WO2009043251A1 - Méthode d'émission/réception sur voies multiples, méthode de gestion de transmissions, et appareil correspondant - Google Patents

Méthode d'émission/réception sur voies multiples, méthode de gestion de transmissions, et appareil correspondant Download PDF

Info

Publication number
WO2009043251A1
WO2009043251A1 PCT/CN2008/072162 CN2008072162W WO2009043251A1 WO 2009043251 A1 WO2009043251 A1 WO 2009043251A1 CN 2008072162 W CN2008072162 W CN 2008072162W WO 2009043251 A1 WO2009043251 A1 WO 2009043251A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
data
state
received
status
Prior art date
Application number
PCT/CN2008/072162
Other languages
English (en)
French (fr)
Inventor
Zhiwu Ding
Yao Shen
Dafeng Tian
Wei Su
Li Zeng
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009043251A1 publication Critical patent/WO2009043251A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a multi-channel data transmission/reception and transmission control method and a corresponding multi-channel data transmission/reception device and a multi-channel transmission device.
  • Ethernet has experienced rapid development since its birth. Its transmission rate has experienced 10Mbps, 100Mbps, lGbps, lOGbps and other stages with the development of technology. With the increasing use of Ethernet applications, the demand for bandwidth above lOGbps, such as 40Gbps/100Gbps, has been demonstrated. In the communication at a rate above lOGbps, it is a great technical difficulty to obtain a higher communication bandwidth by increasing the communication rate of a single channel. Therefore, multi-channel bonding is currently adopted to obtain high bandwidth. For example, if the single-channel rate is 10 Gbps, in order to obtain the bandwidth of 40 Gbps/100 Gbps, 4/10 lOGbps channels can be bound to provide 40 Gbps/100 Gbps bandwidth.
  • FIG 1 shows an Ethernet multi-channel transmission structure currently in use.
  • the Media Access Control Layer (MAC: Media Access Control) data is transmitted at the physical layer by four bonded lOGbps channels.
  • the physical layer includes a Coordination Sublayer (RS), a 10 Gigabit (10 Gigabit) Media Independent Interface, a Physical Coding Sublayer (PCS), and a Physical Media Attacher.
  • RS Coordination Sublayer
  • PMA Physical Medium Attachment
  • PMD Physical Medium Dependent
  • the MAC layer functions as the upper layer, and the physical layer signaling (PLS: Physical Layer Signaling) service completes the interaction between the remote MAC layer and the local physical layer.
  • PLS Physical Layer Signaling
  • the RS completes the signal that the MAC layer requests the physical layer to transmit through the PLS service to be converted into a signal that can be processed by the physical layer, and simultaneously converts the physical layer state into a PLS service signal and advertises to the MAC layer.
  • Signaling between the MAC layer and the physical layer is done by Mil.
  • the PCS completes the encoding of the MAC layer data into a form suitable for physical medium transmission, and completes the object The data transmitted by the media is decoded.
  • PMA converts PCS data into a form suitable for serial physical media delivery in a media-independent manner, and completes the process of deserializing serial physical media data into PCS suitable processing.
  • PMD converts physical layer data into a form transmitted on a specific medium, and simultaneously receives data on a specific physical medium, and converts it into a medium-independent form for processing by the physical layer.
  • the RS converts the MAC layer data into a form suitable for the physical layer processing, and forms data corresponding to each channel of the physical layer, and the data is separately performed in each physical layer channel. Processing, and finally sent to the physical medium connected to each channel for transmission.
  • each physical layer channel data is separately processed, and is aggregated into a unified physical layer signal before leaving the PCS sublayer to the XGMII interface, and the physical layer signal is converted into a signal corresponding to the PLS service by the RS sublayer. Passed to the MAC layer.
  • LF Local Fault
  • the MAC layer stops the MAC layer from transmitting data
  • the RS sends a remote fault (RF: Remote Fault) signal representing the failure of the entire physical layer of the local end to the opposite RS sublayer on the XGMII interface;
  • RF Remote Fault
  • the peer RS After the peer RS receives the RF signal representing the failure of the remote physical layer, the PLS service signal converted to the physical layer failure is notified to the MAC layer, so that the MAC layer stops transmitting data.
  • the peer RS sends an IDLE control word on the XGMII interface, indicating that no valid data is transmitted. If there are faults in the channels at both ends, as shown in Figure 3, the RSs at both ends receive the LF signal and send an RF signal. In the scenario shown in Figures 2 and 3, after partial channel failure, the transmission of signals such as LF, RF or IDLE occupies all channels, and the remaining non-faulty channels cannot be used to transmit information. Data.
  • the processing method of partial channel failure based on the existing multi-channel transmission mode is regarded as a physical layer failure when a partial channel failure occurs, resulting in the whole
  • the link is not available; for example, when 4 channels are bound to achieve the 10 Gbps rate, if a single channel fails, there should be 7.5 Gbps of bandwidth available, thus causing waste, and at higher rates, more channels. In this case, the waste caused will be even greater.
  • the embodiment of the present invention provides a multi-channel data transmission method capable of fully utilizing channel resources, including acquiring information data to be sent; determining whether there is a channel in a specific state according to status records of each channel, and the status record of the channel includes a specific Status and valid status; if yes, only the information data to be transmitted is distributed to the channel in the active state, and if not, the information data is distributed to each channel.
  • the embodiment of the present invention further provides a multi-channel data receiving method, including receiving data from each channel; determining whether the type of data received by each channel is non-recovery data, and the type of the data includes no-recovery data and valid data; , the data received by the channel is not used for overall data recovery, and if not, the data received by the channel is used as part of the overall data to be recovered for overall data recovery.
  • the embodiment of the present invention further provides a multi-channel data transmission control method, including acquiring state update information indicating a state change of a single channel, updating a state record of the corresponding channel according to the state update information, and the state record of the channel includes a specific state.
  • the valid state when transmitting the information data: according to the status record of each channel, it is judged whether there is a channel in a specific state; if so, only the information data to be transmitted is distributed to the channel in the valid state; if not, the Information data is distributed to each channel; when receiving data: determining whether the type of data received by the channel is non-recoverable data, the type of the data includes no recovery data and valid data; if yes, the data received by the channel is not used Perform overall data recovery; if not, the data received by the channel is used as part of the overall data to be recovered for overall data recovery.
  • the embodiment of the present invention further provides a multi-channel data transmitting apparatus, which includes two or more physical layer channels, each channel is used for transmitting data, and a channel distributing unit is configured to acquire information data that needs to be sent; Recording to determine whether there is a channel in a specific state, the channel The status record includes a specific status and an active status; if so, only the information data to be transmitted is distributed to the channel in the active state, and if not, the information data is distributed to each channel.
  • the embodiment of the invention further provides a multi-channel data receiving device, which comprises two or more physical layer channels, each channel is used for transmitting data; a receiving processing unit is configured to receive data from each channel; and determining data received by the channel Whether the type is non-recovery data, the type of the data includes no-recovery data and valid data; if yes, the data received by the channel is not used for overall data recovery, and if not, the data received by the channel is treated as Recover part of the overall data for overall data recovery.
  • the embodiment of the present invention further provides a multi-channel transmission device, which includes two or more physical layer channels, each channel is used for transmitting data, and a channel distribution and aggregation module is configured to acquire status update information indicating a state change of a single channel.
  • the status record of the channel includes a specific status and an active status; when transmitting the information data: determining whether there is a channel in a specific state according to the status record of each channel; if yes, Then, only the information data to be sent is distributed to the channel in the valid state; if not, the information data is distributed to each channel; when receiving the data: determining whether the type of data received by the channel is non-recoverable data, The type of data includes no-recovery data and valid data; if yes, the data received by the channel is not used for overall data recovery; if not, the data received by the channel is used as part of the overall data to be recovered for overall data recovery. .
  • the difference processing is performed according to the state of a single channel during data distribution, and the effective channel is fully utilized; by distinguishing the type of data transmitted by the channel during data reception, it is ensured that only valid data is used for data recovery. Since the data transmission of a single channel can be independently controlled, when a part of the channel fails, the effectiveness of the entire link can be maintained on the basis of the loss of part of the capacity, and the channel resources can be fully utilized to avoid waste.
  • FIG. 1 is a schematic diagram of a conventional Ethernet multi-channel transmission structure
  • FIG. 2 is a schematic diagram of transmission conditions when a single-channel single-end failure occurs
  • Figure 3 is a schematic diagram of a plurality of existing AMCs
  • FIG. 4 is a schematic flowchart of a multi-channel data transmitting method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the logical structure of a multi-channel data transmitting apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a multi-channel data receiving method according to an embodiment of the present invention
  • 7 is a schematic diagram showing the logical structure of a multi-channel data receiving apparatus according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram showing a normal situation of a data transmission example according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a partial channel failure situation of a data transmission example according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a multi-channel data transmission control method according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a logical structure of a multi-channel transmission device according to an embodiment of the present invention.
  • FIG. 12 is another schematic diagram of a logical structure of a multi-channel transmission device according to an embodiment of the present invention.
  • the embodiment of the present invention provides a multi-channel data transmission/reception method, which performs differential processing according to the state of a single channel during data distribution, and fully utilizes an effective channel; resolves the type of data transmitted by the channel during data reception, and ensures that only valid data is used for data. restore.
  • the embodiment of the present invention further provides a corresponding multi-channel data transmission control method, a multi-channel data transmission/reception device, and a multi-channel transmission device, which are respectively described in detail below.
  • the multi-channel data transmitting method of the embodiment of the present invention is as shown in FIG. 4, and includes the steps of:
  • the data transmission method of this embodiment is applicable to various multi-channel binding for data transmission.
  • the information data that needs to be sent is the MAC layer data that needs to be sent by the physical layer.
  • step A2 According to the status record of each channel, it is determined whether there is a channel in a specific state, and the status record of the channel includes a specific state and an active state; if yes, step A3 is performed; if not, step A4 is performed.
  • A4. Distribute information data to each channel.
  • the data status of the single channel is controlled by the recorded channel state, and only the channel in the active state is used for data transmission.
  • the type of the channel state record divided herein allows for subdividing. For example, the specific state indicating that the valid data cannot be transmitted in this embodiment can be specifically classified into an invalid state indicating a failure, and a recovery state indicating that the recovery is in progress.
  • the specific state division and management is determined by the corresponding transmission control mechanism.
  • the setting corresponding to the channel state may also be inserted in the determined channel in a specific state.
  • Data can be used by the peer end to identify the non-recovery data that does not need to participate in data recovery, and can also provide a basis for peer-to-channel state management.
  • the multi-channel data transmitting method of the embodiment of the present invention may be performed by the multi-channel data transmitting device of the embodiment of the present invention.
  • the device is as shown in FIG. 5, and includes:
  • a physical layer 10 consisting of two or more physical layer channels 101 ⁇ 10n, each channel for transmitting data;
  • the channel distribution unit 11 is configured to acquire information data that needs to be sent; determine, according to the status record of each channel, whether there is a channel in a specific state, and the status record of the channel includes a specific state and an active state; if yes, only the channel to be sent is needed.
  • the information data is distributed to the channel in the active state, and if not, the information data is distributed to each channel.
  • the channel distribution unit 11 is further configured to insert setting data corresponding to the channel state in the determined channel in a specific state when determining that there is a channel in a specific state.
  • the multi-channel data receiving method of the embodiment of the present invention is as shown in FIG. 6, and includes the steps of:
  • step B2 Determine whether the type of data received by the channel is non-recovery data, and the type of the data includes no-recovery data and valid data; if yes, execute step B3, if no, perform step B4.
  • the data received by the channel can be judged to be non-recovery data in various ways. For example, it can be judged according to the data content, judged according to the state record of the channel, or comprehensively judged. :
  • the sender needs to perform an operation of inserting setting data in a channel in a specific state.
  • the channel According to the status record of the channel, it is determined whether the channel is in a specific state, and if so, it is determined that the data received by the channel is data-free recovery; if not, it is determined whether the received data is set according to the data content received by the channel.
  • the data when the determination is yes, determines that the data received by the channel is the data that is not recovered, and when the determination is negative, determines that the data received by the channel is valid data.
  • the data received by the channel is not used for overall data recovery.
  • the received setting data can be used as the basis for state management of the channel.
  • the data received by the channel is used as a part of the overall data to be recovered for overall data recovery.
  • the following steps are performed: according to whether a channel fault signal indicating that the local end of the single channel receives the fault is received, or according to the status record of each channel, whether there is a channel in an invalid state; if yes, only The data received by channels other than the channel in the invalid state is aligned; if not, it is received for each channel.
  • the data to be aligned is processed.
  • the channel in the invalid state may have a status update.
  • the channel is no longer in an invalid state, it is obviously necessary to adjust the channel back to the aligned state.
  • the information indicating the local channel fault elimination of a single channel is obtained, it is determined whether there is a channel that needs to be restored to the alignment process; if yes, the data received by the channel in the alignment process needs to be restored, and aligned with the existing one.
  • the data received by the processed channel is aligned together; if not, only the data received by the existing channel for alignment processing is aligned.
  • the channel alignment unit performing the alignment processing and the channel aggregation unit performing the data aggregation are sequentially processed, and the aligned data is transmitted to the channel aggregation unit by the channel alignment unit;
  • the channel alignment unit can transmit the data received by the channel to the channel aggregation unit only after completing the alignment process including the data received by the channel;
  • the data received by the channel is not included (for example, some setting data can be inserted separately).
  • Various methods can be specifically designed to implement the data recovery non-destructive operation when the channel is aligned. This embodiment does not limit this. Two examples of applicable methods are as follows:
  • search for the alignment including the channel on the same alignment page State, while maintaining only the upward transmission of data that does not include the channel.
  • select an appropriate time point for example, the time at which the data frame ends, and start to send data including the channel upward to implement lossless alignment switching.
  • the multi-channel data receiving method of the embodiment of the present invention can be performed by the multi-channel data receiving device of the embodiment of the present invention.
  • the device is as shown in FIG. 7 and includes:
  • a physical layer 20 consisting of two or more physical layer channels 201 ⁇ 20n, each channel for transmitting data;
  • the receiving processing unit 21 is configured to receive data from each channel; determine whether the type of data received by the channel is non-recoverable data, and the type of the said data includes no-recovery data and valid data; if yes, the channel is not used. The data is used for overall data recovery. If not, the data received by the channel is used as part of the overall data to be recovered for overall data recovery.
  • the receiving processing unit 21 may specifically include:
  • the channel aggregation unit 211 is configured to determine whether the type of data received from each channel is unrecoverable data; if yes, the data received by the channel is not used for overall data recovery, and if not, the data received by the channel Overall data recovery as part of the overall data to be recovered.
  • a channel alignment unit 212 configured to receive data from each channel, and transmit the received data to the channel aggregation unit 211; and, before performing data transmission: according to whether a channel failure signal indicating that the local end of the single channel receives the failure is received, or According to the status record of each channel, it is judged whether there is a channel in an invalid state, and if so, only the data received by the channels other than the channel in the invalid state is aligned, and if not, the data received by each channel is performed.
  • Aligning processing further, determining whether there is a channel that needs to be restored to the alignment process according to whether the information indicating the cancellation of the local fault of the single channel is obtained, and if so, recovering the data received by the channel in the alignment processing , aligning with the data received by the existing channel for alignment processing, and if not, aligning only the data received by the existing channel for alignment processing.
  • the channel alignment unit 212 when the channel alignment unit 212 performs alignment processing on the data received by the channel that needs to be restored to the alignment processing together with the data received by the existing alignment processing channel, the alignment processing may be performed only after the alignment processing is completed.
  • the data transmitted by the channel aggregation unit 211 includes the data received by the channel that needs to be restored to the alignment process.
  • DO ⁇ D31 are distributed to TXD ⁇ 0> ⁇ TXD ⁇ 31> in sequence, and received in RXD ⁇ 0> ⁇ RXD ⁇ 31>, and then the overall data is restored in order.
  • DO ⁇ D31 are sequentially distributed to TXD ⁇ 0> ⁇ TXD ⁇ 7>, TXD ⁇ 8> ⁇ TXD ⁇ 15> ⁇ TXD ⁇ 24> ⁇ TXD ⁇ 31>; no longer to TXD ⁇ 16> ⁇ TXD ⁇ 23> ⁇ Sends information data, and inserts the setting data indicated by the special code map in TXD ⁇ 16> ⁇ TXD ⁇ 23>;
  • RXD ⁇ 0> ⁇ RXD ⁇ 31> is received, RXD ⁇ 16> ⁇ RXD ⁇ 23> is judged as data-free recovery and does not participate in data recovery; use RXD ⁇ 0> ⁇ RXD ⁇ 7>, RXD ⁇ 8> - RXD ⁇ 15> ⁇ RXD ⁇ 24> ⁇ RXD ⁇ 31 >Recover the overall data.
  • the multi-channel data transmission and control method of the embodiment of the present invention is described below.
  • the method is based on the multi-channel data transmission and reception method of the embodiment of the present invention.
  • the process is as shown in FIG.
  • the state of the channel is maintained and updated through the status update information, and is used as a basis for channel management.
  • the status update information may be a signal with a specific meaning or an identification of a specific event.
  • the status update information may include status update information originating from the local end and originating from the peer.
  • the signal related to the status update information can be transmitted in the channel associated with the status update information; other channels can also be used for transmission, and only the relevant channels need to be indicated in the signal; other possible Mode transmission, for example, for the signal related to the status update information that needs to be transmitted to the peer end, the method of the OAM (Operation Administration and Maintenance) message may be used, or even the OAM broadcast mode may be transmitted, as long as it can be achieved. It can be transmitted to the opposite end.
  • OAM Operaation Administration and Maintenance
  • the type of channel status record allows for subdivision, and the specific division mode and the design of the corresponding status update information can be specifically determined according to the control needs, and an exemplary detailed description will be given later.
  • the flow control signal may be generated according to the number of channels in the active state, and the flow control signal is used to adjust the flow of the information data to be sent to the range that can be processed by the channel currently in the active state.
  • This embodiment does not limit the specific implementation mode of the flow control signal.
  • the two examples are as follows: 1
  • the source of the notification information data is used for traffic adjustment.
  • the MAC layer is notified to perform traffic adjustments.
  • An optional method is to use a traffic class to set a number of traffic levels, each level corresponding to a specific size of the MAC layer traffic, the traffic control signal to notify the MAC layer of the required traffic level, the MAC layer can use various Some traffic shaping algorithms, such as the leaky bucket algorithm, complete flow control and upper-layer traffic backpressure.
  • a buffer and traffic shaping algorithm is directly used for the obtained information data to be transmitted, and a traffic backpressure signal is generated for the source of the information data (for example, the MAC layer). After the source of the information data receives the back pressure signal, it stops transmitting data to the lower layer.
  • This step can be performed with reference to the multi-channel data transmission method of the embodiment of the present invention.
  • C5. When receiving data: determining whether the type of data received by the channel is non-recoverable data, and the type of the said data includes no-recovery data and valid data; if yes, the data received by the channel is not used for overall data recovery; If not, the data received by the channel is used as part of the overall data to be recovered for overall data recovery.
  • This step can be performed with reference to the multi-channel data receiving method of the embodiment of the present invention.
  • the recorded channel states are divided into three types: an invalid state, a recovery state, and a valid state, wherein the invalid state and the restored state belong to the called specific state.
  • the step of obtaining the status update information is: Obtaining information indicating that the local end of the single channel receives the fault.
  • the status record of the corresponding update channel is: updating the status record of the corresponding channel to an invalid state according to the obtained information indicating that the local end of the single channel receives the fault. You can obtain the information indicating the receiving failure of the local end of a single channel by the following two specific methods:
  • the channel fault signal (LLF: Local Lane Fault) sent by the fault notification device.
  • the channel fault signal is used to indicate that the local end of the single channel receives the fault.
  • the channel aligning unit may acquire the channel fault signal sent by the fault notification device, and then indicated by the channel fault signal
  • the first setting data is inserted (the LLF can be inserted as the first setting data), and the data received by the channel is transmitted to the channel convergence unit, and the first setting data belongs to the data without recovery, and the channel aggregation unit uses the channel.
  • the first setting data "this event is received as "information indicating that the local end of the single channel receives the failure".
  • the information needs to be advertised to the communication peer. You can choose one of the following two methods:
  • the remote channel fault signal is used to indicate that the single channel remote receiving fault.
  • the second setting data When transmitting the information data: When it is determined that there is a channel in an invalid state, the second setting data is inserted in the channel determined to be in an invalid state (the RLF may be inserted as the second setting data), and the second setting data belongs to Free of recovery data.
  • the step of acquiring the status update information is: acquiring recovery status update information indicating that the status record of the single channel needs to be updated to the recovery status, and the recovery status update information includes at least one selected from the following four types of information (obviously, according to The four different recovery state update information subdivides the state of the recovery state, and then makes a more detailed control design, which is not limited in this embodiment):
  • the channel close signal the so-called channel close signal is used to indicate that the local end of the single channel is actively turned off, and this signal provides the manual off control function of the channel.
  • the corresponding status of the update channel is recorded as follows: According to the obtained recovery status update information, the status record of the corresponding channel is updated to the recovery status.
  • the third setting data for example, NULL
  • the third setting data may be inserted in the channel that is determined to be in the restored state, and the third setting data is Beyond recovery data.
  • the first type and the fourth type belong to the information originating from the local end.
  • the information can be notified to the communication peer after obtaining the corresponding information. The following methods can be used:
  • the remote fault cancellation signal is sent to the communication peer end, and the remote fault cancellation signal is used to indicate the single channel remote receiving fault cancellation.
  • the so-called far channel closing signal is used to indicate that the remote end of the single channel is actively turned off.
  • the sensing fault notification device stops transmitting the channel fault signal, and the event "no channel fault signal is received" is used as "information indicating the local channel fault elimination of a single channel”.
  • the channel aligning unit performing the alignment processing and the channel aggregating unit performing the data aggregation are sequentially processed; the fault eliminating signal sent by the fault notification device may be acquired by the channel aligning unit, and then not indicated by the fault canceling signal
  • the first setting data (LLF) is inserted into the channel, and the channel aggregation unit uses "the channel does not receive the first setting data" as the "information indicating the failure of the single channel local end fault".
  • the channel alignment unit needs to re-incorporate the data received by the channel indicated by the fault cancellation signal into the data to be aligned, because the completion includes the newly added channel.
  • the data alignment including the data requires a process. Therefore, the channel alignment unit can not transfer the data received by the re-recovered channel to the channel aggregation unit before completing the alignment (for example, a certain setting can be continued on the channel.
  • the data is transferred to the channel aggregation unit after the alignment is completed, including the data received by the recovered channel.
  • the "information indicating the remote receiving failure of a single channel” can be obtained by the following two specific methods: 1 Obtain the remote channel fault signal sent by the communication peer.
  • the step of obtaining the status update information is: obtaining valid status update information indicating that the status record of the single channel needs to be updated to the valid status, and the valid status update information includes at least one selected from the following three types of information (obviously, according to The three different valid state update information subdivides the state of the effective state, and then makes a more detailed control design, which is not limited in this embodiment):
  • the channel open signal the so-called channel open signal is used to indicate that the local end of the single channel is actively turned on, and the signal provides the manual open control function of the channel.
  • the corresponding status of the update channel is recorded as follows:
  • the status record of the corresponding channel is updated to a valid status based on the obtained valid status update information.
  • the third type belongs to the information originating from the local end.
  • the information can be notified to the communication peer end, and the following manner can be used: After the step of acquiring the channel open signal, the remote channel open signal is sent to the communication peer end, and the remote channel open signal is used to indicate that the remote end of the single channel is actively turned on.
  • the multi-channel data transmission control method of the embodiment of the present invention can be performed by the multi-channel transmission device of the embodiment of the present invention. As shown in FIG. 11, the device includes:
  • a physical layer 30 consisting of two or more physical layer channels 301 ⁇ 30 ⁇ , each channel for transmitting data.
  • the channel distribution and aggregation module 31 is configured to obtain status update information indicating a state change of a single channel; update a status record of the corresponding channel according to the acquired status update information, and the status record of the called channel includes a specific status and an active status; Data: According to the status record of each channel, it is judged whether there is a channel in a specific state; if so, only the information data to be transmitted is distributed to the channel in the valid state; if not, the information data is distributed to each channel; Data: Determine whether the type of data received by the channel is non-recoverable data. The type of data includes unrecoverable data and valid data; if so, the data received by the channel is not used for overall data recovery; if not, then The data received by the channel is used as part of the overall data to be recovered for overall data recovery.
  • the channel distribution and aggregation module 31 may be further configured to generate a flow control signal according to the number of channels in an active state, where the flow control signal is used to adjust the flow of the information data to be sent in a channel that is currently in an active state to be processed. In the range.
  • the channel distribution and aggregation module 31 is further configured to insert corresponding setting data in the determined channel in a specific state when determining that a channel in a specific state exists when transmitting the information data.
  • the multi-channel transmission device of this embodiment further includes: a channel alignment module 32, configured to receive data from each channel, and transmit the received data to the channel.
  • the distribution and aggregation module 31 and, before performing the data transfer: determining whether there is a channel in an invalid state, and if so, aligning only the data received by the channel other than the channel in the invalid state, if not, then The data received by each channel is aligned; further, it is determined whether there is a channel that needs to be restored to the alignment process; if so, the data received by the channel that needs to be restored to the alignment process is aligned with the existing one.
  • the data received by the processed channel is aligned together; if not, only the data received by the existing channel for alignment processing is aligned.
  • the channel alignment module 32 can only distribute the data to the channel after the alignment process is completed, when the data received by the channel that needs to be restored to the alignment process is aligned with the data received by the existing channel for alignment processing.
  • the data transmitted by the aggregation module 31 includes the data received by the channel that needs to be restored to the alignment process.
  • the multi-channel transmission device in this embodiment further includes:
  • Two or more fault notification modules 331 ⁇ 33 ⁇ are respectively disposed in each physical layer channel, and are used to learn the receiving fault event of the channel, and generate a channel fault signal for indicating that the local end of the channel receives the fault;
  • the fault signal is advertised to the channel alignment module 32 and/or the channel distribution and aggregation module 31.
  • Channel fault detection can be performed in the existing manner, and the fault notification module completes the notification after the fault is detected.
  • the channel failure signal is only advertised to one of the channel alignment module 32 and the channel distribution and aggregation module 31, the two modules can notify each other by interacting with each other. If the channel failure signal is advertised to the channel distribution and aggregation module 31, it can be used as a "state update information indicating a state change of a single channel". If the channel fault signal is advertised to the channel alignment module 32, the channel alignment module 32 can determine whether there is a channel in an invalid state according to whether a channel fault signal is received; and the channel alignment module 32 can also be indicated by the received channel fault signal. In the channel, the first setting data is inserted as the data received by the channel and transmitted to the channel distribution and aggregation module 31, thereby notifying the channel distribution and convergence module 31 of the information indicating that the local end of the channel receives the failure.
  • the fault notification module 33 is configured to learn a receiving fault event of each channel, generate a channel fault signal for indicating that the local end of the single channel receives the fault, and notify the generated channel fault signal to the channel alignment module 32 and/or the channel distribution and convergence.
  • the multi-channel transmission device of the embodiment of the present invention in the Ethernet application, the channel distribution and aggregation module and the channel alignment module and the physical layer composed of several physical layer channels can be connected through the Mill interface; the channel distribution and aggregation module and the channel
  • the aligning module can be set in the RS sub-layer, or can be set in a new sub-layer between the RS and the physical layer for multi-channel management.
  • the specific application mode can be determined according to actual needs, which is not limited in this embodiment.
  • Example 1 A single channel has a one-way fault.
  • the fault notification module learns the receiving fault event of this channel, it generates a channel fault signal LLF indicating the fault of the local end of the channel, and advertises it to the channel distribution and convergence module and the channel alignment module.
  • the channel distribution and aggregation module updates the status record of the corresponding channel to an invalid state.
  • the channel distribution and aggregation module can determine whether all the channels are in an invalid state. If yes, the processing can be performed according to the existing physical layer fault handling mechanism, and details are not described herein.
  • the channel distribution and aggregation module generates a flow control signal for controlling the upper layer traffic according to the current number of valid channels, and adjusts the upper layer data traffic within the current effective channel processing range.
  • the channel distribution and aggregation module distributes the data transmitted by the upper layer to the effective channel, and inserts the second setting data RLF in the invalid channel.
  • the channel distribution and aggregation module discards any signals received on the invalid channel, and only uses the signals received on the valid channel to complete the reorganization of the upper layer data.
  • the channel distribution and aggregation module receives the second setting data RLF, which is regarded as "information indicating that a single channel remotely receives a failure".
  • RLF the second setting data
  • the channel distribution and aggregation module determines that the information indicating the fault of the remote physical layer is received, the information may be processed according to the existing physical layer fault handling mechanism, and details are not described herein.
  • the channel distribution and aggregation module updates the status record of the corresponding channel to the recovery state.
  • the channel distribution and aggregation module generates a flow control signal for controlling the upper layer traffic according to the current number of valid channels, and adjusts the upper layer data traffic within the current effective channel processing range.
  • the channel distribution and aggregation module distributes the data transmitted by the upper layer to the effective channel, and inserts the third setting data MJLL in the channel in the restored state.
  • the channel distribution and aggregation module discards any signals received on the channel in the recovered state, and only uses the signals received on the valid channel to complete the reorganization of the upper layer data.
  • the channel distribution and aggregation module senses the channel fault elimination and updates the status record of the corresponding channel to the recovery state.
  • the channel distribution and aggregation module distributes the data transmitted by the upper layer to the effective channel, and inserts the second setting data RLF before the replacement of the third setting data NULL in the channel in the restored state.
  • the channel alignment module senses the channel fault elimination, and the channel from the invalid state to the recovery state is included in the alignment process until the channel in the restored state enters the alignment state together with the original alignment channel, and the transmission includes the recovery state.
  • the channel's data is routed to the channel distribution and aggregation module.
  • the channel alignment module and the channel distribution and aggregation module will receive the third setting data NULL or the second setting data RLF sent from the far end.
  • the channel distribution and aggregation module discards the third setting data NULL or the second setting data RLF received on the channel in the restored state, and only uses the signal received on the effective channel. Complete the reorganization of the upper layer data. If the channel distribution and aggregation module receives the second setting data RLF, keep the status of the corresponding channel as the recovery status.
  • the second setting data RLF received by the channel distribution and aggregation module on the channel in the restored state changes to the third setting data NULL, or the received third setting data NULL changes to be valid.
  • Data update the status record of the corresponding channel to a valid status.
  • the third setting data NULL received by the channel distribution and aggregation module on the channel changed to the active state changes to a valid signal, these signals are included in the reorganization of the upper layer data.
  • the channel distribution and aggregation module distributes the data transmitted by the upper layer to the channel whose status has been updated to the valid state when the channel is distributed.
  • the channel distribution and aggregation module generates a flow control signal for controlling the upper layer traffic according to the current number of valid channels, and adjusts the upper layer data traffic within the current effective channel.
  • the second setting data received by the channel distribution and aggregation module changes the RLF to the third setting data NULL, and updates the status record of the corresponding channel to a valid state.
  • the channel distribution and aggregation module distributes the data transmitted by the upper layer to the channel whose status has been updated to the active state when the channel is distributed, and no longer inserts the third setting data NULL 0.
  • the channel distribution and aggregation module discards the third setting data NULL received on the channel changed to the active state, and only uses the signal received on the valid channel to complete the reorganization of the upper layer data.
  • the channel distribution and aggregation module generates a flow control signal for controlling the upper layer traffic according to the current number of valid channels, and adjusts the upper layer data traffic within the current effective channel processing range.
  • Example 3 Manual channel off and on (for flow adjustment).
  • the channel distribution and aggregation module obtains the command to close a channel and update the status record of the corresponding channel to the recovery state.
  • the channel distribution and aggregation module generates a flow control signal for controlling the upper layer traffic according to the current number of valid channels, and adjusts the upper layer data traffic within the current effective channel.
  • the channel distribution and aggregation module distributes the data transmitted by the upper layer to the effective channel, and inserts the valid data before the third setting data NULL is replaced in the channel in the restored state. 4. Close the peer end of the initiator: The valid data received by the channel distribution and aggregation module changes to the third setting data NULL, and the status record of the corresponding channel is updated to the recovery state; and the upper layer data recovery is not performed using the channel data; The upper layer data of the local end is distributed to other channels, and the third setting data NULL is inserted in the channel; according to the current effective channel number, a flow control signal for controlling the upper layer traffic is generated, and the upper layer data traffic is adjusted within the current effective channel processing range.
  • the channel distribution and aggregation module receives the third setting data NULL, and does not use the channel data for upper layer data recovery.
  • the channel distribution and aggregation module obtains the command to open a channel and updates the status record of the corresponding channel to the valid state.
  • the initiator is enabled:
  • the channel distribution and aggregation module generates a flow control signal for controlling the upper layer traffic according to the current number of valid channels, and adjusts the upper layer data traffic within the current effective channel.
  • the channel distribution and aggregation module stops inserting the third setting data NULL in the channel that changes to the active state, and distributes the data transmitted by the upper layer to the valid channel.
  • the third setting data NULL received by the channel distribution and aggregation module is changed to valid data, and the status record of the corresponding channel is updated to a valid state; the upper layer data is restored by using the channel data;
  • the channel inserts the third setting data NULL, and distributes the upper layer data of the local end to the valid channel; according to the current effective channel number, generates a flow control signal for controlling the upper layer traffic, and adjusts the upper layer data traffic within the current effective channel processing range.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the present invention is based on a single channel during data distribution.
  • the state is differentiated to make full use of the effective channel; to ensure that only valid data is used for data recovery by resolving the type of data transmitted by the channel during data reception. Since the data transmission of a single channel can be independently controlled, when a part of the channel fails, the effectiveness of the entire link can be maintained on the basis of the loss of part of the capacity, and the channel resources can be fully utilized to avoid waste.
  • multi-channel data transmitting/receiving method, multi-channel data transmission and control method, multi-channel data transmitting/receiving device and multi-channel transmission device provided by the present invention are described in detail above, and are used herein to help understand the method of the present invention. At the same time, those skilled in the art, according to the idea of the present invention, will have any changes in the specific embodiments and application scope. In summary, the content of the present specification should not be construed as being limit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

多通道数据发送 /接收以及传输控制方法和相应的装置
本申请要求于 2007 年 9 月 27 日提交中国专利局、 申请号为 200710151715.7、 发明名称为"多通道数据发送 /接收以及传输控制方法和相应 的装置"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通讯技术领域, 具体涉及多通道数据发送 /接收以及传输控制 方法和相应的多通道数据发送 /接收装置以及多通道传输设备。
背景技术
以太网 (Ethernet ) 自诞生以来经历了快速的发展过程, 其传输速率随技 术的发展至今已经历了 10Mbps、 100Mbps, lGbps、 lOGbps等阶段。 随着以 太网应用的日益广泛, 已展现出对 lOGbps 以上带宽, 例如 40Gbps/100Gbps 等的需求。 由于在 lOGbps以上速率的通信中, 通过提高单个通道的通信速率 来获得更高的通信带宽将面临很大的技术困难,因此目前选择釆用多通道绑定 的方式来获得高带宽。 例如, 若单通道速率为 lOGbps, 为了获得 40Gbps/ lOOGbps速率的带宽, 可以将 4/10 个 lOGbps 的通道进行绑定, 共同提供 40Gbps/100Gbps带宽。
图 1给出了一种目前所釆用的以太网多通道传输结构。在图 1中, 介质访 问控制层 (MAC: Media Access Control )数据在物理层由 4个绑定的 lOGbps 通道进行传输。 物理层包括协调子层 (RS, Reconciliation Sublayer ), lOGbps ( XG: 10 Gigabit )介质无关接口( ΜΠ: 10 Gigabit Media Independent Interface )、 物理编码服务子层( PCS: Physical Coding Sublayer )、物理媒介附加子层( PMA, Physical Medium Attachment )和物理媒介相关子层 ( PMD, Physical Medium Dependent )。
MAC层作为上层, 通过物理层信令 ( PLS: Physical Layer Signaling )服 务完成和远端 MAC层以及和本端物理层间的交互。
RS完成将 MAC层通过 PLS服务请求物理层传输的信号转换为物理层能 够处理的信号,同时将物理层状态转换为 PLS服务信号通告给 MAC层。 MAC 层与物理层之间的信号传递通过 Mil完成。
PCS完成将 MAC层数据编码为适合物理媒介传输的形式, 以及完成对物 理媒介传输过来的数据进行解码。
PMA通过一种媒介无关的方式将 PCS的数据转换为适应串行物理媒介传 递的形式, 以及完成将串行物理媒介数据解串行为 PCS适合处理的形式。
PMD以物理媒介相关的形式, 将物理层数据转换为特定媒介上传输的形 式, 同时接收特定物理媒介上的数据, 转换为媒介无关的形式, 供物理层进行 处理。
在图 1所示的构架下, 在发送信息数据时, RS将 MAC层数据转换为适 合物理层处理的形式后, 形成分别对应物理层各个通道的数据,数据在各个物 理层通道单独进行各种处理, 最终送到各个通道相连的物理媒介上进行传输。 同样, 在接收数据时, 各个物理层通道数据单独处理, 在离开 PCS 子层到 XGMII接口前汇聚为统一的物理层信号, 由 RS子层将物理层信号转换为与 PLS服务对应的信号后, 传递给 MAC层。
在这个过程中, 由于釆用多通道构架,通道间的个体差异可能会导致部分 通道故障问题发生。如果物理层通道出现部分通道故障, 因为链路由所有通道 绑定组成, 会出现因个别通道故障导致整个链路失效的问题。 参见图 2, 图 2 中箭头方向表示传输方向, "χ,,表示故障, 假设某一通道单端故障, 其余通道 有效, PCS子层通过故障检测途径获知该故障状态后,处理为整个物理层故障 失效的信号, 其处理过程如下:
1、 通过在 XGMII接口上向 RS传递本端故障 (LF: Local Fault )信号; 2、 RS将该 LF信号转换为代表整个物理层故障失效的 PLS服务信号通告
MAC层, 使 MAC层停止发送数据;
3、 同时 RS在 XGMII接口上向对端 RS子层发送代表本端整个物理层失 效的远端故障 (RF: Remote Fault )信号;
4、对端 RS收到代表远端物理层失效的 RF信号后, 转换为物理层故障失 效的 PLS服务信号通告 MAC层, 使 MAC层停止发送数据;
5、对端 RS在 XGMII接口上发送 IDLE控制字,表示不再传输有效数据。 如果两端的通道都存在故障, 如图 3所示, 则两端的 RS都收到 LF信号, 并且发送 RF信号。 在图 2和 3所示的场景中, 部分通道故障后, LF、 RF或 IDLE等信号的传输均占据全部通道, 其余无故障的通道也不能用于传输信息 数据。
在对现有技术的研究和实践过程中, 本发明的发明人发现,基于现有多通 道传输方式下对部分通道故障的处理方式,当发生部分通道故障时统一视为物 理层故障, 导致整个链路不可用; 例如对于绑定 4个通道来实现 lOGbps速率 的情况, 若单个通道故障, 本应该还有 7.5Gbps的带宽是可用的, 因此造成了 浪费, 而在更高速率更多通道的情况下, 造成的浪费会更大。
发明内容
本发明实施例提供一种能够充分利用通道资源的多通道数据发送方法,包 括获取需要发送的信息数据;根据各个通道的状态记录判断是否存在处于特定 状态的通道, 所述通道的状态记录包括特定状态和有效状态; 若是, 则仅将所 述需要发送的信息数据分发到处于有效状态的通道, 若否, 则将所述信息数据 分发到各个通道。
本发明实施例还提供一种多通道数据接收方法, 包括从各个通道接收数 据; 判断各个通道收到的数据的类型是否为免恢复数据, 所述数据的类型包括 免恢复数据和有效数据;若是,则不使用该通道收到的数据进行整体数据恢复, 若否, 则将该通道收到的数据作为待恢复整体数据的一部分进行整体数据恢 复。
本发明实施例还提供一种多通道数据传输控制方法,包括获取指示单个通 道的状态变化的状态更新信息;根据所述状态更新信息更新相应通道的状态记 录, 所述通道的状态记录包括特定状态和有效状态; 在发送信息数据时: 根据 各个通道的状态记录判断是否存在处于特定状态的通道; 若是, 则仅将需要发 送的信息数据分发到处于有效状态的通道; 若否, 则将所述信息数据分发到各 个通道; 在接收数据时: 判断通道收到的数据的类型是否为免恢复数据, 所述 数据的类型包括免恢复数据和有效数据; 若是, 则不使用该通道收到的数据进 行整体数据恢复; 若否, 则将该通道收到的数据作为待恢复整体数据的一部分 进行整体数据恢复。
本发明实施例还提供一种多通道数据发送装置,包括两个或两个以上物理 层通道, 各个通道用于传输数据; 通道分发单元, 用于获取需要发送的信息数 据; 根据各个通道的状态记录判断是否存在处于特定状态的通道, 所述通道的 状态记录包括特定状态和有效状态; 若是, 则仅将所述需要发送的信息数据分 发到处于有效状态的通道, 若否, 则将所述信息数据分发到各个通道。
本发明实施例还提供一种多通道数据接收装置,包括两个或两个以上物理 层通道, 各个通道用于传输数据; 接收处理单元, 用于从各个通道接收数据; 判断通道收到的数据的类型是否为免恢复数据,所述数据的类型包括免恢复数 据和有效数据; 若是, 则不使用该通道收到的数据进行整体数据恢复, 若否, 则将该通道收到的数据作为待恢复整体数据的一部分用于整体数据恢复。
本发明实施例还提供一种多通道传输设备,包括两个或两个以上物理层通 道, 各个通道用于传输数据; 通道分发和汇聚模块, 用于获取指示单个通道的 状态变化的状态更新信息; 根据所述状态更新信息更新相应通道的状态记录, 所述通道的状态记录包括特定状态和有效状态; 在发送信息数据时: 根据各个 通道的状态记录判断是否存在处于特定状态的通道; 若是, 则仅将需要发送的 信息数据分发到处于有效状态的通道; 若否, 则将所述信息数据分发到各个通 道; 在接收数据时: 判断通道收到的数据的类型是否为免恢复数据, 所述数据 的类型包括免恢复数据和有效数据; 若是, 则不使用该通道收到的数据进行整 体数据恢复; 若否, 则将该通道收到的数据作为待恢复整体数据的一部分进行 整体数据恢复。
本发明实施例的技术方案中,通过在数据分发时根据单个通道的状态进行 区别处理,充分利用有效通道;通过在数据接收时分辨通道传输的数据的类型, 确保只使用有效数据进行数据恢复。由于能够对单个通道的数据传输进行独立 的控制, 使得在部分通道出现故障时, 能够在损失部分容量的基础上, 保持整 个链路的有效性, 充分利用通道资源, 避免了浪费。
附图说明
图 1是一种现有以太网多通道传输结构示意图;
图 2是现有部分通道单端失效时的传输情况示意图;
图 3是现有多种规格的 AMC示意图;
图 4是本发明实施例的多通道数据发送方法流程示意图;
图 5是本发明实施例的多通道数据发送装置逻辑结构示意图;
图 6是本发明实施例的多通道数据接收方法流程示意图; 图 7是本发明实施例的多通道数据接收装置逻辑结构示意图; 图 8是本发明实施例的数据传输示例的正常情况示意图;
图 9是本发明实施例的数据传输示例的部分通道故障情况示意图; 图 10是本发明实施例的多通道数据传输控制方法流程示意图;
图 11是本发明实施例的多通道传输设备的一种逻辑结构示意图; 图 12是本发明实施例的多通道传输设备的另一种逻辑结构示意图。
具体实施方式
本发明实施例提供多通道数据发送 /接收方法, 在数据分发时根据单个通 道的状态进行区别处理, 充分利用有效通道; 在数据接收时分辨通道传输的数 据的类型, 确保只使用有效数据进行数据恢复。本发明实施例还提供相应的多 通道数据传输控制方法和多通道数据发送 /接收装置以及多通道传输设备, 以 下分别进行详细说明。
本发明实施例的多通道数据发送方法如图 4所示, 包括步骤:
Al、 获取需要发送的信息数据。
本实施例数据发送方法适用于各种多通道绑定进行数据传输的情况。对于 基于以太网架构的应用而言, 所称需要发送的信息数据为需要物理层发送的 MAC层数据。
A2、 根据各个通道的状态记录判断是否存在处于特定状态的通道, 所称 通道的状态记录包括特定状态和有效状态; 若是, 则执行步骤 A3 , 若否, 则 执行步骤 A4。
A3、 仅将需要发送的信息数据分发到处于有效状态的通道。
A4、 将信息数据分发到各个通道。
本实施例中利用记录的通道状态对单个通道的数据发送进行控制,仅使用 处于有效状态的通道进行数据传输。本文中所划分的通道状态记录的类型允许 向下细分, 例如, 本实施例中表示不能传输有效数据的特定状态具体可分为表 示故障的无效状态, 和表示处于恢复过程中的恢复状态等; 具体的状态划分和 管理由相应的传输控制机制来确定。
此外, 为便于对端识别通道中发送的有效数据,在判断存在处于特定状态 的通道时,还可在所确定的处于特定状态的通道中插入与通道状态相应的设定 数据。所插入的设定数据既可以被对端用来识别为不需要参与数据恢复的免恢 复数据, 还可以为对端对通道的状态管理提供依据。
本发明实施例的多通道数据发送方法可由本发明实施例的多通道数据发 送装置来执行, 该装置如图 5所示, 包括:
由两个或两个以上物理层通道 101 ~ 10η组成的物理层 10,各个通道用于传 输数据;
通道分发单元 11 , 用于获取需要发送的信息数据; 根据各个通道的状态记 录判断是否存在处于特定状态的通道,所称通道的状态记录包括特定状态和有 效状态;若是,则仅将需要发送的信息数据分发到处于有效状态的通道,若否, 则将信息数据分发到各个通道。
进一步的,通道分发单元 11 ,还可用于在判断存在处于特定状态的通道时, 在所确定的处于特定状态的通道中插入与通道状态相应的设定数据。
本发明实施例的多通道数据接收方法如图 6所示, 包括步骤:
Bl、 从各个通道接收数据。
B2、 判断通道收到的数据的类型是否为免恢复数据, 所述数据的类型包 括免恢复数据和有效数据; 若是, 则执行步骤 B3, 若否, 则执行步骤 B4。
本实施例中, 可釆用多种方式来判断通道收到的数据是否为免恢复数据, 例如, 可根据数据内容来判断、 根据通道的状态记录来判断或者综合判断, 两 种判断方式示例如下:
①根据通道收到的数据内容判断收到的数据是否为设定数据, 若是, 则确 定该通道收到的数据为免恢复数据, 若否, 则确定该通道收到的数据为有效数 据。 釆用这种方式时,发送端需要执行在处于特定状态的通道中插入设定数据 的操作。
②根据通道的状态记录判断该通道是否处于特定状态, 若是, 则确定该通 道收到的数据为免恢复数据; 若否, 则根据该通道收到的数据内容判断收到的 数据是否为设定数据,在判断为是时确定该通道收到的数据为免恢复数据,在 判断为否时确定该通道收到的数据为有效数据。
B3、 不使用该通道收到的数据进行整体数据恢复。 当然, 收到的设定数 据可作为对通道进行状态管理的依据。 B4、 将该通道收到的数据作为待恢复整体数据的一部分进行整体数据恢 复。
此外,在多通道数据传输的情况下,通常需要对各个通道接收的数据进行 对齐操作后才能进行数据恢复, 因此为避免将故障通道纳入对齐操作, 可进一 步在判断通道收到的数据的类型是否为免恢复数据的步骤之前执行如下步骤: 根据是否收到指示单个通道本端接收故障的通道故障信号,或者根据各个 通道的状态记录, 判断是否存在处于无效状态的通道; 若是, 则仅对处于无效 状态的通道以外的其他通道收到的数据进行对齐处理;若否,则对各个通道收。 到的数据进行对齐处理。
当然, 处于无效状态的通道可能发生状态更新, 当通道不再处于无效状态 时, 此时显然需要将该通道调整回对齐状态。可根据是否获取到指示单个通道 本端故障消除的信息, 判断是否存在需要恢复到对齐处理中的通道; 若是, 则 将需要恢复到对齐处理中的通道收到的数据,与已有的进行对齐处理的通道收 到的数据一起, 进行对齐处理; 若否, 则仅对已有的进行对齐处理的通道收到 的数据进行对齐处理。
需要说明的是,假定在接收数据时,是由执行对齐处理的通道对齐单元和 执行数据汇聚的通道汇聚单元依次进行处理,由通道对齐单元将对齐后的数据 传递给通道汇聚单元; 则在将某个通道收到的数据重新纳入对齐处理时,通道 对齐单元可仅在完成包含该通道收到的数据在内的对齐处理之后,才将该通道 收到的数据传递给通道汇聚单元; 在完成对齐之前, 暂不包含该通道收到的数 据(例如可以另外插入某种设定数据)。 可具体设计各种方式来实现通道恢复 对齐时的数据无损操作,本实施例对此不作限定,两种可釆用的方法示例如下:
①釆用双对齐页面操作方式。
当通道需要恢复对齐时, 在实现通道对齐前, 所有操作都在另外一个对齐 页面中进行, 直到在另外一个对齐页面中实现包括该通道在内的对齐状态后, 选择一个特定时间点, 例如, 数据帧结束的时刻, 将向上发送数据的页面从之 前的对齐页面切换到包括该通道的对齐页面, 实现无损的对齐切换。
②釆用单对齐页面, 搜索对齐状态方式。
当通道需要恢复对齐时,在同一个对齐页面搜索包括该通道在内的对齐状 态, 同时保持只向上发送不包括该通道在内的数据。 直到在页面内搜索到包括 该通道在内的对齐状态后, 选择合适的时间点, 例如, 数据帧结束的时刻, 开 始向上发送包括该通道在内的数据, 实现无损的对齐切换。
本发明实施例的多通道数据接收方法可由本发明实施例的多通道数据接 收装置来执行, 该装置如图 7所示, 包括:
由两个或两个以上物理层通道 201 ~ 20η组成的物理层 20,各个通道用于传 输数据;
接收处理单元 21 , 用于从各个通道接收数据; 判断通道收到的数据的类型 是否为免恢复数据, 所称数据的类型包括免恢复数据和有效数据; 若是, 则不 使用该通道收到的数据进行整体数据恢复, 若否, 则将该通道收到的数据作为 待恢复整体数据的一部分进行整体数据恢复。
为对通道接收的数据进行对齐, 接收处理单元 21具体可包括:
通道汇聚单元 211 , 用于判断从各个通道收到的数据的类型是否为免恢复 数据; 若是, 则不使用该通道收到的数据进行整体数据恢复, 若否, 则将该通 道收到的数据作为待恢复整体数据的一部分进行整体数据恢复。
通道对齐单元 212, 用于从各个通道接收数据, 将接收到的数据传递给通 道汇聚单元 211 ; 并且, 在进行数据传递之前: 根据是否收到指示单个通道本 端接收故障的通道故障信号, 或者根据各个通道的状态记录, 判断是否存在处 于无效状态的通道, 若是, 则仅对处于无效状态的通道以外的其他通道收到的 数据进行对齐处理,若否,则对各个通道收到的数据进行对齐处理;进一步的, 根据是否获取到指示单个通道本端故障消除的信息,判断是否存在需要恢复到 对齐处理中的通道,若是,则将所述需要恢复到对齐处理中的通道收到的数据, 与已有的进行对齐处理的通道收到的数据一起, 进行对齐处理, 若否, 则仅对 已有的进行对齐处理的通道收到的数据进行对齐处理。
此外, 通道对齐单元 212在将需要恢复到对齐处理中的通道收到的数据与 已有的进行对齐处理的通道收到的数据一起进行对齐处理时,可仅在完成对齐 处理之后, 才在向通道汇聚单元 211传递的数据中包括该需要恢复到对齐处理 中的通道收到的数据。
为更好的理解本发明实施例的多通道数据发送和接收方法,下面以一个实 际的数据传输示例来进行说明。 假设共有 4个通道进行绑定, 分别为 Lane 0 ~ Lane 3; DO ~ D31为需要传输的信息数据序列; TXD<0> ~ TXD<31>为发送通 道位, RXD<0> ~ RXD<31>为接收通道位, 每 8位一个通道。
①在正常情况下, 如图 8所示, DO ~ D31按顺序分发到 TXD<0> ~ TXD<31>, 并在 RXD<0> ~ RXD<31> 接收, 然后按顺序恢复出整体数据。
②当通道 Lane 2处于特定状态时, 如图 9所示,
在发送信息数据时: DO ~ D31被依次分发到 TXD<0> ~ TXD<7>、 TXD<8> ~ TXD<15>^TXD<24> ~ TXD<31>; 不再向 TXD<16> ~ TXD<23>^ 发信息数据, 并且在 TXD<16> ~ TXD<23>插入以特殊码图表示的设定数据; 在接收数据时: RXD<0> ~ RXD<31>被接收后, RXD<16> ~ RXD<23>被 判断为免恢复数据, 不参与数据恢复; 利用 RXD<0> ~ RXD<7>、 RXD<8> - RXD<15>^RXD<24> ~ RXD<31>恢复出整体数据。
下面介绍本发明实施例的多通道数据传输控制方法,该方法基于本发明实 施例的多通道数据发送和接收方法, 流程如图 10所示, 包括步骤:
Cl、 获取指示单个通道的状态变化的状态更新信息。
本实施例中通过状态更新信息对通道的状态进行维护和更新,并以此作为 通道管理的依据。 按照表现方式, 状态更新信息可以是具有特定含义的信号, 也可以是对特定事件的识别。按照来源,状态更新信息可包括源自本端和源自 对端的状态更新信息。按照传送方式, 与状态更新信息相关的信号可在该状态 更新信息关联的通道内传输; 也可釆用其他通道传输, 只需要在信号中指示相 关的通道即可; 还可釆用其他可能的方式传输, 例如, 对于需要传送到对端的 与状态更新信息相关的信号, 可釆用物理层操作管理维护 (OAM: Operation Administration and Maintenance )消息的方式,甚至 OAM广播的方式进行传输, 只要能达到传送到对端的目的即可。
C2、 根据获取的状态更新信息更新相应通道的状态记录, 所称通道的状 态记录包括特定状态和有效状态。
通道状态记录的类型允许向下细分,具体划分方式以及相应状态更新信息 的设计可根据控制需要具体确定, 后续将会进行示例性的详细说明。
C3、 为更好的对数据发送进行传输控制, 在根据状态更新信息更新相应 通道的状态记录的步骤之后,还可按照处于有效状态的通道的数目生成流量控 制信号,所称流量控制信号用于将需要发送的信息数据的流量调整在当前处于 有效状态的通道能够处理的范围内。
本实施例对流量控制信号的具体生效方式不作限定, 两种示例如下: ①通知信息数据的来源进行流量调整。 对于以太网应用, 即通知 MAC层 进行流量调整。一种可选的方式为釆用流量等级的方式,设置若干个流量等级, 每个等级对应特定大小的 MAC层流量, 通过流量控制信号通告 MAC层需要的 流量等级, MAC层可使用各种已有的流量整形算法, 例如漏桶算法等, 完成 流量控制和上层流量反压。
②在获得需要发送的信息数据后进行流量调整。这种情况下, 不直接通知 信息数据的来源进行流量调整 ,而是直接对获得的需要发送的信息数据使用緩 存和流量整形算法, 形成对信息数据的来源(例如 MAC层)的流量反压信号, 信息数据的来源收到反压信号后即停止向下层传输数据。
C4、 在发送信息数据时: 根据各个通道的状态记录判断是否存在处于特 定状态的通道;若是,则仅将需要发送的信息数据分发到处于有效状态的通道; 若否, 则将所述信息数据分发到各个通道。
此步骤可参照本发明实施例的多通道数据发送方法来执行。
C5、 在接收数据时: 判断通道收到的数据的类型是否为免恢复数据, 所 称数据的类型包括免恢复数据和有效数据; 若是, 则不使用该通道收到的数据 进行整体数据恢复; 若否, 则将该通道收到的数据作为待恢复整体数据的一部 分进行整体数据恢复。
此步骤可参照本发明实施例的多通道数据接收方法来执行。
下面,基于一种示例性的通道状态划分设计,给出对相应的状态更新信息 及其传输和获取方式的详细描述。 将记录的通道状态分为三种: 无效状态、 恢 复状态和有效状态, 其中, 无效状态和恢复状态属于所称特定状态。
一、 到无效状态的更新
获取状态更新信息的步骤为: 获取指示单个通道本端接收故障的信息。 相应的更新通道的状态记录的步骤为:根据获得的指示单个通道本端接收 故障的信息, 将相应通道的状态记录更新为无效状态。 可以通过如下两种具体方法获取"指示单个通道本端接收故障的信息,,:
①获取故障通告设备发送的通道故障信号(LLF: Local Lane Fault ), 该通 道故障信号用于指示单个通道本端接收故障。
②假定在接收数据时,由执行对齐处理的通道对齐单元和执行数据汇聚的 通道汇聚单元依次进行处理;可由通道对齐单元获取故障通告设备发送的通道 故障信号, 然后在该通道故障信号所指示的通道中, 插入第一设定数据(可以 将 LLF作为第一设定数据插入)作为该通道收到的数据传递给通道汇聚单元, 第一设定数据属于免恢复数据,通道汇聚单元以 "通道收到第一设定数据"这一 事件作为"指示单个通道本端接收故障的信息"。
为便于对端对通道状态进行管理,在获取指示单个通道本端接收故障的信 息的步骤之后,还需要向通讯对端通告该信息, 可择一或同时釆用如下两种方 式:
①向通讯对端发送远端通道故障信号(RLF: Remote Lane Fault ), 该远端 通道故障信号用于指示单个通道远端接收故障。
②在发送信息数据时: 在确定存在处于无效状态的通道时,在确定处于无 效状态的通道中插入第二设定数据(可以将 RLF作为第二设定数据插入), 第 二设定数据属于免恢复数据。
二、 到恢复状态的更新
获取状态更新信息的步骤为:获取指示需要将单个通道的状态记录更新为 恢复状态的恢复态更新信息,所称恢复态更新信息包括选自如下四种信息中的 至少一种(显然, 可根据这四种不同的恢复态更新信息对恢复状态进行状态细 分, 进而作出更细致的控制设计, 本实施例对此不作限定):
1、 指示单个通道本端故障消除的信息。
2、 指示单个通道远端接收故障的信息。
3、 指示单个通道远端主动关闭的信息。
4、 通道关闭信号, 所称通道关闭信号用于指示单个通道本端主动关闭, 该信号提供通道的手动关闭控制功能。
相应的更新通道的状态记录的步骤为: 根据获得的恢复态更新信息,将相 应通道的状态记录更新为恢复状态。 为便于对端数据识别等目的,在发送信息数据时, 在确定存在处于恢复状 态的通道时, 可在确定处于恢复状态的通道中插入第三设定数据 (例如 NULL ), 第三设定数据属于免恢复数据。
此外,上述四种恢复态更新信息中,第一种和第四种属于源自本端的信息, 为便于对端对通道状态进行管理,在获取相应的信息后可以向通讯对端通告该 信息, 可釆用如下方式:
1、 在获取指示单个通道本端故障消除的信息的步骤之后, 向通讯对端发 送远端故障消除信号,所称远端故障消除信号用于指示单个通道远端接收故障 消除。
2、在获取通道关闭信号的步骤之后, 向通讯对端发送远端通道关闭信号, 所称远端通道关闭信号用于指示单个通道远端主动关闭。
下面, 分别对第一至三种恢复态更新信息的具体获取方式进行说明。
1、可以通过如下三种具体方法获取"指示单个通道本端故障消除的信息,,:
①获取故障通告设备发送的故障消除信号,该故障消除信号用于指示单个 通道本端接收故障消除。
②感知故障通告设备停止发送通道故障信号, 以"未收到通道故障信号" 这一事件作为 "指示单个通道本端故障消除的信息"。
③假定在接收数据时,由执行对齐处理的通道对齐单元和执行数据汇聚的 通道汇聚单元依次进行处理;可由通道对齐单元获取故障通告设备发送的故障 消除信号, 然后不在该故障消除信号所指示的通道中插入第一设定数据 ( LLF ), 通道汇聚单元以"通道未收到第一设定数据"这一事件作为 "指示单个 通道本端故障消除的信息"。
需要说明的是, 通道对齐单元在获取故障通告设备发送的故障消除信号 后,需要将该故障消除信号指示的通道收到的数据重新纳入需要进行对齐处理 的数据中, 由于完成包括新加入通道的数据在内的数据对齐需要一个过程, 因 此, 通道对齐单元在完成对齐之前, 可暂不将该重新恢复的通道收到的数据传 递给通道汇聚单元(例如可继续在该通道上插入某种设定数据), 在完成对齐 之后才将包括该重新恢复的通道收到的数据在内的数据传递给通道汇聚单元。
2、可以通过如下两种具体方法获取"指示单个通道远端接收故障的信息": ①获取通讯对端发送的远端通道故障信号。
②在接收数据时 ,根据通道收到的数据内容确定有通道收到的数据为第二 设定数据(RLF )或者有通道收到的数据变化为第二设定数据, 以"通道收到 第二设定数据 "或者 "通道收到的数据变化为第二设定数据"这一事件作为 "指 示单个通道远端接收故障的信息"。
3、可以通过如下两种具体方法获取"指示单个通道远端主动关闭的信息":
①获取通讯对端发送的远端通道关闭信号。
②在接收数据时,根据通道收到的数据内容确定有通道收到的数据的类型 由有效数据变化为第三设定数据(NULL ), 以"通道收到的数据由有效数据变 化为第三设定数据"这一事件作为 "指示单个通道远端主动关闭的信息"。
三、 到有效状态的更新
获取状态更新信息的步骤为:获取指示需要将单个通道的状态记录更新为 有效状态的有效态更新信息,所称有效态更新信息包括选自如下三种信息中的 至少一种(显然, 可根据这三种不同的有效态更新信息对有效状态进行状态细 分, 进而作出更细致的控制设计, 本实施例对此不作限定):
1、 指示单个通道远端故障消除的信息。
2、 指示单个通道远端主动打开的信息。
3、 通道打开信号, 所称通道打开信号用于指示单个通道本端主动打开, 该信号提供通道的手动开启控制功能。
相应的更新通道的状态记录的步骤为: 根据获得的有效态更新信息,将相 应通道的状态记录更新为有效状态。
上述三种有效态更新信息中, 第三种属于源自本端的信息, 为便于对端对 通道状态进行管理,在获取相应的信息后可以向通讯对端通告该信息, 可釆用 如下方式: 在获取通道打开信号的步骤之后, 向通讯对端发送远端通道打开信 号, 所称远端通道打开信号用于指示单个通道远端主动打开。
下面, 分别对第一、 二两种有效态更新信息的具体获取方式进行说明。 1、可以通过如下两种具体方法获取"指示单个通道远端故障消除的信息":
①获取通讯对端发送的远端故障消除信号。
②在接收数据时,根据通道收到的数据内容确定有通道收到的数据的类型 由第二设定数据(RLF ) 变化为第三设定数据(NULL ), 以"通道收到的数据 由第二设定数据变化为第三设定数据"这一事件作为 "指示单个通道远端故障 消除的信息"。
2、可以通过如下两种具体方法获取"指示单个通道远端主动打开的信息": ①获取通讯对端发送的远端通道打开信号。
②在接收数据时,根据通道收到的数据内容确定有通道收到的数据的类型 由第三设定数据(NULL )变化为有效数据, 以"通道收到的数据由第三设定数 据(NULL ) 变化为有效数据"这一事件作为 "指示单个通道远端主动打开的信 息"。
本发明实施例的多通道数据传输控制方法可由本发明实施例的多通道传 输设备来执行, 该设备如图 11所示, 包括:
由两个或两个以上物理层通道 301 ~ 30η组成的物理层 30,各个通道用于传 输数据。
通道分发和汇聚模块 31 ,用于获取指示单个通道的状态变化的状态更新信 息; 根据获取的状态更新信息更新相应通道的状态记录, 所称通道的状态记录 包括特定状态和有效状态; 在发送信息数据时: 根据各个通道的状态记录判断 是否存在处于特定状态的通道; 若是, 则仅将需要发送的信息数据分发到处于 有效状态的通道; 若否, 则将信息数据分发到各个通道; 在接收数据时: 判断 通道收到的数据的类型是否为免恢复数据,所称数据的类型包括免恢复数据和 有效数据; 若是, 则不使用该通道收到的数据进行整体数据恢复; 若否, 则将 该通道收到的数据作为待恢复整体数据的一部分进行整体数据恢复。
进一步的, 通道分发和汇聚模块 31 ,还可用于按照处于有效状态的通道的 数目生成流量控制信号,该流量控制信号用于将需要发送的信息数据的流量调 整在当前处于有效状态的通道能够处理的范围内。
进一步的, 通道分发和汇聚模块 31 , 还用于在发送信息数据时, 在判断存 在处于特定状态的通道时,在所确定的处于特定状态的通道中插入相应的设定 数据。
为执行通道接收数据的对齐处理, 本实施例多通道传输设备还包括: 通道对齐模块 32, 用于从各个通道接收数据,将接收到的数据传递给通道 分发和汇聚模块 31 ; 并且, 在进行数据传递之前: 判断是否存在处于无效状态 的通道, 若是, 则仅对处于无效状态的通道以外的其他通道收到的数据进行对 齐处理, 若否, 则对各个通道收到的数据进行对齐处理; 进一步的, 判断是否 存在需要恢复到对齐处理中的通道; 若是, 则将所述需要恢复到对齐处理中的 通道收到的数据, 与已有的进行对齐处理的通道收到的数据一起, 进行对齐处 理; 若否, 则仅对已有的进行对齐处理的通道收到的数据进行对齐处理。 通道 对齐模块 32在将需要恢复到对齐处理中的通道收到的数据与已有的进行对齐 处理的通道收到的数据一起进行对齐处理时, 可仅在完成对齐处理之后, 才在 向通道分发和汇聚模块 31传递的数据中包括该需要恢复到对齐处理中的通道 收到的数据。
为获取单个通道的故障信息,便于进行通道状态的控制, 本实施例多通道 传输设备还包括:
两个或两个以上故障通告模块 331 ~ 33η, 分别设置在各个物理层通道, 用 于获知本通道的接收故障事件,生成用于指示本通道本端接收故障的通道故障 信号; 将生成的通道故障信号通告到通道对齐模块 32和 /或通道分发和汇聚模 块 31。通道故障的检测可按照现有的方式进行,检测到故障后由故障通告模块 完成通告。
若通道故障信号只通告到通道对齐模块 32和通道分发和汇聚模块 31之一, 该两个模块可通过彼此交互通知对方。若通道故障信号通告到通道分发和汇聚 模块 31 , 可作为一种"指示单个通道的状态变化的状态更新信息"。 若通道故障 信号通告到通道对齐模块 32, 通道对齐模块 32可根据是否收到通道故障信号, 判断是否存在处于无效状态的通道;并且通道对齐模块 32还可在收到的通道故 障信号所指示的通道中,插入第一设定数据作为该通道收到的数据传递给通道 分发和汇聚模块 31 ,以此将指示该通道本端接收故障的信息通知给通道分发和 汇聚模块 31。
除了上述实施例中每个通道配置一个故障通告模块的结构以外,还可以釆 用一个统一的故障通告模块 33的结构, 如图 12所示。 该故障通告模块 33 , 用于 获知各个通道的接收故障事件,生成用于指示单个通道本端接收故障的通道故 障信号; 将生成的通道故障信号通告到通道对齐模块 32和 /或通道分发和汇聚 模块 31;
本发明实施例的多通道传输设备在以太网应用中,通道分发和汇聚模块以 及通道对齐模块与由若干个物理层通道组成的物理层之间可通过 Mil接口连 接; 通道分发和汇聚模块以及通道对齐模块可以设置在 RS子层, 也可以设置 在一个新增的位于 RS与物理层之间的用于进行多通道管理的子层; 具体应用 方式可根据实际需要确定, 本实施例不作限定。
为更好的理解本发明实施例 ,下面给出在三个具体的应用场景中釆用本发 明实施例的多通道传输设备执行本发明实施例的多通道数据传输控制方法的 示例。
示例一、 单通道出现单向故障。
一、 检测端处理流程:
1、 故障通告模块获知本通道的接收故障事件后, 生成指示本通道本端接 收故障的通道故障信号 LLF, 通告到通道分发和汇聚模块及通道对齐模块。
2、 通道分发和汇聚模块将相应通道的状态记录更新为无效状态。 当然, 通道分发和汇聚模块可判断是否所有通道均处于无效状态, 若是, 则可按照现 有物理层故障处理机制进行处理, 不再赘述。
3、 通道分发和汇聚模块根据当前有效通道数目, 生成控制上层流量的流 量控制信号, 调整上层数据流量在当前有效通道可处理范围内。
4.1、 在发送信息数据时: 通道分发和汇聚模块将上层传输的数据分发到 有效通道, 同时在无效通道插入第二设定数据 RLF。
4.2、 在接收数据时: 通道对齐模块在执行对齐操作时, 不再考虑无效通 道, 保持有效通道为对齐状态即向通道分发和汇聚模块传递数据。
4.3、 在接收数据时: 在每次接收并重组上层数据时, 通道分发和汇聚模 块丟弃任何在无效通道上收到的信号,只使用有效通道上接收到的信号完成上 层数据的重组。
二、 检测端的对端处理流程:
1、 通道分发和汇聚模块接收到第二设定数据 RLF, 视为"指示单个通道远 端接收故障的信息"。 当然, 若通道分发和汇聚模块判断收到的是指示远端物 理层故障的信息,则可按照现有物理层故障处理机制进行处理,此处不再赘述。 2、 通道分发和汇聚模块将相应通道的状态记录更新为恢复状态。
3、 通道分发和汇聚模块根据当前有效通道数目, 生成控制上层流量的流 量控制信号, 调整上层数据流量在当前有效通道可处理范围内。
4.1、 在发送信息数据时: 通道分发和汇聚模块将上层传输的数据分发到 有效通道, 同时在处于恢复状态的通道插入第三设定数据 MJLL。
4.2、 在接收数据时: 通道分发和汇聚模块丟弃任何在处于恢复状态的通 道上收到的信号, 只使用有效通道上接收到的信号完成上层数据的重组。
示例二、 单通道单向故障消失。
一、 故障消失端处理流程:
1、 故障通告模块获知本通道的故障消失事件后, 停止生成通道故障信号
LLF到通道分发和汇聚模块及通道对齐模块。
2、 通道分发和汇聚模块感知到通道故障消除, 将相应通道的状态记录更 新为恢复状态。
3.1、 在发送信息数据时: 通道分发和汇聚模块将上层传输的数据分发到 有效通道, 同时在处于恢复状态的通道插入第三设定数据 NULL替换之前的第 二设定数据 RLF。
3.2、 在接收数据时: 通道对齐模块感知到通道故障消除, 将由无效状态 变为恢复状态的通道纳入对齐处理,直到处于恢复状态的通道与原有对齐通道 一起进入对齐状态,发送包含处于恢复状态的通道的数据到通道分发和汇聚模 块。
3.3、 在接收数据时: 此时通道对齐模块及通道分发和汇聚模块将收到远 端发送过来的第三设定数据 NULL或第二设定数据 RLF。 在每次接收并重组上 层数据时,通道分发和汇聚模块丟弃在处于恢复状态的通道上收到的第三设定 数据 NULL或第二设定数据 RLF, 只使用有效通道上接收到的信号完成上层数 据的重组。 通道分发和汇聚模块如果收到的是第二设定数据 RLF, 保持相应通 道的状态记录为恢复状态。
4.1、 在接收数据时: 通道分发和汇聚模块在处于恢复状态的通道上收到 的第二设定数据 RLF变化为第三设定数据 NULL, 或者收到的第三设定数据 NULL变化为有效数据, 将相应通道的状态记录更新为有效状态。 4.2、 在接收数据时: 当通道分发和汇聚模块在变化为有效状态的通道上 收到的第三设定数据 NULL变化为有效信号时, 在重组上层数据时包括这些信 号。
4.3、 在发送信息数据时: 通道分发和汇聚模块在通道分发时将上层传输 的数据分发到状态已经更新为有效状态的通道。
5、 通道分发和汇聚模块根据当前有效通道数目, 生成控制上层流量的流 量控制信号, 调整上层数据流量在当前有效通道可处理范围内。
二、 故障消失端的对端处理流程:
1、 通道分发和汇聚模块收到的第二设定数据 RLF变化为第三设定数据 NULL, 将相应通道的状态记录更新为有效状态。
2.1、 在发送信息数据时: 通道分发和汇聚模块在通道分发时将上层传输 的数据分发到状态已经更新为有效状态的通道, 而不再插入第三设定数据 NULL0
2.2、 在接收数据时: 通道分发和汇聚模块丟弃在变化为有效状态的通道 上收到的第三设定数据 NULL, 只使用有效通道上接收到的信号完成上层数据 的重组。
2.3、 在接收数据时: 当通道分发和汇聚模块在变化为有效状态的通道上 收到的第三设定数据 NULL变化为有效信号时, 在重组上层数据时包括这些信 号。
3、 通道分发和汇聚模块根据当前有效通道数目, 生成控制上层流量的流 量控制信号, 调整上层数据流量在当前有效通道可处理范围内。
示例三、 手动通道关闭和开启 (适用于进行流量调整)。
一、 手动通道关闭流程:
1、 关闭发起端: 通道分发和汇聚模块获得关闭某个通道的命令, 将相应 通道的状态记录更新为恢复状态。
2、 关闭发起端: 通道分发和汇聚模块根据当前有效通道数目, 生成控制 上层流量的流量控制信号, 调整上层数据流量在当前有效通道可处理范围内。
3、 关闭发起端: 通道分发和汇聚模块将上层传输的数据分发到有效通道, 同时在处于恢复状态的通道插入第三设定数据 NULL替换之前的有效数据。 4、 关闭发起端的对端: 通道分发和汇聚模块收到的有效数据变化为第三 设定数据 NULL, 将相应通道的状态记录更新为恢复状态; 并且不使用该通道 数据进行上层数据恢复; 将本端上层数据分发到其他通道,在该通道插入第三 设定数据 NULL;根据当前有效通道数目,生成控制上层流量的流量控制信号, 调整上层数据流量在当前有效通道可处理范围内。
5、 关闭发起端: 通道分发和汇聚模块收到第三设定数据 NULL, 不使用 该通道数据进行上层数据恢复。
二、 手动通道开启流程:
1、 开启发起端: 通道分发和汇聚模块获得开启某个通道的命令, 将相应 通道的状态记录更新为有效状态。
2、 开启发起端: 通道分发和汇聚模块根据当前有效通道数目, 生成控制 上层流量的流量控制信号, 调整上层数据流量在当前有效通道可处理范围内。
3、 开启发起端: 通道分发和汇聚模块停止在变化为有效状态的通道中插 入第三设定数据 NULL, 将上层传输的数据分发到该有效通道。
4、 开启发起端的对端: 通道分发和汇聚模块收到的第三设定数据 NULL 变化为有效数据, 将相应通道的状态记录更新为有效状态; 使用该通道数据进 行上层数据恢复; 停止在该通道插入第三设定数据 NULL, 将本端上层数据分 发到该有效通道;根据当前有效通道数目,生成控制上层流量的流量控制信号, 调整上层数据流量在当前有效通道可处理范围内。
本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分步 骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机 可读存储介质中, 该程序在执行时, 包括方法实施例的步骤之一或其组合。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块 中。 上述集成的模块既可以釆用硬件的形式实现, 也可以釆用软件功能模块的 形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品 销售或使用时, 也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
通过上述实施例可以看出 ,本发明实施例通过在数据分发时根据单个通道 的状态进行区别处理, 充分利用有效通道; 通过在数据接收时分辨通道传输的 数据的类型,确保只使用有效数据进行数据恢复。 由于能够对单个通道的数据 传输进行独立的控制,使得在部分通道出现故障时, 能够在损失部分容量的基 础上, 保持整个链路的有效性, 充分利用通道资源, 避免了浪费。
以上对本发明所提供的多通道数据发送 /接收方法、 多通道数据传输控制 方法、 多通道数据发送 /接收装置和多通道传输设备进行了详细介绍, 本文中 是用于帮助理解本发明的方法及其核心思想; 同时,对于本领域的一般技术人 员, 依据本发明的思想, 在具体实施方式及应用范围上均会有改变之处, 综上 所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种多通道数据发送方法, 其特征在于, 包括:
获取需要发送的信息数据;
根据各个通道的状态记录判断是否存在处于特定状态的通道,所述通道的 状态记录包括特定状态和有效状态;
若是, 则仅将所述需要发送的信息数据分发到处于有效状态的通道; 若否, 则将所述信息数据分发到各个通道。
2、 根据权利要求 1所述的多通道数据发送方法, 其特征在于, 还包括: 在判断存在处于特定状态的通道时,在所述处于特定状态的通道中插入与 通道状态相应的设定数据。
3、 一种多通道数据接收方法, 其特征在于, 包括:
从各个通道接收数据;
判断各个通道收到的数据的类型是否为免恢复数据,所述数据的类型包括 免恢复数据和有效数据;
若是, 则不使用该通道收到的数据进行整体数据恢复;
若否,则将该通道收到的数据作为待恢复整体数据的一部分进行整体数据 恢复。
4、 根据权利要求 3所述的多通道数据接收方法, 其特征在于, 所述判断通 道收到的数据是否为免恢复数据, 具体是:
根据通道收到的数据内容判断收到的数据是否为设定数据, 若是, 则确定 该通道收到的数据为免恢复数据;若否,则确定该通道收到的数据为有效数据; 或者,
根据通道的状态记录判断该通道是否处于特定状态, 若是, 则确定该通道 收到的数据为免恢复数据; 若否, 则根据该通道收到的数据内容判断收到的数 据是否为设定数据,在判断为是时确定该通道收到的数据为免恢复数据,在判 断为否时确定该通道收到的数据为有效数据。
5、 根据权利要求 3或 4所述的多通道数据接收方法, 其特征在于, 在所述 判断通道收到的数据的类型是否为免恢复数据, 之前还包括:
根据是否收到指示单个通道本端接收故障的通道故障信号,或者根据各个 通道的状态记录, 判断是否存在处于无效状态的通道, 若是, 则仅对处于无效 状态的通道以外的其他通道收到的数据进行对齐处理; 若否, 则对各个通道收 到的数据进行对齐处理;
根据是否获取到指示单个通道本端故障消除的信息,判断是否存在需要恢 复到对齐处理中的通道; 若是, 则将所述需要恢复到对齐处理中的通道收到的 数据, 与已有的进行对齐处理的通道收到的数据一起, 进行对齐处理; 若否, 则仅对已有的进行对齐处理的通道收到的数据进行对齐处理。
6、 一种多通道数据传输控制方法, 其特征在于, 包括:
获取指示单个通道的状态变化的状态更新信息;
根据所述状态更新信息更新相应通道的状态记录,所述通道的状态记录包 括特定状态和有效状态;
在发送信息数据时:根据各个通道的状态记录判断是否存在处于特定状态 的通道;若是,则仅将需要发送的信息数据分发到处于有效状态的通道;若否, 则将所述信息数据分发到各个通道;
在接收数据时: 判断通道收到的数据的类型是否为免恢复数据, 所述数据 的类型包括免恢复数据和有效数据; 若是, 则不使用该通道收到的数据进行整 体数据恢复; 若否, 则将该通道收到的数据作为待恢复整体数据的一部分进行 整体数据恢复。
7、 根据权利要求 6所述的多通道数据传输控制方法, 其特征在于, 在所述 根据状态更新信息更新相应通道的状态记录之后, 还包括:
按照处于有效状态的通道的数目生成流量控制信号,所述流量控制信号用 于将所述需要发送的信息数据的流量调整在当前处于有效状态的通道能够处 理的范围内。
8、 根据权利要求 6或 7所述的多通道数据传输控制方法, 其特征在于, 所述获取指示单个通道的状态变化的状态更新信息包括:获取指示单个通 道本端接收故障的信息;
所述根据状态更新信息更新相应通道的状态记录具体为:根据所述指示单 个通道本端接收故障的信息,将相应通道的状态记录更新为无效状态, 所述无 效状态属于特定状态。
9、 根据权利要求 6或 7所述的多通道数据传输控制方法, 其特征在于, 所 述获取指示单个通道的状态变化的状态更新信息包括:获取指示需要将单个通 道的状态记录更新为恢复状态的恢复态更新信息, 所述恢复态更新信息包括: 指示单个通道本端故障消除的信息; 和 /或,
指示单个通道远端接收故障的信息; 和 /或,
指示单个通道远端主动关闭的信息; 和 /或,
通道关闭信号, 所述通道关闭信号用于指示单个通道本端主动关闭; 所述根据状态更新信息更新相应通道的状态记录具体为:根据所述恢复态 更新信息, 将相应通道的状态记录更新为恢复状态, 所述恢复状态属于特定状 态。
10、 根据权利要求 9所述的多通道数据传输控制方法, 其特征在于, 还包 括:
在发送信息数据时,在确定存在处于恢复状态的通道时, 在所述处于恢复 状态的通道中插入第三设定数据, 所述第三设定数据属于免恢复数据;
在所述获取指示单个通道本端故障消除的信息之后,向通讯对端发送远端 故障消除信号, 所述远端故障消除信号用于指示单个通道远端接收故障消除; 在所述获取通道关闭信号之后, 向通讯对端发送远端通道关闭信号, 所述 远端通道关闭信号用于指示单个通道远端主动关闭。
11、 根据权利要求 6或 7所述的多通道数据传输控制方法, 其特征在于, 所 述获取指示单个通道的状态变化的状态更新信息包括:获取指示需要将单个通 道的状态记录更新为有效状态的有效态更新信息, 所述有效态更新信息包括: 指示单个通道远端故障消除的信息; 和 /或,
指示单个通道远端主动打开的信息; 和 /或,
通道打开信号, 所述通道打开信号用于指示单个通道本端主动打开; 所述根据状态更新信息更新相应通道的状态记录具体为:根据所述有效态 更新信息, 将相应通道的状态记录更新为有效状态。
12、 一种多通道数据发送装置, 其特征在于, 包括:
两个或两个以上物理层通道, 各个通道用于传输数据;
通道分发单元, 用于获取需要发送的信息数据; 根据各个通道的状态记录 判断是否存在处于特定状态的通道,所述通道的状态记录包括特定状态和有效 状态; 若是, 则仅将所述需要发送的信息数据分发到处于有效状态的通道, 若 否, 则将所述信息数据分发到各个通道。
13、 根据权利要求 12所述的多通道数据发送装置, 其特征在于: 所述通道分发单元,还用于在判断存在处于特定状态的通道时, 在所述处 于特定状态的通道中插入与通道状态相应的设定数据。
14、 一种多通道数据接收装置, 其特征在于, 包括:
两个或两个以上物理层通道, 各个通道用于传输数据;
接收处理单元, 用于从各个通道接收数据; 判断通道收到的数据的类型是 否为免恢复数据, 所述数据的类型包括免恢复数据和有效数据; 若是, 则不使 用该通道收到的数据进行整体数据恢复, 若否, 则将该通道收到的数据作为待 恢复整体数据的一部分用于整体数据恢复。
15、 根据权利要求 14所述的多通道数据接收装置, 其特征在于, 所述接收 处理单元包括:
通道汇聚单元, 用于判断从各个通道收到的数据的类型是否为免恢复数 据, 所述数据的类型包括免恢复数据和有效数据; 若是, 则不使用该通道收到 的数据进行整体数据恢复, 若否, 则将该通道收到的数据作为待恢复整体数据 的一部分进行整体数据恢复。
通道对齐单元, 用于从各个通道接收数据, 将接收到的数据传递给所述通 道汇聚单元; 在进行数据传递之前,根据是否收到指示单个通道本端接收故障 的通道故障信号, 或者根据各个通道的状态记录, 判断是否存在处于无效状态 的通道, 若是, 则仅对处于无效状态的通道以外的其他通道收到的数据进行对 齐处理, 若否, 则对各个通道收到的数据进行对齐处理。
16、 一种多通道传输设备, 其特征在于, 包括:
两个或两个以上物理层通道, 各个通道用于传输数据;
通道分发和汇聚模块, 用于获取指示单个通道的状态变化的状态更新信 息; 4艮据所述状态更新信息更新相应通道的状态记录, 所述通道的状态记录包 括特定状态和有效状态; 在发送信息数据时: 根据各个通道的状态记录判断是 否存在处于特定状态的通道; 若是, 则仅将需要发送的信息数据分发到处于有 效状态的通道; 若否, 则将所述信息数据分发到各个通道; 在接收数据时: 判 断通道收到的数据的类型是否为免恢复数据,所述数据的类型包括免恢复数据 和有效数据; 若是, 则不使用该通道收到的数据进行整体数据恢复; 若否, 则 将该通道收到的数据作为待恢复整体数据的一部分进行整体数据恢复。
17、 根据权利要求 16所述的多通道传输设备, 其特征在于: 所述通道分发 和汇聚模块,还用于按照处于有效状态的通道的数目生成流量控制信号, 所述 流量控制信号用于将所述需要发送的信息数据的流量调整在当前处于有效状 态的通道能够处理的范围内; 在发送信息数据时, 在判断存在处于特定状态的 通道时, 在所述处于特定状态的通道中插入与通道状态相应的设定数据。
18、 根据权利要求 16或 17所述的多通道传输设备, 其特征在于, 还包括: 通道对齐模块, 用于从各个通道接收数据, 将接收到的数据传递给所述通 道分发和汇聚模块;在进行数据传递之前,判断是否存在处于无效状态的通道, 若是, 则仅对处于无效状态的通道以外的其他通道收到的数据进行对齐处理 , 若否, 则对各个通道收到的数据进行对齐处理; 所述无效状态属于特定状态。
PCT/CN2008/072162 2007-09-27 2008-08-27 Méthode d'émission/réception sur voies multiples, méthode de gestion de transmissions, et appareil correspondant WO2009043251A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710151715.7 2007-09-27
CN 200710151715 CN101399811B (zh) 2007-09-27 2007-09-27 多通道数据接收以及传输控制方法和相应的装置

Publications (1)

Publication Number Publication Date
WO2009043251A1 true WO2009043251A1 (fr) 2009-04-09

Family

ID=40518066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072162 WO2009043251A1 (fr) 2007-09-27 2008-08-27 Méthode d'émission/réception sur voies multiples, méthode de gestion de transmissions, et appareil correspondant

Country Status (2)

Country Link
CN (1) CN101399811B (zh)
WO (1) WO2009043251A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491762A (zh) * 2020-12-15 2021-03-12 盛科网络(苏州)有限公司 一种基于pcs和mii分离的信号质量优化方法、装置及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412994A (zh) * 2011-11-23 2012-04-11 福建星网锐捷网络有限公司 接收设备、发送设备、线路故障处理方法及系统
CN103077134B (zh) * 2012-12-27 2015-10-28 飞天诚信科技股份有限公司 一种嵌入式系统中实现多管道数据传输的方法和装置
WO2014153784A1 (zh) * 2013-03-29 2014-10-02 华为技术有限公司 一种以太网中传输数据的方法、装置及系统
WO2014166102A1 (zh) * 2013-04-12 2014-10-16 华为技术有限公司 一种数据处理的方法、装置及系统
CN104904176B (zh) * 2013-11-08 2017-12-29 华为技术有限公司 数据分发方法和数据聚合方法及相关装置
EP3222021A1 (en) * 2014-11-19 2017-09-27 Lantiq Beteiligungs-GmbH & Co. KG Physical medium dependent layer bonding
CN106846606B (zh) * 2017-02-08 2019-09-20 深圳怡化电脑股份有限公司 一种数据采集方法、装置及金融设备
CN112235163B (zh) * 2020-10-21 2021-12-07 中国核动力研究设计院 一种fpga架构的防止数据阻塞方法、装置、设备和介质
CN112671526B (zh) * 2020-12-23 2021-09-17 宸芯科技有限公司 以太网物理编码子层pcs的线对对齐方法、装置和设备
CN113098857B (zh) * 2021-03-29 2022-06-28 西安微电子技术研究所 一种多通道通信方法及系统
CN115328094A (zh) * 2022-08-27 2022-11-11 南京芯传汇电子科技有限公司 多余度远程控制终端余度故障恢复方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051044A1 (en) * 1997-05-09 1998-11-12 Level One Communications, Inc. Physical layer device having a media independent interface for connecting to either media access control entities or other physical layer devices
CN1428971A (zh) * 2001-12-27 2003-07-09 北京润光泰力科技发展有限公司 一种多路通道传输一路网络数据的方法
CN1512684A (zh) * 2002-12-31 2004-07-14 北京邮电大学 以太网无源光网络系统中弹性保护倒换的方法和设备
CN1728629A (zh) * 2005-07-27 2006-02-01 杭州华为三康技术有限公司 多路物理层接口复用传输装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169321C (zh) * 1996-08-22 2004-09-29 波音公司 多通道系统中获得高度综合和可用性的方法与装置
CN1671217B (zh) * 2004-03-16 2010-10-13 华为技术有限公司 双发选收电路及方法
CN100539512C (zh) * 2004-12-29 2009-09-09 烽火通信科技股份有限公司 同步数字系列传送网中实现数据链路调整的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051044A1 (en) * 1997-05-09 1998-11-12 Level One Communications, Inc. Physical layer device having a media independent interface for connecting to either media access control entities or other physical layer devices
CN1428971A (zh) * 2001-12-27 2003-07-09 北京润光泰力科技发展有限公司 一种多路通道传输一路网络数据的方法
CN1512684A (zh) * 2002-12-31 2004-07-14 北京邮电大学 以太网无源光网络系统中弹性保护倒换的方法和设备
CN1728629A (zh) * 2005-07-27 2006-02-01 杭州华为三康技术有限公司 多路物理层接口复用传输装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491762A (zh) * 2020-12-15 2021-03-12 盛科网络(苏州)有限公司 一种基于pcs和mii分离的信号质量优化方法、装置及系统
CN112491762B (zh) * 2020-12-15 2022-08-12 苏州盛科通信股份有限公司 一种基于pcs和mii分离的信号质量优化方法、装置及系统

Also Published As

Publication number Publication date
CN101399811A (zh) 2009-04-01
CN101399811B (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2009043251A1 (fr) Méthode d&#39;émission/réception sur voies multiples, méthode de gestion de transmissions, et appareil correspondant
JP5992058B2 (ja) データモード時に順方向誤り訂正を解決するよう構成されているネットワークシステム
US8649379B2 (en) Method and apparatus for configuring a link aggregation group on a stacked switch
US7970007B2 (en) Communication apparatus and retrieval table management method used for communication apparatus
JP4688765B2 (ja) ネットワークの冗長方法及び中位スイッチ装置
KR101190859B1 (ko) 래인 장애 복구가 가능한 이더넷 장치, 데이터 송신 방법 및 수신 방법
US9407538B2 (en) Ring network failure switching method and apparatus
WO2006006632A1 (ja) パケット転送方法及びパケット転送装置
JP2000506326A (ja) フロー制御プロトコルシステムおよび方法
US8635375B2 (en) Remote F—ports
WO2012100671A1 (zh) 一种绑定物理网口的方法、网卡及通信系统
WO2014166102A1 (zh) 一种数据处理的方法、装置及系统
US11349704B2 (en) Physical layer interface with redundant data paths
US20110261682A1 (en) Apparatus and method for transmitting and receiving dynamic lane information in multi-lane based ethernet
US8134915B2 (en) Method and apparatus for providing network redundancy
JP2002009866A (ja) フレーム分配方法およびその機能を有する情報処理装置
JP2007208502A (ja) 通信システム、バックアップルータ、その冗長化処理プログラムおよびその冗長化処理方法
CN102142931B (zh) 一种防止e-trunk丢包的方法、装置和系统
JP2008028671A (ja) 受信側ネットワーク装置
US20080298231A1 (en) Ring node and redundancy method
WO2011143938A1 (zh) 一种在汇聚链路中进行用户端口管理的方法及系统
US11659002B2 (en) Extending Media Access Control Security (MACsec) to Network-to-Network Interfaces (NNIs)
US9762452B2 (en) Network switch employing one or more multi-endpoint optical transceivers
KR101315621B1 (ko) 다중 레인 기반 이더넷에서 동적 레인 운용을 위한 송, 수신 장치 및 그 제어 방법
JP5954793B2 (ja) 通信接続装置、通信制御装置およびそのプログラム並びに通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08784151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08784151

Country of ref document: EP

Kind code of ref document: A1