WO2009040200A1 - Akkupack - Google Patents

Akkupack Download PDF

Info

Publication number
WO2009040200A1
WO2009040200A1 PCT/EP2008/061124 EP2008061124W WO2009040200A1 WO 2009040200 A1 WO2009040200 A1 WO 2009040200A1 EP 2008061124 W EP2008061124 W EP 2008061124W WO 2009040200 A1 WO2009040200 A1 WO 2009040200A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion element
battery cells
battery pack
battery
housing
Prior art date
Application number
PCT/EP2008/061124
Other languages
English (en)
French (fr)
Inventor
Marcin Rejman
Wolf Matthias
Josef Baumgartner
Jan Breitenbach
Thorsten Seidel
Rainer Glauning
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202007014418U external-priority patent/DE202007014418U1/de
Priority claimed from DE200710049358 external-priority patent/DE102007049358A1/de
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE200850002337 priority Critical patent/DE502008002337D1/de
Priority to EP20080787472 priority patent/EP2193562B1/de
Priority to US12/678,217 priority patent/US20100209759A1/en
Priority to CN200880107994XA priority patent/CN101803062B/zh
Priority to AT08787472T priority patent/ATE495555T1/de
Publication of WO2009040200A1 publication Critical patent/WO2009040200A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • H01M10/6235Power tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery pack, in particular for a hand tool, according to the preamble of claim 1.
  • the battery packs consist of several electrically connected battery cells, which are housed in a housing.
  • the battery cells usually have a substantially cylindrical shape.
  • the mechanical dimensions are usually subject to international standards, but very large
  • the tolerances are in the range of up to 1 mm, which means a significantly greater tolerance compared to the usual tolerance field sizes of 0.2 to 0.4 mm with the same main dimensions.
  • foam inserts have the disadvantage that on the one hand, due to a possible compression set, the mechanical stress of the foam insert decreases over time, causing the battery cells in the housing back to play and no longer stuck.
  • foam inserts have the disadvantage that they have a good heat insulating effect. This is undesirable in a battery pack, since the heat generated during operation or when charging the battery pack should be dissipated as quickly as possible.
  • an elastic housing to compensate for the diameter tolerances of the cells.
  • An elastic housing is disadvantageous because the design of the battery pack is greatly influenced by the elasticity of the housing. Furthermore, the other components such as fittings must be matched to the elasticity of the housing. Finally, an elastic housing is not advantageous because the housing is subject to different mechanical loads as a function of the actual dimensions of the battery cells contained therein as a result of the elastic deformation.
  • the invention relates to a battery pack with a housing and at least one battery cells and means for tolerance compensation of the battery cell. There may also be more than one battery cell, e.g. two or more
  • Battery cells are connected together to form a battery pack.
  • the battery pack is particularly suitable for supplying power to an electrical appliance, in particular a handheld power tool.
  • the battery cells typically have a cylindrical shape. In principle, they can also have any other geometric shape.
  • the tolerance compensation means of the battery pack have at least one expansion element, which is arranged in a gap between at least two battery cells and / or between the one battery cells and the housing.
  • the housing of the battery pack is preferably dimensionally stable. It can be considered rigid in the constructive sense. With the help of the spreading it is possible to compensate for the tolerances of the battery cells in the dimensionally stable housing, without the outer contour of the housing changes significantly. The spreading take on the occurring due to the dimensional tolerances of the battery cells game between the battery cells with each other and / or between the battery cells and the housing.
  • the expansion element can be arranged, for example, between two adjacent battery cells. However, it can also be introduced in the cell gap between three adjacent battery cells, which are arranged approximately triangular to each other. If at least four rechargeable battery cells are present, which are arranged in the form of a square relative to one another, then the spreading element can be arranged in the intermediate space between these four rechargeable battery cells.
  • the expansion element can also between the inner wall of the battery pack housing and a battery cell or between the inner wall of the battery pack housing and two adjacent Akkuzellen, both of which bear against the inner wall may be arranged.
  • the expansion element is inherently elastic. It is particularly sized larger than the gap between the battery cells and / or the battery cells and the housing, so that when inserting the expansion element in the intermediate space adjacent to the gap battery cells are pressed apart.
  • the form-elastic expansion element can in principle be made of an elastomeric material.
  • the expansion element is preferably formed of a thermoplastic material, which is why individual partial elements of the expansion element are substantially rigid, while the expansion element as a whole has due to its shape sufficient elasticity.
  • PE HD high density polyethylene
  • the spreading can be made for example by injection molding.
  • the expansion element has at least one elastic element.
  • supporting partial elements of the expansion element are made of a substantially rigid material, e.g. a thermoplastic. Between the supporting sub-elements, at least one elastic element is arranged, which causes when inserting the spreader in the space between the battery cells and / or between the battery cells and the housing adjacent to the gap
  • the elastic element may be made of an elastomeric material, e.g. an elastomeric plastic, be formed. This has the advantage that it can be formed directly on the load-bearing sub-elements, for example in a two-component injection molding process. On the other hand, the elastic element can also be a
  • Be spring element which is either formed on the supporting part elements, for example, as a spring element made of plastic, or designed as a separate element.
  • At least one wall of the expansion element is adapted to the contour of the battery cells such that the expansion element conforms to the battery cells.
  • the expansion element is formed of a plurality of walls which define a cavity. This has the advantage that even after the assembly of the expansion element in a space between two or more cells and / or between battery cells and the housing a
  • Cavity exists in the cell space. This cavity can be used to cool the battery cells, for example in the cooling air or another heat-dissipating medium flows through the cavity.
  • the generation of a cooling air flow in a battery pack by means of a blower in a hand tool or a charger is known from the prior art.
  • the shape of the expansion element is also designed with regard to the heat transfer between the battery cells.
  • the spreading element arranged between the battery cells is such that a good heat transfer is possible. This can be achieved in that adjacent walls of the expansion element are arranged adjacent to each other. There should be no air gap between the adjoining walls as it would greatly reduce heat transfer.
  • the adjoining walls may for example also be merging walls, so that they are integrally formed.
  • an insertion aid is preferably provided on the expansion element. This may in particular be an insertion bevel, so that the expansion element has a smaller diameter at its end face facing the battery cells during assembly than at its opposite end face. As a result, the battery cells are gradually spread when inserting the expansion element in the space between adjacent battery cells.
  • a spreading element which can be arranged between two or more rechargeable battery cells or between the housing and one or more rechargeable battery cells, can be used for
  • Example have substantially the same axial length as the battery cells. This allows the battery cells to be pressed apart safely and evenly over their entire axial length. Alternatively, in the space between two or more battery cells or between one or more battery cells and the housing, starting from the two end faces of
  • Battery cells are also each introduced a spreading, which is relatively short compared to the axial length of the battery cells. This has the advantage that the expansion elements can be easily inserted because the necessary pressing force is smaller than with comparatively long expansion elements. Nevertheless, a uniform spread of the battery cells is achieved.
  • Another object of the invention relates to a hand tool, which contains at least one battery pack according to the invention.
  • Figure 1 is an exploded view of a battery pack according to the invention
  • Figure 3 is an expansion element in cross section
  • FIG. 4 shows the expansion element according to FIG. 3 in a perspective view
  • FIG. 5 shows an alternative embodiment of a spreading element in a schematic representation.
  • the exploded view of Fig. 1 shows a battery pack 1 with a housing 10 made of plastic, a plurality of cylindrical battery cells 20 and a plurality of spreading elements 30.
  • ten battery cells 20 are arranged in two parallel rows of five battery cells 20 to each other.
  • Fig. 1 shows simplistic only two spreading elements 30th
  • a spreading element 30 is always provided in a gap 22 formed by four adjacent battery cells 20.
  • the housing 10 comprises further housing parts, e.g. Side walls, as well as electrical contacts, which are not shown here for the sake of clarity.
  • the housing 10 of the battery pack 1 is dimensionally stable.
  • the spreading elements 30 cause the battery cells 20 are accommodated in the battery pack housing 10 substantially free of play despite their sometimes considerable dimensional tolerances. In this case, the outer contour of the housing 10 is not deformed.
  • the expansion element 30 is inherently elastic. It consists of PE HD, which is comparatively elastic and deformable compared to other thermoplastics.
  • the expansion element as a whole has sufficient elasticity due to its shape. It is in the unassembled state sized in diameter larger than the gap 22 between the battery cells 20. As a result, the adjacent to the gap 22 battery cells 20 are pressed apart when inserting the expansion element 30 into the gap 22.
  • the expansion element 30 abuts against the peripheral surfaces 24 of the four battery cells 20.
  • the expansion element 30 comprises four walls 32, which are adapted to the peripheral surfaces 24 of the battery cells 20 such that the expansion element 30 conforms to the battery cells 20.
  • the outer surface 33 of the walls 32 of the expansion element 30 thus forms a complementary to the peripheral surface 24 of the battery cells 20 surface.
  • a cavity 34 which serves for cooling the battery cells, for example by means of cooling air.
  • a battery pack 1 consists of several battery cells 20, as shown for example in FIG. 1, it may be desirable if in the battery pack 1 the heat transfer between adjacent battery cells 20 does not take place equally well in all directions.
  • the battery pack 1 shown in Fig. 1 is mounted with its top on a hand tool. In this battery pack 1 should be a good heat transfer in the vertical direction, ie between a battery cell 20 of a series and an adjacent battery cell of the other row done. In contrast, the heat transfer in the horizontal direction, ie between adjacent battery cells of a row, should be reduced as much as possible.
  • the spreader 30 is designed for this purpose in a special way by vertical in
  • Adjacent walls 32.1 are arranged adjacent to each other, so that there is no air gap between the walls 32.1 or between the superimposed battery cells 20, which could reduce the heat transfer.
  • the two walls 32.1 are designed so that they merge into one another. They are integrally formed. In the horizontal direction adjacent
  • Walls 32.2 do not abut each other. By their curvature, although the walls 32.2 converge, they do not touch one another. Thus, an air gap 35 forms between the walls 32.2 and thus between the horizontally adjacent battery cells 20.
  • the expansion element 30 is further provided with an insertion aid 36, which facilitates the assembly of the expansion element.
  • Insertion bevels serve as an insertion aid 36 with the aid of which the expansion element 30 slides during insertion along the battery cells 20 in order to spread them apart.
  • the expansion element 30 has a smaller diameter on its end face 37 facing the battery cells 20 during assembly than on its opposite end side.
  • the expansion element 30 is made relatively short compared to the axial length of the battery cells 20. This has the advantage that when inserting the expansion element 30 in the gap 22 only a short way must be covered and thus the necessary pressing force is relatively low. In order nevertheless a uniform spread over the entire axial length of the battery cells 20 is achieved, in the intermediate space 22 of both end faces of the battery cells 20 ago each one
  • a spreader 40 is shown schematically.
  • the expansion element 40 has an elastic element 44 which connects the supporting partial elements 42 of the expansion element 40.
  • the supporting sub-elements 42 are dimensionally stable and eg PE HD.
  • the elastic element 44 acts as a spring element. It is shown in Fig. 5 schematically as a helical spring. However, any type of spring element can be used, for example a resilient element made of an elastomeric material.
  • Gap 22 between the two battery cells 20 are pressed against the gap 22 adjacent battery cells 20 apart.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

Die Erfindung beschreibt einen Akkupack mit einem Gehäuse (10) und mindestens einer Akkuzellen (20) sowie Mitteln zum Toleranzausgleich der Akkuzelle (20), wobei die Toleranzausgleichsmittel mindestens ein Spreizelement (30, 40) aufweisen, welches in einem Zwischenraum (22) zwischen mindestens zwei Akkuzellen (20) und/oder zwischen der einen Akkuzelle (20) und dem Gehäuse (10) angeordnet ist.

Description

Beschreibung
Titel Akkupack
Stand der Technik
Die Erfindung betrifft einen Akkupack, insbesondere für eine Handwerkzeugmaschine, nach dem Oberbegriff des Anspruchs 1.
Anstelle des Netzbetriebs für die Spannungsversorgung sind zahlreiche
Handwerkzeugmaschinen mit aufladbaren Akkupacks ausgestattet. Die Akkupacks bestehen aus mehreren elektrisch zusammen geschalteten Akkuzellen, die in einem Gehäuse untergebracht sind. Die Akkuzellen haben meist eine im Wesentlichen zylindrische Form. Die mechanischen Abmessungen unterliegen in der Regel internationalen Normen, die jedoch sehr große
Toleranzen zulassen. Die Toleranzen liegen im Bereich von bis zu 1 mm, was im Vergleich zu sonst in der Konstruktion üblichen Toleranzfeldgrößen von 0,2 bis 0,4 mm bei gleichen Hauptabmessungen eine deutlich größere Toleranz bedeutet.
Infolge dieser starken Toleranzen ist es erforderlich, das Gehäuse des Akkupacks auf Größtmaß zu konstruieren. Dies führt allerdings dazu, dass einige oder alle Akkuzellen in dem Gehäuse mit Spiel aufgenommen sind. In diesem Fall wird das Spiel z.B. durch Schaumstoffeinlagen ausgeglichen. Diese Schaumstoffeinlagen haben jedoch den Nachteil, dass zum einen aufgrund eines möglichen Druckverformungsrests die mechanische Spannung der Schaumstoffeinlage mit der Zeit abnimmt, wodurch die Akkuzellen in dem Gehäuse wieder an Spiel gewinnen und nicht mehr fest sitzen. Zum anderen haben Schaumstoffeinlagen den Nachteil, dass sie eine gute wärmeisolierende Wirkung haben. Dies ist in einem Akkupack unerwünscht, da die im Betrieb oder beim Laden des Akkupacks entstehende Wärme möglichst rasch abgeführt werden soll. Alternativ ist aus dem Stand der Technik bekannt, ein elastisches Gehäuse vorzusehen, um die Durchmessertoleranzen der Zellen auszugleichen. Ein elastisches Gehäuse ist nachteilig, weil das Design des Akkupacks dabei stark von der Elastizität des Gehäuses beeinflusst ist. Ferner müssen auch die übrigen Komponenten wie Verschraubungen auf die Elastizität des Gehäuses abgestimmt sein. Schließlich ist ein elastisches Gehäuse nicht vorteilhaft, weil durch die elastische Verformung das Gehäuse in Abhängigkeit der tatsächlichen Abmessungen der darin enthaltenen Akkuzellen unterschiedlich stark mechanisch belastet wird.
Offenbarung der Erfindung
Die Erfindung geht aus von einem Akkupack mit einem Gehäuse und mindestens einer Akkuzellen sowie Mitteln zum Toleranzausgleich der Akkuzelle. Es können auch mehr als eine Akkuzelle vorhanden sein, z.B. zwei oder mehrere
Akkuzellen miteinander zu einem Akkupack zusammen geschaltet sein. Der Akkupack eignet sich insbesondere zur Spannungsversorgung eines Elektrogeräts, ganz insbesondere einer Handwerkzeugmaschine. Die Akkuzellen haben typischerweise eine Zylinderform. Sie können prinzipiell aber auch jede andere geometrische Form haben.
Erfindungsgemäß weisen die Toleranzausgleichsmittel des Akkupacks mindestens ein Spreizelement auf, welches in einem Zwischenraum zwischen mindestens zwei Akkuzellen und/oder zwischen der einen Akkuzellen und dem Gehäuse angeordnet ist. Das Gehäuse des Akkupacks ist vorzugsweise formstabil. Es kann im konstruktiven Sinne als steif angesehen werden. Mit Hilfe der Spreizelemente gelingt es, die Toleranzen der Akkuzellen in dem formstabilen Gehäuse auszugleichen, ohne dass sich die Außenkontur des Gehäuses wesentlich ändert. Die Spreizelemente nehmen das aufgrund der maßlichen Toleranzen der Akkuzellen auftretende Spiel zwischen den Akkuzellen untereinander und/oder zwischen den Akkuzellen und dem Gehäuse auf.
Das Spreizelement kann beispielsweise zwischen zwei benachbarten Akkuzellen angeordnet sein. Es kann jedoch auch in dem Zellzwischenraum zwischen drei benachbarten Akkuzellen, die in etwa dreieckförmig zueinander angeordnet sind, eingebracht sein. Sind mindestens vier Akkuzellen vorhanden, die in Form eines Quadrates zueinander angeordnet sind, so kann das Spreizelement in dem Zwischenraum zwischen diesen vier Akkuzellen angeordnet sein. Das Spreizelement kann auch zwischen der Innenwand des Akkupackgehäuses und einer Akkuzelle oder zwischen der Innenwand des Akkupackgehäuses und zwei benachbarten Akkuzellen, die beide an der Innenwand anliegen, angeordnet sein.
In einer ersten Ausführungsform ist das Spreizelement in sich formelastisch. Es ist insbesondere größer bemessen als der Zwischenraum zwischen den Akkuzellen und/oder den Akkuzellen und dem Gehäuse, so dass beim Einfügen des Spreizelements in den Zwischenraum die an den Zwischenraum angrenzenden Akkuzellen auseinander gedrückt werden. Das formelastische Spreizelement kann prinzipiell aus einem elastomeren Material hergestellt sein.
Es ist jedoch vorzugsweise aus einem thermoplastischen Material gebildet, weshalb einzelne Teilelemente des Spreizelements im Wesentlichen steif sind, während das Spreizelement als ganzes aufgrund seiner Form eine ausreichende Elastizität aufweist.
Vorzugsweise bestehen die Spreizelemente aus Polyethylen hoher Dichte (PE HD), welches den Vorteil hat, zum einen vergleichsweise elastisch und verformbar zu sein und zum anderen mit einer Wärmeleitfähigkeit von 0,4 bis 0,42 W/m K eine für Kunststoffe verhältnismäßige gute Wärmeleitfähigkeit zu haben, die mit der Wärmeleitfähigkeit der Akkuzellen selbst von 0,4 bis 0,5 W/mK vergleichbar ist. Die Spreizelemente können beispielsweise durch Spritzgießen hergestellt sein.
In einer zweiten Ausführungsform weist das Spreizelement mindestens ein elastisches Element auf. Dabei sind tragende Teilelemente des Spreizelements aus einem im Wesentlichen steifen Material, z.B. einem thermoplastischen Kunststoff. Zwischen den tragenden Teilelementen ist zumindest ein elastisches Element angeordnet, welches bewirkt, dass beim Einfügen des Spreizelements in den Zwischenraum zwischen den Akkuzellen und/oder zwischen den Akkuzellen und dem Gehäuse die an den Zwischenraum angrenzenden
Akkuzellen auseinander gedrückt werden. Das elastische Element kann einerseits aus einem elastomeren Material, z.B. einem elastomeren Kunststoff, gebildet sein. Dies hat den Vorteil, dass es an die tragenden Teilelemente direkt angeformt werden kann, beispielsweise in einem Zweikomponenten- Spritzgießverfahren. Das elastische Element kann andererseits aber auch ein
Federelement sein, das entweder an die tragenden Teilelemente angeformt ist, z.B. als Federelement aus Kunststoff, oder als separates Element ausgeführt ist. - A -
Vorzugsweise ist mindestens eine Wand des Spreizelements an die Kontur der Akkuzellen derart angepasst ist, dass sich das Spreizelement an die Akkuzellen anschmiegt. Die Außenwand des Spreizelements, welche an der Umfangsfläche einer Akkuzelle anliegt, bildet also eine zu der Umfangsfläche der Akkuzellen komplementäre Fläche.
In einer bevorzugten Ausführungsform ist das Spreizelement aus mehreren Wänden gebildet, die einen Hohlraum begrenzen. Dies hat den Vorteil, dass auch nach der Montage des Spreizelements in einem Zwischenraum zwischen zwei oder mehreren Zellen und/oder zwischen Akkuzellen und dem Gehäuse ein
Hohlraum in dem Zellenzwischenraum besteht. Dieser Hohlraum kann zur Kühlung der Akkuzellen dienen, beispielsweise in dem Kühlluft oder ein anders wärmeableitendes Medium durch den Hohlraum strömt. Die Erzeugung eines Kühlluftstromes in einem Akkupack mit Hilfe eines Gebläses in einer Handwerkzeugmaschine oder einem Ladegerät ist aus dem Stand der Technik bekannt.
Vorteilhafterweise ist die Form des Spreizelements außerdem im Hinblick auf den Wärmeübergang zwischen den Akkuzellen gestaltet. In einem Bereich, in dem ein Wärmeübergang zwischen zwei benachbarten Akkuzellen erwünscht ist und unterstützt werden soll, ist das zwischen den Akkuzellen angeordnete Spreizelement dergestalt, dass ein guter Wärmeübergang möglich ist. Dies kann dadurch erzielt werden, dass benachbarte Wände des Spreizelements aneinanderliegend angeordnet sind. Zwischen den aneinanderliegenden Wänden soll sich kein Luftspalt befinden, da er den Wärmeübergang stark reduzieren würde. Die aneinander liegenden Wände können beispielsweise auch ineinander übergehende Wände sein, so dass sie einstückig ausgebildet sind.
Demgegenüber ist in einem Bereich, in dem ein Wärmeübergang zwischen zwei benachbarten Akkuzellen unerwünscht ist und möglichst weitgehend unterbunden werden soll, das zwischen den Akkuzellen angeordnete Spreizelement dergestalt, dass der Wärmeübergang möglichst stark verringert ist, also kein guter Wärmeübergang möglich ist. Dies kann dadurch erreicht werden, dass zwischen benachbarten Wänden des Spreizelements ein Luftspalt ausgebildet ist, der den Wärmeübergang behindert. In diesem Bereich, wo kein
Wärmeübergang stattfinden soll, wird also gerade vermieden, benachbarte Wände des Spreizelements aneinander anliegend anzuordnen. Zur leichteren Montage des Spreizelements ist vorzugsweise eine Einfügehilfe an dem Spreizelement vorgesehen. Dies kann insbesondere eine Einführschräge sein, so dass das Spreizelement an seiner bei der Montage den Akkuzellen zugewandten Stirnseite einen geringeren Durchmesser hat als an seiner gegenüberliegenden Stirnseite. Dadurch werden die Akkuzellen beim Einführen des Spreizelements in den Zwischenraum zwischen benachbarten Akkuzellen allmählich gespreizt.
Ein Spreizelement, das zwischen zwei oder mehreren Akkuzellen oder zwischen dem Gehäuse und einem oder mehreren Akkuzellen anordenbar ist, kann zum
Beispiel im Wesentlichen dieselbe axiale Länge haben wie die Akkuzellen. Dadurch können die Akkuzellen sicher und gleichmäßig über ihre gesamte axiale Länge auseinander gedrückt werden. Alternativ können in den Zwischenraum zwischen zwei oder mehreren Akkuzellen oder zwischen einem oder mehreren Akkuzellen und dem Gehäuse ausgehend von den beiden Stirnseiten der
Akkuzellen auch jeweils ein Spreizelement eingeführt werden, welches relativ kurz ist im Vergleich zu der axialen Länge der Akkuzellen. Dies hat den Vorteil, dass die Spreizelemente leicht eingeführt werden können, weil die notwendige Presskraft kleiner ist als bei vergleichsweise langen Spreizelementen. Trotzdem wird eine gleichmäßige Spreizung der Akkuzellen erzielt.
Ein weiterer Gegenstand der Erfindung betrifft eine Handwerkzeugmaschine, welche zumindest einen erfindungsgemäßen Akkupack enthält.
Nachfolgend wird die Erfindung anhand der beigefügten Zeichnungen näher erläutert. Es zeigen
Figur 1 eine Explosionsdarstellung eines erfindungsgemäßen Akkupacks
Figur 2 einen Querschnitt durch einen erfindungsgemäßen Akkupack
Figur 3 ein Spreizelement im Querschnitt
Figur 4 das Spreizelement nach Figur 3 in perspektivischer Ansicht
Figur 5 eine alternative Ausführungsform eines Spreizelements in schematischer Darstellung. Die Explosionsdarstellung nach Fig. 1 zeigt einen Akkupack 1 mit einem Gehäuse 10 aus Kunststoff, mehreren zylinderförmigen Akkuzellen 20 und mehreren Spreizelementen 30. In der dargestellten Ausführungsform sind zehn Akkuzellen 20 in zwei parallelen Reihen zu je fünf Akkuzellen 20 aneinander angeordnet. Fig. 1 zeigt vereinfachend nur zwei Spreizelemente 30.
Vorzugsweise ist jedoch immer ein Spreizelement 30 in einem von vier benachbarten Akkuzellen 20 gebildeten Zwischenraum 22 vorgesehen. Zur vollständigen Montage des Akkupacks 1 an z.B. eine Handwerkzeugmaschine (nicht dargestellt) umfasst das Gehäuse 10 weitere Gehäuseteile, z.B. Seitenwände, sowie elektrische Kontakte, die hier der besseren Übersichtlichkeit wegen nicht dargestellt sind.
Das Gehäuse 10 des Akkupacks 1 ist formstabil. Die Spreizelemente 30 bewirken, dass die Akkuzellen 20 trotz ihrer zum Teil erheblichen maßlichen Toleranzen im Wesentlichen spielfrei in dem Akkupackgehäuse 10 aufgenommen sind. Dabei verformt sich die Außenkontur des Gehäuses 10 nicht.
Das Spreizelement 30 ist in sich formelastisch. Es besteht aus PE HD, welches im Vergleich zu anderen thermoplastischen Kunststoffen vergleichsweise elastisch und verformbar ist. Das Spreizelement weist als ganzes aufgrund seiner Form eine ausreichende Elastizität auf. Es ist im nicht montierten Zustand im Durchmesser größer bemessen als der Zwischenraum 22 zwischen den Akkuzellen 20. Dadurch werden beim Einfügen des Spreizelements 30 in den Zwischenraum 22 die an den Zwischenraum 22 angrenzenden Akkuzellen 20 auseinander gedrückt.
Wie in Fig. 2 zu erkennen ist, liegt das Spreizelement 30 an den Umfangsflächen 24 der vier Akkuzellen 20 an. Dazu umfasst das Spreizelement 30 vier Wände 32, welche derart an die Umfangsflächen 24 der Akkuzellen 20 angepasst sind, dass sich das Spreizelement 30 an die Akkuzellen 20 anschmiegt. Die Außenfläche 33 der Wände 32 des Spreizelements 30 bildet also eine zu der Umfangsfläche 24 der Akkuzellen 20 komplementäre Fläche.
In Fig. 3 ist gezeigt, dass die Wände 32 des Spreizelements 30 zusammen mit weiteren Wänden 31 einen Hohlraum 34 begrenzen. So besteht auch nach der Montage des Spreizelements 30 in dem Zwischenraum 22 ein Hohlraum, der zur Kühlung der Akkuzellen beispielsweise mittels Kühlluft dient. Besteht ein Akkupack 1 aus mehreren Akkuzellen 20, wie z.B. in Fig. 1 dargestellt, kann es wünschenswert sein, wenn in dem Akkupack 1 der Wärmeübergang zwischen benachbarten Akkuzellen 20 nicht in allen Richtungen gleich gut erfolgt. Der in Fig. 1 dargestellt Akkupack 1 wird mit seiner Oberseite an einer Handwerkzeugmaschine angebracht. Bei diesem Akkupack 1 soll ein guter Wärmeübergang in vertikaler Richtung, also zwischen einer Akkuzelle 20 der einen Reihe und einer benachbarten Akkuzelle der anderen Reihe, erfolgen. Dagegen soll der Wärmeübergang in horizontaler Richtung, also zwischen benachbarten Akkuzellen einer Reihe, möglichst stark reduziert werden. Das Spreizelement 30 ist hierfür in besonderer Weise gestaltet, indem in vertikaler
Richtung benachbarte Wände 32.1 aneinanderliegend angeordnet sind, so dass sich kein Luftspalt zwischen den Wänden 32.1 bzw. zwischen den übereinander liegenden Akkuzellen 20 befindet, welcher den Wärmeübergang reduzieren könnte. So sind die beiden Wände 32.1 so gestaltet, dass sie ineinander übergehen. Sie sind einstückig ausgebildet. In horizontaler Richtung benachbarte
Wände 32.2 hingegen liegen nicht aneinander an. Durch ihre Krümmung laufen die Wände 32.2 zwar aufeinander zu, sie berühren einander jedoch nicht. So bildet sich ein Luftspalt 35 zwischen den Wänden 32.2 und damit zwischen den horizontal benachbarten Akkuzellen 20 aus.
Das Spreizelement 30 ist weiterhin mit einer Einfügehilfe 36 versehen, welche die Montage des Spreizelements erleichtert. Als Einfügehilfe 36 dienen Einführschrägen, mit deren Hilfe das Spreizelement 30 beim Einführen an den Akkuzellen 20 entlang gleitet, um diese zu spreizen. Durch die Einfügehilfe 36 in Form von Einführschrägen hat das Spreizelement 30 an seiner bei der Montage den Akkuzellen 20 zugewandten Stirnseite 37 einen geringeren Durchmesser als an seiner gegenüberliegenden Stirnseite.
Wie Fig. 1 und 4 zu entnehmen ist, ist das Spreizelement 30 im Vergleich zu der axialen Länge der Akkuzellen 20 relativ kurz ausgeführt. Dies hat den Vorteil, dass beim Einführen des Spreizelements 30 in den Zwischenraum 22 nur ein kurzer Weg zurückgelegt werden muss und damit die notwendige Presskraft vergleichsweise gering ist. Damit dennoch eine gleichmäßige Spreizung über die gesamte axiale Länge der Akkuzellen 20 erreicht wird, werden in den Zwischenraum 22 von beiden Stirnseiten der Akkuzellen 20 her jeweils ein
Spreizelement 30 eingeführt. Alternativ könnten die Spreizelemente 30 auch länger ausgeführt sein, mit dem Nachteil, dass die Presskraft beim Einführen größer wäre. In Fig. 5 ist eine alternative Ausführungsform eines Spreizelements 40 schematisch dargestellt. Hierbei befindet sich ein Spreizelement 40 zwischen zwei benachbarten Akkuzellen 20. Das Spreizelement 40 weist ein elastisches Element 44 auf, welches die tragenden Teilelemente 42 des Spreizelements 40 verbindet. Die tragenden Teilelemente 42 sind formstabil und z.B. aus PE HD.
Sie sind so geformt, dass sie an der Umfangsfläche 24 der Akkuzellen 20 anliegen. Das elastische Element 44 hingegen wirkt als Federelement. Es ist in Fig. 5 schematisch als Schraubenfeder dargestellt. Es kann jedoch jede Art von Federelement eingesetzt werden, beispielsweise ein federndes Element aus einem elastomeren Material. Beim Einfügen des Spreizelements 40 in den
Zwischenraum 22 zwischen den beiden Akkuzellen 20 werden die an den Zwischenraum 22 angrenzenden Akkuzellen 20 auseinander gedrückt.

Claims

Ansprüche
1. Akkupack mit einem Gehäuse (10) und mindestens einer Akkuzelle (20) sowie Mitteln zum Toleranzausgleich der Akkuzelle (20), dadurch gekennzeichnet, dass die Toleranzausgleichsmittel mindestens ein Spreizelement (30, 40) aufweisen, welches in einem Zwischenraum (22) zwischen mindestens zwei Akkuzellen (20) und/oder zwischen der einen Akkuzelle (20) und dem Gehäuse (10) angeordnet ist.
2. Akkupack nach Anspruch 1, dadurch gekennzeichnet, dass das Spreizelement (30) in sich formelastisch ist.
3. Akkupack nach Anspruch 2, dadurch gekennzeichnet, dass das formelastische Spreizelement (30) größer bemessen ist als der Zwischenraum (22), so dass beim Einfügen des Spreizelements (30) in den Zwischenraum (22) die an den Zwischenraum (22) angrenzenden Akkuzellen
(20) auseinander gedrückt werden.
4. Akkupack nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Spreizelement (40) mindestens ein elastisches Element (44) aufweist.
5. Akkupack nach Anspruch 4, dadurch gekennzeichnet, dass das elastische Element (44) beim Einfügen des Spreizelements (40) in den Zwischenraum (22) die an den Zwischenraum (22) angrenzenden Akkuzellen (20) auseinander drückt.
6. Akkupack nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine Wand (32) des Spreizelements (30) an die Umfangsfläche (24) der Akkuzellen (20) derart angepasst ist, dass sich das Spreizelement (30) an die Akkuzellen (20) anschmiegt.
7. Akkupack nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wände (32, 31) des Spreizelements (30) einen Hohlraum (34) begrenzen.
8. Akkupack nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass benachbarte Wände (32.1) des Spreizelements (30) aneinander liegen, so dass ein guter Wärmeübergang möglich ist.
9. Akkupack nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen benachbarten Wänden (32.2) des Spreizelements (30) ein Luftspalt (35) ausgebildet ist, so dass der Wärmeübergang verringert ist.
10. Akkupack nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Spreizelement (30) eine Einfügehilfe (36) aufweist.
11. Handwerkzeugmaschine enthaltend zumindest einen Akkupack nach einem der vorhergehenden Ansprüche.
PCT/EP2008/061124 2007-09-21 2008-08-26 Akkupack WO2009040200A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE200850002337 DE502008002337D1 (de) 2007-09-21 2008-08-26 Akkupack
EP20080787472 EP2193562B1 (de) 2007-09-21 2008-08-26 Akkupack
US12/678,217 US20100209759A1 (en) 2007-09-21 2008-08-26 Battery pack
CN200880107994XA CN101803062B (zh) 2007-09-21 2008-08-26 电池组
AT08787472T ATE495555T1 (de) 2007-09-21 2008-08-26 Akkupack

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE202007014418.0 2007-09-21
DE202007014418U DE202007014418U1 (de) 2007-09-21 2007-09-21 Verriegelungsvorrichtung
DE200710049358 DE102007049358A1 (de) 2007-09-21 2007-10-15 Akkupack
DE102007049358.6 2007-10-15

Publications (1)

Publication Number Publication Date
WO2009040200A1 true WO2009040200A1 (de) 2009-04-02

Family

ID=40510764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/061124 WO2009040200A1 (de) 2007-09-21 2008-08-26 Akkupack

Country Status (6)

Country Link
US (1) US20100209759A1 (de)
EP (1) EP2193562B1 (de)
CN (1) CN101803062B (de)
AT (1) ATE495555T1 (de)
DE (1) DE502008002337D1 (de)
WO (1) WO2009040200A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000393A1 (de) * 2008-07-03 2010-01-07 Johnson Controls Hybrid And Recycling Gmbh Rundzellenakkumulator

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10356595A1 (de) 2003-12-04 2005-06-30 Basf Ag Brennstoffölzusammensetzungen mit verbesserten Kaltfließeigenschaften
KR101202333B1 (ko) 2010-06-09 2012-11-16 삼성에스디아이 주식회사 배터리 팩
EP2693519B1 (de) * 2011-03-31 2016-11-23 Sanyo Electric Co., Ltd Batteriepackung
JP5812903B2 (ja) * 2012-03-08 2015-11-17 アイシン軽金属株式会社 円筒型電池の保持構造体
JP5899420B2 (ja) * 2012-03-16 2016-04-06 パナソニックIpマネジメント株式会社 電池モジュール
DE102012207162A1 (de) * 2012-04-30 2013-10-31 Robert Bosch Gmbh Verfahren zur Herstellung von Li-Ionen Batteriemodulen und ein entsprechendes Li-Ionen Batteriemodul
CN104139381B (zh) 2013-05-06 2017-01-11 米沃奇电动工具公司 包括电池组隔离系统的电动工具
TWI647872B (zh) * 2013-10-02 2019-01-11 德商科思創德意志股份有限公司 含有逸散區之電池模組,電池組及電動車
GB2522447A (en) 2014-01-24 2015-07-29 Black & Decker Inc Battery pack
DE102014109054A1 (de) * 2014-06-27 2015-12-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Terminalhalter, Batteriemodul und Verfahren zur Herstellung eines solchen
TW201633585A (zh) 2014-12-15 2016-09-16 A123系統有限責任公司 電池總成、電池系統以及車輛電池
GB2540437A (en) * 2015-07-17 2017-01-18 Johnson Matthey Plc Cell tray
DE102018203050A1 (de) * 2018-03-01 2019-09-05 Robert Bosch Gmbh Ausgleichselement für eine Batteriezelle und ein Batteriemodul
US11114713B2 (en) * 2018-06-21 2021-09-07 California Institute Of Technology Thermal management systems for battery cells and methods of their manufacture
US11522237B2 (en) * 2020-02-06 2022-12-06 Lenovo (Singapore) Pte. Ltd. Heat control in battery pack stack
US12018892B2 (en) 2020-11-02 2024-06-25 California Institute Of Technology Systems and methods for thermal management using separable heat pipes and methods of manufacture thereof
WO2024022584A1 (en) * 2022-07-27 2024-02-01 Bmz Poland Sp. Z O.O. A cell holder for a battery housing of an electrical vehicle or a power tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190052A (ja) 1989-12-18 1991-08-20 Sanyo Electric Co Ltd 電池パック
GB2281810A (en) * 1993-09-13 1995-03-15 Sony Corp Battery equipped with thermistor and associated charging apparatus with switch to control charging according to temperature
JPH0945377A (ja) * 1995-07-28 1997-02-14 Sanyo Electric Co Ltd 充電状態を表示する表示ツマミを有するパック電池
JPH09219182A (ja) * 1996-02-13 1997-08-19 Toyota Autom Loom Works Ltd 円筒型電池の保持構造体およびその方法
JPH11204091A (ja) 1998-01-20 1999-07-30 Fujitsu General Ltd 電池ケース
WO2007066919A1 (en) * 2005-12-08 2007-06-14 Lg Chem, Ltd. Assemblable spacer for preparation of battery module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221850A (en) * 1975-12-06 1980-09-09 Robert Bosch Gmbh Storage battery with thermoplastic casing having internal members for immobilizing the battery plates
GB8715708D0 (en) * 1987-07-03 1987-08-12 Chloride Silent Power Ltd Batteries
JP3190052B2 (ja) * 1991-01-24 2001-07-16 東京窯業株式会社 チタン基複合材及びその製造方法
KR100497252B1 (ko) * 2003-09-09 2005-06-23 삼성에스디아이 주식회사 전지 팩
DE202004021589U1 (de) * 2004-09-10 2009-04-23 Robert Bosch Gmbh Batteriepack
DE102004043829A1 (de) * 2004-09-10 2006-03-16 Robert Bosch Gmbh Batteriepack
KR100684846B1 (ko) * 2005-07-29 2007-02-20 삼성에스디아이 주식회사 이차 전지 모듈
KR100988445B1 (ko) * 2006-02-13 2010-10-18 주식회사 엘지화학 전지팩 제조용 스페이서

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190052A (ja) 1989-12-18 1991-08-20 Sanyo Electric Co Ltd 電池パック
GB2281810A (en) * 1993-09-13 1995-03-15 Sony Corp Battery equipped with thermistor and associated charging apparatus with switch to control charging according to temperature
JPH0945377A (ja) * 1995-07-28 1997-02-14 Sanyo Electric Co Ltd 充電状態を表示する表示ツマミを有するパック電池
JPH09219182A (ja) * 1996-02-13 1997-08-19 Toyota Autom Loom Works Ltd 円筒型電池の保持構造体およびその方法
JPH11204091A (ja) 1998-01-20 1999-07-30 Fujitsu General Ltd 電池ケース
WO2007066919A1 (en) * 2005-12-08 2007-06-14 Lg Chem, Ltd. Assemblable spacer for preparation of battery module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000393A1 (de) * 2008-07-03 2010-01-07 Johnson Controls Hybrid And Recycling Gmbh Rundzellenakkumulator
US8642203B2 (en) 2008-07-03 2014-02-04 Johnson Controls Hybrid And Recycling Gmbh Round cell battery including dissipation element and insulating thermoplastic elastomer

Also Published As

Publication number Publication date
ATE495555T1 (de) 2011-01-15
EP2193562A1 (de) 2010-06-09
DE502008002337D1 (de) 2011-02-24
EP2193562B1 (de) 2011-01-12
US20100209759A1 (en) 2010-08-19
CN101803062B (zh) 2013-11-20
CN101803062A (zh) 2010-08-11

Similar Documents

Publication Publication Date Title
EP2193562B1 (de) Akkupack
DE102008034876B4 (de) Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie und Verfahren zur Herstellung einer Batterie
EP3385545B1 (de) Verbindungsmittel
DE102007049358A1 (de) Akkupack
EP1792355A2 (de) Batteriepack
DE10042245B4 (de) Wasserstoffspeichervorrichtung und Wasserstoffspeichersystem
DE102018209104B4 (de) Verfahren zum Herstellen einer Batterieanordnung
DE102009058808A1 (de) Kühlvorrichtung für eine Fahrzeugantriebsbatterie und Fahrzeugantriebsbatteriebaugruppe mit Kühlvorrichtung
DE112013007555T5 (de) Flexibler Batteriezellenhalter
DE102004043822A1 (de) Batteriepack
DE102012221503A1 (de) Energiespeicher mit einer Vielzahl von Energiespeicherzellen und mit einem Gehäuse sowie Verfahren zum Herstellen eines Energiespeichers
EP3378111A1 (de) Batterieanordnung
DE102015112563A1 (de) Verbindungsanordnung zum Verbinden eines Pfostens an einem Rahmenprofil eines Fensters oder einer Türe aus Kunststoff
WO2017133859A1 (de) Batteriemodul mit einer mehrzahl an batteriezellen, verfahren zu dessen herstellung und batterie
WO2017102348A1 (de) Energiespeichermodul
DE102013012643A1 (de) Zellmodul mit elektrochemischer Energiespeicherzelle
DE102020107041A1 (de) Vorrichtung und Verfahren zur Herstellung von kohlenstofffaserverstärkten Kunststoffhalbzeugen
DE102007041358B4 (de) Führungselement, Maganzinmodul sowie Magazin
EP2660411B1 (de) Schlüsselraidenverkleidung
DE102013215787B4 (de) Gehäuse für einen elektrischen Stecker, Bausatz, Stecker und Steckverbindung
DE102013015758A1 (de) Batterie und Zellblock für eine Batterie
DE202015101319U1 (de) Möbelantrieb und Gehäuse für einen elektromotorischen Möbelantrieb
DE102021006202B3 (de) Batteriemodul mit einem Modulgehäuse
EP3385546B1 (de) Verbindungsmittel
DE102017126299B4 (de) Multifunktionsmöbelstück

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880107994.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008787472

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12678217

Country of ref document: US