WO2009043961A1 - Horno de inducción modificado y procedimiento para la eliminación de residuos siderúrgicos con cinc con recuperación de sus metales. - Google Patents

Horno de inducción modificado y procedimiento para la eliminación de residuos siderúrgicos con cinc con recuperación de sus metales. Download PDF

Info

Publication number
WO2009043961A1
WO2009043961A1 PCT/ES2008/070184 ES2008070184W WO2009043961A1 WO 2009043961 A1 WO2009043961 A1 WO 2009043961A1 ES 2008070184 W ES2008070184 W ES 2008070184W WO 2009043961 A1 WO2009043961 A1 WO 2009043961A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
induction furnace
furnace
elimination
electric
Prior art date
Application number
PCT/ES2008/070184
Other languages
English (en)
French (fr)
Inventor
Miguel FERNÁNDEZ LÓPEZ
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Priority to EP20080835495 priority Critical patent/EP2194350A1/en
Priority to US12/681,127 priority patent/US8110019B2/en
Publication of WO2009043961A1 publication Critical patent/WO2009043961A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/003General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals by induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/16Dry methods smelting of sulfides or formation of mattes with volatilisation or condensation of the metal being produced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • F27B14/065Channel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/06Induction heating, i.e. in which the material being heated, or its container or elements embodied therein, form the secondary of a transformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • F27D11/10Disposition of electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/005Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys using plasma jets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention is based on a modified electric induction furnace and a method that enables the elimination of filter dust (PF) with Zinc from the metallurgical industry. Therefore, the invention is framed within the metallurgical industrial sector, and more specifically in the treatment of waste from this sector, as well as in the recovery of metals. This invention could also be used in the recycling of waste such as Tires Out of Use.
  • PF filter dust
  • Filter Powders are waste that is generated with the production of steel and iron foundries made of galvanized steel scrap that, due to the amount produced worldwide, between 15 to 20 kg per ton of steel produced, constitutes an international problem. These wastes are currently eliminated by various procedures, from deposit in safety landfill, to technologies that seek to recover all the metals they contain, at different development scales.
  • the PF is introduced back into the HEA so that a new PF enriched in ZnO is generated, reducing the amount of PF to be eliminated (metals pass to steel, zinc to gases, and oxides not reducible to The scum)
  • Waelz procedure The most commonly used worldwide, based on the carbothermal reduction of ZnO in a rotary kiln at temperatures between 1,200 to 1,350 ° C, (pasty state of the rotary kiln load). It requires high treatment capacities for its economic viability, the manipulation of large amounts of slag, the incorporation of additional operations to obtain a Waelz oxide of higher quality destined for a very small market (zinc extractive industry). Its limitations are:
  • Solid state carbothermal reduction procedures There are procedures at the demonstration plant level, (and pilot), for the elimination of PF, by carbothermal reduction in solid state, (1150-1350 ° C), after agglomerating the mixture, and depositing the agglomerates on the rotary floor of the oven, taking them to the aforementioned temperature, with gases from the combustion of fossil fuels, (processes: Inmetco, Allmet, Fasmet, and Comet). They produce a prereduced high iron content, and an impurified ZnO concentrate with distilled materials such as new PF.
  • the Primus procedure which does not agglomerate the PF, uses a furnace with multiple screeds, and as a means of heating, hot gases products of the combustion of fossil fuels.
  • These solid state carbothermal reduction procedures require installations of high technological component and high capacity, not being able to reduce chromium oxides, and additionally require melting equipment with electrical energy to produce metal from reduced agglomerates.
  • the Primus procedure has been directed to the production of steel, as an alternative to the blast furnace track, being also technically feasible for the elimination of PF. Process of carbothermal reduction in molten state.
  • the new filter dust rich in ZnO is impurified, either with condensed metals after its volatilization through the arc, with dust carried by the gases, and / or by volatilization of volatile compounds (alkalis, halides, etc.).
  • the carbothermal reduction of the filter powders in the molten state could also be carried out by means of an electric induction furnace if a means for melting could be incorporated non-metallic materials, since in its current conception it is only possible to melt metallic material.
  • the main elements of the induction electric furnaces are: a) bovine made of copper pipe internally cooled by water, b) alternating current power supply, connected at its terminals to the ends of the cited bovine c) cylindrical shaped crucible made of thermally insulated refractory material, to accommodate the molten metal, at the upper end of which it has the loading mouth and pouring spout for guided emptying of the molten metal, d) folding closing lid for the mouth of loading of the crucible, in whose upper part is the gas extractor hood of the furnace flue gas purification system, e) dump system for emptying the produced metal, f) cooling water system for the bovine and flexible cables of union with the power supply, and in the electric channel induction furnace, g) air fans to cool the area of the spiral furnace channel, in which they are also, the inductive bovine and the core of magnetic steel plates.
  • the electric induction furnace provides the energy to the metallic charge to be melted by means of the action of a variable magnetic field generated in the copper bovine at the passage of the alternating electric current, which crosses the metallic charge to be melted, (case of electric furnace of induction of crucible), inducing in it an electric current, which heats the metal by Joule effect until it melts.
  • the inductive bovine generator of the variable magnetic field houses a toroid-shaped, or frame-shaped mild iron core, manufactured with a package of electrically insulated magnetic steel plates each other, being in turn wrapped by another bovine of a single turn, contained in a channel of refractory material, inside which melts and it keeps molten the metal to be manufactured, said bovine being open in its upper part, to communicate with the furnace crucible, which houses all the liquid metal to be manufactured.
  • the present invention relates to a modified induction furnace, and to a method using said furnace for the elimination of PF from the manufacture of steel in electric arc furnaces (HEA) and of smelters with galvanized scrap in electric induction furnaces of crucible (Hl in the following).
  • HAA electric arc furnaces
  • Hl galvanized scrap in electric induction furnaces of crucible
  • the Tires Out of Use (NFU in the following), are large-scale, non-biodegradable, low-density and high-calorie generation waste (7800 to 8200 kcal / kg), whose disposal comprehensively, it is very necessary, not yet fully resolved, with the added difficulty that in developed countries its disposal is prohibited in landfills, even chopped.
  • a first aspect of the present invention is a modified electric induction furnace, in successive electric induction furnace of the invention, in which the following novel aspects have been incorporated: i) second mobile cover and interchangeable with the conventional cover of the electric induction furnace itself, which facilitates the change of application of the latter, to eliminate PF with zinc by carbothermal reduction, due to the production of iron foundries.
  • This new cover has holes necessary for the communication of the material contained inside the oven with
  • a second aspect of the present invention is the process for the elimination of PF with Zinc, hereinafter procedure of the invention, characterized in that i) a calcination of the PF with agglomerated Zinc and without mixing with coal is carried out, at temperatures between 900 and 1100 C 0 , and ii) a subsequent molten carbothermal reduction of the filter powders with zinc agglomerated and calcined, made with coal in the electric induction furnace of the invention, which allows the use of the solid fraction of the Ia distillation - pyrolysis of the NFU.
  • a third aspect of the present invention is the use, both of the furnace of the invention and of the process of the invention, in the elimination of filter dust (PF) with Zinc from the manufacture of steel, (alloyed or not), and of the production of cast iron with galvanized steel scrap.
  • Solid metal (special cast iron or ferroalloy shot, iron castings, special ferroalloy ingot)
  • the present invention is based on a new design of electric induction furnace that allows the elimination of filter dust (PF) with Zinc from the manufacture of steel (alloyed or not), and the production of cast iron with scrap of galvanized steel, by means of a procedure based on the carbothermal reduction of the metal oxides present in the PF, carried out at the temperature at which the materials are melted inside the electric induction furnace, (1500 to 1600 0 C).
  • PF filter dust
  • the volatilizable matter passes into the gas phase with the increase of the temperature, together with non-condensable gases when reaching its volatilization temperature, and the remaining matter not reducible or volatilizable, It will form the slag.
  • an electric induction furnace is conceived that incorporates an electric arc or plasma beam generator to be able to melt all non-metallic inorganic matter, since the conventional induction electric furnace cannot do so.
  • the incorporation of this generator also allows working with large volumes of molten slag, see A in Figure 1.
  • a first aspect of the present invention is a modified electric induction furnace, in successive electric induction furnace of the invention, in which the following novel aspects have been incorporated: i) A second mobile cover and interchangeable with Ia conventional cover of the electric induction furnace itself, which facilitates the change of application of the latter, to eliminate PF with zinc by carbothermal reduction, by producing iron smelters.
  • This new cover has holes necessary for the communication of the material contained inside the oven with the installation of smoke purification, with the system of feeding of agglomerates and coal, and with the means of control of the molten bath, ii) A generator electric arc or plasma beam of direct current, with (a) mobile cathode vertically movable and installed in the own mobile cover of i), made in graphite bar, and (b) anode made in conductive material of the inserted electricity in the oven wall, in communication with the molten material. iii) An additional capacity of the furnace crucible to contain a larger volume of molten material needed to work with significant amounts of slag.
  • the cathode of the electric arc generator described in ii) is movable to control the electric power to be supplied to the load to be melted and to be able to prime or start the arc, modifying its length.
  • a preferred aspect of the present invention is the electric induction furnace of the invention characterized in that it is a crucible furnace.
  • a more preferred aspect of the invention is the electric induction furnace of the invention of the crucible, characterized in that it incorporates an additional casting slide for the controlled emptying of the slag, either by gravity or by overturning.
  • Another more preferred aspect of the invention is the electric induction furnace of the invention of the crucible, characterized in that the additional capacity of the crucible iii) to contain a greater volume of molten material has an axial conical axial section.
  • Another preferred aspect of the invention is the electric induction furnace of the invention of a crucible characterized in that the new slag casting slat, (V) has a closure to keep it closed until it is desired to empty the slag.
  • Another preferred aspect of the present invention is the electric induction furnace of the invention characterized in that it is a channel furnace.
  • the electric induction furnace of the invention enables the application of a new procedure, based on a prior calcination of the PF with Zinc agglomerated without mixing with coal, at temperatures between 900 and 1100 C 0 , and a subsequent molten carbothermal reduction of the filter powders with zinc agglomerated and calcined with coal, in the electric induction furnace of the invention, at temperatures between 1500 and 1600 ° C, at which the entire load of the electric induction furnace is completely melted.
  • a second aspect of the present invention is the process for the elimination of PF with Zinc, hereinafter procedure of the invention, characterized in that i) a calcination of the PF with agglomerated Zinc and without mixing with coal is carried out at temperatures between 900 and 1100 C 0 , and ii) a subsequent molten carbothermal reduction of the filter powders with zinc agglomerated and calcined, made with coal in the electric induction furnace of the invention, which allows the use of the fraction solid distillation - pyrolysis of the NFU.
  • This procedure involves the previous stages of mixing and homogenization of the PF with binders and fluxes, and cold agglomeration.
  • the mixing and homogenization stages are intended to produce a homogeneous mixture, which serves as the loading material for the cold agglomeration equipment (II, Figure 2).
  • mixing equipment (4, Figure 2), and the materials to be mixed are involved: PF (1, Figure 2), flux (2, Figure 2), and binder (3, Figure 2).
  • the mixing of the materials is carried out in the appropriate weight ratio to: (a) produce an unreliable agglomerate with mechanical characteristics suitable for handling (binder) and, (b) obtain fluid slags at the melting temperature of the metal in Ia fusion operation (flux).
  • the cold agglomeration stage of the mixture can be carried out with a pelletizing disc and / or with a press or with briquetting rollers.
  • the calcination i) of the PF with agglomerated zinc and without mixing with coal has the objective of separating the volatile compounds, and reducing the consumption of electric energy in the subsequent carbothermal reduction ii) by means of the discharge of the furnace from the hot agglomerates at temperature closest possible to the one that the calcination is performed.
  • a preferred aspect of the present invention is the process of the invention in which the hot transfer of the material produced in the calcination i) to the modified induction electric furnace ii) is carried out by closed containers, conveniently heat-resistant and resistant to The outlet temperature of the calcination i).
  • the calcination furnace, (7, Figure 2) will be similar to those used in the brick firing of the ceramic and / or refractory industry, with mobile hearth, or roller road, or on mobile wagons, etc., in circular or linear arrangement.
  • the gases from the calcination furnace are taken to its smoke purification facility, (6, Figure 2), equipped with means of cleaning and dry filtration of the gases, where the solids are separated and collected, 13, Figure 2) , which are waste to be removed.
  • the calcined agglomerate is discharged at the temperature as close as possible to the calcination, in closed containers lined internally with refractory (8, Figure 2), designed to keep them warm and in the absence of air indefinitely, and to be able to use them, in where appropriate, as dosing hoppers of the melting furnace, (8 figure 1).
  • the carbothermal reduction in the molten state of the filter powders with zinc agglomerates is carried out in the electric induction furnace of the invention (A, Figure 1), having as its object: a) The recovery of non-volatile metals from waste in the form of foundry, and / or special ferroalloy, depending on whether the treated PF comes from the manufacture of carbon steel or cast iron, and of special and / or stainless steels, respectively. b) The volatilization of the zinc metal, after the reduction of the ZnO, with the carbon of the charge, and also of the volatile compounds not eliminated in the calcination and, c) The scorification of the remaining compounds.
  • the working temperature of the furnace will be between 1500 to 1600 ° C, at which, the operations of: melting, carbothermal reduction of the oxides, scorching of nonmetals, and volatilization of volatile compounds, are carried out effectively and quickly , improving even more, with the use of a DC electric arc generator, (a plasma beam generator can be used alternatively), which also allows the slag to melt.
  • a DC electric arc generator a plasma beam generator can be used alternatively
  • the molten carbothermal reduction of the filter powders with Zinc begins when the crucible material, (9, Figure 1), is liquid and at the desired temperature, and in an amount that exceeds 70% of its capacity, in the case of electric crucible induction oven.
  • the agglomerates when immersed in the molten matter (9, Figure 1), are heated and melted by contact with it.
  • the molten matter in contact with the agglomerate of the fusion process is renewed and heated by the agitation produced by the electromagnetic induction in the liquid metal bath, and simultaneously, the slag (11, figure 1) accumulates without melting in the surface of the molten matter, being transparent to induction heating.
  • the electric induction furnace is provided with a direct current electric arc generator (or plasma beam), with its electrodes, (14 and 14 bis, Figure 1), located as indicated in A of Ia Figure 1, to create an arc directed to the slag.
  • the arc heats and melts by radiation to the slag, and keeps it molten.
  • the reactions of reduction of oxides susceptible to occur in the slag and in its zone of contact with the molten metal, are:
  • MeO the metal oxide, Me, metal, C carbon of carbon, or of molten metal, CO, and CO 2 , carbothermal reduction gases.
  • the molten metal that accumulates in the crucible with the advance of the fusion (9, Figure 1), is of the type of cast iron, alloyed or not, and increases in level with it, starting its emptying by overturning, at to reach the nominal capacity of the crucible, for which it is necessary to previously change the mobile cover, (15, Figure 1 A), by the conventional one, (18, Figure 1 B).
  • the emptying of the metal (10, Figure 1) concludes by doing so approximately 30% of its volume, which allows restarting the fusion of agglomerates immediately.
  • the carbon used in the carbothermal reduction of the PF with zinc in the molten state can come from the solid fraction obtained by the distillation - pyrolysis of the NFU, at temperatures between 400 and 600 0 C, given the similarity of composition and containing steel and zinc, this possibility of using this additional reducing agent being a preferred aspect of the present invention.
  • the present invention provides equipment and a method for the management of zinc filter powders, based on the carbothermal reduction on slag and molten metal bath with a modified induction electric furnace, for its elimination with recovery of its metals, and minimization of the volume of the resulting residue to be removed.
  • a third aspect of the present invention is the use, both of the furnace of the invention and of the process of the invention, in the elimination of filter dust (PF) with Zinc from the manufacture of steel, (alloyed or not ), and the production of cast iron with galvanized steel scrap.
  • PF filter dust
  • Table I shows the chemical composition of real samples of PF with zinc generated: in the production of stainless steel (column A), and in the manufacture of carbon steel with electric arc furnaces
  • the immediate analysis of an anthracite coal and the solid fraction of the NFU distillation has been included in the "Carbon" and C) columns of Table I.
  • the carbon corresponds to the one used in the present invention as a reducer in the elimination of PF from the manufacture of stainless steel by molten carbothermal reduction.
  • the carbonaceous fraction corresponds to an average analysis of recycled NFU by pyrolysis, used in the present invention in reductability tests at the laboratory level applied to oxidized slags of the manufacture of steel at different temperatures.
  • Table I Component in% by weight of two samples of PF with zinc (Columns A) and B)) and a sample of mineral coal (column "Coal”) and solid fraction from the pyrolysis of NFU (column C) .
  • PXCaI row refers to calcination losses. Note the small difference in composition between the two carbonaceous materials, (last two columns of the Table), the high zinc and SO3 contents of the carbonaceous fraction (Column C), which are normally accompanied by steel filaments, if not They separate previously.
  • Table II shows the composition of two PF with zinc, A) and B), before and after being calcined at 1000 ° C, B) CaI and C) CaI.
  • stage i) calcining the PF with agglomerated zinc and without mixing with coal, of the process of the invention.
  • the amount of volatile compounds present in the PF that are gasified in the calcination increase with the temperature at which it is carried out, so that the calcination has to be carried out at the higher possible temperature, since in this way the amounts and presence of volatile compounds in the fusion treatment are reduced, but avoiding reaching the melting temperature of the remaining components of the PF.
  • stage i) of the process of the invention calcination tests were carried out on samples of PF with zinc from the production of carbon steel, at the temperatures of 950, 1000, and 1050 ° C, at through whose results it has been possible to verify that: a) volatilization increases with temperature, and b) from a calcination temperature, if it continues to increase, the volatilization impurity losses that can justify the increase in consumption cannot be increased of energy that requires.
  • Table III together with the composition of the PF used in the calcination tests (Column A)).
  • step i) of the process of the invention is between 1000 and 1100 0 C.
  • the optimum range can be modified depending on the composition of the PF used.
  • the components are elements, not oxides, e.g. Fe2O3, is faithful
  • Oxide metals are obtained, (Fe, Cr, Ni, Mo, Mn), even from chromite, which very few procedures can do, being a refractory oxide.
  • the ZnO is also reduced, it can be seen that it is only found in the new PF, such as ZnO, after previously passing to zinc metal, (at the melting temperature of the PF, between 1500 and 1600 ° C, the zinc metal obtained by reduction of the oxide by the coal, it happens to gas, (907 ° C), where it is oxidized again to ZnO.
  • the metal obtained has a high carbon content, with nickel, chromium, as a result of the reduction of metal oxides with carbon, so that special ferroalloy is dominated.
  • the new filter powder shows a net increase in the ZnO content with respect to the initial PF, as well as volatile compounds from the initial PF (K2O, Cl, Na2O, PbO, and CdO), so that the new PF is a very impure ZnO concentrate.
  • PF are agglomerated and calcined, prior to their carbothermal reduction, a new PF of high ZnO content is obtained, since the process of the invention allows the sensible reduction of the presence of volatile materials in the PF to be melted, and also for being agglomerated.

Abstract

La presente invención se basa en un nuevo diseño de horno eléctrico de inducción que posibilita la eliminación de polvo de filtro (PF) con Cinc procedente de la fabricación de acero, (aleado o no), y de la producción de fundición de hierro con chatarra de acero galvanizado, mediante un nuevo procedimiento basado en la reducción carbotérmica de los óxidos metálicos presentes en los PF, realizada a la temperatura en la que los materiales están fundidos dentro del horno eléctrico de inducción. El horno eléctrico de inducción de la invención incorpora un generador de arco eléctrico o de haz de plasma para poder fundir toda la materia inorgánica no metálica. La incorporación de este generador permite, además, trabajar con grandes volúmenes de escoria fundida.

Description

HORNO DE INDUCCIÓN MODIFICADO Y PROCEDIMIENTO PARA LA ELIMINACIÓN DE RESIDUOS SIDERÚRGICOS CON CINC CON RECUPERACIÓN DE SUS METALES.
Sector de Ia Técnica:
La presente invención se basa en un horno eléctrico de inducción modificado y en un procedimiento que posibilita Ia eliminación de polvo de filtro (PF) con Cinc procedente de Ia industria metalúrgica. Por tanto, Ia invención se enmarca dentro del sector industrial metalúrgico, y más concretamente en el tratamiento de residuos procedentes de este sector, así como en Ia recuperación de metales. Esta invención también podría emplearse en el reciclado de residuos como Ia Neumáticos Fuera de Uso.
Estado de Ia Técnica
Los Polvos de filtro (PF) son residuos que se generan con Ia producción de acero y de fundiciones de hierro fabricadas con chatarra de acero galvanizado que, debido a Ia cantidad que se produce a nivel mundial, entre 15 a 20 kg por tonelada de acero producido, constituye un problema a escala internacional. Actualmente estos residuos se eliminan mediante diversos procedimientos, desde depósito en vertedero de seguridad, hasta tecnologías que pretenden recuperar todos los metales que contienen, a diferente escala de desarrollo.
Los procedimientos industriales de mayor aceptación para Ia eliminación de los PF, son los siguientes:
Reciclado del PF a través del Horno Eléctrico de Arco (HEA).
Pretende reducir Ia cantidad de PF generada por unidad de acero producida aumentando a su vez el contenido de óxido de cinc en el mismo. Para ello, el PF se introduce de nuevo en el HEA de forma que se genera un nuevo PF enriquecido en ZnO, disminuyendo Ia cantidad de PF a eliminar (los metales pasan al acero, el cinc a los gases, y los óxidos no reducibles a Ia escoria)
Sin embargo, el empleo de este procedimiento no se ha generalizado en los HEA, ya que produce mayor coste que ahorro puesto que:
• Aumentan los consumos de carbón y de energía eléctrica, - Produce polvo blanco de óxido de cinc en Ia zona de trabajo del HEA.
• Introduce un nuevo coste, Ia aglomeración del polvo, (o un nuevo equipo para Ia insuflación de polvo en Ia escoria fundida del HEA. « El coste de Ia eliminación del nuevo PF, seguirá dependiendo del mismo Gestor.
Procedimiento Waelz. El más utilizado actualmente a nivel mundial, basado en Ia reducción carbotérmica del ZnO en un horno rotatorio a temperaturas comprendidas entre 1.200 a 1.350 ° C, (estado pastoso de Ia carga del horno rotatorio). Requiere de elevadas capacidades de tratamiento para su viabilidad económica, Ia manipulación de grandes cantidades de escoria, Ia incorporación de operaciones adicionales para Ia obtención de un óxido Waelz de más calidad destinado a un mercado muy reducido (industria extractiva del cinc). Sus limitaciones, son:
• El umbral de rentabilidad del procedimiento requiere de elevada capacidad de tratamiento, (> 100.000 t/a).
• No es aplicable a los PF con níquel y cromo. - Elevado coste de inversión en medios de control de vertido de los gases del procedimiento a Ia atmósfera. • Necesidad de mejorar Ia calidad del polvo de Oxido Waeltz destinado a Ia venta.
Procedimientos de reducción carbotérmica en estado sólido. Existen procedimientos a nivel de planta de demostración, (y piloto), para Ia eliminación de los PF, por reducción carbotérmica en estado sólido, (1150-1350 ° C), tras aglomerar Ia mezcla, y depositar los aglomerados sobre Ia solera rotatoria del horno, llevándolos a Ia temperatura citada, con gases de Ia combustión de combustibles fósiles, (procesos: Inmetco, Allmet, Fasmet, y Comet). Producen un prerreducido de alto contenido de hierro, y un concentrado de ZnO impurificado con materias destiladas como nuevo PF. Dentro de este grupo cabe incluir el procedimiento Primus, que no aglomera los PF, utiliza un horno de soleras múltiples, y como medio de calentamiento, gases calientes productos de Ia combustión de combustibles fósiles. Estos procedimientos de reducción carbotérmica en estado sólido requieren instalaciones de elevada componente tecnológica y alta capacidad, no siendo aptos para reducir los óxidos de cromo, y precisan, adicionalmente, equipos de fusión con energía eléctrica para producir metal a partir de los aglomerados reducidos. El procedimiento Primus se ha dirigido a Ia producción de acero, como alternativa a Ia vía del horno alto, siendo también técnicamente viable para Ia eliminación de los PF. Procedimiento de reducción carbotérmica en estado fundido.
Constituye el más semejante al que se propone en Ia presente invención, por llevar a cabo Ia recuperación de los metales y Ia separación del cinc por reducción carbotérmica en estado fundido, para Io que utiliza un horno de cuba calentado con varios generadores de plasma, (Plasmadust, Suecia), o utilizando hornos de crisol calentados por plasma, (ILSERV, en Terni, Italia), a través de un electrodo de grafito, con horno de arco de CC, (Fregenal de Ia Sierra, Badajoz), con horno eléctrico de trifásico de CA de arco sumergido, (BUS Várela, Francia). La aplicación industrial de estas plantas se limita hoy día, exclusivamente, a los PF con níquel y cromo de Ia fabricación de acero inoxidable, no siendo viables económicamente para el tratamiento de polvos de filtro sin níquel. Las limitaciones del procedimiento, son:
- Elevado consumo de Ia energía eléctrica,
- Produce un nuevo polvo de filtro de mayor contenido en ZnO, aunque necesitado de afino para mejorar su comercialización,
- El nuevo polvo de filtro rico en ZnO se impurifica, bien con metales condensados tras su volatilización por el arco, con polvo arrastrado por los gases, y/o por volatilización de compuestos volátiles, (álcalis, halogenuros, etc.).
A modo de resumen se puede decir que Ia actividad industrial de eliminación del PF, se lleva a cabo mayoritariamente a nivel mundial por el procedimiento Waeltz, no teniendo competidores significativos para Ia eliminación de polvos de filtro de HEA sin níquel, (salvo el de inertización y de vertedero de seguridad, procedimientos que en el corto medio plazo, serán prohibitivos de uso). Presenta costes elevados para el generador, (manipulación transporte, mantenimiento, y Tasa de Eliminación), y por otra parte, actualmente es difícil de encontrarle alternativas tecnológicas a las citadas, por Io que Ia eliminación de los PF, aún no está satisfactoriamente resuelta.
La reducción carbotérmica de los polvos de filtro en estado fundido podría llevarse a cabo también mediante un horno eléctrico de inducción si se Ie pudiese incorporar un medio para poder fundir materiales no metálicos, ya que en su concepción actual solamente posibilita fundir materia metálica.
Los principales elementos de que consta los hornos eléctricos de inducción son: a) bovina realizada en tubo de cobre refrigerado interiormente por agua, b) fuente de alimentación eléctrica de corriente alterna, conectada en sus terminales a los extremos de Ia bovina citada, c) crisol de forma cilindrica realizado con material refractario convenientemente aislado térmicamente, para alojar el metal fundido, en cuyo extremo superior dispone de Ia boca de carga y piquera de colada para el vaciado guiado del metal fundido, d) tapa de cierre abatible para Ia boca de carga del crisol, en cuya parte superior se sitúa Ia campana extractora de gases de Ia instalación de depuración de humos del horno, e) sistema de vuelco para el vaciado del metal producido, f) sistema de agua de refrigeración para Ia bovina y cables flexibles de unión con Ia fuente de alimentación eléctrica, y en el horno eléctrico de inducción de canal, g) ventiladores de aire para refrigerar Ia zona de Ia espira-canal del horno, en Ia que se encuentran también, Ia bovina inductora y el núcleo de chapas de acero magnético.
El horno eléctrico de inducción aporta Ia energía a Ia carga metálica a fundir mediante Ia acción de un campo magnético variable generado en Ia bovina de cobre al paso de Ia corriente eléctrica alterna, que atraviesa Ia carga metálica a fundir, (caso de horno eléctrico de inducción de crisol), induciendo en ella una corriente eléctrica, que calienta el metal por efecto Joule hasta llegar a su fusión.
En el caso del horno eléctrico de inducción de canal, Ia bovina inductora generadora del campo magnético variable, aloja en su interior un núcleo de hierro dulce en forma de toroide, o de marco, fabricado con un paquete de chapas de acero magnético, aisladas eléctricamente entre sí, estando a su vez envuelta por otra bovina de una sola espira, contenida en un canal de material refractario, en cuyo interior se funde y mantiene fundido el metal a fabricar, estando dicha bovina abierta en su parte superior, para comunicarse con el crisol del horno, que aloja todo el metal líquido a fabricar. El paso de una corriente alterna por Ia bovina de cobre refrigerada, induce en Ia chatarra metálica, o metal contenido en Ia espira-canal, un flujo de electrones que por efecto Joule, calienta el metal hasta llegarlo a fundir, (ejercido por el campo magnético variable conducido a través del núcleo de hierro dulce común a ambas bovinas, al que ambas rodean), metal fundido que a su vez calienta y funde el metal contenido en el recipiente de metal fundido, o crisol, comunicado con Ia bovina espira-canal, al estar bañado por el metal fundido que contiene aquélla.
La presente invención se refiere a un horno de inducción modificado, y a un procedimiento que utiliza dicho horno para Ia eliminación de PF procedentes de Ia fabricación de acero en hornos eléctricos de arco (HEA) y de fundiciones con chatarra galvanizada en hornos eléctricos de inducción de crisol (Hl en Io sucesivo).
Por otra parte, los Neumáticos Fuera de Uso, (NFU en Io sucesivo), son residuos de gran volumen de generación, no biodegradables, de baja densidad de carga y de elevado poder calorífico, (7800 a 8200 kcal/kg), cuya eliminación de forma integral, es muy necesaria, no estando aún resuelta en su totalidad, con Ia dificultad añadida de que en los países desarrollados está prohibido su eliminación en vertederos, incluso troceados.
De entre los numerosos procedimientos estudiados y algunos desarrollados e implantados industrialmente, solo nos vamos a referir al que interesa a Ia invención, el tratamiento térmico de destilación- pirólisis aplicado a los NFU. Mediante este tratamiento térmico, realizadocon gases calientes enrarecidos en oxígeno o ausente de él, aplicado a los NFU, se obtienen tres efluentes: gas combustible asimilable al gas natural, aceites asimilados al gasoil, y una fracción sólida asimilable a un carbón con cenizas, compuestas de ZnO, filamentos de acero, y silicatos.
En el procedimiento propuesto en Ia presente invención, para Ia eliminación de polvos de filtro con cinc, se utiliza carbón mineral tipo de bajos contenidos, de cenizas, humedad, y materias volátiles, para el tratamiento de reducción carbotérmica de los óxidos metálicos presentes en los polvos de filtro. Este carbón puede ser sustituido con éxito, en el caso de ser necesario y exista un mercado del mismo, por Ia fracción sólida de Ia destilación - pirólisis de los NFU, Ia cual presenta contenidos de carbono muy similar al del carbón mineral citado, (> 80 % de carbono), con Ia ventaja añadida de que esta fracción también contiene cinc, y acero, y el carbono gasificado a CO, y/o CO2, no es contabilizable como gas de efecto invernadero, Io que aumenta su valor de uso en esta aplicación, a igualdad de precio con el carbón mineral, que por otra parte en el momento actual Ia sociedad incentiva su reciclado.
DESCRIPCIÓN DE LA INVENCIÓN. Breve descripción de Ia invención.
La presente invención se basa en tres aspectos fundamentales: Un primer aspecto de Ia presente invención es un horno eléctrico de inducción modificado, en Io sucesivo horno eléctrico de inducción de Ia invención, en el que se han incorporado los siguientes aspectos novedosos: i) Una segunda tapa móvil e intercambiable con Ia tapa convencional del propio horno eléctrico de inducción, que facilita el cambio de aplicación de aquél, de eliminar PF con cinc por reducción carbotérmica, por Ia de producir fundiciones de hierro.
Esta nueva tapa dispone de orificios necesarios para Ia comunicación del material contenido en el interior del horno con
Ia instalación de depuración de humos, con el sistema de alimentación de aglomerados y carbón, y con los medios de control del baño fundido, ü) Un generador de arco eléctrico o de haz de plasma de corriente continua, con (a) cátodo móvil desplazable verticalmente e instalado en Ia propia tapa móvil de i), realizado en barra de grafito, y (b) ánodo realizado en material conductor de Ia electricidad insertado en Ia pared del horno, en comunicación con el material fundido, iü) Una capacidad adicional del crisol del horno para contener mayor volumen de material fundido necesaria para trabajar con importantes cantidades de escoria.
Un segundo aspecto de Ia presente invención es el procedimiento para Ia eliminación de PF con Cinc, en adelante procedimiento de Ia invención, caracterizado por que se realiza i) una calcinación del PF con Cinc aglomerado y sin mezclar con carbón, a temperaturas comprendidas entre 900 y 1100 C0, y ii) una posterior reducción carbotérmica en estado fundido de los polvos de filtro con Cinc aglomerados y calcinados, realizada con carbón en el horno eléctrico de inducción de Ia invención, Io que permite el empleo de Ia fracción sólida de Ia destilación - pirólisis de los NFU.
Un tercer aspecto de Ia presente invención es el uso, tanto del horno de Ia invención como del procedimiento de Ia invención, en Ia eliminación de polvo de filtro (PF) con Cinc procedente de Ia fabricación de acero, (aleado o no), y de Ia producción de fundición de hierro con chatarra de acero galvanizado. Descripción de las figuras
Figura 1. ...
IV) Instalaciones para el tratamiento de reducción carbotérmica en estado fundido. B. Tapa convencional del horno eléctrico de inducción de crisol δ.Tolva dosificadora de materias carbonosas
8. Tolva dosificadora de PF aglomerados calcinados y calientes
9. Metal fundido
10. Metal sólido, (granalla de fundición o de ferroaleación especial, piezas de fundición de hierro, lingote de ferroaleación especial)
11. Escoria granulada
12. PF de alto contenido de ZnO
14. Cátodo del generador de arco eléctrico de corriente continua, o de plasma térmico 14 bis. Ánodo del generador de arco eléctrico de corriente continua, o de plasma térmico
15. Nueva tapa pivotante intercambiable del horno de inducción de crisol
16. Crisol del horno eléctrico de inducción 17. Instalación de filtros en seco para los humos del horno de inducción
18. Tapa convencional abatible del horno eléctrico de inducción
19. Piquera para vaciado del metal líquido
20. Piquera para el vaciado de Ia escoria líquida
21. Cámara suplementaria del crisol para admisión de escoria fundida 22. Escoria fundida.
Figura 2.
I.) Instalaciones de homogenización y mezclado de los PF con aglomerante y fundente. 1. Silo-Tolva de dosificación de PF
2. Tolva dosificadora de fundentes 3. Tolva dosificadora de aglomerante II.) Instalaciones de aglomeración
4. Tolva dosificadora de alimentación de Ia mezcla homogenizada al aglomerador III.) Instalaciones de calcinación de los aglomerados
6. Instalación de filtración en seco de humos
7. Horno de calcinación
8. Recipiente de transferencia de los aglomerados calcinados calientes al horno eléctrico de inducción 13. PF de Ia calcinación
IV.) Instalaciones de fusión
10. Piezas de metal solidificado
11. Escoria granulada
12. PF de alto contenido de ZnO 14. Ánodo y cátodo del generador de arco eléctrico o de haz de plasma térmico
15. Nueva tapa pivotante intercambiable del horno de inducción de crisol
16. Crisol del horno eléctrico de inducción de crisol 20. Piquera de vaciado intermitente de Ia escoria
Descripción detallada de Ia invención
La presente invención se basa en un nuevo diseño de horno eléctrico de inducción que posibilita Ia eliminación de polvo de filtro (PF) con Cinc procedente de Ia fabricación de acero, (aleado o no), y de Ia producción de fundición de hierro con chatarra de acero galvanizado, mediante un procedimiento basado en Ia reducción carbotérmica de los óxidos metálicos presentes en los PF, realizada a Ia temperatura en Ia que los materiales están fundidos dentro del horno eléctrico de inducción, (1500 a 1600 0C). Al fundir Ia mezcla del PF con carbón se produce metal, nuevo PF con gases, y escoria. Por reducción con carbono de los óxidos contenidos en el polvo de filtro se obtiene el metal, Ia materia volatilizable pasa a fase gas con el aumento de Ia temperatura, junto con gases no condensables al alcanzar su temperatura de volatilización, y Ia materia restante no reducible ni volatilizable, formará Ia escoria.
Para ello se concibe un horno eléctrico de inducción que incorpora un generador de arco eléctrico o de haz de plasma para poder fundir toda Ia materia inorgánica no metálica, ya que el horno eléctrico de inducción convencional no Io puede hacer. La incorporación de este generador permite, además, trabajar con grandes volúmenes de escoria fundida, ver A en Figura 1.
Por tanto, un primer aspecto de Ia presente invención es un horno eléctrico de inducción modificado, en Io sucesivo horno eléctrico de inducción de Ia invención, en el que se han incorporado los siguientes aspectos novedosos: i) Una segunda tapa móvil e intercambiable con Ia tapa convencional del propio horno eléctrico de inducción, que facilita el cambio de aplicación de aquél, de eliminar PF con cinc por reducción carbotérmica, por Ia de producir fundiciones de hierro. Esta nueva tapa dispone de orificios necesarios para Ia comunicación del material contenido en el interior del horno con Ia instalación de depuración de humos, con el sistema de alimentación de aglomerados y carbón, y con los medios de control del baño fundido, ii) Un generador de arco eléctrico o de haz de plasma de corriente continua, con (a) cátodo móvil desplazable verticalmente e instalado en Ia propia tapa móvil de i), realizado en barra de grafito, y (b) ánodo realizado en material conductor de Ia electricidad insertado en Ia pared del horno, en comunicación con el material fundido. iii) Una capacidad adicional del crisol del horno para contener mayor volumen de material fundido necesaria para trabajar con importantes cantidades de escoria.
El cátodo del generador de arco eléctrico descrito en ii) es desplazable para controlar Ia potencia eléctrica a suministrar a Ia carga a fundir y poder cebar o iniciar el arco, modificando Ia longitud del mismo.
Un aspecto preferente de Ia presente invención es el horno eléctrico de inducción de Ia invención caracterizado porque es un horno de crisol.
Un aspecto más preferente de Ia invención es el horno eléctrico de inducción de Ia invención de crisol caracterizado por que incorpora una piquera de colada adicional para el vaciado controlado de Ia escoria, bien por gravedad o bien por vuelco.
Otro aspecto más preferente de Ia invención es el horno eléctrico de inducción de Ia invención de crisol caracterizado porque Ia capacidad adicional del crisol iii) para contener mayor volumen de material fundido presenta una sección axial troncocónica.
Otro aspecto preferente de Ia invención es el horno eléctrico de inducción de Ia invención de crisol caracterizado porque Ia nueva piquera de colada de escoria, (¡V) dispone de cierre para mantenerla cerrada hasta que se desee vaciar Ia escoria.
Otro aspecto preferente de Ia presente invención es el horno eléctrico de inducción de Ia invención caracterizado porque es un horno de canal.
El horno eléctrico de inducción de Ia invención posibilita Ia aplicación de un nuevo procedimiento, basado en una calcinación previa del PF con Cinc aglomerado sin mezclar con carbón, a temperaturas comprendidas entre 900 y 1100 C0, y una posterior reducción carbotérmica en estado fundido de los polvos de filtro con Cinc aglomerados y calcinados realizada con carbón, en el horno eléctrico de inducción de Ia invención, a temperaturas comprendidas entre 1500 y 1600 ° C, a las que está totalmente fundida toda Ia carga del horno eléctrico de inducción.
Por tanto, un segundo aspecto de Ia presente invención es el procedimiento para Ia eliminación de PF con Cinc, en adelante procedimiento de Ia invención, caracterizado por que se realiza i) una calcinación del PF con Cinc aglomerado y sin mezclar con carbón, a temperaturas comprendidas entre 900 y 1100 C0, y ii) una posterior reducción carbotérmica en estado fundido de los polvos de filtro con Cinc aglomerados y calcinados, realizada con carbón en el horno eléctrico de inducción de Ia invención, Io que permite el empleo de Ia fracción sólida de Ia destilación - pirólisis de los NFU.
Este procedimiento conlleva las etapas previas de mezcla y homogenización del PF con aglomerantes y fundentes, y aglomeración en frío.
Las etapas de mezcla y homogenización tienen por objeto producir una mezcla homogénea, que sirva de material de carga de los equipos de aglomeración en frío (II, Figura 2). En estas etapas intervienen el equipo de mezcla (4, Figura 2), y las materias a mezclar: PF (1 , Figura 2), fundente (2, Figura 2), y aglomerante (3, Figura 2). La mezcla de las materias se realiza en Ia relación de pesos adecuada para: (a) producir un aglomerado poco friable con características mecánicas adecuadas a su manipulación (aglomerante) y, (b) obtener escorias fluidas a Ia temperatura de fusión del metal en Ia operación de fusión (fundente). La etapa de aglomeración en frío de Ia mezcla se puede realizar con disco peletizador y/o con prensa o con rodillos de briqueteado. La calcinación i) del PF con Cinc aglomerado y sin mezclar con carbón tiene como objetivo Ia separación de los compuestos volátiles, y reducir el consumo de energía eléctrica en Ia reducción carbotérmica posterior ii) mediante Ia descarga del horno de los aglomerados calientes a temperatura Io más próxima posible a Ia que se realiza Ia calcinación.
Por tanto, un aspecto preferente de Ia presente invención es el procedimiento de Ia invención en el que Ia transferencia en caliente del material producido en Ia calcinación i) al horno eléctrico de inducción modificado ii) se realiza mediante recipientes cerrados, convenientemente calorifugados y resistentes a Ia temperatura de salida de Ia calcinación i).
El horno de calcinación, (7, Figura 2), será similar a los utilizados en Ia cocción de ladrillos de Ia industria cerámica y/o de refractarios, con solera móvil, o de camino de rodillos, o sobre vagonetas móviles, etc., en disposición circular o lineal.
Los gases del horno de calcinación se llevan a su instalación de depuración de humo, (6, Figura 2), dotada de medios de limpieza y de filtración en seco de los gases, donde se separan y recogen los sólidos, 13, Figura 2), que son residuos a eliminar.
El aglomerado calcinado se descarga a Ia temperatura Io más próxima posible a Ia de calcinación, en recipientes cerrados revestidos interiormente de refractario (8, Figura 2), diseñados para mantenerlos calientes y en ausencia de aire por tiempo indefinido, y para poder utilizarlos, en su caso, como tolvas dosificadoras de carga del horno de fusión, (8 figura 1 ).
La reducción carbotérmica en estado fundido de los polvos de filtro con Cinc aglomerados (IV, Figura 2 y Figura 1 ) se realiza en el horno eléctrico de inducción de Ia invención (A, Figura 1 ), teniendo por objeto: a) La recuperación de los metales no volátiles de los residuos en forma de fundición, y/o ferroaleación especial, según que el PF tratado proceda de Ia fabricación de acero al carbono o fundición, y de aceros especiales y/o inoxidables, respectivamente. b) La volatilización del cinc metal, tras Ia reducción del ZnO, con el carbono de Ia carga, y, también de los compuestos volátiles no eliminados en Ia calcinación y, c) La escorificación de los compuestos restantes. La temperatura de trabajo del horno estará comprendida entre 1500 a 1600 ° C, a Ia cual, las operaciones de: fusión, reducción carbotérmica de los óxidos, escorificación de los no metálicos, y volatilización de los compuestos volátiles, se realizan con eficacia y rapidez, mejorando aún más, con el empleo de un generador de arco eléctrico de CC, (pudiéndose utilizar alternativamente, un generador de haz de plasma), que además permite Ia fusión de las escorias.
La reducción carbotérmica en estado fundido de los polvos de filtro con Cinc se inicia cuando Ia materia del crisol, (9, Figura 1 ), está liquida y a Ia temperatura deseada, y en una cantidad que supere el 70 % de su capacidad, caso del horno eléctrico de inducción de crisol. Los aglomerados al sumergirse en Ia materia fundida (9, Figura 1 ), se calientan y funden por contacto con aquélla. La materia fundida en contacto con el aglomerado del proceso de fusión se renueva y calienta por Ia agitación que produce en el baño de metal líquido Ia inducción electromagnética, y en simultaneidad, Ia escoria (11 , figura 1 ) se va acumulando sin fundir en Ia superficie de Ia materia fundida, al ser transparente al calentamiento por inducción.
Para fundirla, se dota al horno eléctrico de inducción de un generador de arco eléctrico de corriente continua, (o de haz de plasma), con sus electrodos, (14 y 14 bis, Figura 1 ), situados según se indica en A de Ia Figura 1 , para crear un arco dirigido a Ia escoria. El arco calienta y funde por radiación a Ia escoria, y Ia mantiene fundida. Las reacciones de reducción de óxidos susceptibles de producirse en Ia escoria y en su zona de contacto con el metal fundido, son:
(MeO(D + C(s) = Me(ι,g) + CO(g)),
MeO(i) + CO(g) = Me(i) + CO2 Fe(i) + ZnO0) = Zn(g) + FeO0) siendo MeO, el óxido metálico, Me, metal, C carbono del carbón, o del metal fundido, CO, y CO2, gases de Ia reducción carbotérmica. Estos, en su salida, atraviesan Ia escoria esponjándola y aumentando de volumen con Io que: a) se protege más superficie de pared del crisol de Ia radiación del arco, b) se facilita el paso de las piezas a través de Ia escoria, y Ia decantación de las gotas de metal.
Con el avance del ciclo, Ia cantidad de escoria acumulada aumenta, debiéndose vaciar al alcanzar el volumen prefijado. Ello se realiza por gravedad a través de una segunda piquera de colada, (20, Figura 1 ), situada en Ia parte inferior de Ia sección troncocónica del crisol aumentada, y dotada de cierre del tipo tapón cerámico troncocónico. Los gases y destilados que se producen en Ia fusión, se envían a Ia instalación de depuración de humos del horno, (17, Figura 1 ), para su limpieza y filtración en seco, en cuyos filtros se recogen los sólidos (12, Figura 1 ), siendo mayoritariamente ZnO con escasa presencia de compuestos volátiles, al haberse separado gran parte de ellos en Ia calcinación. El metal fundido que se va acumulando en el crisol con el avance de Ia fusión, (9, Figura 1 ), es del tipo de fundición de hierro, aleada o no, y aumenta de nivel con aquél, iniciándose su vaciado por vuelco, al alcanzar Ia capacidad nominal del crisol, para Io que se hace necesario cambiar previamente Ia tapa móvil, (15, Figura 1 A), por Ia convencional, (18, Figura 1 B). El vaciado del metal (10, Figura 1 ), concluye al hacerlo aproximadamente el 30 % de su volumen, Io que permite reiniciar Ia fusión de aglomerados de forma inmediata. Tras concluir Ia fusión y haber intercambiado las tapas, se podrá trabajar con el horno eléctrico de inducción en Ia forma convencional, aplicando Ia metalurgia necesaria, para obtener el producto de fundición de hierro deseado, o de ferroaleación especial, (10, Figura 1 ), (desoxidación, ajuste de composición y de temperatura).
Poder intercambiar Ia tapa convencional con Ia segunda tapa móvil adicional permite, además, poder duplicar Ia capacidad de tratamiento de Ia planta, si se dispone de otro horno eléctrico de inducción, (uno trabajaría en afino del metal, y el otro fundiendo aglomerados), sin duplicar Ia inversión, y con los mismos costes fijos de Ia planta.
El carbón utilizado en Ia reducción carbotérmica de los PF con Cinc en estado fundido puede proceder de Ia fracción sólida obtenida por Ia destilación - pirólisis de los NFU, a temperaturas comprendidas entre 400 y 600 0C, dada Ia similitud de composición y por contener acero y cinc, siendo esta posibilidad de utilizar este agente reductor adicional, un aspecto preferente de Ia presente invención.
La viabilidad de uso de Ia fracción sólida de Ia destilación - pirólisis de los NFU, en dicha aplicación ha sido demostrada en ensayos de laboratorio de reducción de escorias de alto contenido de óxido de hierro, en atmósfera de nitrógeno utilizando, negro de humo, fracción sólida de Ia destilación de NFU, y carbón a temperaturas comprendidas entre 1000 y 158O 0 C. Las altas temperaturas utilizadas en Ia reducción carbotérmica de los óxidos metálicos en escorias fundidas, (> 1550 ° C), favorecen Ia realización de las reacciones de reducción de los óxidos metálicos por el carbón, al aumentar el valor de Ia energía libre de reacción con Ia temperatura de forma exponencial, incluidos los casos de carbones poco reactivos. Este posible destino de Ia fracción sólida obtenida por Ia destilación de NFU entre 400 y 600 ° C, en Ia reducción carbotérmica, favorecería el reciclado de los NFU, como método alternativo o complementario de reciclado al generalmente aceptado de destinarlo a las cementeras como combustible, Io cual, caso de implantación del procedimiento como reductor en Ia invención, demandaría cantidades de NFU iguales o superiores a las posibles de las cementeras, dado el importante volumen de generación de polvos de filtro con cinc de las industrias siderúrgicas.
En base a Io anteriormente expuesto Ia presente invención proporciona un equipo y un procedimiento para Ia gestión de polvos de filtro con cinc, basada en Ia reducción carbotérmica sobre baño de escoria y metal fundidos con horno eléctrico de inducción modificado, para su eliminación con recuperación de sus metales, y minimización del volumen del residuo resultante a eliminar.
Este procedimiento presenta las ventajas de eficiencia térmica y metalúrgica, y bajo coste de aplicación debido a que:
• Minimiza el uso y consumo de energía eléctrica.
• Obtiene un PF asimilado a un concentrado de ZnO de gran pureza, (> 80 %, y con bajo contenido de álcalis y halogenuros).
• Utiliza preferentemente Ia fracción sólida de los NFU de existir en el mercado, aunque puede utilizar también carbón, para Ia reducción carbotérmica en estado fundido de los óxidos metálicos presentes en los PF con cinc. - Permite producir productos de fundición acabados, y, • No requiere de instalaciones de elevada capacidad de tratamiento.
Por tanto, un tercer aspecto de Ia presente invención es el uso, tanto del horno de Ia invención como del procedimiento de Ia invención, en Ia eliminación de polvo de filtro (PF) con Cinc procedente de Ia fabricación de acero, (aleado o no), y de Ia producción de fundición de hierro con chatarra de acero galvanizado.
EJEMPLO DE REALIZACIÓN DE LA INVENCIÓN
La naturaleza de los PF con cinc, y los agentes reductores de los óxidos metálicos de aquéllos.
La Tabla I muestra Ia composición química de muestras reales de PF con cinc generadas: en Ia producción de acero inoxidable (columna A), y en Ia fabricación de acero al carbono con hornos eléctricos de arco
(Columna B).
En ella se puede apreciar Ia existencia de los óxidos metálicos reducibles por el carbono, (Fe2O3; MnO, Cr2O3, NiO, ZnO, CuO, MoO3, parte del SiO2), y de compuestos volatilizares, K2O, Na2O, Cl,
PbO, CdO, SO2, y Fluoruros.
Se ha incluido en las columnas "Carbón" y C) de Ia Tabla I los análisis inmediatos de un carbón de antracita y de Ia fracción sólida de Ia destilación de NFU. El carbón corresponde al utilizado en Ia presente invención como reductor en Ia eliminación de PF de Ia fabricación de acero inoxidable por reducción carbotérmica en estado fundido. La fracción carbonosa corresponde a un análisis promedio de reciclados de NFU por pirólisis, utilizados en Ia presente invención en ensayos de reductibilidad a nivel laboratorio aplicados a escorias oxidadas de Ia fabricación de acero a diferentes temperaturas. Tabla I. Componente en % en peso de dos muestras de PF con cinc (Columnas A) y B)) y de una muestra de carbón mineral (columna "Carbón") y de fracción sólida procedente de Ia pirólisis de NFU (columna C).
Figure imgf000022_0001
fila "PXCaI" se refiere a pérdidas por calcinación. Adviértase Ia escasa diferencia en composición existente entre las dos materias carbonosas, (dos últimas columnas de Ia Tabla), los elevados contenidos de cinc y de SO3 de Ia fracción carbonosa (Columna C), a los que normalmente acompañan filamentos de acero, si no se separan previamente.
Etapa de calcinación del procedimiento de Ia invención
A los PF de las Columnas A) y B) de Ia tabla I se las sometió a una calcinación a 1000 ° C, obteniéndose las composiciones que figuran en las columnas A)CaI y B)CaIc de Ia Tabla II. Por tanto, Ia Tabla Il muestra Ia composición de dos PF con cinc, A) y B), antes y después de ser calcinadas a 1000 ° C, B)CaI y C)CaI.
Tabla II.
Figure imgf000023_0001
Figure imgf000024_0001
En Ia Tabla II se puede observar como Ia calcinación a 10000C de dichos PF producen Ia gasificación, parcial o total, de los compuestos volátiles, bien directamente o tras descomponerse por efecto térmico en otros volátiles. Así, se observa que Ia calcinación de los PF A) y B), produce una disminución de sus componentes iniciales de C, K2O, Na2O, PbO, Cl, F, CdO, SO3, de forma que desaparecen o disminuyen sensiblemente en Ia composición del PF calcinado. Los restantes compuestos de los PF, Fe2O3, ZnO, MnO, NiO, Cr2O3, etc. Aumentan su composición. Estos resultados confirman Ia necesidad de realizar una calcinación previa a Ia reducción carbotérmica en estado líquido, para eliminar estos compuestos volátiles evitando que dichos compuestos: i) consuman energía eléctrica de fusión en el horno eléctrico de inducción ii) que impurifiquen el ZnO, ya que los compuestos volátiles no entran en Ia carga del horno de fusión.
Por tanto, el inventor de Ia presente invención se baso en estos resultados para incorporar Ia etapa i), calcinación del PF con Cinc aglomerado y sin mezclar con carbón, del procedimiento de Ia invención. Por otra parte, Ia cantidad de compuestos volátiles presentes en los PF que se gasifican en Ia calcinación, aumentan con Ia temperatura a Ia que se realiza, por Io que Ia calcinación se ha de llevar a cabo a Ia mayor temperatura posible, ya que así se reducen las cantidades y presencia de compuestos volátiles en el tratamiento de fusión, pero evitando alcanzar Ia temperatura de fusión de los restantes componentes de los PF. Para optimizar Ia temperatura de calcinación de Ia etapa i) del procedimiento de Ia invención, se realizaron ensayos de calcinación sobre muestras de PF con cinc de Ia producción de acero al carbono, a las temperaturas de 950, 1000, y 1050 ° C, a través de cuyos resultados se ha podido comprobar que: a) las volatilizaciones aumentan con Ia temperatura, y b) a partir de una temperatura de calcinación, si se sigue aumentando, no se consiguen aumentar las pérdidas de impurezas volatilizares que puedan justificar el incremento del consumo de energía que ello requiere. Los resultados correspondientes se recogen en Ia tabla III, junto con Ia composición de los PF utilizado en los ensayos de calcinación (Columna A)).
Tabla III. Resultados de las calcinaciones de un PF con cinc A) procedente de Ia fabricación de acero al carbono, realizadas a 950, 1000, y 1050 0C, (% en peso)
Figure imgf000025_0001
Figure imgf000026_0001
Estos resultados demuestran que para este PF concreto el rango óptimo de temperaturas de Ia etapa de calcinación i) del procedimiento de Ia invención esta comprendido entre 1000 y 11000C. El rango óptimo se puede ver modificado dependiendo de Ia composición de los PF utilizados.
Etapa de reducción carbotérmica sobre escoria fundida del procedimiento de Ia invención.
Utilizando un horno eléctrico de arco de corriente continua de 3 MW de potencia, se realizo el tratamiento de eliminación de PF con cinc sin aglomerar ni calcinar, procedentes de Ia producción de acero inoxidable austenítico, utilizando Ia técnica de Ia reducción carbotérmica con carbón sobre escorias fundidas. La composición media de dicho PF se recoge en Ia columna B) de Ia Tabla IV. En esta tabla se muestran los valores medios correspondientes a las composiciones de metal, escoria, y nuevo PF enriquecido en ZnO, calculados a partir de los resultados obtenidos de 20 ensayos de reducción carbotérmica de tres toneladas de PF cada uno. Tabla IV. Resultados de Ia reducción carbotérmica de PF con cinc procedente de Ia fabricación de acero inoxidable y realizada con Ia aportación de energía del Arco eléctrico. Composiciones medias del PF con cinc, B), del carbón utilizados, y del metal, escoria, y nuevo PF, obtenidos.
Figure imgf000027_0001
B) PF de acero inoxidable
1 ) Los componentes son elementos, no óxidos, p.e. Fe2O3, es Fe
(hierro).
En Ia Tabla IV se puede apreciar que en Ia reducción carbotérmica de los PF con cinc utilizando carbón, y realizada con Ia aportación de energía del arco eléctrico:
1. Se obtienen metales de los óxidos, (Fe, Cr, Ni, Mo, Mn), incluso a partir de Ia cromita, Io que muy pocos procedimientos pueden hacer, al ser un óxido refractario.
2. El ZnO también se reduce, puede verse que solo se encuentra en el nuevo PF, como ZnO, tras pasar previamente a cinc metal, (a Ia temperatura de fusión de los PF, entre 1500 y 1600 ° C, el cinc metal obtenido por reducción del óxido por el carbón, pasa a gas, (907 ° C), donde se oxida nuevamente a ZnO.
3. El metal obtenido presenta un alto contenido de carbono, con níquel, cromo, como consecuencia de llevarse a cabo Ia reducción de los óxidos metálicos con carbono, por Io que se domina ferroaleación especial. 4. El nuevo polvo de filtro, presenta un aumento neto del contenido de ZnO respecto al PF inicial, así como de compuestos volátiles procedentes del PF inicial (K2O, Cl, Na2O, PbO, y CdO), por Io que el nuevo PF es un concentrado de ZnO muy impuro.
Estos resultados nos llevaron a elegir el arco eléctrico como medio de aporte de energía para llevar a cabo Ia reducción carbotérmica sobre escorias fundidas. El incorporar este arco eléctrico sobre un horno eléctrico de inducción presenta las siguientes ventajas: 1 ) Ia excelente eficiencia térmica del calentamiento del metal fundido, 2) ganar en flexibilidad, al permitir mantener el fundido por largos periodos de tiempo, sin grandes consumos de energía, 3) mejora Ia eficiencia térmica de Ia fusión por el arco eléctrico, ya que el sólido en proceso de fusión es bañado, en su caída, por el metal fundido contenido en el crisol del horno eléctrico de inducción, y 4) poder elaborar las calidades y cantidades deseadas de productos acabados de fundición de hierro. El conjunto de estas ventajas se traduce en menores costes de eliminación y mayor valor del metal, Io que permite reducir Ia dependencia de Ia economía de escala, en cuanto a capacidad del procedimiento, pudiendo ubicarlo en Ia proximidad del generador de polvo de filtro.
Si los compuestos volátiles no estuvieran presentes en el PF, (caso de utilizar PF calcinados como los de las Tablas Il y III), el ZnO obtenido sería de mayor pureza.
El hecho de haber realizado el tratamiento por reducción carbotérmica de los polvos de filtro sin aglomerar lleva consigo Ia obtención de un nuevo PF empobrecido en Zn más de Io previsto, debido a Ia presencia de arrastres de los PF sin fundir. Esto se puede apreciar en Ia composición del nuevo PF que se recoge en Ia última columna de Ia Tabla, ya que contiene Cr2O3, Fe2O3, NiO, MnO, CaO, MgO, SiO2, AI2O3, etc., en cantidades importantes, cuya presencia solo se justifica por ser arrastrado por los humos.
Si los PF se aglomeran y calcinan, previamente a su reducción carbotérmica, se obtienen un nuevo PF de alto contenido de ZnO, ya que el procedimiento de Ia invención permite Ia reducción sensible de Ia presencia de materias volátiles en los PF a fundir, y también por estar aglomerados.

Claims

REIVINDICACIONES
1. Horno de inducción modificado para eliminación de polvo de filtro con cinc caracterizado por que incorpora: i) Una segunda tapa móvil e intercambiable con Ia tapa convencional del propio horno eléctrico de inducción que dispone de orificios necesarios para Ia comunicación del material contenido en el interior del horno con Ia instalación de depuración de humos, con el sistema de alimentación de aglomerados y carbón, y con los medios de control del baño fundido, ü) Un generador de arco eléctrico o de haz de plasma de corriente continua con (a) cátodo móvil desplazable verticalmente e instalado en Ia propia tapa móvil, realizado en barra de gráfico, y (b) ánodo de pieza conductora de Ia electricidad insertada en Ia pared del horno, en comunicación con el material fundido, iü) Una capacidad adicional del crisol del horno para contener mayor volumen de material fundido necesaria para trabajar con importantes cantidades de escoria.
2. Horno de inducción modificado según reivindicación 1 caracterizado por que es un horno de crisol.
3. Horno de inducción modificado según reivindicación 2 caracterizado por que incorpora una piquera de colada adicional que posibilita el vaciado controlado de Ia escoria.
4. Horno de inducción modificado según reivindicación 2 caracterizado porque Ia capacidad adicional del crisol (iii) para contener mayor volumen de material fundido presenta una sección axial troncocónica de revolución.
5. Horno de inducción modificado según reivindicación 3 caracterizado porque Ia piquera de colada dispone de cierre para mantenerla cerrada hasta que se desee vaciar Ia escoria.
6. Horno de inducción modificado según reivindicación 1 caracterizado porque es un horno de canal.
7. Procedimiento para Ia eliminación de PF con Cinc caracterizado por que se realiza i) una calcinación del PF con Cinc aglomerado y sin mezclar con carbón, a temperaturas comprendidas entre 900 y 1100 C0, y ii) una posterior reducción carbotérmica en estado fundido de los polvos de filtro con Cinc aglomerados y calcinados previamente, realizada con carbón, en el horno eléctrico de inducción descrito en las reivindicaciones anteriores.
8. Procedimiento para Ia eliminación PF con Cinc según reivindicación 7 caracterizado por que Ia transferencia en caliente del material producido en Ia calcinación i) al horno eléctrico de inducción modificado ii) se realiza mediante recipientes cerrados, convenientemente calorifugados y resistentes a Ia temperatura de salida de Ia calcinación i)-
9. Procedimiento para Ia eliminación PF con Cinc según reivindicaciones 7-8 caracterizado por que el carbón utilizado Ia reducción carbotérmica ii) se sustituye por las fracciones sólidas obtenidas por Ia destilación de los neumáticos fuera de uso.
10. Uso del horno de inducción descrito en las reivindicaciones 1-6 en Ia eliminación de residuos metalúrgicos.
11. Uso del horno de inducción descrito en las reivindicaciones 1-6 en Ia eliminación de polvo de filtro (PF) con Cinc procedente de Ia fabricación de acero, (aleado o no), y de Ia producción de fundición de hierro con chatarra de acero galvanizado.
12. Uso del procedimiento descrito en las reivindicaciones 7-9, en Ia eliminación de residuos metalúrgicos.
13. Uso del procedimiento descrito en las reivindicaciones 7-9, en Ia eliminación de polvo de filtro (PF) con Cinc procedente de Ia fabricación de acero, (aleado o no), y de Ia producción de fundición de hierro con chatarra de acero galvanizado.
PCT/ES2008/070184 2007-10-04 2008-10-03 Horno de inducción modificado y procedimiento para la eliminación de residuos siderúrgicos con cinc con recuperación de sus metales. WO2009043961A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20080835495 EP2194350A1 (en) 2007-10-04 2008-10-03 Modified induction furnace and method for removing zinc-containing metallurgical waste, with recovery of the metals therefrom
US12/681,127 US8110019B2 (en) 2007-10-04 2008-10-03 Modified induction furnace and process for removing zinc-containing metallurgical waste, with recovery of the metals therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200702602 2007-10-04
ES200702602A ES2334870B1 (es) 2007-10-04 2007-10-04 Horno de induccion modificado para la eliminacion de residuos siderurgicos con cinc con recuperacion de sus metales.

Publications (1)

Publication Number Publication Date
WO2009043961A1 true WO2009043961A1 (es) 2009-04-09

Family

ID=40525850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070184 WO2009043961A1 (es) 2007-10-04 2008-10-03 Horno de inducción modificado y procedimiento para la eliminación de residuos siderúrgicos con cinc con recuperación de sus metales.

Country Status (4)

Country Link
US (1) US8110019B2 (es)
EP (1) EP2194350A1 (es)
ES (1) ES2334870B1 (es)
WO (1) WO2009043961A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776126B2 (en) 2008-03-14 2010-08-17 Heritage Environmental Services, Llc Processing parameters for operation of a channel induction furnace
WO2011002467A1 (en) * 2009-07-02 2011-01-06 Heritage Environmental Services, Llc Slag control in a channel induction furnace
WO2011002468A1 (en) * 2009-07-02 2011-01-06 Heritage Environmental Services, Llc Processing parameters for operation of a channel induction furnace
CN105177291A (zh) * 2015-08-21 2015-12-23 云南锡业股份有限公司 一种防止平顶型顶吹炉炉顶结渣的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072653B (zh) * 2011-01-14 2015-08-12 广德因达电炉成套设备有限公司 一种电弧感应炉及冶炼控制方法
KR101617167B1 (ko) * 2015-08-12 2016-05-03 한국수력원자력 주식회사 측면 배출게이트가 구비된 플라즈마 용융로
AT521739A3 (de) * 2018-09-24 2021-06-15 Anrin Bhattacharyya Verfahren und Vorrichtung zum Recycling von Stahlwerksabfällen aus der Stahlproduktion
CN110616334B (zh) * 2019-10-18 2021-04-06 内蒙古赛思普科技有限公司 一种协同处理半焦和含锌粉尘的方法
GB202108524D0 (en) * 2021-06-15 2021-07-28 Eestech Inc Improved smelting system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655437A (en) * 1985-05-03 1987-04-07 Huron Valley Steel Corp. Apparatus for simultaneously separating volatile and non-volatile metals
ES2018896A6 (es) * 1989-05-19 1991-05-16 Consejo Superior Investigacion Procedimiento para la obtencion de cinc, plomo y hierro metalico a partir de los polvos generados en las acerias electricas de arco.
US5030274A (en) * 1987-11-16 1991-07-09 Ward Vincent C Method for recovering metallics and non-metallics from spent catalysts
ES2034896A1 (es) * 1991-09-25 1993-04-01 Prerreducidos Integrados Del S Procedimiento para recuperar metales de residuos de acerias por reduccion carboquimica en horno de plasma termico.
US5590151A (en) * 1993-05-13 1996-12-31 Clecim Process for melting scrap iron in an electric furnace and installation for implementing the process
ES2192125A1 (es) * 2001-03-30 2003-09-16 Consejo Superior Investigacion Procedimiento de recuperacion de maletas reciclables, en residuos solidos de las industrias siderurgicas, por destilacion y reduccion carbotermica, en los estados solido y liquido.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATA212391A (de) * 1991-10-24 1994-09-15 Voest Alpine Ind Anlagen Verfahren zum entsorgen von organischen und anorganischen stoffen
KR100210649B1 (ko) * 1996-04-01 1999-07-15 야마오카 요지로 더스트로부터 산화아연을 회수하는 방법 및 그 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655437A (en) * 1985-05-03 1987-04-07 Huron Valley Steel Corp. Apparatus for simultaneously separating volatile and non-volatile metals
US5030274A (en) * 1987-11-16 1991-07-09 Ward Vincent C Method for recovering metallics and non-metallics from spent catalysts
ES2018896A6 (es) * 1989-05-19 1991-05-16 Consejo Superior Investigacion Procedimiento para la obtencion de cinc, plomo y hierro metalico a partir de los polvos generados en las acerias electricas de arco.
ES2034896A1 (es) * 1991-09-25 1993-04-01 Prerreducidos Integrados Del S Procedimiento para recuperar metales de residuos de acerias por reduccion carboquimica en horno de plasma termico.
US5590151A (en) * 1993-05-13 1996-12-31 Clecim Process for melting scrap iron in an electric furnace and installation for implementing the process
ES2192125A1 (es) * 2001-03-30 2003-09-16 Consejo Superior Investigacion Procedimiento de recuperacion de maletas reciclables, en residuos solidos de las industrias siderurgicas, por destilacion y reduccion carbotermica, en los estados solido y liquido.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776126B2 (en) 2008-03-14 2010-08-17 Heritage Environmental Services, Llc Processing parameters for operation of a channel induction furnace
WO2011002467A1 (en) * 2009-07-02 2011-01-06 Heritage Environmental Services, Llc Slag control in a channel induction furnace
WO2011002468A1 (en) * 2009-07-02 2011-01-06 Heritage Environmental Services, Llc Processing parameters for operation of a channel induction furnace
CN105177291A (zh) * 2015-08-21 2015-12-23 云南锡业股份有限公司 一种防止平顶型顶吹炉炉顶结渣的方法

Also Published As

Publication number Publication date
US20100242675A1 (en) 2010-09-30
US8110019B2 (en) 2012-02-07
ES2334870B1 (es) 2011-01-03
ES2334870A1 (es) 2010-03-16
EP2194350A1 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
WO2009043961A1 (es) Horno de inducción modificado y procedimiento para la eliminación de residuos siderúrgicos con cinc con recuperación de sus metales.
US8568507B2 (en) Method for processing solid or molten materials
CN104105802B (zh) 贱金属回收
CN101538634A (zh) 纯铁的冶炼工艺及设备
JPH09505854A (ja) ごみ焼却プラントからの固形残留物を処理する方法及びこの方法を実施する装置
TW422884B (en) Mineral feed processing
ES2940765T3 (es) Procedimiento de recuperación de pilas eléctricas desgastadas o desechadas portátiles
TW452598B (en) Process for thermal treatment of residual materials containing oil and iron oxide
Mc Dougall Ferroalloys processing equipment
CA2928766C (en) Smelting apparatus and method of using the same
MX2008002934A (es) Procedimiento para procesar materiales que contienen plomo??.
IT9012454A1 (it) Procedimento ed impianto per lo smaltimento di pile esauste ed altri rifiuti, tossici per la presenza di metalli pesanti, mediante trattamento di pirolisi riducente in bagni di ferro fuso
RU2678557C2 (ru) Металлургическая печь
JP2014205879A (ja) クロム鉱石の溶融還元方法
EP2668301B1 (en) Method and apparatus for making liquid iron and steel
Fernández López Modified induction furnace and method for removing zinc-containing metallurgical waste, with recovery of the metals therefrom
EP1566455B1 (en) A pyrometallurgic process for the treatment of steelwork residues,especially Waelz process residues
RU2317342C2 (ru) Способ восстановления оксидов металлов
JP3280265B2 (ja) 焼却残渣と飛灰の溶融処理装置及びその溶融処理方法
CN115584372A (zh) 一种熔炼含金属原料的方法
WO1985001750A1 (en) Smelting nickel ores or concentrates
DebRoy et al. Transition to Sustainable Steelmaking
WO2022069972A1 (en) Process and system for melting agglomerates
Morrison et al. Direct reduction process using fines and with reduced CO2 emission
WO2002079521A1 (es) Procedimiento de recuperación de metales reciclables, en residuos sólidos de las industrias siderúrgicas, por destilación y reducción carbotérmica, en los estados sólido y líquido.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08835495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008835495

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12681127

Country of ref document: US