WO2009043647A1 - Vorrichtung und verfahren zur bestimmung der dichtheit von befüllten verpackungen - Google Patents

Vorrichtung und verfahren zur bestimmung der dichtheit von befüllten verpackungen Download PDF

Info

Publication number
WO2009043647A1
WO2009043647A1 PCT/EP2008/061295 EP2008061295W WO2009043647A1 WO 2009043647 A1 WO2009043647 A1 WO 2009043647A1 EP 2008061295 W EP2008061295 W EP 2008061295W WO 2009043647 A1 WO2009043647 A1 WO 2009043647A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
packaging
tightness
determining
filled
Prior art date
Application number
PCT/EP2008/061295
Other languages
English (en)
French (fr)
Inventor
Dirk Fuchs
Ulrich Dörr
Siegfried Mischke
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Publication of WO2009043647A1 publication Critical patent/WO2009043647A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/227Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for flexible or elastic containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0038Investigating nanoparticles

Definitions

  • the invention relates to an apparatus and a method for determining the tightness of filled packaging.
  • Pressurization known which is fed via a nozzle, the free bag valve surface targeted with a short pulse of compressed air and flows in a leaky bag valve compressed air into the bag and causes a significant expansion of the bag.
  • the object of the invention is to provide a method for determining the tightness of filled packaging, wherein the complete packaging can be checked and this for both gas-permeable and gas-impermeable packaging.
  • the invention relates to a method for determining the tightness of filled packaging, which is characterized in that one
  • the actual value of the dust concentration and / or amount of dust can be compared with a limit value.
  • the limit value of the dust concentration can be determined by providing a tight package at a defined location or locations with a defined opening, such as cut, feeding the device and measuring the dust concentration and / or amount of dust. Due to the size of the defined opening, the limit and thus the decision as to whether the filled packaging is leaking can be influenced.
  • the bag may be leaky.
  • step (F) of the method according to the invention when the limit value of the dust concentration / dust quantity is exceeded, a measure which is to be carried out manually and / or automatically takes place can be initiated.
  • an optical and / or acoustic alarm can be triggered and / or the Forderorder stopped or not restarted and / or the leaking bag are automatically marked and / or automatically discharged.
  • the packaging can be very permeable to gases and / or air, such as valve sacks highly deaerated paper, less permeable to gas and / or air, such as plastic valve bags, or impermeable to gas and / or air, such as plastic bags from tubular bag machines.
  • the plastic bags can be made of PE.
  • the knocker may be a pneumatically driven double-acting cylinder ( Figure 1).
  • the power of the knocker can be variable and is set specifically for the application.
  • the knocker can with a force of 10 - 750 N, preferably from 100 - 500 N, more preferably from
  • the impact time of the knocker on the packaging can be 0.5 - 2 s.
  • the suction nozzle can be arranged at an angle of 0-180 °, preferably 80-100 °, particularly preferably 90 °, to the knocking direction or in a
  • Dusting device end. It can be used more suction and the extracted air can be merged into a stream of air.
  • the suction power at the suction nozzle can be variable, preferably 1000 - 5000 l / min., And is set specifically for the application.
  • the dust measuring device can measure according to the triboelectric method or the scattered light method.
  • a light source preferably a laser diode
  • the light scattered by the particles is detected by a detector.
  • the overlap of the transmitting beam and the receiving apparatus results in the measuring volume in the gas stream.
  • the scattered light intensity, that is the measurement signal is proportional to the dust concentration.
  • the DR 800 from Durag in Hamburg or the FW 102 from Sick / Maihak in Reute can be used as the dust measuring device.
  • the Staubmessgerat can be connected via a corresponding interface with a computer.
  • the probe of the dust measuring device can be vertical in the suction channel to be appropriate.
  • the optical window of the probe can be kept free by a constant amount of purge air and / or be blown free continuously or discontinuously.
  • the process can be operated continuously or batchwise.
  • the filled packaging may have a speed of 0 m / s during the performance of the method according to the invention.
  • the filled packaging may have a speed of> 0 m / s during the performance of the method according to the invention.
  • the filled package to the knocker may have a relative movement or the knocker moves while performing the method according to the invention with the same speed as the filled packaging.
  • the filled package can be conveyed manually, via a press belt, a vacuum gripper, a chute, a belt conveyor, a roller conveyor, a chain conveyor, a robot with a mechanical gripper or vacuum gripper and a layer palletizer to the test point, in which the inventive method is performed be transported from there.
  • the packages can be filled with powder or granules.
  • the packages may be filled with foodstuffs, active ingredients, pigments, fillers, plastic granules, composites and mixtures of the substances mentioned.
  • Fillers and pigments may be, for example, carbon blacks, for example furnace blacks, gas blacks, flame blacks, thermal blacks, channel blacks, plasma blacks, electric blacks, acetylene blacks, inversion blacks known from DE 19521565, Si-containing blacks known from WO 98/45361 or DE 196113796, metal-containing carbon blacks, known from WO 98/42778, or heavy metal-containing carbon blacks, such as these in the Synthesis gas production as a byproduct, titanium dioxides, silicas, for example, precipitated or fumed silicas, carbonates or borates.
  • Plastic granules may include, for example, polymethylmethacrylate, polyester, polyacrylate,
  • Polyamide or polyether granules The substances listed can be aftertreated or surface-modified, for example oxidized or coated.
  • the pigments or fillers may be wet, dry, oil or wax granulated.
  • granulation liquid it is possible to use water, silanes or hydrocarbons, for example gasoline or cyclohexane, with or without the addition of binders, for example molasses, sugar, lignosulfonates and numerous other substances, alone or in combination with one another.
  • the foods, active ingredients, pigments, fillers, plastic granules, composite and mixtures of the substances mentioned can have a mean particle diameter of 1 nm-10 mm.
  • the foods, active ingredients, pigments, fillers, plastic granules, composite and mixtures of the substances mentioned can have a particle size range between 1 nm (nanoparticles) and 125,000 nm, preferably between 60 nm and 125,000 nm.
  • Another object of the invention is a device for determining the tightness of filled packages, which is characterized in that these
  • (c) contains a dust measuring device.
  • the dust measuring device can be connected to a computer or control unit for data recording and / or for initiating further step (F) of the method according to the invention.
  • the inventive method has the advantage that parts or the entire package can be checked for coarse to minute leakage. In this case, the product escaping from the packaging can be vacuumed due to the concept.
  • the packaging is a valve bag made from two-ply highly deaerated paper.
  • the valve made of paper is coated inside with a so-called hotmelt.
  • the fully automatic welding of the valve is carried out by the so-called UPS method.
  • the hotmelt is transferred into a melt. After cooling, this should
  • FIG. 1b shows the schematic structure of the device according to the invention.
  • the packaging filled with Printex 45 and sealed using the UPS process is conveyed to the testing center with a belt conveyor.
  • the valve bag passes through a light barrier. If the light barrier is free again, the valve bag stops with a deviation of +/- 10mm exactly with the valve on the suction nozzle.
  • the belt conveyor stops during the measurement for 4 s. During this period the following procedure takes place: knocking of the Valve bag, carrying the extracted air to the probe, measuring the amount of particles, limit value comparison, data transfer to the subsequent palletizer for fully automatic delivery to the pallet with tight valve bags or fully automatic discharge on the pallet with leaking valve bags.
  • the knocker is a pneumatically driven double-acting cylinder and presses with a force of 200 N and a contact time of 1 s on the filled packaging.
  • the suction nozzle is at an angle of about 90 ° to
  • the suction nozzle is at a distance of 60 mm (+/- 10mm) to the bag valve. It has a cross section of 25 mm width and 110 mm height. The air velocity in this cross section is 20 m / s. The suction power at the suction nozzle is 3300 l / min. The FW 102 from Sick is used as the dust measuring device.
  • FIG. 3 shows a corresponding signal curve
  • both the test sequences of the individual valve bags (lower circuit diagram) and the associated measurement signals (upper curve) are shown.
  • the measured value is assigned to a container by the controller.
  • a valve sack with an obviously tight valve is pierced with a needle (1 mm in diameter) below the valve at a distance of 20 mm (+/- 10 mm).
  • the now obviously leaking bag is fed to the test.
  • the associated measurement signal is shown in Figure 3 as leaking container.
  • the limit value is set to a slightly lower value after repeated repetition to ensure a high detection rate of such leaking valve bags.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Basic Packing Technique (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung der Dichtheit von befüllten Verpackungen, wobei man (A) die Verpackung mechanisch durch einen Klopfer beansprucht, (B) die die Verpackung umgebende Luft und / oder die Verpackung entweichende Luft teilweise oder ganz in einen Saugstutzen absaugt, (C) die abgesaugte Luft einem Staubmessgerät zuführt und (D) die Staubkonzentration und/oder Staubmenge misst. Ferner betrifft die Erfindung eine Vorrichtung zur Bestimmung der Dichtheit von befüllten Verpackungen, wobei diese (a) mindestens einen Klopfer, (b) mindestens eine Absaugvorrichtung mit mindestens einem Saugstutzen, Saugrohr und Saugpumpe und (c) ein Staubmessgerät enthält.

Description

Vorrichtung und Verfahren zur Bestimmung der Dichtheit von befullten Verpackungen
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Bestimmung der Dichtheit von befullten Verpackungen.
Beim Befullen von Sacken treten teilweise Undichtigkeiten auf, die zu einem Austreten von abgefüllter Ware und Verschmutzung der Umgebung fuhren kann.
Aus DE 197 14 314 ist ein Verfahren zur Überprüfung der Ventildichtheit gefüllter Ventilsacke durch
Druckbeaufschlagung bekannt, wobei über eine Düse die freie Sackventilflache zielgerichtet mit einem kurzen Druckluftimpuls angeströmt wird und bei einem undichten Sackventil Druckluft in den Sack strömt und eine merkliche Ausdehnung des Sackes bewirkt.
Nachteile des bekannten Verfahrens sind, dass nur grobe Undichtigkeiten des Ventils erfasst werden und Produkt durch den Luftstrahl in die Umgebung geblasen wird.
Aufgabe der Erfindung ist es, ein Verfahren zur Bestimmung der Dichtheit von befullten Verpackungen zur Verfugung zu stellen, wobei die komplette Verpackung überprüft werden kann und dies sowohl für gasdurchlässige als auch für gasundurchlässige Verpackungen.
Gegenstand der Erfindung ist ein Verfahren zur Bestimmung der Dichtheit von befullten Verpackungen, welches dadurch gekennzeichnet ist, dass man
(A) die Verpackung mechanisch durch einen Klopfer beansprucht, (B) die die Verpackung umgebende Luft und / oder die Verpackung entweichende Luft teilweise oder ganz in einen Saugstutzen absaugt,
(C) die abgesaugte Luft einem Staubmessgerat zufuhrt und (D) die Staubkonzentration und/oder Staubmenge misst.
In einem weiteren Schritt (E) des erfindungsgemaßen Verfahrens kann der Istwert der Staubkonzentration und/oder Staubmenge mit einem Grenzwert verglichen werden.
Der Grenzwert der Staubkonzentration kann bestimmt werden indem man eine dichte Verpackung an einer definierten Stelle oder mehreren definierten Stellen mit einer definierten Öffnung, beispielsweise Schnitt, versieht, der Vorrichtung zufuhrt und die Staubkonzentration und/oder Staubmenge misst. Durch die Große der definierten Öffnung kann der Grenzwert und damit die Entscheidung, ob die befullte Verpackung undicht ist, beeinflusst werden.
Bei Überschreiten des zu bestimmenden Grenzwertes der Staubkonzentration / Staubmenge kann der Sack undicht sein.
In einem weiteren Schritt (F) des erfindungsgemaßen Verfahrens kann bei überschreiten des Grenzwertes der Staubkonzentration / Staubmenge eine manuell durchzuführende und / oder automatisch ablaufende Maßnahme eingeleitet werden.
Wird der Grenzwert der Staubkonzentration / Staubmenge überschritten kann ein optischer und /oder akustischer Alarm ausgelost werden und /oder die Forderstrecke angehalten oder nicht wieder angefahren werden und / oder der undichte Sack automatisch gekennzeichnet und / oder automatisch ausgeschleust werden.
Die Verpackung kann sehr durchlassig für Gase und / oder Luft sein, wie beispielsweise Ventilsacke aus hochentluftendem Papier, wenig durchlassig für Gas und / oder Luft sein, wie beispielsweise Ventilsacke aus Plastik, oder undurchlässig für Gas und / oder Luft, wie beispielsweise Plastiksacke aus Schlauchbeutelmaschinen. Die Plastiksacke können aus PE bestehen.
Der Klopfer kann ein pneumatisch getriebener doppelt wirkender Zylinder sein (Figur 1) . Die Kraft des Klopfers kann variabel sein und wird für die Anwendung gezielt eingestellt. Der Klopfer kann mit einer Kraft von 10 - 750 N, vorzugsweise von 100 - 500 N, besonders bevorzugt von
150 - 250 N, auf die Verpackung einwirken. Die Einwirkzeit des Klopfers auf die Verpackung kann 0,5 - 2 s betragen.
Der Saugstutzen kann in einem Winkel von 0 -180°, vorzugsweise 80-100°, besonders bevorzugt 90°, zur Klopfrichtung angeordnet sein oder in einer
Staubsammelvorrichtung enden. Es können mehrere Saugstutzen eingesetzt werden und die abgesaugte Luft kann zu einem Luftstrom zusammengeführt werden. Die Saugleistung am Saugstutzen kann variabel sein, vorzugsweise 1000 - 5000 l/min., und wird für die Anwendung gezielt eingestellt.
Das Staubmessgerat kann nach dem triboelektrischen Verfahren oder dem Streulichtverfahren messen. Bei dem Verfahren der Streulichtmessung strahlt eine Lichtquelle, vorzugsweise eine Laserdiode, die Staubpartikel mit moduliertem Licht an (Figur 2) . Das von den Partikeln gestreute Licht wird von einem Detektor erfasst. Die Überschneidung des Sendestrahls und der Empfangsapparatur ergeben das Messvolumen im Gasstrom. Die Streulichtintensitat, das heißt das Messsignal ist proportional zur Staubkonzentration. Als Staubmessgerat kann beispielsweise das D-R 800 der Firma Durag in Hamburg oder das FW 102 der Firma Sick / Maihak in Reute eingesetzt werden. Das Staubmessgerat kann über eine entsprechende Schnittstelle mit einem Computer verbunden sein. Die Sonde des Staubmessgerats kann senkrecht im Absaugkanal angebracht sein. Das optische Fenster der Sonde kann durch eine konstante Menge an Spülluft freigehalten und / oder kontinuierlich oder diskontinuierlich frei geblasen werden.
Das Verfahren kann kontinuierlich oder batchweise betrieben werden.
Bei dem batchweisen Betrieb kann die befüllte Verpackung während der Durchführung des erfindungsgemäßen Verfahrens eine Geschwindigkeit von 0 m/s haben. Bei der kontinuierlichen Fahrweise kann die befüllte Verpackung während der Durchführung des erfindungsgemäßen Verfahrens eine Geschwindigkeit von > 0 m/s haben. Dabei kann die befüllte Verpackung zum Klopfer eine relative Bewegung haben oder der Klopfer bewegt sich während der Durchführung des erfindungsgemäßen Verfahren mit derselben Geschwindigkeit wie die befüllte Verpackung. Die
Geschwindigkeit kann für die Anwendung gezielt bestimmt werden .
Die befüllte Verpackung kann manuell, über ein Pressband, ein Vakuumgreifer, eine Rutsche, einen Bandförderer, einen Rollenförderer, einen Kettenförderer, einen Roboter mit mechanischem Greifer oder Vakuumgreifer und einem Lagen- Palettierer zur Prüfstelle, bei der das erfindungsgemäße Verfahren durchgeführt wird, gefördert beziehungsweise von dort weitertransportiert werden. Die Verpackungen können mit Pulver oder Granulat gefüllt sein. Die Verpackungen können mit Nahrungsmittel, Wirkstoffen, Pigmenten, Füllstoffen, Kunststoffgranulaten, Komposite und Mischungen der genannten Stoffe befüllt sein. Füllstoffe und Pigmente können beispielsweise Ruße, zum Beispiel Furnaceruße, Gasruße, Flammruße, Thermalruße, Channelruße, Plasmaruße, Lichtbogenruße, Acetylenruße, Inversionsruße, bekannt aus DE 19521565, Si-haltige Ruße, bekannt aus WO 98/45361 oder DE 196113796, metallhaltige Ruße, bekannt aus WO 98/42778, oder schwermetallhaltige Ruße, wie diese beispielsweise bei der Synthesegasproduktion als Nebenprodukt anfallen, Titandioxide, Kieselsäuren, beispielsweise gefällte oder pyrogene Kieselsäuren, Carbonate oder Borate sein. Kunststoffgranulate können beispielsweise Polymethylmethacrylat-, Polyester-, Polyacrylate-,
Polyamide- oder Polyethergranulate sein. Die aufgeführten Stoffe können nachbehandelt oder oberflächenmodifiziert, beispielsweise oxidiert oder gecoatet, sein.
Die Pigmente oder Füllstoffe können nass-, trocken-, öl- oder wachsgranuliert sein. Als Granulationsflüssigkeit können Wasser, Silane oder Kohlenwasserstoffe, beispielsweise Benzin oder Cyclohexan, mit oder ohne Zugabe von Bindemitteln, beispielsweise Melasse, Zucker, Ligninsulfonate sowie zahlreiche anderen Stoffen alleine oder in Kombination miteinander, eingesetzt werden.
Die Nahrungsmittel, Wirkstoffe, Pigmente, Füllstoffe, Kunststoffgranulate, Komposit und Mischungen der genannten Stoffe können einen mittleren Partikeldurchmesser von 1 nm - 10 mm haben. Die Nahrungsmittel, Wirkstoffe, Pigmente, Füllstoffe, Kunststoffgranulate, Komposit und Mischungen der genannten Stoffe können einen Partikelgrößenbereich zwischen 1 nm (Nanopartikel) und 125000 nm, vorzugsweise zwischen 60 nm und 125000 nm, haben.
Ein weiterer Gegenstand der Erfindung ist eine Vorrichtung zur Bestimmung der Dichtheit von befüllten Verpackungen, welche dadurch gekennzeichnet ist, dass diese
(a) mindestens einen Klopfer,
(b) mindestens eine Absaugvorrichtung mit mindestens einem Saugstutzen, Saugrohr und Saugpumpe und
(c) ein Staubmessgerät enthält . Das Staubmessgerät kann zur Datenaufzeichnung und/oder zum Einleiten weiterer Schritt (F) des erfindungsgemäßen Verfahrens an einen Computer oder Steuereinheit angeschlossen sein.
Das erfindungsgemäße Verfahren hat den Vorteil, dass Teile oder die gesamte Verpackung auf grobe bis kleinste Undichtigkeit überprüft werden kann. Dabei kann das aus der Verpackung entweichende Produkt konzeptbedingt abgesaugt werden .
Beispiele
Für die Beispiele wird ein Printex 45 der Firma Evonik Degussa GmbH verwendet.
Die Verpackung ist ein Ventilsack aus zweilagigem hochentlüftendem Papier. Das Ventil aus Papier ist innen mit einem sogenannten Hotmelt beschichtet. Nach dem vollautomatischen Befüllen des Sackes erfolgt die vollautomatische Verschweißung des Ventils mit dem sogenannten USV Verfahren. Hierbei wird der Hotmelt in eine Schmelze überführt. Nach dem Erkalten soll diese
Schweißnaht undurchlässig für Printex 45 sein. Es werden bis zu 230 Ventilsäcke / h befüllt und verschweißt.
In Figur Ib ist der schematische Aufbau der erfindungsgemäßen Vorrichtung dargestellt.
Die mit Printex 45 befüllten und nach dem USV Verfahren verschweißten Verpackungen werden mit einem Bandförderer zur Prüfstelle befördert. Der Ventilsack durchläuft dabei eine Lichtschranke. Ist die Lichtschranke wieder frei, stoppt der Ventilsack mit einer Abweichung von +/- 10mm genau mit dem Ventil an der Saugdüse. Der Bandförderer bleibt während der Messung für 4 s stehen. In diesem Zeitraum findet folgender Ablauf statt: Klopfen des Ventilsackes, befördern der abgesaugten Luft bis zur Messsonde, Messen der Partikelmenge, Grenzwertvergleich, Datenübermittlung an den nachfolgenden Palettierer zwecks vollautomatischer Zuführung auf die Palette mit dichten Ventilsäcken oder vollautomatischer Ausschleusung auf die Palette mit undichten Ventilsäcken.
Der Klopfer ist ein pneumatisch getriebener doppelt wirkender Zylinder und drückt mit einer Kraft von 200 N und einer Einwirkzeit von 1 s auf die befüllte Verpackung. Der Saugstutzen ist in einem Winkel von ca.90° zur
Förderrichtung des Bandförderers angeordnet. Die Saugdüse steht in einer Entfernung von 60 mm (+/-10mm) zum Sackventil. Sie hat einen Querschnitt von 25 mm Breite und 110 mm Höhe. Die Luftgeschwindigkeit in diesem Querschnitt beträgt 20 m/s. Die Saugleistung am Saugstutzen beträgt 3300 l/min.. Als Staubmessgerät wird das FW 102 der Firma Sick eingesetzt.
Figur 3 zeigt einen entsprechenden Signalverlauf.
Erläuterungen Signalverlauf
Auf der Zeitachse sind sowohl die Prüfabläufe der einzelnen Ventilsäcke (unteres Schaltdiagramm) als auch die zugehörigen Messsignale (obere Kurve) dargestellt. Der Messwert wird durch die Steuerung einem Gebinde zugeordnet.
Grenzwertbestimmung
Ein Ventilsack mit offensichtlich dichtem Ventil wird mit einer Nadel (Durchmesser 1 mm) unterhalb des Ventils in einer Entfernung von 20 mm (+/-10 mm) angestochen. Der nun offensichtlich undichte Sack wird der Prüfstelle zugeführt. Das zugehörige Messsignal ist in der Figur 3 als Undichtes Gebinde dargestellt. Der Grenzwert wird nach mehrmaliger Wiederholung auf einen etwas tieferen Wert festgelegt, um eine hohe Erkennungsrate derartig undichter Ventilsäcke zu sichern .

Claims

Patentansprüche
1. Verfahren zur Bestimmung der Dichtheit von befullten Verpackungen, dadurch gekennzeichnet, dass man (A) die Verpackung mechanisch durch einen Klopfer beansprucht,
(B) die die Verpackung umgebende Luft und / oder die Verpackung entweichende Luft teilweise oder ganz in einen Saugstutzen absaugt, (C) die abgesaugte Luft einem Staubmessgerat zufuhrt und
(D) die Staubkonzentration und/oder Staubmenge misst.
2. Verfahren zur Bestimmung der Dichtheit von befullten Verpackungen gemäß Anspruch 1, dadurch gekennzeichnet, dass man
(E) den Istwert der Staubkonzentration und/oder Staubmenge mit einem Grenzwert vergleicht.
3. Verfahren zur Bestimmung der Dichtheit von befullten Verpackungen gemäß Anspruch 2, dadurch gekennzeichnet, dass man
(F) bei Überschreiten des Grenzwertes der Staubkonzentration / Staubmenge eine manuell durchzuführende und / oder automatisch ablaufende Maßnahme einleitet.
4. Vorrichtung zur Bestimmung der Dichtheit von befullten Verpackungen, dadurch gekennzeichnet, dass diese
(a) mindestens einen Klopfer,
(b) mindestens eine Absaugvorrichtung mit mindestens einem Saugstutzen, Saugrohr und Saugpumpe und (c) ein Staubmessgerat enthalt .
PCT/EP2008/061295 2007-09-28 2008-08-28 Vorrichtung und verfahren zur bestimmung der dichtheit von befüllten verpackungen WO2009043647A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007046654.6 2007-09-28
DE102007046654A DE102007046654B4 (de) 2007-09-28 2007-09-28 Vorrichtung und Verfahren zur Bestimmung der Dichtheit von befüllten Verpackungen

Publications (1)

Publication Number Publication Date
WO2009043647A1 true WO2009043647A1 (de) 2009-04-09

Family

ID=40044024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/061295 WO2009043647A1 (de) 2007-09-28 2008-08-28 Vorrichtung und verfahren zur bestimmung der dichtheit von befüllten verpackungen

Country Status (2)

Country Link
DE (1) DE102007046654B4 (de)
WO (1) WO2009043647A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983316A (zh) * 2017-02-24 2019-07-05 Mits有限公司 用于检测柔性容器的密封性的方法
CN113567052A (zh) * 2021-06-03 2021-10-29 襄阳达安汽车检测中心有限公司 一种汽车粉尘密封性实验用粉尘、配置方法及实验方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008047820A1 (de) * 2008-09-18 2010-04-01 Haver & Boecker Ohg Verfahren und Vorrichtung zur Undichtigkeitsprüfung von mit Schüttgut gefüllten Säcken und Transporteinrichtung
DE102010055195B4 (de) * 2010-12-20 2018-04-26 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Vorrichtung und Verfahren zur Dichtheitsprüfung an geschlossenen hohlen Bauteilen und Verpackungen

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091114A (en) * 1959-12-17 1963-05-28 Air Reduction Method and apparatus for testing sealed packages for leaks
DE1185399B (de) * 1962-06-12 1965-01-14 Pelikan Werke Wagner Guenther Vorrichtung zum Pruefen der Dichtigkeit der Bodenschweissnaht und des Verschlusses von Tintenpatronen
CH388171A (de) * 1960-06-18 1965-02-15 Hesser Ag Maschf Verfahren und Vorrichtung zum Prüfen von evakuierten Packungen aus flexiblen Packstoffen auf Dichtheit bzw. Lufteinschluss
EP0257248A2 (de) * 1986-08-19 1988-03-02 Impulsphysik GmbH Streulichtmessgerät
JPS6479635A (en) * 1987-09-22 1989-03-24 Shokuhin Sangyo Onrainsensaa G Online inspecting device for leak of gas-filled package
US5029463A (en) * 1990-03-01 1991-07-09 American Air Liquide Leak detection device for in-line measurement of package integrity
US6573836B1 (en) * 2002-01-04 2003-06-03 Nevmet Corporation Method and apparatus for detecting the presence of powdered material in envelopes
EP1324014A1 (de) * 2000-10-02 2003-07-02 Takachiho Seiki Co.,Ltd Leckerkennungseinrichtung für hermetische gehäuse
EP1744144A1 (de) * 2005-07-12 2007-01-17 Martechnic GmbH Verfahren und Einrichtung zur Messung der Belastung einer Atmosphäre mit Aerosolen und Stäuben

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411721C1 (de) * 1984-03-29 1985-04-11 Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH, 3000 Hannover Abgeschirmte,hochradioaktive,nasschemische Zelle einer kerntechnischen Anlage mit einer Vorrichtung zur Tropfleckerkennung und Verfahren zur Anwendung in einer derartigen Zelle
US6072187A (en) * 1994-07-06 2000-06-06 Fisher Pierce Co. Apparatus and method for reducing stray laser light in particle sensors using a narrow band filter
US5572327A (en) * 1995-02-01 1996-11-05 W. L. Gore & Associates, Inc. Remote leak detection sensing method and device
US5869550A (en) 1995-05-22 1999-02-09 Cabot Corporation Method to improve traction using silicon-treated carbon blacks
DE19521565A1 (de) 1995-06-19 1997-01-16 Degussa Verbesserte Furnaceruße und Verfahren zu ihrer Herstellung
DE19613796A1 (de) 1996-04-04 1997-10-09 Degussa Ruß und Verfahren zu seiner Herstellung
US6017980A (en) 1997-03-27 2000-01-25 Cabot Corporation Elastomeric compounds incorporating metal-treated carbon blacks
DE19714314C1 (de) 1997-04-08 1998-05-28 Kali & Salz Beteiligungs Ag Verfahren und Einrichtung zur Überprüfung der Ventildichtheit gefüllter Ventilsäcke
DE19723799A1 (de) * 1997-06-06 1998-12-10 Tech Loesungen Mbh Ges Verfahren und Vorrichtung zur optischen Erfassung von Leckstellen in einer mit Fluid gefüllten Verpackung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091114A (en) * 1959-12-17 1963-05-28 Air Reduction Method and apparatus for testing sealed packages for leaks
CH388171A (de) * 1960-06-18 1965-02-15 Hesser Ag Maschf Verfahren und Vorrichtung zum Prüfen von evakuierten Packungen aus flexiblen Packstoffen auf Dichtheit bzw. Lufteinschluss
DE1185399B (de) * 1962-06-12 1965-01-14 Pelikan Werke Wagner Guenther Vorrichtung zum Pruefen der Dichtigkeit der Bodenschweissnaht und des Verschlusses von Tintenpatronen
EP0257248A2 (de) * 1986-08-19 1988-03-02 Impulsphysik GmbH Streulichtmessgerät
JPS6479635A (en) * 1987-09-22 1989-03-24 Shokuhin Sangyo Onrainsensaa G Online inspecting device for leak of gas-filled package
US5029463A (en) * 1990-03-01 1991-07-09 American Air Liquide Leak detection device for in-line measurement of package integrity
EP1324014A1 (de) * 2000-10-02 2003-07-02 Takachiho Seiki Co.,Ltd Leckerkennungseinrichtung für hermetische gehäuse
US6573836B1 (en) * 2002-01-04 2003-06-03 Nevmet Corporation Method and apparatus for detecting the presence of powdered material in envelopes
EP1744144A1 (de) * 2005-07-12 2007-01-17 Martechnic GmbH Verfahren und Einrichtung zur Messung der Belastung einer Atmosphäre mit Aerosolen und Stäuben

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983316A (zh) * 2017-02-24 2019-07-05 Mits有限公司 用于检测柔性容器的密封性的方法
US11262268B2 (en) 2017-02-24 2022-03-01 Single Use Support Gmbh Method for inspecting a seal of a flexible container
CN113567052A (zh) * 2021-06-03 2021-10-29 襄阳达安汽车检测中心有限公司 一种汽车粉尘密封性实验用粉尘、配置方法及实验方法
CN113567052B (zh) * 2021-06-03 2024-03-22 襄阳达安汽车检测中心有限公司 一种汽车粉尘密封性实验用粉尘、配置方法及实验方法

Also Published As

Publication number Publication date
DE102007046654A1 (de) 2009-04-02
DE102007046654B4 (de) 2012-01-26

Similar Documents

Publication Publication Date Title
WO2009043647A1 (de) Vorrichtung und verfahren zur bestimmung der dichtheit von befüllten verpackungen
US11207859B2 (en) Powdery-material feeding device and powdery-material feeding method
CN104736995A (zh) 粒子束形成装置
CA2135877A1 (en) A method and system for sampling and determining the presence of compounds in containers
EP0580063B1 (de) Verfahren und Vorrichtung zum Prüfen der Dichtigkeit von Folienbeuteln
KR101803157B1 (ko) 벌크차량의 분립체 화물 적재 시스템
DE19813215A1 (de) Schlauchbeutelmaschine
CN108313338A (zh) 一种饲料粉料自动充填分装设备
KR101361976B1 (ko) 카본블랙 과립, 카본블랙 과립의 제조 방법 및 그의 용도
EP2030893A1 (de) Vorrichtung und Verfahren zur mengengesteuerten Abfüllung pulverförmiger Substanzen in Behältnisse
CN111272693A (zh) 一种基于近红外光谱的水泥生料成分在线检测装置
CN206654523U (zh) 一种自动输送定位装置
CN206384242U (zh) 一种包装机条盒纸供给到位检测装置
DE10231947B4 (de) Verteilvorrichtung für nicht unter Druck stehendes, trockenes Pulver
EP2473831B1 (de) Verfahren sowie prüfvorrichtung zur berührungslosen dichtigkeitsprüfung von packmitteln
EP2649440A1 (de) Inspektionsvorrichtung zur fremdstoffinspektion
DE102008047820A1 (de) Verfahren und Vorrichtung zur Undichtigkeitsprüfung von mit Schüttgut gefüllten Säcken und Transporteinrichtung
US4158682A (en) Control of carbon black densification
EP2153200A1 (de) Vorrichtung und verfahren zur bestimmung des transportverhaltens bei pneumatischer förderung von granulaten
CN211027119U (zh) 一种爆珠外观检测仪
EP2778078A1 (de) Messvorrichtung für Schlauchbeutelverpackungsmaschinen
CN104443582B (zh) 粉体大包装袋内袋破损检测装置
CN206155857U (zh) 一种载带包装一体机
CN103630287B (zh) 一种气雾剂罐内压检查装置
DE10111833C1 (de) Messsonde zur Bestimmung der Grösse von bewegten Partikeln in transparenten Medien

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08803321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08803321

Country of ref document: EP

Kind code of ref document: A1