WO2009043616A1 - Procédé de balayage - Google Patents

Procédé de balayage Download PDF

Info

Publication number
WO2009043616A1
WO2009043616A1 PCT/EP2008/059855 EP2008059855W WO2009043616A1 WO 2009043616 A1 WO2009043616 A1 WO 2009043616A1 EP 2008059855 W EP2008059855 W EP 2008059855W WO 2009043616 A1 WO2009043616 A1 WO 2009043616A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
sampling
phase
fundamental
waveform
Prior art date
Application number
PCT/EP2008/059855
Other languages
German (de)
English (en)
Inventor
Matthieu Richard
Joel Bonny
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2009043616A1 publication Critical patent/WO2009043616A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • H03M1/1265Non-uniform sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • G01R25/005Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller, or for passing one of the input signals as output signal

Definitions

  • the invention relates to a sampling method for the determination of the phase of a substantially sinusoidal waveform with at least one fundamental frequency, which is distorted by harmonics of the fundamental frequencies, wherein by means of samples having a sampling frequency f s several samples within a period of the waveform determined and from the phase is calculated ,
  • sampling theorem states that a continuous, band limited signal, with a minimum frequency of 0 Hz and a maximum frequency f max , must be sampled with a frequency greater than 2 * f max , so that from the discrete-time signal thus obtained the original signal without loss of information, but with infinitely great effort, reconstructed or, with finite effort, can approximate as accurately as possible.
  • the sampling frequency sampling frequency
  • sampling theorem one must know or find out before sampling maximum frequency, for example by means of the Fourier analysis of a high-frequency sampled signal, and then that the signal, for example for the purpose of digitizing, with more than double Frequency must be sampled, if you want to reconstruct the signal in a good approximation.
  • the cutoff frequency of the signal to be sampled which can be reconstructed without error at the sampling frequency, is called Nyquist frequency f N and corresponds to half the sampling frequency f s .
  • the object is achieved by simultaneously determining the phase of at least one fundamental frequency fi of the signal profile and the phase of the harmonics by eliminating the harmonics lying below or above.
  • a particularly preferred variant of the method provides that the sampling frequency f s is carried out at a frequency such that a Nyquist cutoff frequency f N , which corresponds to half the sampling frequency f s, corresponds to at least twice the frequency of the highest harmonic to be eliminated. As a result, it can be achieved that this highest harmonic to be eliminated can be reliably detected and then the elimination method can be applied.
  • a number of samples is selected at the sampling frequency f s along a period of the signal curve which is smaller than the one
  • the scanning shift is repeated in accordance with the number of possible sampling points at the sampling frequency f s within a period of the signal curve and a phase average is calculated from the respectively determined phase values, the statistical error in the phase determination can thus be considerably reduced.
  • phase of the fundamental frequency fi and the phase of further fundamental frequencies f 2 , f 3 of the signal course are determined simultaneously by elimination calculation.
  • This extension of the sampling method can be used particularly advantageously if the base frequency f 2 is assumed to be a frequency which is twice as high as the fundamental frequency fi, and the fundamental frequency f 3 is assumed to be three times as high as the fundamental frequency f.
  • FIG. 1 schematically shows the sampling method according to the prior art in the case of a sinusoidal waveform
  • FIG. 2 shows the sampling method in the case of a signal waveform distorted with harmonics
  • FIG. 3 shows a frequency diagram
  • FIG. 4 schematically shows the scanning method according to the invention
  • FIG. 5 shows another frequency diagram
  • FIG. 6 schematically shows a variant of the scanning method
  • FIG. 7 shows a frequency diagram with a filter function
  • FIG. 8 schematically shows a transmission characteristic curve for a filter function.
  • FIG. 1 shows the sampling method in the case of a sinusoidal waveform 1, as has hitherto been conventionally used, wherein the time-varying amplitude 20 of the signal waveform 1 is shown as a function of time 10.
  • an undistorted sine signal is shown, whose waveform 1 is determined along its period by means of equidistant samples at a sampling frequency f s which corresponds to four times the frequency of the fundamental frequency fi 31 to be measured, one sample value Si , S 2 , S 3 and S 4 101 ... 104 and the phase ⁇ of the waveform 1 is determined by the relationship
  • FIG. 2 shows a distorted signal course 1 whose fundamental frequency fi 31 is distorted by superposition of a first and a second harmonic harmonic 32, 33 with the frequency 2 * f i or 3 * f i.
  • FIG. 3 shows the situation in a frequency diagram which can be determined by a Fourier analysis in which the amplitudes 20 of the discrete frequencies 30 contained in the signal course 1 are represented.
  • these are the fundamental frequency fi 31 and the first and second harmonics 32, 33, with respect to the fundamental frequency fi 31 reduced amplitude, the frequency of which corresponds twice or three times the fundamental frequency fi.
  • the sampling frequency f s in the example shown corresponding to the sampling points in Figure 1 of four times the frequency to be measured fundamental frequency fi 31.
  • the second harmonic 33 with the frequency 3 * fi can no longer be detected unambiguously.
  • FIG. 4 shows the same distorted sinusoidal waveform 1, wherein the sampling method is carried out according to the invention with a sampling frequency f s 40, such that the Nyquist cutoff frequency f N 41, which corresponds to half the sampling frequency f s 40, is at least twice the frequency of the sampling frequency f s highest to be eliminated harmonic 33 corresponds.
  • the sampling frequency f s 40 is 12 times higher than the fundamental frequency fi 31 to be measured.
  • the Nyquist cutoff frequency f N 41 is twice as high as the frequency of the harmonic 33 to be eliminated.
  • the number of samples at the sampling frequency f s 40 along a period of the waveform 1 is selected to be smaller than the number of sampling points used in the Sampling frequency f s 40 theoretically possible.
  • these are only 8 sampling points at which the sampling values S 0 (start of period) 100, S 2 102, S 3 103, S 5 105, S 6 106, S 8 108, S 9 109 and S 11 111 are determined.
  • the time intervals between two sampling points along the period of the signal profile 1 are different borrowed, wherein the smallest time interval of two consecutive sampling points by the sampling frequency f s 40 is specified.
  • FIG. 5 shows the state of affairs according to the sampling shown in FIG. 4 in a frequency diagram.
  • Phase® - + aretane) - * n ') 3 5 ⁇ i (3)
  • FIG. 6 shows a method variant of the scanning method.
  • the sample points are shifted by a sample shift 50 by the smallest time interval determined by the sampling frequency f s 40, respectively, and new samples 100, ..., 112 within the new period of the signal waveform 1 determined.
  • S 0 beginning of period
  • Samples S 1 101, S 3 103, S 4 104, S 6 106, S 7 107, S 9 109, SlO 9 110 and S 12 112 determined.
  • a phase determination for each new sample can be made with the relationship
  • the sampling shift 50 can be repeated in accordance with the number of possible sampling points at the sampling frequency f s 40 within a period of the signal sequence 1 and a phase difference can be determined from the respectively determined phase values.
  • the sampling method has been expanded with regard to a simultaneous elimination calculation for determining the phase of the fundamental frequency fi 31 and the phases of further fundamental frequencies f 2 , f 3, 34, 37 of the signal course 1.
  • the fundamental frequency f 2 34 is assumed to be a frequency twice as high as the fundamental frequency fi 31
  • the fundamental frequency f 3 37 is assumed to be three times as high as the fundamental frequency fi 31.
  • the harmonics 32, 33, 35, 36, 38, 39 of the fundamental frequencies 31, 34, 37 can be eliminated, which corresponds to an additional improvement.
  • FIG. 7 shows the fundamental frequencies 31, 34, 37 as well as their harmonics 32, 33, 35, 36, 38, 39 in the frequency diagram.
  • the Nyquist cutoff frequency f N 41 corresponding to half the sampling frequency f s 40 located.
  • a 72-fold sampling frequency f s 40 is used in comparison to the lowest fundamental frequency 31, which is advantageous in particular for the equalization of non-pure sine signals.
  • the fundamental frequencies fi 31 should correspond as far as possible to a pure sine function, since the first and second harmonic harmonics 32, 33 of the fundamental frequencies fi 31 influence the values of the fundamental frequencies 34, 37.
  • analog filters with a filter function 60 are used whose highest permeability lies essentially in the frequency range of the fundamental frequencies 31, 34, 37. Harmonics of higher orders can thus be filtered.
  • the filter function 60 should be selected accordingly.
  • FIG. 8 schematically shows a typical filter function 60, wherein the logarithm of the transmission 61 is represented as a function of the logarithm of the frequency (log f) 62 is.
  • the maximum of the filter function 60 lies in the frequency range of the fundamental frequencies 31, 34, 37.
  • the scanning method can also be applied to fundamental frequencies 31, 34, 37 having a fractionally rational relationship, e.g. fi, 4/3 * fi and 5/3 * fi or for example fi, 3/2 * fi and 5/2 * fi.

Abstract

La présente invention concerne un procédé de balayage pour la détermination de la phase d'une courbe de signal sensiblement sinusoïdale comportant au moins une fréquence de base, laquelle est faussée par les harmoniques des fréquences de base. Plusieurs valeurs de balayage sont déterminées dans une période de la courbe de signal, au moyen de balayages à une fréquence de balayage fS, et la phase est calculée à partir de ces valeurs. La phase d'au moins une fréquence de base f1 de la courbe de signal et la phase des harmoniques sont déterminées simultanément par l'élimination des harmoniques se trouvant en dessous ou au-dessus. Ce procédé permet un calcul rapide de la position de phase et peut être facilement converti dans des systèmes informatiques.
PCT/EP2008/059855 2007-09-27 2008-07-28 Procédé de balayage WO2009043616A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007046318.0 2007-09-27
DE200710046318 DE102007046318A1 (de) 2007-09-27 2007-09-27 Abtastverfahren

Publications (1)

Publication Number Publication Date
WO2009043616A1 true WO2009043616A1 (fr) 2009-04-09

Family

ID=39942965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/059855 WO2009043616A1 (fr) 2007-09-27 2008-07-28 Procédé de balayage

Country Status (3)

Country Link
DE (1) DE102007046318A1 (fr)
TW (1) TW200914845A (fr)
WO (1) WO2009043616A1 (fr)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541009A (en) * 1981-07-24 1985-09-10 Thomson Csf Process and device for sampling a sine wave signal by a multiple frequency signal
US4695792A (en) * 1985-12-16 1987-09-22 Ecole Polytechnique Method and system for measuring the amplitude and phase angle of harmonics in a periodic signal
EP0541827A1 (fr) * 1991-11-04 1993-05-19 Dr. Johannes Heidenhain GmbH Appareil pour produire des signaux périodiques, avec un absence d'harmoniques supérieurs
US5361312A (en) * 1990-05-02 1994-11-01 Carl-Zeiss-Stiftung Method and apparatus for phase evaluation of pattern images used in optical measurement
US5487016A (en) * 1994-11-04 1996-01-23 Eaton Corporation Apparatus for generating a signal representative of total harmonic distortion in waveforms of an A/C electrical system
JPH08184618A (ja) * 1994-12-27 1996-07-16 Fuji Electric Co Ltd 正弦波交流信号の周波数検出方法
DE19532246A1 (de) * 1995-09-01 1997-03-06 Heidenhain Gmbh Dr Johannes Vorrichtung zur Filterung von Oberwellen-Signalanteilen
EP0821503A2 (fr) * 1996-07-22 1998-01-28 Nippon Telegraph And Telephone Corporation Procédé et circuit de récupération d'horloge
WO2001057870A1 (fr) * 2000-02-02 2001-08-09 Infineon Technologies North America Corp. Rythme asynchrone pour recuperation du rythme interpolee
EP1168744A1 (fr) * 2000-02-04 2002-01-02 Mitsubishi Denki Kabushiki Kaisha Dispositif de reproduction de temporisation et demodulateur
WO2003021197A1 (fr) * 2001-08-30 2003-03-13 Microe Systems Corporation Reseau de photodetecteurs avec suppression des harmoniques
EP1746427A1 (fr) * 2005-07-22 2007-01-24 Institute of Electronics and Computer Science of Latvian University Méthode et appareil pour des évaluations spectrales adaptées à l'échantillonnage non-uniforme

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541009A (en) * 1981-07-24 1985-09-10 Thomson Csf Process and device for sampling a sine wave signal by a multiple frequency signal
US4695792A (en) * 1985-12-16 1987-09-22 Ecole Polytechnique Method and system for measuring the amplitude and phase angle of harmonics in a periodic signal
US5361312A (en) * 1990-05-02 1994-11-01 Carl-Zeiss-Stiftung Method and apparatus for phase evaluation of pattern images used in optical measurement
EP0541827A1 (fr) * 1991-11-04 1993-05-19 Dr. Johannes Heidenhain GmbH Appareil pour produire des signaux périodiques, avec un absence d'harmoniques supérieurs
US5487016A (en) * 1994-11-04 1996-01-23 Eaton Corporation Apparatus for generating a signal representative of total harmonic distortion in waveforms of an A/C electrical system
JPH08184618A (ja) * 1994-12-27 1996-07-16 Fuji Electric Co Ltd 正弦波交流信号の周波数検出方法
DE19532246A1 (de) * 1995-09-01 1997-03-06 Heidenhain Gmbh Dr Johannes Vorrichtung zur Filterung von Oberwellen-Signalanteilen
EP0821503A2 (fr) * 1996-07-22 1998-01-28 Nippon Telegraph And Telephone Corporation Procédé et circuit de récupération d'horloge
WO2001057870A1 (fr) * 2000-02-02 2001-08-09 Infineon Technologies North America Corp. Rythme asynchrone pour recuperation du rythme interpolee
EP1168744A1 (fr) * 2000-02-04 2002-01-02 Mitsubishi Denki Kabushiki Kaisha Dispositif de reproduction de temporisation et demodulateur
WO2003021197A1 (fr) * 2001-08-30 2003-03-13 Microe Systems Corporation Reseau de photodetecteurs avec suppression des harmoniques
EP1746427A1 (fr) * 2005-07-22 2007-01-24 Institute of Electronics and Computer Science of Latvian University Méthode et appareil pour des évaluations spectrales adaptées à l'échantillonnage non-uniforme

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BILINSKIS I: "CHAPTER 18: Adapting Signal Processing to Sampling Nonuniformities", DIGITAL ALIAS-FREE SIGNAL PROCESSING, JOHN WILEY & SONS, LTD, 1 January 2007 (2007-01-01), pages 347 - 366, XP007905597, ISBN: 978-0-470-02738-7 *
FYATH R S ET AL: "NEW MULTIPLIER-BASED PHASE MEASUREMENT TECHNIQUE WITH IMPROVED TOLERANCE TO HARMONIC DISTORTION", INTERNATIONAL JOURNAL OF ELECTRONICS, TAYLOR AND FRANCIS.LTD. LONDON, GB, vol. 73, no. 4, 1 October 1992 (1992-10-01), pages 743 - 750, XP000315974, ISSN: 0020-7217 *
MARZILIANO P ET AL: "Fast reconstruction in periodic nonuniform sampling of discrete-time band-limited signals", ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2000. ICASSP '00. PROCEEDING S. 2000 IEEE INTERNATIONAL CONFERENCE ON 5-9 JUNE 2000, PISCATAWAY, NJ, USA,IEEE, vol. 1, 5 June 2000 (2000-06-05), pages 317 - 320, XP010507332, ISBN: 978-0-7803-6293-2 *

Also Published As

Publication number Publication date
TW200914845A (en) 2009-04-01
DE102007046318A1 (de) 2009-04-02

Similar Documents

Publication Publication Date Title
DE69812965T2 (de) Vibrationsdatenprozessor und prozessverfahren
DE69631913T2 (de) Dynamischer und gleichmäßiger Takt für Wiederabtastung und Verarbeitung von Maschinensignalen
EP1301993B1 (fr) Procede et dispositif de compression et/ou decompression de donnees et d'analyse et de representation de donnees
DE10236898A1 (de) Videofiltern mit verbesserter Spur unter Verwendung von Wavelet-Entrauschungstechniken
DE602005005396T2 (de) Filter zur Eliminierung der Überschwingungen
DE102009032100A1 (de) Verfahren zur Filterung von Messsignalen
DE102012100460A1 (de) Prüfanordnung und Prüfverfahren zur zerstörungsfreien Erfassung eines Fehlers in einem Prüfling mittels eines Wirbelstroms
EP2016428B1 (fr) Procédé et dispositif de déclencement numérique d'un signal de mesure à signal de bruit superposé
WO2006034763A2 (fr) Procede et dispositif d'analyse spectrale d'un signal utile ou d'un signal de bruit
EP1794601B1 (fr) Procede et dispositif d'analyse spectrale dans plusieurs bandes de frequence avec des resolutions de frequence differentes
EP0284546B1 (fr) Procédé pour tester des dispositifs
DE10157535B4 (de) Verfahren und Vorrichtung zur Reduzierung zufälliger, kontinuierlicher, instationärer Störungen in Audiosignalen
EP0574464A1 (fr) Procede et dispositif pour l'extraction par filtrage d'oscillations de la ligne de base dans un electrocardiogramme.
DE19757296A1 (de) Verfahren zum Bestimmen und Kompensieren der Übertragungsfunktion eines Meßgerätes, insbesondere eines Spektrum-Analysators
DE4335303C2 (de) Vorrichtung zum Messen von Oberflächenrauhigkeit
EP0898752A1 (fr) Procede et dispositif pour traiter un signal
EP3109651A1 (fr) Procédé pour la détermination d'au moins une grandeur caractéristique d'une machine électrique et convertisseur de fréquence
DE10039666A1 (de) Verfahren und Vorrichtung zur Abschätzung der Frequenz und/oder der Phase eines digitalen Signals
WO2009043616A1 (fr) Procédé de balayage
DE4134472C2 (de) Verfahren zum Messen des Klirrfaktors eines Wechselspannungssignales
DE19943689A1 (de) Verfahren und Vorrichtung zur Überwachung und/oder Diagnose sich bewegender Maschinen und/oder Maschinenteile
DE102018208465A1 (de) Verfahren und system zum verhindern von durch spiegelfrequenzen verursachten interferenzen
DE3338193A1 (de) Schaltungsanordnung zum messen der uebertragungsqualitaet eines digitalen pruefobjektes
EP1762945A2 (fr) Procédé pour transformer dans le domaine temporel des données mesurées obtenues dans le domaine fréquentiel
WO2023094356A1 (fr) Procédé et dispositif de reconnaissance de motif de signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08786496

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08786496

Country of ref document: EP

Kind code of ref document: A1