WO2013014369A1 - Procede d'assemblage d'une coque titane et d'une coque alliage resistant au feu titane - Google Patents

Procede d'assemblage d'une coque titane et d'une coque alliage resistant au feu titane Download PDF

Info

Publication number
WO2013014369A1
WO2013014369A1 PCT/FR2012/051702 FR2012051702W WO2013014369A1 WO 2013014369 A1 WO2013014369 A1 WO 2013014369A1 FR 2012051702 W FR2012051702 W FR 2012051702W WO 2013014369 A1 WO2013014369 A1 WO 2013014369A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
temperature
face
titanium
alloy
Prior art date
Application number
PCT/FR2012/051702
Other languages
English (en)
Inventor
Laurent Ferrer
Jean-Michel Patrick Maurice Franchet
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1156718A external-priority patent/FR2978075B1/fr
Priority claimed from FR1156720A external-priority patent/FR2978077B1/fr
Application filed by Snecma filed Critical Snecma
Priority to GB1401057.3A priority Critical patent/GB2507430A/en
Priority to US14/234,300 priority patent/US20140325823A1/en
Publication of WO2013014369A1 publication Critical patent/WO2013014369A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/03Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal otherwise than by folding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/005Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece
    • B21D35/007Layered blanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M1/00Frames or casings of engines, machines or apparatus; Frames serving as machinery beds
    • F16M1/08Frames or casings of engines, machines or apparatus; Frames serving as machinery beds characterised by being built-up of sheet material or welded parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/174Titanium alloys, e.g. TiAl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/70Treatment or modification of materials
    • F05D2300/701Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming

Definitions

  • the present invention relates to a method of assembling metal shells.
  • Some parts are made of titanium alloy because of the particular properties of these alloys, in particular mechanical strength, temperature withstand, and corrosion resistance for a density less than that of a steel or that of a steel.
  • other alloys such as those based on nickel or cobalt.
  • the titanium piece is a shell.
  • a shell is understood to mean a part of which one of the three dimensions (its thickness) in the space is small (at least five times smaller) with respect to the two other dimensions (its length and its width) perpendicular to this thickness.
  • a shell thus includes a plate, a tube, a shell, a housing.
  • titanium is used hereinafter to mean an alloy in which titanium is the major element.
  • Such a piece of titanium must be able to withstand fire titanium, that is to say a catastrophic ignition of titanium in case of sudden rise in temperature.
  • One solution is to attach with sockets a shell of another alloy (steel, nickel-base superalloy or cobalt, or other alloy) on the surface of the titanium part that is exposed to the highest temperatures.
  • Another solution is to carry out a hot roll of a blank of another alloy on the titanium blank.
  • Yet another solution is to plate a shell of another alloy on the titanium shell, by hydraulic plating or by explosion plating.
  • the thickness of one or the other part is not always optimized. For example, it is often impossible for this interface to follow the definitive shape throughout the piece as close to the ribs as the geometry of the titanium piece is in three dimensions.
  • the shear or peel strength between the titanium piece and the other alloy piece is quite low. This shear strength is even lower than the difference between the expansion coefficients of titanium and the other alloy is important.
  • the present invention aims to remedy these disadvantages.
  • the aim of the invention is to propose a method of assembling metal shells which makes it possible to assemble a titanium shell and a shell made of a fire-resistant titanium alloy in an efficient manner, with excellent bonding, and at a lower cost.
  • this goal is achieved by virtue of the fact that this method comprises the following steps:
  • a first shell made of a titanium fire-resistant alloy is provided in a shape close to its final shape, this first shell having a first face and a second face opposite to the first face, this second face having reliefs which act as anchor points of the second shell with the first shell,
  • the second shell is deformed at this second temperature on the first shell, so that the first face of the second shell matches the second face of the first shell, the second shell thus being secured to the first shell, ( f) the assembly formed of the first shell and the second shell is cooled to ambient temperature.
  • the assembly consisting of two metal shells assembled according to the method of the invention, while being resistant to fire titanium, has a better dimensional accuracy because the titanium alloy has matched the shell alloy resistant to Titanium fire.
  • less subsequent machining and in particular less machining of the titanium alloy is necessary compared to the methods according to the prior art, and therefore the manufacturing cost is lower.
  • this assembly has a better shear strength because due to the deformation, the titanium alloy is distributed better in and around the reliefs of the titanium fire-resistant alloy shell and better suits its shape.
  • FIG. 1A is a perspective view of a first shell and a second shell before assembly by a first embodiment of the method according to the invention
  • FIG. 1B is a perspective view of a first shell and a second shell after assembly by a first embodiment of the method according to the invention
  • FIG. 2 is a sectional view of the first shell and the second shell along plane II-II of FIG. 1B,
  • FIG. 3 is a perspective view of a first shell and a second shell before assembly by a variant of the method according to the invention
  • FIG. 4A is a perspective view of a first shell and a second shell before assembly by a second embodiment of the method according to the invention
  • FIG. 4B is a perspective view of a first shell and a second shell after assembly by a second embodiment of the method according to the invention.
  • a first shell 10 of a titanium fire-resistant alloy In the method according to the invention, there is provided a first shell 10 of a titanium fire-resistant alloy.
  • This alloy is for example a steel, or an alloy of INCO type 909 or INCO 783.
  • This first shell 10 is obtained for example by forging a billet or by stamping a sheet.
  • the shell thus formed then undergoes machining to be transformed into this first shell 10, so that the first shell 10 is in a shape close to its final shape.
  • a shell is understood to mean a part of which one of the three dimensions (its thickness) in space is small (at least five times smaller) than the other two dimensions (its length and its width) perpendicular to this thickness.
  • the first shell 10 has a median surface in three-dimensional space.
  • the first shell 10 has a first face 11 and a second face 12 opposite to this first face 11 so that these two faces are located on either side of this median surface.
  • the length and the width of the first shell 10 are measured along this median surface.
  • the thickness of the first shell 10 at a point M of this shell is measured in a direction perpendicular to this median surface. passing through this point M, and is equal to the distance between the first face
  • a second shell 20, which is made of titanium, is also provided.
  • titanium is used hereinafter to mean an alloy where titanium is the major element, so the terms "titanium” or “titanium alloy” refer to both near-pure titanium or a titanium alloy.
  • This titanium is for example TA6V or Ti 6242.
  • the second shell 20 is defined similarly to the first shell 10, and has a first face 21 and a second face 22 opposite this first face 21, on either side of the middle surface of the second shell 20.
  • the first face 21 of the second shell 20 is placed on the second face 12 of the first shell 10 (step (c)).
  • the first faces are the concave face of each of these hulls
  • the second faces are the convex face of each of these hulls.
  • the first shell 10 has in step (a), on its second face 12, reliefs on which the titanium alloy is able to flow, so that these reliefs act as anchor points 19 of the second shell 20 with the first shell 10.
  • the titanium alloy is able to marry these reliefs, which can therefore act as anchor points 19.
  • these reliefs are depressions in the second face
  • these reliefs are protuberances. These protuberances have for example the form of hooks.
  • These reliefs can also be a mixture of depressions and protuberances.
  • Figure 2 is a sectional view of the first shell 10 and the second shell 20 after assembly, which show these reliefs.
  • anchoring points 19 thus contribute to a better bonding between the first shell 10 and the second shell 20, and therefore contribute to increasing the shear strength of the assembly consisting of these two shells.
  • step (d) said first shell 10 is maintained at a temperature below a first temperature T1, the second temperature T2 being greater than the first temperature T1,
  • step (e) the second shell 20 is superplastically deformed at this second temperature on said first shell 10.
  • step (d) the hottest point of the first shell 10 is at a temperature below the first temperature T1.
  • This first temperature T1 is advantageously a temperature at which the fire-resistant titanium alloy does not deform superplastically and deforms little.
  • the deformation rate of the titanium fire-resistant alloy is less than 1% when T1 is less than 50 ° C, less than 3% when T1 is less than 600 ° C or less than 10% when T1 is below 950 ° C.
  • a simulation calculation of the plastic deformations of the titanium alloy is carried out beforehand in order to help the development of the production range as a function of the final ribs desired for the second shell 20.
  • this first temperature T1 is less than 200 ° C.
  • this first temperature T1 is equal to the ambient temperature, in this case the first shell 10 must be cooled during the superplastic deformation of the second shell 20.
  • This cooling is for example obtained by circulating in a circuit inside the first shell 10 along its first face 11 a fluid at a temperature below the first temperature Tl.
  • the second shell 20 is then heated to a temperature greater than a second temperature T2 which is greater than the first temperature T1 (step (d)), that is to say that the coldest point of the second shell is at a temperature higher than the second temperature T2.
  • the titanium fire-resistant alloy is chosen such that its flow stresses at the first temperature T1 are significantly greater than that of the titanium alloy at this second temperature T2.
  • significantly higher is meant at least more than twice.
  • Steps (c) and (d) above are performed in this order.
  • This second temperature T2 is deformed superplastically by the second shell 20 on the first shell 10, so that this first face 21 of the second shell 20 matches the second face 12 of the first shell 10 (step (e)), as shown in Figure 1B.
  • the second shell 20 is thus secured to the first shell 10, especially thanks to the reliefs 19. This attachment has the consequence that the two shells then form a one-piece assembly.
  • step (f) The assembly formed of said first shell 10 and said second shell 20 (step (f)) is then cooled to room temperature.
  • the superplastic deformation of the second titanium shell 20 is effected for example by using one or more dies which are placed on the second face 22 of the second shell 20 and are displaced to deform the second shell 20 and press against the first shell 10.
  • Deforming the second shell 20 superplastically allows this second shell 20 to better fit all the shapes of these dies, and thus to obtain the desired distribution of the thickness over the entire surface of the second shell 20, and therefore to be even closer to desired coasts.
  • the field of superplasticity of titanium alloys is optimal when the microstructure is biphasic alpha and beta and when the grain size of these alloys is the lowest possible.
  • the second temperature T2 is therefore ideally located in a temperature range where these conditions are met.
  • the second temperature T2 is lower than the boundary temperature Tb which is the temperature above which the titanium alloy has a ⁇ microstructure.
  • the second temperature T2 is then low enough so that no chemical reaction occurs at the interface between the titanium alloy and the titanium fire-resistant alloy. As a result, no embrittling phase is formed at this interface, and the connection between the first shell 10 and the second shell 20 is then better.
  • this boundary temperature Tb is approximately equal to 1050 ° C.
  • the second temperature T2 should not be too low, because the lower the temperature at which the titanium is deformed, the more difficult it is to deform (a more powerful press is needed).
  • the second temperature T2 is greater than 500 ° C.
  • the second temperature T2 is greater than
  • the second temperature T2 is of the order of 900 ° C.
  • the matrices which deform the second shell 20 are heated in such a way that the titanium remains at the temperature T2 during its superplastic deformation.
  • the rate of deformation to be used for the superplastic deformation of titanium is preferably in the range 10 "1 s “ 1 and 10 "5 s " 1 . Ideally, this rate of deformation is of the order of 10 3 s -1 .
  • the plating of this second shell 20 on the second face 12 of the first shell 10 is optimal, even in the areas of this second face 12 which have machining operations (such as holes). or whose radius of curvature is small (that is to say, the thickness of this first shell 10).
  • the difference ⁇ between the coefficient of expansion of the titanium of the second shell 20 and the expansion coefficient of the alloy of the first shell 10 is less than 3-10 "6 / ° C.
  • step (e) After the superplastic deformation of the second shell 20 (step (e)), it is possible in some cases to perform a heat treatment with machining in order to give the assembly consisting of the first shell 10 and the second shell 20 its final shape.
  • the first face 11 of the first shell 10 rests on a core 30 with which it is in contact.
  • the core 30 substantially marries the first face 11 of the first shell 10, and the surface of the core 30 in contact with this first face 11 has a shape at most of the desired final ribs of the first shell 10.
  • the deformation of the first shell 10 is then minimized because this first shell 10 is restricted in its deformations by the core 30.
  • the assembly consisting of two metal shells is even closer the desired final shape of this assembly, and even less subsequent machining and in particular less machining of the titanium alloy will be necessary compared to the methods according to the prior art. The manufacturing cost will therefore be further minimized.
  • the core 30 is maintained at a temperature lower than the first temperature T1 so that it is easier to maintain the first shell 10 at this temperature lower than the first temperature T1 during the superplastic forging of the second shell 20. which confers more rigidity to the core 30.
  • the core 30 has a heating and / or cooling system to be maintained at this temperature below the first temperature T1.
  • the core 30 has an internal liquid circulation system.
  • the second shell 20 is a single shell or a set of several shells.
  • the first faces are the concave (respectively convex) face of each of these shells, the second faces are the convex (respectively concave) face of each of these shells.
  • the first faces are then the concave face of each of these hulls, the second faces are the convex face of each of these hulls.
  • the first shell 10 may undergo, before step (a), a pre-rolling or pre-forging to be formed into a shell.
  • step (c) the shells (10, 20) are placed in a hermetic enclosure (80),
  • step (d) the first shell 10 is heated to a temperature greater than the second temperature T2,
  • step (e) a sufficiently high pressure is established in the enclosure 80 to deform the second shell 20 at the second temperature T2.
  • the first face 21 of the second shell 20 is placed on the second face 12 of the first shell 10 (step (c)), and these two shells are placed in a hermetic enclosure 80 filled with a fluid (a gas, preferably neutral, or a liquid).
  • a fluid a gas, preferably neutral, or a liquid.
  • the first shell 10 and the second shell 20 are then heated to a temperature greater than the second temperature T2, and a sufficiently high pressure is set up in the enclosure 80 so that the second shell 20 (and possibly, to a lesser extent, the first shell 20) shell 10) is deformed at this second temperature T2 (hot isostatic compression).
  • the second shell 20 is deformed on the first shell 10, so that this first face 21 of the second shell 20 matches the second face 12 of the first shell 10 (step (e)), as shown in FIG. 4B.
  • the titanium fire-resistant alloy is chosen so that the first shell 10 deforms only very slightly during the process according to the invention contributes to ensuring that an assembly formed of the first shell 10 is obtained. and the second shell 20 which is closer to its dimensions and its final shape and the distribution of the thickness of the second shell 20 over its entire surface is that desired. Thus, one minimizes or avoids a subsequent machining of this set.
  • the second temperature T2 is below the temperature of overheating or burning of each of the materials constituting the two shells in order not to damage these shells.
  • the second temperature T2 is for example less than 1200 ° C.
  • the second shell 20 is thus secured to the first shell
  • step (f) The assembly formed of the first shell 10 and the second shell 20 (step (f)) is then cooled to room temperature.
  • the plating of this second shell 20 on the second face 12 of the first shell 10 is optimal, even in the areas of this second face 12 which have machining operations (such as holes), or whose radius of curvature is small (that is to say, the thickness of this first shell 10).
  • the assembly comprising the first shell 10 and the second shell 20 is covered with a metal sheath (for example formed of metal sheaths welded together) before the rise in pressure and temperature in the enclosure 80. vacuum (pressure below atmospheric pressure) in this sheath.
  • a metal sheath for example formed of metal sheaths welded together
  • a layer of a material such as a thermal barrier (Ni-based alloy, Co, or Mo) or a mineral.
  • this layer is placed (for example deposited) on the first shell 10. This measurement is especially useful if the second temperature T2 is greater than about 1000 ° C. so as to avoid the formation of embrittling phases at the interface between the two. shells.
  • the rate of deformation to be used for the deformation of titanium is preferably between 10 -1 s -1 and 10 5 s -1 . Ideally, this rate of deformation is of the order of 10 "3 s " 1 .
  • the difference ⁇ between the coefficient of expansion of the titanium of the second shell 20 and the coefficient of expansion of the alloy of the first shell 10 is less than 3-10 "6 / ° C
  • the second temperature T2 is lower than the boundary temperature Tb which is the temperature above which the titanium alloy has a microstructure ⁇ .
  • the deformation of the second shell 20 takes place in the superplastic deformation domain of the titanium and at a sufficiently low temperature so that no chemical reaction occurs at the interface between the titanium alloy and the alloy. fire resistant titanium. As a result, no embrittling phase is formed at this interface, and the connection between the first shell 10 and the second shell 20 is then better.
  • this boundary temperature Tb is approximately equal to 1050 ° C.
  • the second temperature T2 should not be too low, because the lower the temperature at which the titanium is deformed, the more difficult it is to deform (greater pressure is required).
  • the second temperature T2 is greater than 500 ° C.
  • the second temperature T2 is greater than 700 ° C.
  • the second temperature T2 is of the order of 900 ° C.
  • step (e) After the deformation of the second shell 20 (step (e)), it is possible in some cases to perform a heat treatment with machining in order to give the assembly consisting of the first shell 10 and the second shell 20 its final shape.
  • the second shell 20 is a single shell or a set of several shells.
  • the first faces are the concave face (respectively convex) of each of these shells, the second faces are the convex (respectively concave) face of each of these shells.
  • first shell 10 and the second shell 20 are a shell, for example in the form of tube or cone.
  • the first faces are then the concave face of each of these hulls, the second faces are the convex face of each of these hulls.
  • the first shell 10 may undergo, before step (a), a pre-rolling or pre-forging to be formed into a shell.

Abstract

L'invention concerne un procédé d'assemblage de coques en métal. Ce procédé comprend les étapes suivantes : (a) On fournit une première coque (10) en un alliage résistant au feu titane dans une forme proche de sa forme définitive, cette première coque (10) présentant une première face (11) et une deuxième face (12) opposée à la première face (11), ladite deuxième face (12) présentant des reliefs qui agissent comme des points d'ancrage (19) de ladite deuxième coque (20) avec ladite première coque (10), (b) On fournit au moins une deuxième coque (20) en alliage de titane, cette deuxième coque (20) présentant une première face (21) et une deuxième face (22) opposée à la première face (21), (c) On place la première face (21) de la deuxième coque (20) sur la deuxième face (12) de la première coque (10), (d) On chauffe la deuxième coque (20) à une température supérieure à une deuxième température T2, (e) On déforme à cette deuxième température T2 la deuxième coque (20) sur la première coque (10), de telle sorte que la première face (21) de la deuxième coque (20) épouse la deuxième face (12) de la première coque (10), la deuxième coque (20) étant ainsi solidarisée avec la première coque (10), (f) On refroidit jusqu'à température ambiante l'ensemble formé de la première coque (10) et de la deuxième coque (20).

Description

PROCEDE D'ASSEMBLAGE D'UNE COQUE TITANE ET D'UNE COQUE ALLIAGE RESISTANT AU FEU TITANE
La présente invention concerne un procédé d'assemblage de coques en métal.
Certaines pièces sont réalisées en alliage de titane à cause des propriétés particulières de ces alliages, en particulier de tenue mécanique, de tenue en température, et de tenue à la corrosion pour une densité moindre que celle d'un acier ou que celle d'un autre alliage comme ceux à base de Nickel ou à base de Cobalt.
C'est notamment le cas de pièces aéronautiques, par exemple de pièces de turbomachines telles que des carters de compresseur haute pression. Dans ce cas la pièce en titane est une coque.
Dans la description qui suit, on entend par coque une pièce dont une des trois dimensions (son épaisseur) dans l'espace est faible (au moins cinq fois plus faible) par rapport aux deux autres dimensions (sa longueur et sa largeur) perpendiculaires à cette épaisseur. Une coque englobe ainsi une plaque, un tube, une virole, un carter.
Le terme titane est utilisé ci-après pour signifier un alliage où le titane est l'élément majoritaire.
Une telle pièce en titane doit être capable de résister au feu titane, c'est-à-dire une inflammation catastrophique du titane en cas d'élévation brutale de température.
Diverses solutions sont actuellement employées afin d'empêcher une telle inflammation du titane d'une pièce qui est utilisée dans un environnement haute température. Ces solutions consistent toutes à fixer sur la pièce en titane une pièce en un autre alliage (c'est-à-dire un alliage autre qu'un alliage en titane), cette pièce en un autre alliage étant destinée à être exposée aux températures plus élevées et formant écran entre ces températures élevées et la pièce en titane.
Une solution consiste à fixer à l'aide de douilles une coque en un autre alliage (acier, superalliage base nickel ou cobalt, ou autre alliage) sur la surface de la pièce en titane qui est exposée aux températures les plus élevées. Une autre solution consiste à effectuer un colaminage à chaud d'une ébauche en un autre alliage sur l'ébauche en titane.
Encore une autre solution consiste à plaquer une coque en un autre alliage sur la coque en titane, par plaquage hydraulique ou par plaquage par explosion.
Toutes ces solutions présentes cependant des inconvénients.
D'une part il est difficile de maîtriser la position exacte de l'interface entre la pièce en titane et la pièce en un autre alliage.
De plus, selon les tolérances de mise en œuvre, des tolérances d'usinage et des stratégies d'usinage, l'épaisseur d'une ou de l'autre partie n'est pas toujours optimisée. Par exemple, il est souvent impossible que cette interface suive la forme définitive tout au long de la pièce au plus près des côtes lorsque la géométrie de la pièce en titane est en trois dimensions.
II est en outre impossible de maîtriser le ratio d'épaisseur entre les deux matériaux (aux tolérances près).
De plus, lorsque l'un des procédés ci-dessus est utilisé, la résistance au cisaillement ou au décollement entre la pièce en titane et la pièce en un autre alliage est assez faible. Cette résistance au cisaillement est d'autant plus faible que la différence entre les coefficients de dilatation du titane et de l'autre alliage est importante.
Chacun des procédés ci-dessus sont d'un coût élevé du fait de la complexité et du nombre d'étapes dans le procédé, et de la nécessité d'usiner l'ensemble formé de la pièce en titane et de la pièce en un autre alliage après leur assemblage de façon à mettre cet ensemble aux côtes finales.
La présente invention vise à remédier à ces inconvénients.
L'invention vise à proposer un procédé d'assemblage de coques en métal qui permette d'assembler une coque en titane et une coque en un alliage résistant au feu titane de façon efficace, avec une excellente solidarisation, et à moindre coût.
Ce but est atteint grâce au fait que ce procédé comporte les étapes suivantes :
(a) On fournit une première coque en un alliage résistant au feu titane dans une forme proche de sa forme définitive, cette première coque présentant une première face et une deuxième face opposée à la première face, cette deuxième face présentant des reliefs qui agissent comme des points d'ancrage de la deuxième coque avec la première coque,
(b) On fournit au moins une deuxième coque en alliage de titane, cette deuxième coque présentant une première face et une deuxième face opposée à la première face,
(c) On place la première face de la deuxième coque sur la deuxième face de la première coque,
(d) On chauffe ladite deuxième coque à une température supérieure à une deuxième température T2,
(e) on déforme à cette deuxième température T2 la deuxième coque sur la première coque, de telle sorte que la première face de la deuxième coque épouse la deuxième face de la première coque, la deuxième coque étant ainsi solidarisée avec la première coque, (f) on refroidit jusqu'à température ambiante l'ensemble formé de la première coque et de la deuxième coque.
Grâce à ces dispositions, l'ensemble constitué des deux coques en métal assemblées selon le procédé de l'invention, tout en étant résistant au feu titane, présente une meilleure précision dimensionnelle car l'alliage de titane a épousé la coque en alliage résistant au feu titane.. Ainsi, moins d'usinage ultérieur et en particulier moins d'usinage de l'alliage de titane est nécessaire par rapport aux procédés selon l'art antérieur, et par conséquent le coût de fabrication est moindre.
De plus, cet ensemble présente une meilleure résistance au cisaillement car du fait de la déformation, l'alliage de titane se répartit mieux dans et autour des reliefs de la coque en alliage résistant au feu titane et épouse mieux sa forme.
L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :
- la figure 1A est une vue en perspective d'une première coque et d'une deuxième coque avant assemblage par un premier mode de réalisation du procédé selon l'invention, - la figure 1B est une vue en perspective d'une première coque et d'une deuxième coque après assemblage par un premier mode de réalisation du procédé selon l'invention,
- la figure 2 est une vue en coupe de la première coque et de la deuxième coque selon le plan II-II de la figure 1B,
- la figure 3 est une vue en perspective d'une première coque et d'une deuxième coque avant assemblage par une variante du procédé selon l'invention,
- la figure 4A est une vue en perspective d'une première coque et d'une deuxième coque avant assemblage par un second mode de réalisation du procédé selon l'invention,
- la figure 4B est une vue en perspective d'une première coque et d'une deuxième coque après assemblage par un second mode de réalisation du procédé selon l'invention.
Dans le procédé selon l'invention, on fournit une première coque 10 en un alliage résistant au feu titane.
Cet alliage est par exemple un acier, ou un alliage de type INCO 909 ou INCO 783.
Cette première coque 10 est obtenue par exemple par forgeage d'un lopin ou par emboutissage d'une tôle. Eventuellement, la coque ainsi formée subit ensuite un usinage pour être transformée en cette première coque 10, de façon que cette première coque 10 soit dans une forme proche de sa forme définitive.
On entend par coque une pièce dont une des trois dimensions (son épaisseur) dans l'espace est faible (au moins cinq fois plus faible) par rapport aux deux autres dimensions (sa longueur et sa largeur) perpendiculaires à cette épaisseur.
Ainsi, comme représenté en figure 1A, la première coque 10 présente une surface médiane dans l'espace en trois dimensions. La première coque 10 présente une première face 11 et une deuxième face 12 opposée à cette première face 11 de telle sorte que ces deux faces sont situées de part et d'autre de cette surface médiane.
La longueur et la largeur de la première coque 10 sont mesurées le long de cette surface médiane.
L'épaisseur de la première coque 10 en un point M de cette coque est mesurée selon une direction perpendiculaire à cette surface médiane passant par ce point M, et est égale à la distance entre la première face
11 et la deuxième face 12.
On fournit également une deuxième coque 20, qui est en titane. Le terme titane est utilisé ci-après pour signifier un alliage où le titane est l'élément majoritaire, ainsi les termes « titane » ou « alliage de titane » désignent à la fois du titane quasi-pur ou un alliage de titane.
Ce titane est par exemple du TA6V ou du Ti 6242.
La deuxième coque 20 est définie de façon similaire à la première coque 10, et présente une première face 21 et une deuxième face 22 opposée à cette première face 21, de part et d'autre de la surface médiane de la deuxième coque 20.
Comme représenté en figure 1A, on place la première face 21 de la deuxième coque 20 sur la deuxième face 12 de la première coque 10 (étape (c)). Les premières faces sont la face concave de chacune de ces coques, les deuxièmes faces sont la face convexe de chacune de ces coques.
La première coque 10 présente à l'étape (a), sur sa deuxième face 12, des reliefs sur lesquels l'alliage de titane est apte à s'écouler, de telle sorte que ces reliefs agissent comme des points d'ancrage 19 de la deuxième coque 20 avec la première coque 10.
En s'écoulant, l'alliage de titane est apte à épouser ces reliefs, qui peuvent donc agir comme points d'ancrage 19.
Par exemple, ces reliefs sont des dépressions dans la deuxième face
12 de la première coque 10. Alternativement, ces reliefs sont des protubérances. Ces protubérances ont par exemple la forme de crochets.
Ces reliefs peuvent également être un mélange de dépressions et de protubérances.
La figure 2 est une vue en coupe de la première coque 10 et de la deuxième coque 20 après leur assemblage, qui montrent ces reliefs.
Ces points d'ancrages 19 contribuent ainsi à une meilleure solidarisation entre la première coque 10 et la deuxième coque 20, et par conséquent contribuent à augmenter la résistance au cisaillement de l'ensemble constitué de ces deux coques.
On décrit maintenant un premier mode de réalisation de l'invention, selon lequel : à l'étape (d), on maintient ladite première coque 10 à une température inférieure à une première température Tl, la deuxième température T2 étant supérieure à la première température Tl,
et à l'étape (e), on déforme superplastiquement à cette deuxième température T2 la deuxième coque 20 sur ladite première coque 10.
Ainsi, à l'étape (d), le point le plus chaud de la première coque 10 est à une température inférieure à la première température Tl.
Cette première température Tl est avantageusement une température à laquelle l'alliage résistant au feu titane ne se déforme pas superplastiquement et se déforme peu.
Par exemple, à la première température Tl, le taux de déformation de l'alliage résistant au feu titane est inférieur à 1% quand Tl est inférieur à 50°C, inférieur à 3% quand Tl est inférieur à 600°C ou inférieur à 10% quand Tl est inférieur à 950°C.
Avantageusement, on effectue au préalable un calcul de simulation des déformations plastiques de l'alliage de titane pour aider à la mise au point de la gamme de fabrication en fonction des côtes finales désirées pour la deuxième coque 20.
Par exemple, cette première température Tl est inférieure à 200°C. Par exemple, cette première température Tl est égale à la température ambiante, dans ce cas la première coque 10 doit être refroidie durant la déformation superplastique de la deuxième coque 20.
Ce refroidissement est par exemple obtenu en faisant circuler dans un circuit à l'intérieur de la première coque 10 le long de sa première face 11 un fluide à une température inférieure à la première température Tl.
On chauffe ensuite la deuxième coque 20 à une température supérieure à une deuxième température T2 qui est supérieure à la première température Tl (étape (d)), c'est-à-dire que le point le plus froid de la deuxième coque est à une température supérieure à la deuxième température T2.
Avantageusement, l'alliage résistant au feu titane est choisi de telle sorte que ses contraintes d'écoulement à la première température Tl sont nettement supérieures à celle de l'alliage de titane à cette deuxième température T2. Par « nettement supérieures », on entend au moins supérieures à deux fois. Ainsi, le fait que la première coque 10 ne se déforme que très faiblement durant le procédé selon l'invention contribue à faire en sorte que l'on obtient un ensemble formé de la première coque 10 et de la deuxième coque 20 qui est au plus près de ses dimensions et de sa forme finales, ce qui minimise ou évite un usinage ultérieur de cet ensemble.
Les étapes (c) et (d) ci-dessus sont effectuées dans cet ordre. Alternativement, on peut d'abord maintenir la première coque 10 à une température inférieure à la première température Tl et/ou chauffer la deuxième coque 20 à une température supérieure à une deuxième température T2, puis placer la deuxième coque 20 sur la première coque 10.
On déforme superplastiquement à cette deuxième température T2 la deuxième coque 20 sur la première coque 10, de telle sorte que cette première face 21 de la deuxième coque 20 épouse la deuxième face 12 de la première coque 10 (étape (e)), comme représenté en figure 1B.
La deuxième coque 20 est ainsi solidarisée avec la première coque 10, spécialement grâce aux reliefs 19. Cette solidarisation a pour conséquence que les deux coques forment alors un ensemble monobloc.
On refroidit ensuite jusqu'à température ambiante l'ensemble formé de ladite première coque 10 et de ladite deuxième coque 20 (étape (f)).
La déformation superplastique de la deuxième coque 20 en titane s'effectue par exemple en utilisant une ou plusieurs matrices qui sont placées sur la deuxième face 22 de la deuxième coque 20 et sont déplacées pour déformer la deuxième coque 20 et la plaquer contre la première coque 10.
Le fait de déformer la deuxième coque 20 de façon superplastique permet à cette deuxième coque 20 de mieux épouser toutes les formes de ces matrices, et ainsi d'obtenir la répartition voulue de l'épaisseur sur toute la surface de cette deuxième coque 20, et donc d'être encore plus près des côtes désirées.
Le domaine de superplasticité des alliages de titane est optimal quand la microstructure est biphasée alpha et béta et quand la taille de grains de ces alliages est la plus faible possible. La deuxième température T2 se situe donc idéalement dans un intervalle de température où ces conditions sont réunies. Ainsi, la deuxième température T2 est inférieure à la température frontière Tb qui est la température au-dessus de laquelle l'alliage de titane a une microstructure β.
Ainsi, la deuxième température T2 est alors suffisamment basse pour qu'il ne se produise pas de réaction chimique à l'interface entre l'alliage de titane et l'alliage résistant au feu titane. En conséquence il ne se forme pas de phase fragilisante à cette interface, et la solidarisation entre la première coque 10 et la deuxième coque 20 est alors meilleure.
Par exemple, pour l'alliage de titane TA6V, cette température frontière Tb est environ égale à 1050°C.
La deuxième température T2 ne doit pas être trop basse, car plus la température à laquelle le titane est déformé est basse, plus sa déformation est difficile (une presse plus puissante est nécessaire).
Par exemple, la deuxième température T2 est supérieure à 500°C. Avantageusement, la deuxième température T2 est supérieure à
700°C.
Idéalement, la deuxième température T2 est de l'ordre de 900°C. Avantageusement, on chauffe les matrices qui déforment la deuxième coque 20 de telle sorte que le titane reste à la température T2 durant sa déformation superplastique.
Les essais effectués par les inventeurs montrent que la vitesse de déformation à utiliser pour la déformation superplastique du titane est de préférence comprise en 10"1 s"1 et 10"5 s"1. Idéalement, cette vitesse de déformation est de l'ordre de 10 3 s"1.
Grâce à la déformation superplastique de la deuxième coque 20, le plaquage de cette deuxième coque 20 sur la deuxième face 12 de la première coque 10 est optimal, même dans les zones de cette deuxième face 12 qui présentent des usinages (tel que des perçages), ou dont le rayon de courbure est faible (c'est-à-dire à l'épaisseur de cette première coque 10).
Avantageusement, en utilisation, l'écart Δ entre le coefficient de dilatation du titane de la deuxième coque 20 et le coefficient de dilatation de l'alliage de la première coque 10 est inférieur à 3- 10"6/°C.
Ainsi, pour une variation de température extérieure d'une amplitude donnée, les contraintes générées à l'interface entre ces deux coques sont moins élevées. En conséquence, la résistance au cisaillement de l'ensemble constitué de ces deux coques est plus élevée.
Après la déformation superplastique de la deuxième coque 20 (étape (e)), on peut effectuer dans certains cas un traitement thermique avec usinage afin de donner à l'ensemble constitué de la première coque 10 et la deuxième coque 20 sa forme finale.
En variante, comme représenté en figure 3, avant l'étape (c), la première face 11 de la première coque 10 repose sur un noyau 30 avec lequel elle est en contact.
Le noyau 30 épouse sensiblement la première face 11 de la première coque 10, et la surface du noyau 30 au contact de cette première face 11 présente une forme au plus des côtes finales désirées de la première coque 10.
Ainsi, durant le procédé selon l'invention, la déformation de la première coque 10 est alors minimisée car cette première coque 10 est restreinte dans ses déformations par le noyau 30. En conséquence l'ensemble constitué des deux coques en métal est encore plus proche de la forme finale voulue de cet ensemble, et encore moins d'usinage ultérieur et en particulier moins d'usinage de l'alliage de titane sera nécessaire par rapport aux procédés selon l'art antérieur. Le coût de fabrication sera donc encore minimisé.
Avantageusement le noyau 30 est maintenu à une température inférieure à la première température Tl de telle sorte qu'il est plus aisé de maintenir la première coque 10 à cette température inférieure à la première température Tl durant le forgeage superplastique de la deuxième coque 20, ce qui confère plus de rigidité au noyau 30.
Avantageusement, le noyau 30 possède un système de chauffage et/ou de refroidissement afin d'être maintenu à cette température inférieure à la première température Tl. Par exemple, le noyau 30 possède un système de circulation interne de liquide.
La deuxième coque 20 est une coque unique ou un ensemble de plusieurs coques. Les premières faces sont la face concave (respectivement convexe) de chacune de ces coques, les deuxièmes faces sont la face convexe (respectivement concave) de chacune de ces coques.
Dans un cas particulier, la première coque 10 et la deuxième coque
20 sont une virole, par exemple en forme de tube ou de cône. Les premières faces sont alors la face concave de chacune de ces coques, les deuxièmes faces sont la face convexe de chacune de ces coques.
Dans ce cas la première coque 10 peut subir, avant l'étape (a), un pré-laminage ou pré-forgeage pour être formée en une virole.
On décrit maintenant un second mode de réalisation de l'invention, selon lequel :
à l'étape (c), on place les coques (10, 20) dans une enceinte hermétique (80),
à l'étape (d), on chauffe la première coque 10 à une température supérieure à la deuxième température T2,
et à l'étape (e), on établit dans l'enceinte 80 une pression suffisamment élevée pour déformer à la deuxième température T2 la deuxième coque 20.
Comme représenté en figure 4A, on place la première face 21 de la deuxième coque 20 sur la deuxième face 12 de la première coque 10 (étape (c)), et ces deux coques sont placées dans une enceinte hermétique 80 remplie d'un fluide (un gaz, de préférence neutre, ou un liquide).
On chauffe ensuite la première coque 10 et la deuxième coque 20 à une température supérieure à la deuxième température T2 et on établit dans l'enceinte 80 une pression suffisamment élevée de façon que la deuxième coque 20 (et éventuellement, de façon moindre, la première coque 10) se déforme à cette deuxième température T2 (compression isostatique à chaud).
Ainsi, on déforme la deuxième coque 20 sur la première coque 10, de telle sorte que cette première face 21 de la deuxième coque 20 épouse la deuxième face 12 de la première coque 10 (étape (e)), comme représenté en figure 4B.
Avantageusement, l'alliage résistant au feu titane est choisi de telle sorte que la première coque 10 ne se déforme que très faiblement durant le procédé selon l'invention contribue à faire en sorte que l'on obtient un ensemble formé de la première coque 10 et de la deuxième coque 20 qui est au plus près de ses dimensions et de sa forme finale et que la répartition de l'épaisseur de la deuxième coque 20 sur toute sa surface est celle souhaitée. Ainsi, on minimise ou on évite un usinage ultérieur de cet ensemble. La deuxième température T2 est inférieure à la température de surchauffe ou de brûlure de chacun des matériaux constituant les deux coques afin de ne pas endommager ces coques.
La deuxième température T2 est par exemple inférieure à 1200°C. La deuxième coque 20 est ainsi solidarisée avec la première coque
10, spécialement grâce aux reliefs 19. Cette solidarisation a pour conséquence que les deux coques forment alors un ensemble monobloc.
On refroidit ensuite jusqu'à température ambiante l'ensemble formé de la première coque 10 et de la deuxième coque 20 (étape (f)).
Grâce à la déformation de la deuxième coque 20, le plaquage de cette deuxième coque 20 sur la deuxième face 12 de la première coque 10 est optimal, même dans les zones de cette deuxième face 12 qui présentent des usinages (tel que des perçages), ou dont le rayon de courbure est faible (c'est-à-dire à l'épaisseur de cette première coque 10).
Avantageusement, l'ensemble comprenant la première coque 10 et la deuxième coque 20 est recouvert d'une gaine métallique (par exemple formée de gaines métalliques soudées entre elles) avant la montée en pression et en température dans l'enceinte 80. On effectue le vide (pression inférieure à la pression atmosphérique) dans cette gaine.
Ainsi, la répartition de pression sur ces deux coques est plus uniforme.
Avantageusement, on place à l'interface entre la première coque 10 et la deuxième coque 20 une couche d'un matériau tel qu'une barrière thermique (alliage à base Ni, Co, ou Mo) ou un minéral. Par exemple cette couche est placée (par exemple déposée) sur la première coque 10. Cette mesure est spécialement utile si la deuxième température T2 est supérieure à environ 1000°C de façon à éviter la formation de phases fragilisantes à l'interface entre les deux coques.
Ainsi, on obtient une meilleure résistance au cisaillement à cette interface.
Les essais effectués par les inventeurs montrent que la vitesse de déformation à utiliser pour la déformation du titane est de préférence comprise en 10"1 s"1 et 10"5 s"1. Idéalement, cette vitesse de déformation est de l'ordre de 10"3 s"1. Avantageusement, en utilisation, l'écart Δα entre le coefficient de dilatation du titane de la deuxième coque 20 et le coefficient de dilatation de l'alliage de la première coque 10 est inférieur à 3- 10"6/°C
Ainsi, pour une variation de température extérieure d'une amplitude donnée, les contraintes générées à l'interface entre ces deux coques sont moins élevées. En conséquence, la résistance au cisaillement de l'ensemble constitué de ces deux coques est plus élevée.
Avantageusement, la deuxième température T2 est inférieure à la température frontière Tb qui est la température au-dessus de laquelle l'alliage de titane a une microstructure β.
En effet, en dessous de la température frontière Tb, on se situe dans le domaine optimal de superplasticité des alliages de titane où la microstructure est biphasée alpha et béta et la taille de grains de ces alliages est la plus faible possible.
Ainsi, la déformation de la deuxième coque 20 a lieu dans le domaine de déformation superplastique du titane et à une température suffisamment basse pour qu'il ne se produise pas de réaction chimique à l'interface entre l'alliage de titane et l'alliage résistant au feu titane. En conséquence il ne se forme pas de phase fragilisante à cette interface, et la solidarisation entre la première coque 10 et la deuxième coque 20 est alors meilleure.
Par exemple, pour l'alliage de titane TA6V, cette température frontière Tb est environ égale à 1050°C.
La deuxième température T2 ne doit pas être trop basse, car plus la température à laquelle le titane est déformé est basse, plus sa déformation est difficile (une pression plus importante est nécessaire).
Par exemple, la deuxième température T2 est supérieure à 500°C.
Avantageusement, la deuxième température T2 est supérieure à 700°C.
Idéalement, la deuxième température T2 est de l'ordre de 900°C.
Après la déformation de la deuxième coque 20 (étape (e)), on peut effectuer dans certains cas un traitement thermique avec usinage afin de donner à l'ensemble constitué de la première coque 10 et la deuxième coque 20 sa forme finale.
La deuxième coque 20 est une coque unique ou un ensemble de plusieurs coques. Les premières faces sont la face concave (respectivement convexe) de chacune de ces coques, les deuxièmes faces sont la face convexe (respectivement concave) de chacune de ces coques.
Dans un cas particulier, la première coque 10 et la deuxième coque 20 sont une virole, par exemple en forme de tube ou de cône. Les premières faces sont alors la face concave de chacune de ces coques, les deuxièmes faces sont la face convexe de chacune de ces coques.
Dans ce cas la première coque 10 peut subir, avant l'étape (a), un pré-laminage ou pré-forgeage pour être formée en une virole.

Claims

REVENDICATIONS
1. Procédé d'assemblage de coques en métal caractérisé en ce qu'il comporte les étapes suivantes :
(a) On fournit une première coque (10) en un alliage résistant au feu titane dans une forme proche de sa forme définitive, cette première coque (10) présentant une première face (11) et une deuxième face (12) opposée à ladite première face (11), ladite deuxième face (12) présentant des reliefs qui agissent comme des points d'ancrage (19) de ladite deuxième coque (20) avec ladite première coque (10),
(b) On fournit au moins une deuxième coque (20) en alliage de titane, cette deuxième coque (20) présentant une première face (21) et une deuxième face (22) opposée à ladite première face (21),
(c) On place ladite première face (21) de la deuxième coque (20) sur ladite deuxième face (12) de la première coque (10),
(d) On chauffe ladite deuxième coque (20) à une température supérieure à une deuxième température T2,
(e) On déforme à cette deuxième température T2 ladite deuxième coque (20) sur ladite première coque (10), de telle sorte que ladite première face (21) de la deuxième coque (20) épouse ladite deuxième face (12) de la première coque (10), ladite deuxième coque (20) étant ainsi solidarisée avec ladite première coque (10),
(f) On refroidit jusqu'à température ambiante l'ensemble formé de ladite première coque (10) et de ladite deuxième coque (20).
2. Procédé selon la revendication 1 caractérisé en ce que, à l'étape
(d), on maintient ladite première coque (10) à une température inférieure à une première température Tl, la deuxième température T2 étant supérieure à ladite première température Tl, et en ce que, à l'étape (e), on déforme superplastiquement à cette deuxième température T2 ladite deuxième coque (20) sur ladite première coque (10). :
3. Procédé selon la revendication 2 caractérisé en ce que ladite température Tl est inférieure à 200°C.
4. Procédé selon la revendication 2 ou 3 caractérisé en ce que, avant l'étape (c), la première face (11) de la première coque (10) repose sur un noyau rigide (30) avec lequel elle est en contact.
5. Procédé selon l'une quelconque des revendications 2 à 4 caractérisé en ce que la déformation superplastique de ladite deuxième coque (20) en titane s'effectue en utilisant au moins une matrice qui est placée sur ladite deuxième face (22) de la deuxième coque (20) et est déplacée pour déformer ladite deuxième coque (20) et la plaquer contre ladite première coque (10).
6. Procédé selon la revendication 1 caractérisé en ce que, à l'étape (c), on place lesdites coques (10, 20) dans une enceinte hermétique (80), en ce que, à l'étape (d) on chauffe ladite première coque (10) à une température supérieure à ladite deuxième température T2, et en ce que, à l'étape (e), on établit dans ladite enceinte (80) une pression suffisamment élevée pour déformer à ladite deuxième température T2 ladite deuxième coque (20).
7. Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que ladite deuxième température T2 est supérieure à
500°C.
8. Procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce que ladite deuxième température T2 est inférieure à la température Tb, ladite température Tb étant la température au-dessus de laquelle l'alliage de titane a une microstructure β.
9. Procédé selon l'une quelconque des revendications 1 à 8 caractérisé en ce que l'écart Δ entre le coefficient de dilatation du titane de la deuxième coque 20 et le coefficient de dilatation de l'alliage de la première coque 10 est inférieur à B' IO ^ .
PCT/FR2012/051702 2011-07-22 2012-07-18 Procede d'assemblage d'une coque titane et d'une coque alliage resistant au feu titane WO2013014369A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1401057.3A GB2507430A (en) 2011-07-22 2012-07-18 Method for assembling a titanium shell and a titanium fire-resistant alloy shell
US14/234,300 US20140325823A1 (en) 2011-07-22 2012-07-18 Method for assembling a titanium shell with a titanium fire resistant alloy shell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1156720 2011-07-22
FR1156718 2011-07-22
FR1156718A FR2978075B1 (fr) 2011-07-22 2011-07-22 Assemblage d'une coque titane et d'une coque alliage resistant au feu titane par deformation superplastique
FR1156720A FR2978077B1 (fr) 2011-07-22 2011-07-22 Assemblage d'une coque titane et d'une coque alliage resistant au feu titane par compression isostatique a chaud

Publications (1)

Publication Number Publication Date
WO2013014369A1 true WO2013014369A1 (fr) 2013-01-31

Family

ID=46724481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/051702 WO2013014369A1 (fr) 2011-07-22 2012-07-18 Procede d'assemblage d'une coque titane et d'une coque alliage resistant au feu titane

Country Status (3)

Country Link
US (1) US20140325823A1 (fr)
GB (1) GB2507430A (fr)
WO (1) WO2013014369A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388100B1 (ja) * 2017-02-20 2018-09-12 新日鐵住金株式会社 鋼板
GB201720603D0 (en) * 2017-12-11 2018-01-24 Rolls Royce Plc Fairings for power generation machines
GB201802768D0 (en) 2018-02-21 2018-04-04 Rolls Royce Plc Fairings for power generation machines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2560641A1 (fr) * 1984-03-03 1985-09-06 Mtu Muenchen Gmbh Installation pour eviter l'extension du " feu de titane " dans les turbomachines notamment les turbines a gaz ou des turbines a gaz ou des turboreacteurs
DE3906187C1 (en) * 1989-02-28 1989-10-26 Mtu Muenchen Gmbh Titanium alloy component with a protective layer and process for its production
EP1260300A2 (fr) * 2001-05-26 2002-11-27 ROLLS-ROYCE plc Procédé de fabrication d'une pièce
WO2010026182A1 (fr) * 2008-09-05 2010-03-11 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
WO2010026179A1 (fr) * 2008-09-05 2010-03-11 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3584972A (en) * 1966-02-09 1971-06-15 Gen Motors Corp Laminated porous metal
US3762032A (en) * 1971-08-19 1973-10-02 Gen Motors Corp Bonding
GB1550368A (en) * 1975-07-16 1979-08-15 Rolls Royce Laminated materials
US4245769A (en) * 1979-06-28 1981-01-20 General Motors Corporation Laminate bonding method
US4552284A (en) * 1982-07-30 1985-11-12 Kidde Consumer Durables Corp. Cookware bottom wall structure
US4652476A (en) * 1985-02-05 1987-03-24 United Technologies Corporation Reinforced ablative thermal barriers
US4751962A (en) * 1986-02-10 1988-06-21 General Motors Corporation Temperature responsive laminated porous metal panel
US4838031A (en) * 1987-08-06 1989-06-13 Avco Corporation Internally cooled combustion chamber liner
US4838030A (en) * 1987-08-06 1989-06-13 Avco Corporation Combustion chamber liner having failure activated cooling and dectection system
GB9208223D0 (en) * 1992-04-14 1992-06-03 British Aerospace Diffusion bonding of aluminium and aluminium alloys
DE19611929C1 (de) * 1996-03-27 1997-07-24 Glyco Metall Werke Schichtverbundwerkstoff und Verfahren zur Verbesserung der Oberflächenhärte von Schichtverbundwerkstoffen
US5958603A (en) * 1997-06-09 1999-09-28 Atd Corporation Shaped multilayer metal foil shield structures and method of making
US5941446A (en) * 1997-07-10 1999-08-24 Mcdonnell Douglas Corporation SPF/DB airfoil-shaped structure and method of fabrication thereof
DE59903399D1 (de) * 1998-03-19 2002-12-19 Siemens Ag Wandsegment für einen brennraum sowie brennraum
US6810709B2 (en) * 2002-10-11 2004-11-02 General Motors Corporation Heated metal forming tool
EP1528343A1 (fr) * 2003-10-27 2005-05-04 Siemens Aktiengesellschaft Tuile réfractaire avec des éléments de renforcement noyés pour révêtement d'une chambre de combustion de turbines à gaz
US7850058B2 (en) * 2004-03-31 2010-12-14 The Boeing Company Superplastic forming of titanium assemblies
US7533794B2 (en) * 2004-03-31 2009-05-19 The Boring Company Superplastic forming and diffusion bonding of fine grain titanium
WO2006137823A2 (fr) * 2004-06-17 2006-12-28 The Regents Of The University Of California Conceptions et fabrication d'un blindage structurel
CN101512166B (zh) * 2006-07-31 2012-07-04 丰田自动车株式会社 组件及其制造方法
FR2935764B1 (fr) * 2008-09-05 2014-06-13 Snecma Carter de compresseur resistant au feu de titane, compresseur haute pression comprenant un tel carter et moteur d'aeronef equipe d'un tel compresseur
US8381631B2 (en) * 2008-12-01 2013-02-26 Battelle Energy Alliance, Llc Laminate armor and related methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2560641A1 (fr) * 1984-03-03 1985-09-06 Mtu Muenchen Gmbh Installation pour eviter l'extension du " feu de titane " dans les turbomachines notamment les turbines a gaz ou des turbines a gaz ou des turboreacteurs
DE3906187C1 (en) * 1989-02-28 1989-10-26 Mtu Muenchen Gmbh Titanium alloy component with a protective layer and process for its production
EP1260300A2 (fr) * 2001-05-26 2002-11-27 ROLLS-ROYCE plc Procédé de fabrication d'une pièce
WO2010026182A1 (fr) * 2008-09-05 2010-03-11 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
WO2010026179A1 (fr) * 2008-09-05 2010-03-11 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede

Also Published As

Publication number Publication date
US20140325823A1 (en) 2014-11-06
GB2507430A (en) 2014-04-30
GB201401057D0 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
CA2823525C (fr) Procede de realisation d'un renfort metallique
CA2872904C (fr) Procede de realisation d'un renfort metallique d'une aube de turbomachine
WO2011064406A1 (fr) Procede de realisation d' un renfort metallique d' aube de turbomachine
CA2599776C (fr) Plaques en acier revetues de zirconium et elements de dispositifs chimiques realises avec de telles plaques
FR2652611A1 (fr) Disque de turbine constitue de deux alliages.
WO2006067349A1 (fr) Procede de realisation d'un element comportant des canaux de circulation de fluide
EP2879830B1 (fr) Procédé de fabrication d'une pièce métallique
EP3363584A1 (fr) Tole de brasage a placages multiples
CA2870229A1 (fr) Procede de realisation d'un renfort metallique avec insert pour la protection d'un bord d'attaque en materiau composite
WO2013014369A1 (fr) Procede d'assemblage d'une coque titane et d'une coque alliage resistant au feu titane
EP1499435B1 (fr) Procede de fabrication d'un element de dispositif chimique comportant une piece support en metal et un revetement metallique anti-corrosion
WO2010026179A1 (fr) Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
WO2010026182A1 (fr) Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
EP3469206B1 (fr) Chambre de combustion de moteur fusee avec ailettes a composition variable
FR2956597A1 (fr) Procede de realisation d'une structure metallique courbe renforcee et structure correspondante
FR2978077A1 (fr) Assemblage d'une coque titane et d'une coque alliage resistant au feu titane par compression isostatique a chaud
FR2978076A1 (fr) Assemblage d'une coque titane et d'une coque alliage resistant au feu titane par depot par cold-spray
FR2978075A1 (fr) Assemblage d'une coque titane et d'une coque alliage resistant au feu titane par deformation superplastique
EP2903763B1 (fr) Procede de fabrication d'une piece couverte d'un revetement abradable
FR3063030A1 (fr) Procede de brasage d'un accessoire sur un tube et ensemble correspondant
FR3009800A1 (fr) Procede de fabrication d'une piece par soudage de parties
FR3068273B1 (fr) Dispositif et procede d'assemblage de pieces pour nacelle de turboreacteur d'aeronef
EP2402700A1 (fr) Echangeur de chaleur
FR3055820A1 (fr) Procede d'assemblage de coques en metal dont une est realisee par depot laser
FR3137600A1 (fr) Procédé de fabrication d’un panneau final en alliage d’aluminium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1401057

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120718

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1401057.3

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 12750415

Country of ref document: EP

Kind code of ref document: A1