EP0377390B1 - Procédé de fabrication de tubes bimétalliques et tubes obtenus par ce procédé - Google Patents

Procédé de fabrication de tubes bimétalliques et tubes obtenus par ce procédé Download PDF

Info

Publication number
EP0377390B1
EP0377390B1 EP89420523A EP89420523A EP0377390B1 EP 0377390 B1 EP0377390 B1 EP 0377390B1 EP 89420523 A EP89420523 A EP 89420523A EP 89420523 A EP89420523 A EP 89420523A EP 0377390 B1 EP0377390 B1 EP 0377390B1
Authority
EP
European Patent Office
Prior art keywords
component
blank
annular space
tubular
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89420523A
Other languages
German (de)
English (en)
Other versions
EP0377390A1 (fr
Inventor
Alain Muggeo
Denis Vuillaume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valinox SARL
Original Assignee
Valinox SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valinox SARL filed Critical Valinox SARL
Priority to AT89420523T priority Critical patent/ATE88926T1/de
Publication of EP0377390A1 publication Critical patent/EP0377390A1/fr
Application granted granted Critical
Publication of EP0377390B1 publication Critical patent/EP0377390B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/02Making hollow objects characterised by the structure of the objects
    • B21D51/06Making hollow objects characterised by the structure of the objects folded objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/22Making metal-coated products; Making products from two or more metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/01Extruding metal; Impact extrusion starting from material of particular form or shape, e.g. mechanically pre-treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C33/00Feeding extrusion presses with metal to be extruded ; Loading the dummy block
    • B21C33/002Encapsulated billet

Definitions

  • the invention relates to a method of manufacturing bimetallic tubes, the section of which comprises an external annular zone and an internal annular zone of different compositions. It is particularly applicable to steel tubes.
  • the invention also relates to the tubes obtained by this method, in particular the steel tubes, as well as the tubular blank enabling the manufacturing method of the invention to be implemented.
  • Such tubes can in particular be used whenever only their outer or inner wall is in contact with a fluid whose composition, temperature or other characteristics require the use of a metal or alloy of particular composition and cost relatively high. We can then limit the thickness of the annular zone made of such a metal or alloy and use for the rest of the section of the tube a metal or alloy of much lower cost, whose essential function is then to ensure the holding tube mechanics.
  • a method of manufacturing such bimetallic tubes is known. It consists in producing a blank comprising two tubular components of different compositions which one fits into the other.
  • One of the components is made of stainless or refractory steel or of a refractory alloy.
  • the other component is, for example, unalloyed or alloyed steel.
  • the two components are clamped against each other when heated.
  • This process is applied to the production of a tube comprising two concentric layers linked together: an inner layer of ductile steel containing 0.2 to 0.4% carbon and an outer layer of higher hardness containing 0.5 to 0.6% carbon.
  • Suitable additions give the inner layer a hardness between 45 and 53 RC and the outer layer a hardness between 57 and 63. These two steels are ferritic. The two components of the initial blank are machined so as to fit into each other with a minimum of play of the order of a few thousandths of an inch.
  • the bimetallic tube obtained if the operating conditions are correctly chosen, comprises two concentric layers linked metallurgically to one another.
  • the example given in this document relates to the production by coextrusion of a bimetallic tube, the two components of which are made of ferritic steel and therefore have, substantially, the same coefficient of expansion, which avoids the risk of increased clearance. between the two components and therefore increased oxidation on heating if the external component has the highest coefficient of expansion.
  • the method of manufacturing a bimetallic tube by hot coextrusion according to the invention consists in producing a blank comprising two tubular components of coaxial revolution. These two components are made up of metals or alloys, of different compositions, housed coaxially one inside the other.
  • each of these tubular components are determined, in a plane perpendicular to the common axis, so as to provide between their facing walls an annular space, of radial width not less than 3 mm; the radial width of this annular space is preferably at least equal to 2% of the external diameter of the internal component and is not greater than the radial width of the tubular component of smaller thickness.
  • This annular space is filled with a metal or divided alloy, the composition of which is compatible with the compositions of the two tubular components, then it is closed in a sealed manner at each of the two ends by means of closure.
  • the blank is then heated to the extrusion temperature which is determined according to the characteristics of the metals or alloys which constitute it, then the coextrusion of this blank is carried out, by means of a press, through a die, so as to obtain a bimetallic tube, the reduction ratio between the solid section of the blank and that of the bimetallic tube obtained being at least equal to 4.
  • the radial width of the annular space is not substantially greater than 10 mm.
  • the blank comprises a first tubular component made of unalloyed, or alloyed or even stainless steel, the second tubular component being made of a different material such as stainless or refractory steel or of a stainless alloy or refractory containing in total at least 50% by mass of elements of the group comprising Co, Cr, Mo, Ni, or in a nickel-based alloy.
  • the content of additives in the steel of the second component is higher than that in the steel of the first component .
  • the radial width of the wall of the first component is greater than that of the wall of the second component.
  • the mechanical characteristics of resistance to deformation of the steel of the first component are superior to those of the steel or alloy of the second component.
  • the first tubular component of the blank is the external component or the internal component
  • the second tubular component of the blank being, respectively, the internal component or the external component.
  • the metal or divided alloy with which the annular space is filled consists for the most part of granules advantageously of generally substantially spherical shape, the mean diameter being less than 1 mm.
  • This metal or divided alloy can be of any material compatible with the composition of the first and second tubular components. It may for example be a non-alloy, or alloy, or stainless steel or a stainless or refractory alloy containing in total at least 50% by mass of elements of the group comprising Co, Cr, Mo, Ni, or an alloy based on nickel.
  • the divided metal or alloy is packed in the annular space so as to reach an apparent density of at least 50% of the real density of this metal or alloy.
  • the means for closing the annular space of the blank are preferably two metal end pieces arranged at the two ends of the blank. These end pieces are advantageously made of unalloyed or alloyed steel.
  • each end piece is connected to the two corresponding ends of each component of the blank by sealed annular weld beads.
  • a vacuum can be created in the annular space before heating the blank to extrusion temperature.
  • the preform is extruded by means of a press, comprising a piston provided with a needle which engages in the preform, previously housed in a container, then in the die integral with the latter. This causes the flow of the blank and therefore of its components to flow through the annular space between the needle and the die, the lubrication being provided by a layer of glass.
  • the invention also relates to the tubular blank comprising the two coaxial tubular components whose structure has been described above and which makes it possible to implement the method according to the invention.
  • the invention also relates to a bimetallic tube of revolution, seamless, produced by coextrusion; this tube has an outer layer and an inner layer, made of different metals or alloys, bonded together metallurgically by a bonding layer from a divided metal; this, during the coextrusion process, was welded to itself as well as to the internal component and the external component.
  • Figure 1 is a sectional view of a blank, for manufacturing by the method according to the invention a bimetallic tube, the first tubular component of this blank being the external component.
  • Figure 2 is a sectional view of a blank, for manufacturing by the method according to the invention a metal tube, the first tubular component of this blank being the internal component.
  • This blank 1 seen in section along a plane passing through the axis X1-X1, comprises two tubular components 2, 3 with cylindrical walls of revolution, arranged one inside the other, coaxially with respect to X1 - X1.
  • the first tubular component 2, with a greater radial thickness "e1” is an external component made of low-alloy steel whose total content of additives is less than 5%.
  • This thickness "e1" is more than twice that of "e2" of the second tubular component 3, which constitutes the internal component of the blank.
  • An annular space 4 is formed between the outer wall 5 of the second tubular component 3 and the inner wall 6 of the first tubular component 2.
  • the radial width "e3" of this annular space 4 is, in the case of this FIG. 1, much less to the radial thickness "e2" of the second tubular component 3.
  • This radial width "e3” may be closer to the radial thickness "e2" of the second tubular component 3, the thinner of the blank, without however exceeding it .
  • the second tubular component 3 can be produced, depending on the uses, in stainless or refractory steel or else in an alloy containing, in total, at least 50% by mass of elements of the group comprising Co, Cr, Mo, Ni or still in a nickel-based alloy.
  • Two annular end pieces 7, 8 are each arranged at one end of the blank 1. These two pieces 7, 8 can be made of unalloyed or low-alloyed steel; they may have a composition close to that of the tubular component of the blank whose wall is the thickest. This composition is in particular determined to allow a tight junction by welding with the two tubular components 2, 3 of the blank 1. These 2 end pieces 7, 8 ensure the centering of the two tubular components 2 and 3 relative to the 'common axis X1 - X1 through annular ribs 9, 10 which engage with each other.
  • the annular space 4 is filled with a metal or divided alloy whose composition is compatible with the compositions of the two tubular components.
  • This metal or divided alloy can be chosen, for example, from non-alloyed, alloyed, stainless or refractory steels or also from alloys containing, in total, at least 50% by mass of elements, from the group comprising Co, Cr, Mo, Or.
  • This divided metal is preferably in the form of granules, for the most part substantially spherical and with an average diameter of less than 1 mm.
  • Packing of this metal or alloy divided in the annular space 4 is carried out, by any suitable method, in order to obtain an apparent density at least equal to 50% of the actual density.
  • This packing can in particular be carried out by vibration or compression.
  • a sealed connection is made between each of them and the corresponding ends of the tubular components 2, 3 by sealed annular weld beads 11, 12, 13, 14.
  • chamfers are formed, inclined at approximately 45 °, on the end edges of the tubular components and of the end pieces in the areas where these weld beads are to be made.
  • the blank 1, thus prepared, is then heated by known means such as a gas oven, or electric radiation or induction oven or oven with a salt bath or the like.
  • the heating temperature depends, on the one hand, on the characteristics of the metals or alloys which constitute the blank and, on the other hand, on the coextrusion conditions: strength of the press, dimensions of the blank, reduction rate of the section , nature of the lubricant used. This heating temperature is greater than 1000 ° C.
  • the lubricants giving the best results are glasses.
  • the reduction ratio between initial section of the blank and section of the tube obtained must be at least 4 and preferably at least 6 in order to obtain a good metallurgical bond, by means of the layer of divided metal.
  • compositions and the thicknesses of the two tubular components 2, 3 of the blank 1 are determined according to the conditions of use of the bimetallic tube obtained.
  • the first component 2, which is less alloyed is in contact with the least corrosive fluid and its thickness is determined essentially to give the tube the necessary mechanical strength. This explains why this first component is, more often than not, thicker than the second.
  • the composition of the second component 3 is chosen for its resistance to corrosion by the most corrosive fluid. In the case of the present figure 1 this fluid is that which circulates inside the tube.
  • this fluid is that which circulates inside the tube.
  • a wise choice of the metal or alloy constituting this second component makes it possible to provide very little wear and therefore a relatively small thickness of this component 3 compared to the thickness of the first component 2 necessary to ensure the mechanical strength of the tube.
  • a blank 1 of structure similar to that of FIG. 1 is prepared. It comprises: a first component 2, external of 223 mm outside diameter, 140 mm inside diameter and 870 mm long in carbon steel with low additions of Mn and V of type 20 MV6 (AFNOR standard), a second internal component 3, of 126 mm outside diameter, 100 mm internal diameter and 870 mm long, in stainless steel type AISI 316 (AISI STANDARD).
  • the annular space 4 between the two components 2, 3 of 7 mm in radial width, is filled with divided stainless steel type AISI 316 L mainly in the form of substantially spherical granules of diameter between 0.1 and 1 mm. Tamping by vibration achieves an apparent density of approximately 60% of the actual density.
  • This annular space is closed by two end plates 7, 8 also made of carbon steel type 20MV6. Each of these plates is provided with an annular rib 9, 10 of a few mm in height which engages in the annular space 4 filled with divided stainless steel.
  • These two end plates 7, 8 are each connected to the two components 2, 3 by sealed weld beads 11, 12, 13, 14, produced by arc welding under argon.
  • This blank is then heated to a temperature between 1150 and 1200 ° C. in a gas oven, then, after coating conventionally carried out with a layer of lubricating glass, both on the exterior surface and on the interior surface, the following is introduced.
  • the blank in the container of a press and coextrusion is carried out through a die of 117 mm in diameter.
  • the press piston is provided with a needle of 94 mm in diameter which makes it possible to obtain, after coextrusion then release, a bimetallic tube of 114.3 mm of outside diameter and 92.6 mm of inside diameter.
  • the reduction ratio between the section of the blank 1 and that of the tube obtained is therefore approximately 9.3.
  • Micrographic examinations carried out on samples taken in several points of the bimetallic tube show an excellent metallurgical bond produced by means of the layer of metal divided between the external layer and the internal layer at the time of the passage through the die.
  • This layer of divided metal also makes it possible, before coextrusion, during the heating phase of the blank, to absorb the phenomena of differential radial expansion of one component with respect to the other; this bonding layer also facilitates, during coextrusion, the sliding of one of the two components of the blank relative to the other without risk of tearing, cracking or creasing.
  • FIG. 2 shows a blank 21, making it possible to manufacture, according to a second embodiment of the method according to the invention, a metal tube which, in itself, is also part of the invention.
  • This blank seen in section along a plane passing through its axis X2-X2 comprises two tubular components 22, 23 with cylindrical walls of revolution, arranged one inside the other, coaxially with respect to X2-X2.
  • the first tubular component 22 is an internal component made of carbon steel. Its radial thickness, e11, is greater than that, e12 of the second tubular component 23 which is external. Between these two components is formed an annular space 24 between the outer wall 25 of the first tubular component 22 and the inner wall 26 of the second tubular component 23.
  • the radial width e13 of this annular space is in the case of this blank much less than the radial thickness e12 of the thinnest external component 23 while being greater than 2% of the external diameter of the internal component 22, not less than 3 mm and not more than 10 mm.
  • the second external component 23 is made of stainless or refractory steel or else of an alloy containing, in total, at least 50% by mass of elements of the group comprising Co, Cr, Mo, Ni.
  • annular end pieces 27, 28 made of carbon steel ensure the centering of the two components 22, 23 by means of the annular ribs 29, 30.
  • the annular space 24 is filled of a metal or divided alloy whose composition is compatible with the compositions of the two tubular components and which is preferably in the form of granules for the most part substantially spherical and of average diameter preferably less than 1 mm.
  • This divided metal can be an alloyed or unalloyed carbon steel, a stainless or refractory steel or even a alloy containing, in total, at least 50% by mass of elements of the group comprising Co, Cr, Mo, Ni. This divided metal is vibrated to obtain an apparent density at least equal to 50% of the actual density.
  • the end pieces 27, 28 are connected to the corresponding ends of the components 22, 23 by annular and sealed weld beads 31, 32, 33, 34.
  • the blank 21 thus prepared is heated, by known means, to a suitable temperature above 1000 ° C. This temperature is determined, in known manner, taking into account the characteristics of the metals or alloys which constitute the blank and the conditions extrusion.
  • the extrusion is then carried out in a known manner, by placing the blank, after coating, in a known manner both on its outer surface and on its inner surface, by a lubricating glass, in the container, provided with a die, an extrusion press.
  • the thrust of the blank is provided by a piston provided with a needle which passes through the blank and engages in the die. Lubrication is preferably provided in a known manner by glasses.
  • the sections of the needle, of the die, and of the blank are determined so as to obtain a reduction ratio of at least 4 and, preferably, at least 6.
  • a blank of structure similar to that of FIG. 2 is prepared, comprising a first internal component 22 of carbon steel of type 20 MV 6 (AFNOR STANDARD) 189 mm in outside diameter, 60 mm in inside diameter and 870 mm long.
  • the second external component 23, made of 316 stainless steel (AISI STANDARD) has an outside diameter of 223 mm, an inside diameter of 200 mm and a length of 870 mm.
  • the surface conditions of the facing walls forming the annular space are prepared so as to avoid the presence of oxide. One can for example practice before mounting the blank brushing or grinding of these walls.
  • the annular space 24 of 5.5 mm in radial width is filled with divided stainless steel, type 316 (AISI STANDARD), mainly in the form of substantially spherical granules with a diameter between 0.1 and 1 mm. After tamping by vibration, the apparent density of this divided steel is approximately 60% of its actual density. After the end pieces 27, 28 of 20MV6 steel have been put in place, they are connected to the two components 22, 23 by sealed weld beads 31, 32, 33, 34 produced by arc welding under argon.
  • AISI STANDARD divided stainless steel
  • the blank thus produced is heated between 1050 and 1200 ° C. in a gas oven and then, after coating with a layer of lubricating glass, in known manner both on the outer surface and on the inner surface, coextrusion using a press.
  • the piston of this press comprises a needle of 52.1 mm in diameter which engages in the blank 21 then in the die of 66 mm in diameter.
  • Micrographic examinations carried out on samples taken at several points of the bimetallic tube, show an excellent metallurgical bond produced by means of the layer of divided metal between the internal layer and the external layer of the tube. Furthermore, taking into account the characteristics of the process, tubular products which do not require tight tolerances can be used for the two components, in particular for the facing surfaces forming the annular space, which makes it possible to lower the manufacturing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Extrusion Of Metal (AREA)
  • Laminated Bodies (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Metal Extraction Processes (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

  • L'invention concerne un procédé de fabrication de tubes bimétalliques dont la section comporte une zone annulaire externe et une zone annulaire interne de compositions différentes. Elle s'applique particulièrement aux tubes d'acier.
  • L'invention concerne aussi les tubes obtenus par ce procédé, notamment les tubes d'acier, ainsi que l'ébauche tubulaire permettant de mettre en oeuvre le procédé de fabrication de l'invention.
  • De tels tubes peuvent en particulier être utilisés chaque fois que seule leur paroi extérieure ou intérieure est en contact avec un fluide dont la composition, la température ou d'autres caractéristiques nécessitent l'utilisation d'un métal ou alliage de composition particulière et de coût relativement élevé. On peut alors limiter l'épaisseur de la zone annulaire constituée d'un tel métal ou alliage et utiliser pour le reste de la section du tube un métal ou alliage de coût beaucoup moins élevé, dont la fonction essentielle est alors d'assurer la tenue mécanique du tube.
  • On connaît un procédé de fabrication de tels tubes bimétalliques. Il consiste à réaliser une ébauche comportant deux composants tubulaires de compositions différentes qu'on emboîte l'un dans l'autre. L'un des composants est en un acier inoxydable ou réfractaire ou encore en un alliage réfractaire. L'autre composant est, par exemple, en un acier non allié ou allié.
  • Ces deux composants doivent avoir une forme cylindrique de révolution et être usinés avec la précision nécessaire pour pouvoir être emboîtés l'un dans l'autre avec le minimum de jeu. Après chauffage à la température voulue, on effectue, de façon également connue, une coextrusion de cette ébauche, avec un taux de réduction de section déterminé, afin d'obtenir un tube bimétallique. On constate alors que, si la composition des métaux ou alliages mis en jeu, l'état de surface des parois en contact, ainsi que les conditions d'extrusion sont convenables, on obtient une bonne liaison de nature métallurgique entre les deux composants.
  • Dans la pratique, ce procédé est relativement coûteux à mettre en oeuvre, en particulier parce qu'il est nécessaire d'effectuer un usinage précis des deux composants de l'ébauche. Chacun des deux composants doit être usiné de façon à avoir une épaisseur constante. De plus, pour les deux composants, l'usinage de la paroi intérieure sur une longueur relativement grande présente des difficultés qui le rendent coûteux. Enfin, des précautions particulières doivent éventuellement être prises pour limiter l'oxydation des parois en regard des deux composants de l'ébauche, pendant le chauffage de celle-ci, avant coextrusion. Des difficultés supplémentaires sont dues à la différence de coefficient de dilatation qui existe le plus souvent entre les deux composants de l'ébauche. En effet l'un des deux composants est souvent en un acier austénitique ou autre alliage de coefficient de dilatation bien supérieur à celui de l'autre composant qui est en un acier non allié ou faiblement allié.
  • Lorsque c'est le composant externe qui présente le plus fort coefficient de dilatation, on observe, au cours du chauffage de l'ébauche, un accroissement du jeu entre les deux composants. Cet accroissement peut être une cause d'oxydation et peut entraîner au moment de la coextrusion des irrégularités d'écoulement de l'un des composants par rapport à l'autre au passage à travers la filière.
  • Lorsque c'est au contraire le composant interne qui a le plus fort coefficient de dilatation il y a serrage des deux composants l'un contre l'autre au chauffage.
  • Un procédé analogue à celui qui vient d'être décrit est exposé dans le brevet US 3566741 SLINEY.
  • Ce procédé est appliqué à la réalisation d'un tube comportant deux couches concentriques liées entre elles : une couche intérieure en un acier ductile contenant 0,2 à 0,4 % de carbone et une couche extérieure de dureté plus élevée contenant 0,5 à 0,6 % de carbone.
  • Des additions convenables donnent à la couche intérieure une dureté comprise entre 45 et 53 RC et à la couche extérieure une dureté comprise entre 57 et 63. Ces deux aciers sont ferritiques. Les deux composants de l'ébauche initiale sont usinés de façon à s'emboîter l'un dans l'autre avec un minimum de jeu de l'ordre de quelques millièmes d'inch.
  • Ils sont logés dans un boîtier étanche, puis après préchauffage à température convenable, subissent une coextrusion de façon connue entre le mandrin et la filière d'une presse d'extrusion.
  • Le tube bimétallique obtenu, si les conditions opératoires sont correctement choisies, comporte deux couches concentriques liées métallurgiquement l'une à l'autre.
  • On constate que l'exemple donné dans ce document concerne la réalisation par coextrusion d'un tube bimétallique dont les deux composants sont en acier ferritique et ont donc, sensiblement, le même coefficient de dilatation, ce qui évite le risque d'accroissement du jeu entre les deux composants et donc d'oxydation accrue au chauffage si le composant extérieur a le coefficient de dilatation le plus élevé.
  • Malgré cela, selon l'exemple, on fait appel à un boîtier d'extrusion qui est fermé par soudage de façon étanche.
  • Il s'agit donc d'un procédé qui nécessite des précautions particulières et en particulier, un usinage très précis des deux composants de l'ébauche ainsi que la mise en oeuvre d'aciers de compositions voisines pour obtenir un résultat satisfaisant.
  • On a recherché la possibilité de simplifier le procédé de réalisation de tubes bimétalliques par coextrusion, afin de le rendre a la fois plus sûr, plus reproductible et plus économique.
  • On a recherché en particulier la possibilité de supprimer la nécessité d'un emboîtage précis des deux composants de l'ébauche l'un dans l'autre avec un jeu réduit au minimum.
  • On a recherché aussi la possibilité de mettre en oeuvre des composants interne et externe de coefficients de dilatation différents sans risques d'oxydation notable au chauffage ou d'anomalies d'écoulement au cours de la coextrusion.
  • On a recherché enfin la possibilité de protéger efficacement de l'oxydation les parois en regard des deux composants pendant le chauffage de l'ébauche, avant coextrusion.
  • Le procédé qui fait l'objet de l'invention permet d'atteindre ces résultats et d'obtenir un tube bimétallique qui n'a pas les défauts de ceux réalisés par le procédé connu. Ce tube bimétallique fait aussi l'objet de l'invention.
  • Le procédé de fabrication d'un tube bimétallique par coextrusion à chaud selon l'invention consiste à réaliser une ébauche comportant deux composants tubulaires de révolution coaxiaux. Ces deux composants sont constitués de métaux ou alliages, de compositions différentes, logés coaxialement l'un dans l'autre.
  • On détermine les sections de chacun de ces composants tubulaires, dans un plan perpendiculaire à l'axe commun, de façon à ménager entre leurs parois en regard un espace annulaire, de largeur radiale pas inférieure à 3 mm ; la largeur radiale de cet espace annulaire est de préférence au moins égale à 2 % du diamètre extérieur du composant interne et n'est pas supérieure à la largeur radiale du composant tubulaire de plus faible épaisseur. On remplit cet espace annulaire d'un métal ou alliage divisé dont la composition est compatible avec les compositions des deux composants tubulaires, puis on le ferme de façon étanche à chacune des deux extrémités par des moyens de fermeture. On chauffe ensuite l'ébauche à la température d'extrusion qu'on détermine en fonction des caractéristiques des métaux ou alliages qui la constituent, puis on effectue la coextrusion de cette ébauche, au moyen d'une presse, à travers une filière, de façon à obtenir un tube bimétallique, le rapport de réduction entre la section solide de l'ébauche et celle du tube bimétallique obtenu étant au moins égal à 4.
  • De préférence, la largeur radiale de l'espace annulaire n'est pas sensiblement supérieure à 10 mm.
  • De façon avantageuse, l'ébauche comporte un premier composant tubulaire réalisé en un acier non allié, ou allié ou encore inoxydable, le deuxième composant tubulaire étant réalisé en un matériau différent tel que un acier inoxydable ou réfractaire ou en un alliage inoxydable ou réfractaire contenant au total au moins 50 % en masse d'éléments du groupe comprenant Co, Cr, Mo, Ni, ou en un alliage à base de nickel.
  • De préférence, lorsque le premier composant tubulaire est en acier inoxydable et que le deuxième composant tubulaire est en acier inoxydable ou réfractaire, la teneur en éléments d'addition de l'acier du deuxième composant est supérieure à celle de l'acier du premier composant.
  • De préférence, la largeur radiale de la paroi du premier composant est supérieure à celle de la paroi du deuxième composant. De préférence également, les caractéristiques mécaniques de résistance à la déformation de l'acier du premier composant sont supérieures à celles de l'acier ou alliage du deuxième composant.
  • Suivant les applications prévues du tube bimétallique obtenu par le procédé suivant l'invention, le premier composant tubulaire de l'ébauche est le composant externe ou le composant interne, le deuxième composant tubulaire de l'ébauche étant, respectivement, le composant interne ou le composant externe.
  • De préférence le métal ou alliage divisé dont on remplit l'espace annulaire est constitué en majeure partie de granules avantageusement de forme générale sensiblement sphérique le diamètre moyen étant inférieur à 1 mm. Ce métal ou alliage divisé peut être en tout matériau compatible avec la composition des premier et deuxième composants tubulaires. Ce peut être par exemple un acier non allié, ou allié, ou inoxydable ou un alliage inoxydable ou réfractaire contenant au total au moins 50 % en masse d'éléments du groupe comprenant Co, Cr, Mo, Ni, ou un alliage à base de nickel. De préférence, on tasse le métal ou alliage divisé dans l'espace annulaire de façon à atteindre une densité apparente d'au moins 50 % de la densité réelle de ce métal ou alliage.
  • Les moyens de fermeture de l'espace annulaire de l'ébauche sont, de préférence, deux pièces d'extrémité métalliques disposées aux deux extrémités de l'ébauche. Ces pièces d'extrémité sont avantageusement en acier non allié ou allié.
  • De préférence également, on relie chaque pièce d'extrémité aux deux extrémités correspondantes de chaque composant de l'ébauche par des cordons de soudure annulaires étanches. Eventuellement, on peut faire le vide dans l'espace annulaire avant de chauffer l'ébauche à température d'extrusion.
  • On effectue l'extrusion de l'ébauche au moyen d'une presse, comportant un piston muni d'une aiguille qui s'engage dans l'ébauche, préalablement logée dans un conteneur, puis dans la filière solidaire de celui-ci. On provoque ainsi l'écoulement de l'ébauche donc de ses composants à travers l'espace annulaire compris entre aiguille et filière, la lubrification étant assurée par une couche de verre.
  • L'invention concerne aussi l'ébauche tubulaire comportant les deux composants tubulaires coaxiaux dont la structure a été décrite précédemment et qui permet de mettre en oeuvre le procédé selon l'invention.
  • L'invention concerne également un tube bimétallique de révolution, sans soudure, réalisé par coextrusion ; ce tube comporte une couche externe et une couche interne, constituées de métaux ou alliages différents, liées entre elles de façon métallurgique par une couche de liaison provenant d'un métal divisé ; celui-ci, au cours du processus de coextrusion, s'est soudé à lui-même ainsi qu'au composant interne et au composant externe.
  • Les figures et les exemples ci-après décrivent, de façon non limitative, deux modes particuliers de réalisation du procédé de fabrication de tubes bimétalliques suivant l'invention.
  • La figure 1 est une vue en coupe d'une ébauche, permettant de fabriquer par le procédé suivant l'invention un tube bimétallique, le premier composant tubulaire de cette ébauche étant le composant externe.
  • La figure 2 est une vue en coupe d'une ébauche, permettant de fabriquer par le procédé suivant l'invention un tube métallique, le premier composant tubulaire de cette ébauche étant le composant interne.
  • On voit figure 1 une ébauche 1 permettant de fabriquer, suivant un premier mode de mise en oeuvre du procédé suivant l'invention, un tube bimétallique qui, par lui-même, fait partie de l'invention. Cette ébauche 1, vue en coupe suivant un plan passant par l'axe X1-X1, comporte deux composants tubulaires 2, 3 à parois cylindriques de révolution, disposés l'un dans l'autre, coaxialement par rapport à X1 - X1. Le premier composant tubulaire 2, de plus forte épaisseur radiale "e1", est un composant externe en un acier faiblement allié dont la teneur totale en éléments d'addition est inférieure à 5 %. Cette épaisseur "e1" est plus que deux fois supérieure à celle "e2" du deuxième composant tubulaire 3, qui constitue le composant interne de l'ébauche. Un espace annulaire 4 est ménagé entre la paroi extérieure 5 du deuxième composant tubulaire 3 et la paroi intérieure 6 du premier composant tubulaire 2. La largeur radiale "e3" de cet espace annulaire 4 est, dans le cas de cette figure 1, bien inférieure à l'épaisseur radiale "e2" du deuxième composant tubulaire 3. Cette largeur radiale "e3" peut être plus proche de l'épaisseur radiale "e2" du deuxième composant tubulaire 3, le plus mince de l'ébauche, sans la dépasser cependant. Le deuxième composant tubulaire 3 peut être réalisé, en fonction des utilisations, en un acier inoxydable ou réfractaire ou encore en un alliage contenant, au total, au moins 50 % en masse d'éléments du groupe comprenant Co, Cr, Mo, Ni ou encore en un alliage à base de nickel. Deux pièces d'extrémité 7, 8 annulaires sont disposées chacune à une extrémité de l'ébauche 1. Ces deux pièces 7, 8 peuvent être en un acier non allié ou peu allié ; elles peuvent avoir une composition voisine de celle du composant tubulaire de l'ébauche dont la paroi est la plus épaisse. Cette composition est en particulier déterminée pour permettre une jonction étanche par soudage avec les deux composants tubulaires 2, 3 de l'ébauche 1. Ces 2 pièces d'extrémité 7, 8 assurent le centrage des deux composants tubulaires 2 et 3 par rapport à l'axe commun X1 - X1 grâce à des nervures annulaires 9, 10 qui s'engagent entre eux.
  • Avant la mise en place définitive d'au moins la dernière de ces deux pièces d'extrémité, on remplit l'espace annulaire 4 d'un métal ou alliage divisé dont la composition est compatible avec les compositions des deux composants tubulaires. Ce métal ou alliage divisé peut être choisi par exemple parmi les aciers non alliés, alliés, inoxydables ou réfractaires ou encore parmi les alliages contenant, au total, au moins 50 % en masse d'éléments, du groupe comprenant Co, Cr, Mo, Ni.
  • Ce métal divisé est, de préférence, sous forme de granules en majorité sensiblement sphériques et de diamètre moyen inférieur à 1 mm.
  • On effectue un tassage de ce métal ou alliage divisé dans l'espace annulaire 4, par toute méthode convenable, afin d'obtenir une densité apparente au moins égale à 50 % de la densité réelle. On peut en particulier effectuer ce tassage par vibration ou compression. Après mise en place de la dernière des deux pièces d'extrémité 7, 8, on réalise une liaison étanche entre chacune d'elles et les extrémités correspondantes des composants tubulaires 2, 3 par des cordons de soudure annulaires étanches 11, 12, 13, 14. Pour éviter les surépaisseurs et permettre une bonne pénétration, on forme des chanfreins, inclinés environ à 45°, sur les bords d'extrémité des composants tubulaires et des pièces d'extrémité dans les zones où doivent être réalisés ces cordons de soudure.
  • On chauffe ensuite l'ébauche 1, ainsi préparée, par un moyen connu tel que four à gaz, ou four électrique à rayonnement ou induction ou four à bain de sels ou autre. La température de chauffe dépend, pour une part, des caractéristiques des métaux ou alliages qui constituent l'ébauche et, pour une autre part, des conditions de coextrusion : force de la presse, dimensions de l'ébauche, taux de réduction de la section, nature du lubrifiant utilisé. Cette température de chauffage est supérieure à 1000° C. Les lubrifiants donnant les meilleurs résultats sont des verres. Le rapport de réduction entre section initiale de l'ébauche et section du tube obtenu doit être d'au moins 4 et, de préférence, d'au moins 6 afin d'obtenir une bonne liaison métallurgique, au moyen de la couche de métal divisé, entre les couches externes et internes du tube obtenu provenant des composants 2, 3 de l'ébauche. Les compositions et les épaisseurs des deux composants tubulaires 2, 3 de l'ébauche 1 sont déterminées en fonction des conditions d'utilisation du tube bimétallique obtenu. En règle générale, le premier composant 2, moins allié, est en contact avec le fluide le moins corrosif et son épaisseur est déterminée essentiellement pour conférer au tube la tenue mécanique nécessaire. Ceci explique que ce premier composant est, le plus souvent, plus épais que le deuxième. La composition du deuxième composant 3 est choisie pour sa résistance à la corrosion par le fluide le plus corrosif. Dans le cas de la présente figure 1 ce fluide est celui qui circule à l'intérieur du tube. L'expérience montre qu'un choix avisé du métal ou alliage constituant ce deuxième composant permet de prévoir une usure très faible et donc une relativement faible épaisseur de ce composant 3 par rapport à l'épaisseur du premier composant 2 nécessaire pour assurer la tenue mécanique du tube.
  • A titre d'exemple pratique d'utilisation de ce premier mode de mise en oeuvre du procédé suivant l'invention, on prépare une ébauche 1 de structure semblable à celle de la figure 1. Elle comprend : un premier composant 2, externe de 223 mm de diamètre extérieur, 140 mm de diamètre intérieur et 870 mm de long en acier au carbone comportant de faibles additions de Mn et V du type 20 MV6 (norme AFNOR), un deuxième composant 3, interne, de 126 mm de diamètre extérieur, 100 mm de diamètre intérieur et 870 mm de long, en acier inoxydable type AISI 316 (NORME AISI).
  • L'espace annulaire 4 entre les deux composants 2, 3 de 7 mm de largeur radiale, est rempli d'acier inoxydable divisé type AISI 316 L en majeure partie sous forme de granules sensiblement sphériques de diamètre compris entre 0,1 et 1 mm. Un tassage par vibration permet d'atteindre une densité apparente d'environ 60 % de la densité réelle. On ferme cet espace annulaire par deux plaques d'extrémité 7, 8 également en acier au carbone type 20MV6. Chacune de ces plaques est munie d'une nervure annulaire 9, 10 de quelques mm de hauteur qui s'engage dans l'espace annulaire 4 rempli d'acier inoxydable divisé. Ces deux plaques d'extrémité 7, 8 sont chacune reliées aux deux composants 2, 3 par des cordons de soudure étanches 11, 12, 13, 14, réalisés par soudage à l'arc sous argon.
  • On chauffe ensuite cette ébauche à une température comprise entre 1150 et 1200° C dans un four à gaz, puis, après enduction réalisée de façon classique d'une couche de verre lubrifiant, tant sur la surface extérieure que sur la surface intérieure, on introduit l'ébauche dans le conteneur d'une presse et on effectue la coextrusion à travers une filière de 117 mm de diamètre. Le piston de la presse est muni d'une aiguille de 94 mm de diamètre qui permet d'obtenir, après coextrusion puis déverrage, un tube bimétallique de 114,3 mm de diamètre extérieur et 92,6 mm de diamètre intérieur. Le rapport de réduction entre la section de l'ébauche 1 et celle du tube obtenu est donc d'environ 9,3.
  • Des examens micrographiques effectués sur des échantillons prélevés en plusieurs points du tube bimétallique montrent une excellente liaison métallurgique réalisée par l'intermédiaire de la couche de métal divisé entre la couche externe et la couche interne au moment du passage à travers la filière. Cette couche de métal divisé permet aussi, avant la coextrusion, pendant la phase de chauffage de l'ébauche, d'absorber les phénomènes de dilatation radiale différentielle d'un composant par rapport à l'autre ; cette couche de liaison facilite aussi, pendant la coextrusion, les glissements de l'un des deux composants de l'ébauche par rapport à l'autre sans risques d'arrachements, de fissuration ou de formation de plis.
  • On voit figure 2 une ébauche 21, permettant de fabriquer, selon un deuxième mode de mise en oeuvre du procédé suivant l'invention, un tube métallique qui, en lui-même, fait aussi partie de l'invention. Cette ébauche, vue en coupe suivant un plan passant par son axe X2-X2 comporte deux composants tubulaires 22, 23 à parois cylindriques de révolution, disposés l'un dans l'autre, coaxialement par rapport à X2-X2. Le premier composant tubulaire 22 est un composant interne réalisé en un acier au carbone. Son épaisseur radiale, e11, est supérieure à celle, e12 du deuxième composant tubulaire 23 qui est externe. Entre ces deux composants est ménagé un espace annulaire 24 compris entre la paroi extérieure 25 du premier composant tubulaire 22 et la paroi intérieure 26 du deuxième composant tubulaire 23. La largeur radiale e13 de cet espace annulaire est dans le cas de cette ébauche bien inférieure à l'épaisseur radiale e12 du composant externe 23 le plus mince tout en étant supérieure à 2 % du diamètre extérieur du composant interne 22, pas inférieure à 3 mm et pas supérieure à 10 mm. Le deuxième composant 23 externe est en un acier inoxydable ou réfractaire ou encore en un alliage contenant, au total, au moins 50 % en masse d'éléments du groupe comprenant Co, Cr, Mo, Ni.
  • Deux pièces annulaires d'extrémité 27, 28 en acier au carbone assurent le centrage des deux composants 22, 23 au moyen des nervures annulaires 29, 30. Avant mise en place de la dernière pièce d'extrémité, on remplit l'espace annulaire 24 d'un métal ou alliage divisé dont la composition est compatible avec les compositions des deux composants tubulaire et qui est de préférence sous forme de granules en majeure partie sensiblement sphériques et de diamètre moyen préférentiellement inférieur à 1 mm. Ce métal divisé peut être un acier au carbone allié ou non, un acier inoxydable ou réfractaire ou encore un alliage contenant, au total, au moins 50 % en masse d'éléments du groupe comprenant Co, Cr, Mo, Ni. On tasse ce métal divisé par vibration pour obtenir une densité apparente au moins égale à 50 % de la densité réelle. On relie les pièces d'extrémité 27, 28 aux extrémités correspondantes des composants 22, 23 par des cordons de soudure annulaires et étanches 31, 32, 33, 34.
  • On chauffe, par un moyen connu, l'ébauche 21 ainsi préparée à une température convenable supérieure à 1000° C. Cette température est déterminée, de façon connue, en tenant compte des caractéristiques des métaux ou alliages qui constituent l'ébauche et des conditions d'extrusion. On effectue ensuite l'extrusion de façon connue, en plaçant l'ébauche, après enduction, de façon connue tant sur sa surface extérieure que sur sa surface intérieure, par un verre lubrifiant, dans le conteneur, muni d'une filière, d'une presse d'extrusion. La poussée de l'ébauche est assurée par un piston muni d'une aiguille qui traverse l'ébauche et s'engage dans la filière. La lubrification est assurée de préférence de façon connue par des verres. Les sections de l'aiguille, de la filière, et de l'ébauche sont déterminées de façon à obtenir un rapport de réduction d'au moins 4 et, de préférence, d'au moins 6.
  • A titre d'exemple on prépare une ébauche de structure semblable à celle de la figure 2 comprenant un premier composant interne 22 en acier au carbone de type 20 MV 6 (NORME AFNOR) de 189 mm de diamètre extérieur, 60 mm de diamètre intérieur et 870 mm de long. Le deuxième composant externe 23, en acier inoxydable 316 (NORME AISI) a un diamètre extérieur de 223 mm, un diamètre intérieur de 200 mm et une longueur de 870 mm. Les états de surface des parois en regard formant l'espace annulaire sont préparés de façon à éviter la présence d'oxyde. On peut par exemple pratiquer avant montage de l'ébauche un brossage ou meulage de ces parois. L'espace annulaire 24 de 5,5 mm de largeur radiale est rempli d'acier inoxydable divisé, type 316 (NORME AISI), en majeure partie sous forme de granules sensiblement sphériques de diamètre compris entre 0,1 et 1 mm. Après tassage par vibrations la densité apparente de cet acier divisé est d'environ 60 % de sa densité réelle. Après mise en place des pièces d'extrémité 27, 28 en acier 20MV6 on les relie aux deux composants 22, 23 par des cordons de soudure étanches 31, 32, 33, 34 réalisés par soudage à l'arc sous argon.
  • On chauffe l'ébauche ainsi réalisée entre 1050 et 1200° C dans un four à gaz puis, après enduction au moyen d'une couche d'un verre lubrifiant, de façon connue tant sur la surface extérieure que sur la surface intérieure, on effectue la coextrusion au moyen d'une presse. Le piston de cette presse comporte une aiguille de 52,1 mm de diamètre qui s'engage dans l'ébauche 21 puis dans la filière de 66 mm de diamètre.
  • Après coextrusion puis déverrage on obtient un tube bimétallique d'environ 63,5 mm de diamètre extérieur et 51,3 mm de diamètre intérieur. Le rapport de réduction par rapport à la section initiale de l'ébauche de 223 mm de diamètre extérieur et 60 mm de diamètre intérieur est d'environ 31.
  • Des examens micrographiques, effectués sur des échantillons prélevés en plusieurs points du tube bimétalliques , montrent une excellente liaison métallurgique réalisée par l'intermédiaire de la couche de métal divisé entre la couche interne et la couche externe du tube. Par ailleurs, compte tenu des caractéristiques du procédé, on peut utiliser pour les deux composants des produits tubulaires ne nécessitant pas des tolérances serrées, notamment pour les surfaces en regard formant l'espace annulaire, ce qui permet de baisser les coûts de fabrication.
  • Pour certaines applications, il peut être nécessaire d'éliminer, avant préchauffage, le reste de l'air contenu dans l'espace annulaire 24 rempli de métal ou alliage divisé. Ceci peut être réalisé en faisant le vide dans cet espace annulaire, par un passage ménagé dans une pièce d'extrémité. Un moyen de fermeture permet ensuite d'obturer ce passage avant chauffage de l'ébauche ou, au plus tard, avant coextrusion.

Claims (17)

  1. Procédé de fabrication d'un tube bimétallique par coextrusion à chaud d'une ébauche comportant deux composants tubulaires, de révolution, constitués de métaux ou alliages de compositions différentes, logés coaxialement l'un dans l'autre caractérisé en ce qu'on détermine les sections de chacun de ces composants tubulaires 2, 3, 22, 23, dans un plan perpendiculaire à l'axe commun, de façon à ménager entre leurs parois en regard 5, 6, 25, 26 un espace annulaire 4, 24 de largeur radiale e3 ,e13 pas inférieure à 3 mm, au moins égale à 2 % du diamètre extérieur du composant interne et pas supérieure à celle du composant tubulaire 3, 23 de plus faible épaisseur, puis en ce qu'on remplit d'un métal ou alliage divisé dont la composition est compatible avec les compositions des deux composants tubulaires cet espace annulaire 4, 24 qu'on ferme ensuite, de façon étanche par des moyens de fermeture 7, 8, 27, 28 disposés aux deux extrémités, puis en ce qu'on chauffe l'ébauche 1, 11 à la température d'extrusion déterminée, en fonction des caractéristiques des métaux ou alliages qui la constituent, puis en ce qu'on effectue la coextrusion de cette ébauche au moyen d'une presse à travers une filière de façon à obtenir un tube bimétallique, le rapport de réduction entre la section solide de l'ébauche et celle du tube bimétallique obtenu étant au moins égale à 4.
  2. Procédé suivant revendication 1 caractérisé en ce que l'espace annulaire 4, 24 a une largeur radiale pas sensiblement supérieure à 10 mm.
  3. Procédé suivant revendication 1 ou 2 caractérisé en ce que l'ébauche comporte un premier composant tubulaire 2, 22 en un acier non allié ou allié ou inoxydable et un deuxième composant tubulaire 3,23 réalisé en un matériau différent tel que un acier inoxydable ou réfractaire ou un alliage inoxydable ou réfractaire contenant, au total, au moins 50 % en masse d'éléments du groupe comprenant Co, Cr, Mo, Ni, ou en un alliage à base de nickel.
  4. Procédé suivant revendication 3 caractérisé en ce que lorsque le premier composant est en acier inoxydable et le deuxième composant en acier inoxydable ou réfractaire, la teneur en éléments d'additions de l'acier du deuxième composant est supérieure à celle de l'acier du premier composant.
  5. Procédé suivant l'une des revendications 1 à 4 caractérisé en ce que la largeur radiale de la paroi du premier composant 2, 22 est supérieure à celle de la paroi du deuxième composant 3, 23.
  6. Procédé suivant l'une des revendications 3 à 5 caractérisé en ce que les caractéristiques mécaniques de résistance à la déformation de l'acier du premier composant 2, 22 sont supérieures à celles de l'acier ou alliage du deuxième composant 3, 23.
  7. Procédé suivant l'une des revendications 1 à 6 caractérisé en ce que le métal ou alliage divisé dont on remplit l'espace annulaire 4, 24 est constitué en majeure partie de granules sensiblement sphériques de diamètre moyen inférieur à 1 mm.
  8. Procédé suivant l'une des revendications 1 à 7 caractérisé en ce que le métal ou alliage divisé est un acier non allié, ou allié, ou inoxydable ou un alliage inoxydable ou réfractaire contenant au total au moins 50 % en masse d'éléments du groupe comprenant Co, Cr, Mo, Ni.
  9. Procédé suivant l'une des revendications 1 à 8 caractérisé en ce qu'on tasse le métal ou alliage divisé dans l'espace annulaire 4, 24 de façon à atteindre une densité apparente d'au moins 50 % de la densité réelle de ce métal ou alliage.
  10. Procédé suivant l'une des revendications 3 à 9 caractérisé en ce que le premier composant de l'ébauche est le composant externe 2.
  11. Procédé suivant l'une des revendications 3 à 9 caractérisé en ce que le premier composant de l'ébauche est le composant interne 22.
  12. Procédé suivant l'une des revendications 1 à 11 caractérisé en ce que les moyens de fermeture de l'espace annulaire 4, 24 de l'ébauche 1, 21 sont deux pièces d'extrémité métalliques annulaires 7, 8, 27, 28 disposées aux deux extrémités de l'ébauche.
  13. Procédé suivant revendication 12 caractérisé en ce que on relie chaque pièce d'extrémité 7, 8, 27, 28 aux deux extrémités correspondantes de chaque composant de l'ébauche par des cordons de soudure annulaires étanches 11, 12, 13, 14, 31, 32, 33, 34.
  14. Procédé suivant l'une des revendications 1 à 13 caractérisé en ce qu'on fait le vide dans l'espace annulaire 4, 24 avant de chauffer l'ébauche 1, 21 à température d'extrusion.
  15. Procédé suivant l'une des revendications 1 à 14 caractérisé en ce que la coextrusion de l'ébauche est effectuée au moyen d'une presse, comportant un piston muni d'une aiguille qui s'engage dans l'ébauche, préalablement logée dans un conteneur, puis dans la filière solidaire de ce conteneur ledit piston entraînant ainsi l'écoulement des composants de l'ébauche à travers l'espace annulaire compris entre aiguille et filière, la lubrification étant assurée par une couche de verre.
  16. Tube bimétallique, de révolution sans soudure, réalisé par coextrusion d'une ébauche comprenant deux composants, ce tube comportant une couche externe et une couche interne constituées de métaux ou alliages différents caractérisé en ce qu'une liaison métallurgique entre ces deux couches est assurée par une couche de liaison qui provient d'un métal divisé qui s'est soudé à lui-même et à la fois au composant interne et au composant externe au cours de la coextrusion.
  17. Ebauche tubulaire pour mise en oeuvre du procédé selon l'une des revendications 1 à 15 comportant deux composants tubulaires de révolution, constitués de métaux ou alliages de compositions différentes logés coaxialement l'un dans l'autre, caractérisée en ce que les sections de chacun de ces composants tubulaires dans un plan perpendiculaire à l'axe commun sont déterminées de façon à ménager entre leurs parois en regard un espace annulaire de largeur radiale pas inférieure à 3 mm, au moins égale à 2 % du diamètre extérieur du composant interne et pas supérieure à celle du composant tubulaire de plus faible épaisseur, cet espace annulaire étant rempli d'un métal ou alliage divisé dont la composition est compatible avec les compositions des deux composants tubulaires, cet espace annulaire étant fermé de façon étanche par des moyens de fermeture disposés aux deux extrémités.
EP89420523A 1989-01-03 1989-12-29 Procédé de fabrication de tubes bimétalliques et tubes obtenus par ce procédé Expired - Lifetime EP0377390B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89420523T ATE88926T1 (de) 1989-01-03 1989-12-29 Verfahren zur herstellung von bimetallrohren und nach diesem verfahren hergestellte rohre.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8900025A FR2641210B1 (fr) 1989-01-03 1989-01-03 Procede de fabrication de tubes bimetalliques et tubes obtenus par ce procede
FR8900025 1989-01-03

Publications (2)

Publication Number Publication Date
EP0377390A1 EP0377390A1 (fr) 1990-07-11
EP0377390B1 true EP0377390B1 (fr) 1993-05-05

Family

ID=9377447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89420523A Expired - Lifetime EP0377390B1 (fr) 1989-01-03 1989-12-29 Procédé de fabrication de tubes bimétalliques et tubes obtenus par ce procédé

Country Status (9)

Country Link
US (1) US5005756A (fr)
EP (1) EP0377390B1 (fr)
JP (1) JPH02229616A (fr)
KR (1) KR900011524A (fr)
AT (1) ATE88926T1 (fr)
DE (1) DE68906374T2 (fr)
ES (1) ES2040490T3 (fr)
FR (1) FR2641210B1 (fr)
RU (1) RU2007239C1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044463A1 (de) 2010-09-06 2012-03-08 AWS Schäfer Technologie GmbH Herstellung von Bimetallrohren

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9008273D0 (en) * 1990-04-11 1990-06-13 Ici Plc Manufacture of bi-metallic tube by explosive bonding,hot extrusion and co-extrusion
US5341719A (en) * 1992-12-14 1994-08-30 General Electric Company Multi-layer composite gun barrel
WO1997036711A1 (fr) * 1996-03-29 1997-10-09 Sumitomo Metal Industries, Ltd. Procede de soudage par diffusion de materiaux metalliques
US6098871A (en) * 1997-07-22 2000-08-08 United Technologies Corporation Process for bonding metallic members using localized rapid heating
DE19743616A1 (de) * 1997-10-02 1999-04-08 Cit Alcatel Verfahren zur Herstellung eines Metallröhrchens mit optischer Faser
US6470550B1 (en) * 1999-11-11 2002-10-29 Shear Tool, Inc. Methods of making tooling to be used in high temperature casting and molding
EP1437426A1 (fr) * 2003-01-10 2004-07-14 Siemens Aktiengesellschaft Procédé de production des structures monocristallines
US7243409B2 (en) * 2003-07-09 2007-07-17 Lewis John K Weldable conduit method of forming
US20050006899A1 (en) * 2003-07-09 2005-01-13 Lewis John K. Weldable conduit and method
US20050006900A1 (en) * 2003-07-09 2005-01-13 Lewis John K. System and method for coupling conduit
US7596848B2 (en) * 2004-04-12 2009-10-06 United States Steel Corporation Method for producing bimetallic line pipe
US7714888B2 (en) * 2005-03-07 2010-05-11 Blue Marlin Llc Reflection spectroscopic means for detecting patterned objects
US8281976B2 (en) * 2009-09-11 2012-10-09 Plymouth Tube Co. Method of making multi-component composite metallic tube
EA017045B1 (ru) * 2010-03-26 2012-09-28 Александр Михайлович Басалай Двухслойная металлическая труба и способ изготовления двухслойной металлической трубы
RU182261U1 (ru) * 2017-12-22 2018-08-09 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Заготовка биметаллической трубы для трубопроводов перегретого пара
RU2763714C1 (ru) * 2021-06-10 2021-12-30 Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский университет)» Способ изготовления биметаллических труб

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2023498A (en) * 1932-07-21 1935-12-10 Dow Chemical Co Method of producing composite wrought forms of magnesium alloys
US3066403A (en) * 1959-11-06 1962-12-04 Charles A Brauchler Method of making extruded tubes from powdered metal
US3753704A (en) * 1967-04-14 1973-08-21 Int Nickel Co Production of clad metal articles
US3566741A (en) * 1969-06-09 1971-03-02 Joseph L Sliney Tubular, seamless, dual-hardness armor plate
SE358098B (fr) * 1971-03-15 1973-07-23 Asea Ab
JPS5417359A (en) * 1977-07-08 1979-02-08 Hitachi Ltd Manufacture of clad
SU859080A1 (ru) * 1979-11-01 1981-08-30 Коммунарский горно-металлургический институт Способ диффузионной сварки разнородных материалов
SU869927A1 (ru) * 1980-01-21 1981-10-07 Институт проблем материаловедения АН УССР Пола заготовка дл гидростатического прессовани армированных труб
SU995962A1 (ru) * 1981-07-09 1983-02-15 Днепропетровский Ордена Трудового Красного Знамени Металлургический Институт Заготовка дл прессовани биметаллических изделий
JPS59179212A (ja) * 1983-03-30 1984-10-11 Sumitomo Metal Ind Ltd 熱間押出し製管用2層金属片の製造方法
DE3562070D1 (en) * 1984-02-23 1988-05-11 Bbc Brown Boveri & Cie Process for bonding superalloy work pieces by diffusion
US4620660A (en) * 1985-01-24 1986-11-04 Turner William C Method of manufacturing an internally clad tubular product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044463A1 (de) 2010-09-06 2012-03-08 AWS Schäfer Technologie GmbH Herstellung von Bimetallrohren
DE102010044463B4 (de) 2010-09-06 2022-01-20 AWS Schäfer Technologie GmbH Verfahren zur Herstellung von Bimetallrohren

Also Published As

Publication number Publication date
ATE88926T1 (de) 1993-05-15
DE68906374T2 (de) 1993-08-26
RU2007239C1 (ru) 1994-02-15
ES2040490T3 (es) 1993-10-16
DE68906374D1 (de) 1993-06-09
US5005756A (en) 1991-04-09
KR900011524A (ko) 1990-08-01
JPH02229616A (ja) 1990-09-12
FR2641210B1 (fr) 1991-03-15
FR2641210A1 (fr) 1990-07-06
EP0377390A1 (fr) 1990-07-11

Similar Documents

Publication Publication Date Title
EP0377390B1 (fr) Procédé de fabrication de tubes bimétalliques et tubes obtenus par ce procédé
FR2579695A1 (fr) Arbre de transmission
FR2573836A1 (fr) Joint d'echappement silencieux
FR2605908A1 (fr) Cylindre de laminoir a pas de pelerin pour la fabrication de tubes
EP2666580B1 (fr) Fil de soudage à âme centrale solide et son procédé de fabrication
EP0511040A1 (fr) Procédé de raccordement d'une pièce en acier au manganèse à une autre pièce en acier au carbone et assemblage ainsi obtenu
CA2730069C (fr) Procede de fabrication d'une piece metallique comportant des renforts internes formes de fibres ceramiques
FR2567053A1 (fr) Palier de glissement, en particulier pour trepan de forage, comportant un element a paroi mince en poudre metallique, et procede de fabrication dudit palier
FR3052502A1 (fr) Chambre de combustion de moteur fusee avec ailettes a composition variable
FR2515165A1 (fr) Corps composite tubulaire et procede pour sa production
EP0839593B1 (fr) Procédé de fabrication d'une pièce creuse de révolution
FR2811386A1 (fr) Procede de fabrication d'un manchon destine a accoupler deux arbres canneles et manchon d'accouplement obtenu par le procede
EP3240371A1 (fr) Composant d'assemblage d'une enceinte a vide et procede de realisation du composant d'assemblage
WO2020208040A1 (fr) Procédé de fabrication d'un fil d'armure d'une ligne flexible de transport de fluide et fil d'armure et ligne flexible issus d'un tel procédé
EP2309527B1 (fr) Dispositif d'assemblage par brasage d'un capot d'extrémité sur un corps cylindrique et ampoule à vide comportant un tel dispositif
WO2019115968A1 (fr) Procede de fabrication d'une piece metallurgique
WO2003072289A2 (fr) Procede de fabrication d'emballage metallique
FR2959949A1 (fr) Procede de soudage circulaire ou longitudinal de tube
EP1043092B1 (fr) Procédé d'assemblage de deux pièces, pièces destinées à être assemblées grâce à ce procédé et assemblage de deux telles pièces
WO2022184991A1 (fr) Elément tubulaire fileté à segment
EP2201317A1 (fr) Tube à surface interne augmentée utilisé dans des fours, procédé de fabrication et applications
FR2687337A1 (fr) Procede de realisation de tubes par travail a chaud de poudres metalliques et tubes ainsi obtenus.
WO1993013884A1 (fr) Procede et dispositif pour le formage a chaud de metaux ou alliages metalliques
BE556520A (fr)
FR3089834A1 (fr) Procédé de fabrication d’une pièce métallurgique par compaction à chaud de poudre métallique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES GB IT SE

17P Request for examination filed

Effective date: 19900728

17Q First examination report despatched

Effective date: 19911015

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES GB IT SE

REF Corresponds to:

Ref document number: 88926

Country of ref document: AT

Date of ref document: 19930515

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930512

REF Corresponds to:

Ref document number: 68906374

Country of ref document: DE

Date of ref document: 19930609

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2040490

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89420523.6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031117

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031120

Year of fee payment: 15

Ref country code: AT

Payment date: 20031120

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031201

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031217

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041229

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041230

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041230