages.
D'abord, il évite l'insertion du dispositif de fixation des barrettes à l'intérieur du tube rendant la fabrication du tube plus simple.
Par ailleurs, le cordon de soudage qui assure la liaison entre les barrettes et le tube est capable de résister aux contraintes thermiques et mécaniques de fonctionnement du tube à haute température.
En outre, le surplus de poids apporté par les barrettes est nettement inférieur à celui apporté par les bosses et les creux des tubes décrits dans les demandes de brevets EP 980729 et WO 03,011507 puisqu'on constate une réduction du surplus de poids d'environ la moitié sur le tube de l'invention. Ceci permet au tube de l'invention d'être plus facilement installé en suspension dans les fours.
De plus, ce cordon assure un pont thermique entre le tube et la barrette.
Plus encore, par ce procédé, il est possible de choisir le matériau des barrettes selon les conditions d'utilisation ultérieures du tube.
Mais aussi, ce procédé s'applique à tout type de tubes métalliques qu' ils soient forgés ou coulés centrifugés . En variante d'une soudure par faisceau d'électrons, on pourra utiliser la soudure laser.
On pourra également envisager différentes géométrie de barrettes.
On peut également imaginer la présence de barrettes sur seulement une partie de la longueur du tube pour limiter les pertes de charges.
Dans ce sens, on pourra envisager que les barrettes radiales se présentent sous forme de segments régulièrement répartis sur la longueur du tube. Le procédé de soudage pour fabriquer laisse une grande liberté de choix tant au niveau des matériaux à utiliser que de la configuration des barrettes à adopter et ce, pour une efficacité au moins égale à celle des tubes à surface interne augmentée connus.

Claims

REVENDI CATIONS
1. Tube utilisé dans des fours, caractérisé en ce qu' il comporte au moins une barrette radiale rapportée (4a, 4b, 4c, 4d, 4e, 4f) solidarisée par soudage à la face interne (3) de la paroi (2) du tube (1) .
2. Tube selon la revendication 1, caractérisé en ce qu' il est pourvu de plusieurs barrettes radiales rapportées (4a, 4b, 4c, 4d, 4e, 4f ) régulièrement réparties circonférentiellement sur la face interne (3) de la paroi
(2) du tube (1) .
3. Tube selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque barrette (4a, 4b, 4c, 4d, 4e, 4f ) est rectangulaire en section transversale.
4. Tube selon la revendication 3, caractérisé en ce qu' il comprend six barrettes radiales rapportées
(4a, 4b, 4c, 4d, 4e, 4f ) qui sont régulièrement réparties circonférentiellement sur la face interne (3) de la paroi (2) du tube (1) et qui s'étendent sur toute la longueur du tube (1) dont le diamètre interne est compris entre 50 et 60 millimètres, et en ce que chaque barrettes (4a, 4b, 4c, 4d, 4e, 4f ) présente en coupe une hauteur comprise entre 8 et 15 millimètres et une largeur comprise entre de 3 et 5 millimètres.
5. Tube selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque barrette
(4a, 4b, 4c, 4d, 4e, 4f ) est solidarisée à la face interne
(3) de la paroi (2) du tube (1) par une ligne de soudure continue (15a) .
6. Tube selon l'une quelconque des revendications 1 à 5, caractérisé en ce que chaque barrette (4a, 4b, 4c, 4d, 4e, 4f ) est solidarisée à la face interne (3) de la paroi (2) du tube (1) par une ligne de soudure discontinue (15a') .
7. Tube selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte sur sa face externe (16) au moins une nervure continue ou discontinue (15a, 15a') résultant de la soudure des barrettes (4a, 4b, 4c, 4d, 4e, 4f ) sur la face interne (3) de la paroi (2) du tube (1) depuis l'extérieur du tube (1) .
8. Tube selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque barrette (4a,
4b, 4c, 4d, 4e, 4f ) est faite dans un alliage dont la composition est la suivante :
Figure imgf000021_0001
Le reste étant du fer.
9. Tube selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est coulé centrifugé et fait dans un alliage résistant au fluage.
10. Tube selon la revendication 9, caractérisé en ce que le tube est fait en un alliage dont la composition est au choix la suivante :
Figure imgf000021_0002
Le reste étant fait de fer, ou
Le reste étant du fer.
11. Procédé de fabrication du tube des revendications 1 à 10, caractérisé en ce qu'il comporte au moins une étape de soudage par faisceau d'électrons depuis l'extérieur du tube (1) d'au moins une barrette radiale rapportée ( (4a, 4b, 4c, 4d, 4e, 4f) ) sur la face interne (3) de la paroi (2) du tube (1) .
12. Procédé selon la revendication 11, caractérisé en ce qu' il comprend au moins les étapes suivantes : - insertion dans le tube (1) d'un porte-barrettes (10) comportant au moins un logement (lia, 11b, lie, Hd, 11e, Hf) de réception d'une barrette à souder (4a, 4b, 4c, 4d, 4e, 4f) , mise en place des barrettes à souder (4a, 4b, 4c, 4d, 4e, 4f) sur le porte-barrettes (10) avant ou après l'introduction du porte-barrettes (10) dans le tube
(D, la mise an place des barrettes à souder (4a, 4b, 4c, 4d, 4e, 4f) dans le tube (1) à une distance proche de la face interne (3) de la paroi (2) du tube
(1), soit par l'insertion du porte barrettes (10) préalablement muni des barrettes (4a, 4b, 4c, 4d, 4e, 4f) , soit par l'insertion des barrettes (4a, 4b, 4c, 4d, 4e, 4f) sur le porte-barrettes (10) préalablement introduit dans le tube (1) , soudage par faisceau d'électrons depuis l'extérieur du tube (1) des barrettes (4a, 4b, 4c, 4d, 4e, 4f) sur la face interne (3) de la paroi (2) du tube (1), et retrait du porte-barrettes (10) .
13. Procédé de fabrication du tube des revendications 1 à 10, caractérisé en ce qu'il comporte au moins une étape de soudage par faisceau laser depuis l'extérieur du tube (1) d'au moins une barrette radiale (4a, 4b, 4c, 4d, 4e, 4f) sur la face interne (3) de la paroi (2) de ce tube (1) .
14. Utilisation du tube selon les revendications 1 à
10 dans des fours de pétrochimie tels que des fours de reformage ou de vapocraquage ou dans des fours de réchauffage d' installations de réduction directe de minerai de fer.
PCT/FR2008/050170 2007-10-19 2008-02-01 Tube à surface interne augmentée utilisé dans des fours, procédé de fabrication et applications WO2009050356A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2010004267A MX2010004267A (es) 2007-10-19 2008-02-01 Tubo que tiene una superficie interna aumentada, utilizado en hornos, proceso de fabricacion y aplicaciones.
BRPI0816593-9A2A BRPI0816593A2 (pt) 2007-10-19 2008-02-01 Tubo com superfície interna aumentada, utilizado em fornos, processo de fabricação e aplicações
CN2008801204140A CN101896789A (zh) 2007-10-19 2008-02-01 在熔炉中使用的内表面增加的管子、制造工艺和应用
EP08762030A EP2201317A1 (fr) 2007-10-19 2008-02-01 Tube à surface interne augmentée utilisé dans des fours, procédé de fabrication et applications
CA2702863A CA2702863A1 (fr) 2007-10-19 2008-02-01 Tube a surface interne augmentee utilise dans des fours, procede de fabrication et applications
US12/738,673 US20100230083A1 (en) 2007-10-19 2008-02-01 Tube having an increased internal surface, used in furnaces, manufacturing process and applications
JP2010529430A JP2011500910A (ja) 2007-10-19 2008-02-01 ファーネスに使用される内表面を大きくしたチューブ、製造方法および使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0758445A FR2922636B1 (fr) 2007-10-19 2007-10-19 Tube a surface interne augmentee utilise dans des fours, procede de fabrication et applications
FR0758445 2007-10-19

Publications (1)

Publication Number Publication Date
WO2009050356A1 true WO2009050356A1 (fr) 2009-04-23

Family

ID=39387322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050170 WO2009050356A1 (fr) 2007-10-19 2008-02-01 Tube à surface interne augmentée utilisé dans des fours, procédé de fabrication et applications

Country Status (10)

Country Link
US (1) US20100230083A1 (fr)
EP (1) EP2201317A1 (fr)
JP (1) JP2011500910A (fr)
KR (1) KR20100101564A (fr)
CN (1) CN101896789A (fr)
BR (1) BRPI0816593A2 (fr)
CA (1) CA2702863A1 (fr)
FR (1) FR2922636B1 (fr)
MX (1) MX2010004267A (fr)
WO (1) WO2009050356A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2955794B1 (fr) * 2010-01-29 2012-02-24 Manoir Ind Procede de fabrication d'un tube a surface interne augmentee utilise dans des fours, et tubes correspondants.
CN111843324B (zh) * 2020-07-20 2021-11-23 东北石油大学 油气长输管道连接用爬行焊接机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1228896A (fr) * 1968-09-24 1971-04-21
FR2237157A1 (en) * 1973-06-26 1975-02-07 Dietrich Cie S A Tubular heat exchanger with internal vanes - fixed in place by automatic welding process using coated electrodes
JPS5929991A (ja) * 1982-08-09 1984-02-17 株式会社 大阪ボイラ−製作所 熱交換チユ−ブ
JPH0810973A (ja) * 1994-06-22 1996-01-16 Mitsubishi Cable Ind Ltd 首振節輪製造方法
JP2000145450A (ja) * 1998-11-05 2000-05-26 Toyota Motor Corp 内燃機関用排気管及びその仕切板溶接方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243283A (ja) * 1996-03-04 1997-09-19 Kubota Corp 内面突起付き熱交換用金属管
GB2340911B (en) * 1998-08-20 2000-11-15 Doncasters Plc Alloy pipes and methods of making same
US6644358B2 (en) * 2001-07-27 2003-11-11 Manoir Industries, Inc. Centrifugally-cast tube and related method and apparatus for making same
EP1558776B8 (fr) * 2002-11-04 2009-04-29 Paralloy Limited Alliages haute temperature

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1228896A (fr) * 1968-09-24 1971-04-21
FR2237157A1 (en) * 1973-06-26 1975-02-07 Dietrich Cie S A Tubular heat exchanger with internal vanes - fixed in place by automatic welding process using coated electrodes
JPS5929991A (ja) * 1982-08-09 1984-02-17 株式会社 大阪ボイラ−製作所 熱交換チユ−ブ
JPH0810973A (ja) * 1994-06-22 1996-01-16 Mitsubishi Cable Ind Ltd 首振節輪製造方法
JP2000145450A (ja) * 1998-11-05 2000-05-26 Toyota Motor Corp 内燃機関用排気管及びその仕切板溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STEVENS K J ET AL: "Calibration of eddy current carburization measurements in ethylene production tubes using ion beam analysis; Calibration of eddy current carburization measurements", JOURNAL OF PHYSICS D. APPLIED PHYSICS, IOP PUBLISHING, BRISTOL, GB, vol. 37, no. 3, 7 February 2004 (2004-02-07), pages 501 - 509, XP020015862, ISSN: 0022-3727 *

Also Published As

Publication number Publication date
MX2010004267A (es) 2010-06-01
JP2011500910A (ja) 2011-01-06
FR2922636B1 (fr) 2012-06-08
BRPI0816593A2 (pt) 2015-03-03
EP2201317A1 (fr) 2010-06-30
KR20100101564A (ko) 2010-09-17
FR2922636A1 (fr) 2009-04-24
CN101896789A (zh) 2010-11-24
US20100230083A1 (en) 2010-09-16
CA2702863A1 (fr) 2009-04-23

Similar Documents

Publication Publication Date Title
CA2843169C (fr) Piece d'acier soudee mise en forme a chaud a tres haute resistance mecanique et procede de fabrication
EP2401540B1 (fr) Materiau compliant
EP2401539B1 (fr) Dispositif d'assemblage
EP0910554B1 (fr) Fond de filiere a tetons rapportes
FR2977177A1 (fr) Procede de rechargement d'une piece
FR2481162A1 (fr) Cylindre du type a assemblage pour service a haute temperature
EP2401245B1 (fr) Dispositif comportant un tube céramique revetu et une frette
EP0377390B1 (fr) Procédé de fabrication de tubes bimétalliques et tubes obtenus par ce procédé
WO2009050356A1 (fr) Tube à surface interne augmentée utilisé dans des fours, procédé de fabrication et applications
EP2489460A1 (fr) Procédé de fabrication de fil fourré par soudage laser avec un remplissage différentié
WO2010097765A1 (fr) Assemblage affleurant
FR2588788A1 (fr) Procede de brasage a deplacement continu pour souder un manchon dans un tube
WO2021099697A1 (fr) Pièce massive métallique et son procédé de fabrication
EP2653260A1 (fr) Procédé de fabrication de fil fourré par soudage laser avec préparation préalable des bords du feuillard
WO2013014369A1 (fr) Procede d'assemblage d'une coque titane et d'une coque alliage resistant au feu titane
FR3094652A1 (fr) Procédé de fabrication d’un fil d’armure d’une ligne flexible de transport de fluide et fil d’armure et ligne flexible issus d’un tel procédé
FR2955794A1 (fr) Procede de fabrication d'un tube a surface interne augmentee utilise dans des fours, et tubes correspondants.
WO1993013884A1 (fr) Procede et dispositif pour le formage a chaud de metaux ou alliages metalliques
WO2004032152A1 (fr) Conteneur pour matieres radioactives et procede de fermeture d'un tel conteneur
WO2020183093A1 (fr) Electrode à auto-cuisson
FR2996477A1 (fr) Procede de fabrication d'une piece couverte d'un revetement abradable
WO2010097766A1 (fr) Dispositif d'assemblage a bouclier
WO2010097768A1 (fr) Dispositif d'assemblage a distance
FR2855649A1 (fr) Element creux en fonte destine a etre assemble de facon etanche a un corps annexe, procede de fabrication d'un tel element et conteneur pour matieres radioactives.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880120414.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08762030

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008762030

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2702863

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010529430

Country of ref document: JP

Ref document number: MX/A/2010/004267

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1445/KOLNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107010852

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0816593

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100419