WO2009039753A1 - Procédé pour distribuer un fil dans un laser et revêtement et dispositif de distribution de fil dans un laser - Google Patents

Procédé pour distribuer un fil dans un laser et revêtement et dispositif de distribution de fil dans un laser Download PDF

Info

Publication number
WO2009039753A1
WO2009039753A1 PCT/CN2008/072275 CN2008072275W WO2009039753A1 WO 2009039753 A1 WO2009039753 A1 WO 2009039753A1 CN 2008072275 W CN2008072275 W CN 2008072275W WO 2009039753 A1 WO2009039753 A1 WO 2009039753A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
wire
mirror
wire feeding
ring
Prior art date
Application number
PCT/CN2008/072275
Other languages
English (en)
Chinese (zh)
Inventor
Geyan Fu
Shihong Shi
Jin Hu
Guojia Yang
Xuelei Han
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Publication of WO2009039753A1 publication Critical patent/WO2009039753A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the invention belongs to the field of laser processing, and particularly relates to a laser cladding forming manufacturing process method and a device for realizing the same. Background technique
  • the laser and the material to be melted are synchronously transmitted to the processing and forming position, and the metal material is continuously, accurately and uniformly put into the processing surface and the scanning motion is performed according to a predetermined trajectory.
  • precise coupling of the light material is achieved.
  • the material converts light energy and thermal energy in the beam, instantly melts and forms a molten pool, and completes the metallurgical process of rapid melting and solidification of the material.
  • Most of the current feeding methods at home and abroad are synchronous powder feeding. The earliest method was vertical laser beam irradiation, and the powder feeding tube was tilted sideways from one side.
  • the side-by-side feeding attitude varies with the scanning direction, and the scanning direction has a great influence on the scanning quality.
  • the more advanced powder feeding devices include US patent (US5961862) and European patent (W0200502815 1).
  • the basic structure adopts a structural scheme of uniformly arranging multiple powder feeding nozzles on the periphery of the laser beam, which can be called "out-of-optical coaxial".
  • Send powder The external coaxial powder feeding has the same powder feeding attitude in all directions, eliminating the influence of the scanning directivity, but at the same time bringing a new problem that the multiple powder bundles are difficult to converge at one point and coincide with the beam focus.
  • the laser beam 11 emitted by the laser is focused by the focusing mirror 110 into a cone beam 12, and the wire feeding tube and the spinning nozzle 13' can only
  • the wire 14 fed by the spinneret 13' can only be tilted into the laser beam when the angled beam 12 is tilted at an angle.
  • the wire needs to be adjusted to intersect the beam at the spot position before processing (Reference: 1, King to the Lord Edited. China Materials Engineering Dictionary Volume 25. Beijing: Chemical Industry Press, 2006; 2, Zuo Tiewei Editor-in-Chief. 21st Century Advanced Manufacturing - Laser Technology and Engineering. Beijing, Science Press, 2007, 5;
  • the directional change inevitably occurs in the cladding, that is, when the laser beam is scanned in different directions with respect to the processing surface during processing, the beam and the wire have different orientations and postures relative to the scanning motion direction, and the filament is melted and The effect of the heat and force of the molten pool will change, so that the size, shape and surface roughness of the melted channel will be greatly changed, and even the intermittent process of the melting process will occur.
  • the wire feeding point must be coincident with the beam focus position at the surface of the workpiece at the time of cladding, and the intersection point should be limited to the next small area on the surface of the molten pool, but if the intersection is in the processing relative to the machined surface ( Or the molten pool)
  • the thermal action of the wire will change again, and the melting process of the wire may be intermittent, the front part of the wire is bent, the light and the wire Intermittent alignment and misalignment, so that the continuity of the cladding process and the quality of the melt are very sensitive to small changes in the relative position between the focus and the machined surface.
  • the laser cladding process often needs to transport an inert protective gas around the molten pool to blow the hot flame, slag, etc. generated by the cladding, thereby protecting the lens of the cylinder from contamination, and the molten pool is not oxidized.
  • the shielding gas can only be blown laterally, the blowing pressure on the molten pool is not uniform, the airflow is disordered, and the protection effect is poor.
  • the laser light internal wire feeding method of the invention is: cutting and transforming a laser beam emitted by a laser into a ring beam by using a light dividing principle, and then focusing the ring beam into a ring cone: a beam, which is generated in the ring cone beam a conical hollow matte zone, a single wire is placed in the dull zone and coaxial with the ring-cone beam, the wire is fed by the wire feed tube, and is output through the spinneret at the lower end.
  • the focus of the beam is surrounded by the lower portion of the cone-shaped beam and then heated and melted under the action of illumination and heat transfer of the processing surface to sag into the molten pool, and the surface of the substrate to be cladding is adjusted to the focus.
  • the wire melted into the molten pool surface of the substrate forms a molten pool together with the partially melted surface material of the substrate, and the melt in the molten pool forms a melting channel along with the relative dynamic solidification of the light beam and the substrate.
  • a protective gas passage is disposed in the wire feeding tube: the shielding gas transported by the protective gas passage surrounds the wire material under the nozzle to form an air curtain and is coaxially sprayed to the molten pool, and the protective gas passage is coaxial with the spinneret and the ring-shaped cone beam line.
  • the laser light inner wire feeding method of the invention realizes the laser light inner wire feeding device by special laser light internal feeding device, including a cylinder body, a reflection, a sending nozzle, and the like, and a light inlet port is arranged above the partial cylinder body, and a light exit port is arranged below
  • the reflection is a conical mirror that can cut and convert the incident beam into a ring beam
  • the focusing mirror is a ring-shaped reflection focusing mirror that can reflect the ring beam into a cone-shaped beam
  • the entrance and exit ports are coaxial.
  • the conical mirror is fixed to the center of the cylinder, and its mirror surface faces the entrance pupil.
  • the annular reflection focusing mirror is fixed on the inner wall of the cylinder, and the mirror surface and the cone reflection: the mirror surface of the mirror is opposite to the lower portion of the cylinder.
  • a single wire feeding tube is inserted from the outside of the cylinder into the nozzle of the end of the wire feeding tube in a conical hollow matt region of the ring-shaped cone beam, and the nozzle and the ring-shaped beam coaxial line are sprinkled out. Position close to the focus of the ring cone beam.
  • the wire feeding tube is formed into a double-layered casing structure, wherein the middle pipe is used for conveying the wire, and the sandwich pipe is for protecting the gas passage.
  • the wire feeding tube reaches the hollow region from the outside of the ring-shaped cone beam, it needs to cross the beam locally to avoid the wire feeding tube from reflecting light and overheating.
  • the light-incident surface of the feeding tube is coated with a light-absorbing material and a cooling channel absorption beam is disposed inside the wire feeding tube. . Since the wire feeding area of the wire feeding tube is small, The conical mirror is secured by at least one rib attached to the inner wall of the barrel.
  • the wire feeding tube can enter from the upper part of the cylinder, pass through the gap between the conical mirror and the annular reflecting focusing mirror, and after reaching the back of the conical mirror, turn into a coaxial line with the beam; or enter from the lower part of the middle part of the barrel to reach The back of the conical mirror turns to be coaxial with the beam.
  • the ribs are in the light-irradiated area, in order to prevent the ribs from reflecting light and overheating, the glazing surface is coated with a light absorbing material, and a cooling channel is provided inside to absorb heat. Since the glazing has a small area of illumination, its loss of beam energy is negligible.
  • the working principle of the laser light inner wire feeding device is as follows: The laser beam emitted by the laser enters the cylinder from the light entrance port and is incident on the mirror surface of the central conical mirror of the cylinder body. The conical mirror surface cuts and reflects the light beam, and transforms the shaped beam into the ring shape. On the mirror surface of the focusing mirror, the ring is reversed: the focusing mirror will be incident The beam is then reflected and focused to form a ring-shaped cone of light. A cone-shaped hollow matte region is formed in the middle of the ring-shaped cone beam.
  • a single wire feeding tube can enter the light-free area from the upper or middle side of the cylinder, and realize the wire feeding from the inside of the laser beam, that is, the so-called "in-light wire feeding".
  • the laser light inner wire feeding method and the optical inner wire feeding device of the invention can: achieve the following beneficial effects: a hollow annular focused beam is obtained by optical path transformation, and the wire feeding tube is placed in a hollow portion of the focusing beam and coaxial with the beam, processing The center wire and the focused beam are forwardly fed into the center of the spot, and the wire is always uniformly surrounded by the ring beam.
  • the way in which the wire and the molten pool are heated is kept constant, so that the heat effect is kept uniform and stable.
  • the force between the wire and the molten pool is always positive, and the wire does not cause hemiplegia, which is beneficial to the balance of the driving force of the molten pool and the symmetry of the melt flow.
  • the lower part of the wire and the machined surface are always subjected to uniform symmetrical laser irradiation and the heat of the molten pool, and the uniform heating and solidification process can greatly improve the quality of the melt.
  • the invention can overcome the complicated wire feeding and orientation caused by the existing lateral wire feeding laser cladding process method; the change of the wire orientation causes a large difference between the heat action mode and the stacking quality, and is unstable; the directional defect of the molten layer during the three-dimensional scanning process Obvious; defocusing easily causes light, The wire is misplaced, the melting is discontinuous, the quality of the melt is unstable, and so on.
  • the in-light wire feeding scheme it is convenient to realize the integration of the light, the wire and the shielding gas integrally, so that the inert shielding gas surrounds the wire to form a protective air curtain to be blown vertically to the surface of the molten pool.
  • the vertical coaxial blowing airflow is easy to form a laminar flow, and the blowing pressure to the molten pool is uniform, and the protection effect is good.
  • FIG. 2 is a view showing the original method of laser cladding optical internal wire feeding according to the present invention
  • Figure 3 is a structural view of a laser cladding optical internal wire feeding device
  • Figure 4 is a wire feeding tube diagram of a double-layered casing structure
  • Fig. 5 is a structural view of the laser cladding optical inner wire feeding device when the wire feeding tube enters from the middle of the cylinder.
  • 1 1 - a laser beam emitted by a laser
  • the laser light inner wire feeding device has a light inlet port 21 above the cylinder 22 and a light exit port 26 below, and the light entrance port 21 and the light exit port 26 are coaxial.
  • the center of the cylinder 22 is uniformly designed with three ribs 23 connected to the inner wall of the cylinder 22.
  • the rib 23 is fixed with a conical mirror 24, and the conical mirror of the conical mirror 24 faces the entrance port 21 and is coaxial with the line.
  • the conical mirror 24 cuts and reflects the incident laser beam 11 into a circular beam 15.
  • An annular reflection focusing mirror 28 is also mounted on the inner wall of the cylinder 22 coaxially with the conical mirror 24, the mirror surface of which faces the conical mirror 24.
  • Circumferential mirror 24 reflection ring The shaped beam 15 is incident on the annular reflecting focusing mirror 28, and is reflected by the annular reflecting focusing mirror 28 to be focused into a conical cone focusing beam 16, and a conical hollow matte region 17 and a focus 19 are formed in the conical cone focusing beam 16, the focus 19 is outside the light exit 26.
  • a single wire feeder 18 is inserted from the outside of the barrel 22, passes through the gap between the conical mirror 24 and the annular reflection focusing mirror 28, reaches the back surface of the conical mirror 24, and is rotated coaxially with the ring-cone beam 16, so that the wire is fed.
  • a spinneret 13 at the end of the tube 18 is placed in the conical hollow matte zone 17 of the ring-shaped cone beam 16 and is coaxial with the ring-shaped cone beam 16.
  • the outlet end of the spinneret 13 is located near the focus 19 of the annular cone beam 16.
  • the wire 14 is fed from the wire feed tube 18, output through the spinneret 13 at the lower end of the wire feed tube 18, surrounded by the lower portion of the ring-shaped cone beam 16 near the focus 19, and then illuminated to the surface of the substrate 100.
  • the substrate skin materials together form a molten pool, and the melt in the molten pool continuously solidifies as a result of the relative movement of the light beam 16 and the substrate 100 to form a melt channel.
  • the illuminating surface 232 above the rib 23 is coated with a light absorbing material, and a cooling water passage 231 is disposed inside the rib.
  • the rib structure can effectively reduce the light-up area and reduce the light loss.
  • the light-incident surface 182 of the wire feeding tube 18 in the cylindrical body 22 is coated with a light absorbing material, and a cooling water passage 181 is disposed inside. Since the glazing and wire feeding tubes have a small area of illumination, their loss of beam energy is negligible.
  • the wire feed tube 18 is constructed as a coaxial double-sleeve structure.
  • the intermediate pipe 31 is for conveying the wire
  • the sandwich pipe 32 is for shielding the gas passage.
  • the shielding gas passes through the interlayer pipe 32 and surrounds the wire 14 through the spinneret 13 to form a protective gas curtain 20 to be sprayed toward the molten pool.
  • Application Example 3 :
  • the wire feeding tube 18 enters from a position below the middle rib 23 of the cylindrical body 22, and reaches the back surface of the conical mirror 24 to be coaxial with the ring-shaped cone beam 16.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention porte sur un dispositif de distribution de fil dans un laser utilisant un procédé pour distribuer un fil dans un laser, et sur un revêtement. Un faisceau laser (11) émis à partir d'un appareil à laser est transformé en un faisceau de lumière annulaire (15) par un miroir conique (24) et est concentré en un faisceau lumineux conique annulaire (16) par un miroir de concentration annulaire (28). Une zone sans lumière creuse conique (17) est formée dans le faisceau lumineux conique annulaire (16). Un tube (18, 18') du dispositif de distribution de fil est monté dans la zone sans lumière (17) et est coaxial avec le faisceau lumineux conique annulaire (16). Un fil (14) est transféré de manière coaxiale et verticale dans un bain fondu sur une surface usinée au centre du faisceau lumineux conique annulaire (16) lors du fonctionnement, pour distribuer de façon coaxiale le fil dans le laser. Chaque direction de distribution de fil dans le laser est cohérente et n'est pas affectée par une directionalité de balayage et une fluctuation de défocalistion. Le couplage entre le laser et le fil est stable de façon continue. La qualité de la zone de creuset est élevée. Le procédé et le dispositif peuvent être utilisés dans le revêtement par laser d'un matériau métallique, le moulage rapide d'entités tridimensionnelles, le soudage au laser et des liaisons spéciales, et une réparation au laser et une reproduction au laser, etc.
PCT/CN2008/072275 2007-09-14 2008-09-05 Procédé pour distribuer un fil dans un laser et revêtement et dispositif de distribution de fil dans un laser WO2009039753A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710046020.2 2007-09-14
CNA2007100460202A CN101386111A (zh) 2007-09-14 2007-09-14 激光光内送丝熔覆方法与光内送丝装置

Publications (1)

Publication Number Publication Date
WO2009039753A1 true WO2009039753A1 (fr) 2009-04-02

Family

ID=40475890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072275 WO2009039753A1 (fr) 2007-09-14 2008-09-05 Procédé pour distribuer un fil dans un laser et revêtement et dispositif de distribution de fil dans un laser

Country Status (2)

Country Link
CN (1) CN101386111A (fr)
WO (1) WO2009039753A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102019505A (zh) * 2009-09-17 2011-04-20 沈阳大陆激光技术有限公司 一种使用激光熔覆焊丝进行激光熔覆的方法
WO2013174449A1 (fr) 2012-05-25 2013-11-28 European Space Agency Procédé de tête de soudage à fils multiples et système pour formation d'échantillon d'alliage et fabrication additive
CN105562951A (zh) * 2016-02-03 2016-05-11 苏州大学 一种用于激光熔覆的激光光内送丝装置
EP3280562A4 (fr) * 2015-04-09 2018-10-17 Siemens Energy, Inc. Charge optiquement conductrice pour traitement par laser
CN110193647A (zh) * 2019-07-04 2019-09-03 湖北汽车工业学院 一种电弧增材制造用丝-粉同送的焊枪套筒
CN110541165A (zh) * 2019-06-18 2019-12-06 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种车削再利用的激光熔覆材料及涂层制备方法
CN110539081A (zh) * 2019-09-29 2019-12-06 华南理工大学 一种深水管道复合铣削增减材原位修复设备与方法
US20210060861A1 (en) * 2019-08-27 2021-03-04 Edison Welding Institute, Inc. Coaxial laser-wire optical system for use in additive manufacturing
CN113235084A (zh) * 2021-05-11 2021-08-10 苏州大学 一种实现环形中空偏焦激光的高速熔覆方法
CN113737173A (zh) * 2021-08-25 2021-12-03 武汉瀚海智能激光工程有限公司 一种激光熔覆头装置
US11203084B2 (en) 2017-01-05 2021-12-21 Ipg Photonics Corporation Additive laser machining systems and methods
CN114231978A (zh) * 2021-11-15 2022-03-25 苏州工业职业技术学院 一种具闭环控制的激光熔覆系统
US20220134440A1 (en) * 2019-08-27 2022-05-05 Edison Welding Institute, Inc. Multi-beam coaxial laser optical system for use in additive manufacturing
CN115502563A (zh) * 2022-11-24 2022-12-23 广东省科学院智能制造研究所 一种激光增材加工系统

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733550B (zh) * 2010-01-09 2012-04-25 苏州大学 一种送丝送粉复合激光熔覆成形方法及装置
CN102465292B (zh) * 2010-11-08 2014-03-26 沈阳大陆激光柔性制造技术有限公司 一种智能送丝机
CN103399405B (zh) * 2013-07-17 2016-07-06 苏州大学 一种激光宽带熔覆装置及方法
CN103521923A (zh) * 2013-09-27 2014-01-22 昆山纯柏精密五金有限公司 一种采用激光熔丝修复模具的方法
CN104259461B (zh) * 2014-07-31 2016-08-24 中国科学院重庆绿色智能技术研究院 基于同轴送丝的激光三维制造方法与同轴送丝装置
CN104228071B (zh) * 2014-09-24 2016-09-28 北京太尔时代科技有限公司 分体式喷头
CN104668562B (zh) * 2015-01-30 2017-02-22 湖南大学 一种激光光路无遮挡同轴送粉方法及送粉装置
CN106392314B (zh) * 2016-11-01 2018-05-22 苏州大学 激光熔覆送料装置
CN106312304B (zh) * 2016-11-01 2018-09-04 苏州大学 激光熔覆送料装置
CN108950533B (zh) * 2017-05-17 2020-08-11 廖妤 一种激光-冷喷涂同轴复合沉积装置及方法
CN107335805B (zh) * 2017-05-27 2019-11-26 广东工业大学 一种金属零件激光光内送丝熔覆激光冲击锻打复合增材制造方法
EP3634688A1 (fr) * 2017-06-09 2020-04-15 Illinois Tool Works, Inc. Tête de fil chaud à laser coaxial
CN107627002B (zh) * 2017-09-20 2023-05-26 苏州大学 激光熔覆装置
CN107363357A (zh) * 2017-09-20 2017-11-21 苏州大学 激光溶覆装置
CN107385436B (zh) * 2017-09-20 2023-07-07 苏州大学 激光熔覆装置密封结构、激光熔覆装置喷头及激光熔覆装置
CN107649775B (zh) * 2017-09-26 2019-09-24 哈尔滨工业大学 一种电子束熔丝沉积导流咀及方法
CN107999961A (zh) * 2018-01-09 2018-05-08 深圳市海目星激光智能装备股份有限公司 一种用于激光焊接的出丝对准机构
CN108380879A (zh) * 2018-04-28 2018-08-10 上海产业技术研究院 以激光为热源的送丝3d打印机及其打印方法
CN109629068A (zh) * 2019-01-30 2019-04-16 无锡工艺职业技术学院 一种激光纱线烧毛机
CN109807415B (zh) * 2019-03-07 2022-01-04 哈尔滨工业大学(威海) 一种空心电子束同轴送丝的加工装置以及加工方法
CN109866028B (zh) * 2019-04-19 2020-04-24 山东大学 一种射流约束飞秒激光超精密加工系统及方法
CN110158077B (zh) * 2019-04-22 2021-02-23 昆明理工大学 一种可变送丝角度的激光同轴送丝金属零件成形装置
CN110860793B (zh) * 2019-11-28 2021-10-29 中国航空制造技术研究院 一种激光同轴熔丝装置及旋转环形光束产生方法
CN111230303B (zh) * 2020-02-14 2021-12-07 中国航空制造技术研究院 一种激光-电弧复合同轴熔丝装置
CN112936806B (zh) * 2021-04-20 2022-05-17 河北科技大学 连续纤维增强复合材料丝材制造设备
CN113231741B (zh) * 2021-04-26 2022-04-19 南京航空航天大学 一种基于环形光斑同轴送丝的激光焊接装置及方法
CN113770468B (zh) * 2021-08-27 2022-05-27 武汉锐科光纤激光技术股份有限公司 光束焊接设备、方法、装置、存储介质和电子装置
CN217253759U (zh) * 2021-09-10 2022-08-23 苏州创鑫激光科技有限公司 用于激光加工设备的气体输送气路装置
CN117020423A (zh) * 2023-10-08 2023-11-10 中国长江电力股份有限公司 大电流集电环表面蚀坑修复的激光熔丝加工装置及工艺
CN117182312B (zh) * 2023-10-26 2024-05-17 武汉茸烽智能装备有限公司 一种同轴热丝辅助激光变形复合的增材制造装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2823688A1 (fr) * 2001-04-24 2002-10-25 Commissariat Energie Atomique Dispositif de fusion de matiere par faisceau laser
CN1393316A (zh) * 2001-06-27 2003-01-29 西北工业大学 激光立体成形三维金属零件的材料送进方法
US6608281B2 (en) * 2000-08-10 2003-08-19 Mitsubishi Heavy Industries, Ltd. Laser beam machining head and laser beam machining apparatus having same
US6664507B2 (en) * 2000-03-30 2003-12-16 Mitsubishi Heavy Industries, Ltd. Laser machining apparatus
CN2608209Y (zh) * 2003-01-28 2004-03-31 广州富通光科技术有限公司 激光熔覆用送丝机
CN1814391A (zh) * 2005-12-27 2006-08-09 苏州大学 激光精密熔覆光粉同轴装置
CN1814380A (zh) * 2006-03-01 2006-08-09 苏州大学 一种激光变斑熔覆成型工艺及用于该工艺的同轴喷头
CN101148760A (zh) * 2006-09-22 2008-03-26 苏州大学 激光加工成形制造光内送粉工艺与光内送粉喷头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664507B2 (en) * 2000-03-30 2003-12-16 Mitsubishi Heavy Industries, Ltd. Laser machining apparatus
US6608281B2 (en) * 2000-08-10 2003-08-19 Mitsubishi Heavy Industries, Ltd. Laser beam machining head and laser beam machining apparatus having same
FR2823688A1 (fr) * 2001-04-24 2002-10-25 Commissariat Energie Atomique Dispositif de fusion de matiere par faisceau laser
CN1393316A (zh) * 2001-06-27 2003-01-29 西北工业大学 激光立体成形三维金属零件的材料送进方法
CN2608209Y (zh) * 2003-01-28 2004-03-31 广州富通光科技术有限公司 激光熔覆用送丝机
CN1814391A (zh) * 2005-12-27 2006-08-09 苏州大学 激光精密熔覆光粉同轴装置
CN1814380A (zh) * 2006-03-01 2006-08-09 苏州大学 一种激光变斑熔覆成型工艺及用于该工艺的同轴喷头
CN101148760A (zh) * 2006-09-22 2008-03-26 苏州大学 激光加工成形制造光内送粉工艺与光内送粉喷头

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102019505A (zh) * 2009-09-17 2011-04-20 沈阳大陆激光技术有限公司 一种使用激光熔覆焊丝进行激光熔覆的方法
WO2013174449A1 (fr) 2012-05-25 2013-11-28 European Space Agency Procédé de tête de soudage à fils multiples et système pour formation d'échantillon d'alliage et fabrication additive
US9902018B2 (en) 2012-05-25 2018-02-27 European Space Agency Multi-wire feeder method and system for alloy sample formation and additive manufacturing
EP3280562A4 (fr) * 2015-04-09 2018-10-17 Siemens Energy, Inc. Charge optiquement conductrice pour traitement par laser
US11344975B2 (en) 2015-04-09 2022-05-31 Siemens Energy, Inc. Optically conductive filler for laser processing
CN105562951A (zh) * 2016-02-03 2016-05-11 苏州大学 一种用于激光熔覆的激光光内送丝装置
US11203084B2 (en) 2017-01-05 2021-12-21 Ipg Photonics Corporation Additive laser machining systems and methods
US11318557B2 (en) 2017-01-05 2022-05-03 Ipg Photonics Corporation Additive laser machining systems and methods
CN110541165A (zh) * 2019-06-18 2019-12-06 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种车削再利用的激光熔覆材料及涂层制备方法
CN110541165B (zh) * 2019-06-18 2023-09-22 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种车削再利用的激光熔覆材料及涂层制备方法
CN110193647A (zh) * 2019-07-04 2019-09-03 湖北汽车工业学院 一种电弧增材制造用丝-粉同送的焊枪套筒
CN110193647B (zh) * 2019-07-04 2024-05-10 湖北汽车工业学院 一种电弧增材制造用丝-粉同送的焊枪套筒
US20220134440A1 (en) * 2019-08-27 2022-05-05 Edison Welding Institute, Inc. Multi-beam coaxial laser optical system for use in additive manufacturing
US20210060861A1 (en) * 2019-08-27 2021-03-04 Edison Welding Institute, Inc. Coaxial laser-wire optical system for use in additive manufacturing
CN110539081A (zh) * 2019-09-29 2019-12-06 华南理工大学 一种深水管道复合铣削增减材原位修复设备与方法
CN113235084A (zh) * 2021-05-11 2021-08-10 苏州大学 一种实现环形中空偏焦激光的高速熔覆方法
CN113235084B (zh) * 2021-05-11 2022-11-11 苏州大学 一种实现环形中空偏焦激光的高速熔覆方法
CN113737173A (zh) * 2021-08-25 2021-12-03 武汉瀚海智能激光工程有限公司 一种激光熔覆头装置
CN113737173B (zh) * 2021-08-25 2023-12-26 武汉瀚海智能激光工程有限公司 一种激光熔覆头装置
CN114231978A (zh) * 2021-11-15 2022-03-25 苏州工业职业技术学院 一种具闭环控制的激光熔覆系统
CN115502563A (zh) * 2022-11-24 2022-12-23 广东省科学院智能制造研究所 一种激光增材加工系统
CN115502563B (zh) * 2022-11-24 2023-08-15 广东省科学院智能制造研究所 一种激光增材加工系统

Also Published As

Publication number Publication date
CN101386111A (zh) 2009-03-18

Similar Documents

Publication Publication Date Title
WO2009039753A1 (fr) Procédé pour distribuer un fil dans un laser et revêtement et dispositif de distribution de fil dans un laser
WO2011082582A1 (fr) Procédé et dispositif de formation d'un revêtement composite au laser par alimentation en fil et en poudre
CN106312304B (zh) 激光熔覆送料装置
WO2018064864A1 (fr) Dispositif de gainage laser à large bande
US11772193B2 (en) Annular hollow offset-focus laser cladding device
CN106392314B (zh) 激光熔覆送料装置
CN101148760B (zh) 激光加工成形制造光内送粉工艺与光内送粉喷头
CN104289811A (zh) 一种多光束中心送丝激光加工头及其加工方法
CN109852967B (zh) 细束流激光熔化沉积增材制造方法及其使用的激光加工头
CN105562951A (zh) 一种用于激光熔覆的激光光内送丝装置
CN109989060B (zh) 一种同轴送粉高速激光喷涂装置
WO2015007117A1 (fr) Procédé et dispositif de placage au laser à large bande
CN110587139A (zh) 一种电弧激光同轴送丝送粉打印喷头及增材制造装置
CN2707772Y (zh) 环式同轴激光熔覆喷嘴
CN202021424U (zh) 一种非稳腔同轴送丝激光填丝焊接机
CN101643900A (zh) 一种气帘保护式三维同轴激光送粉头
CN215033627U (zh) 一种环形中空偏焦激光熔覆装置
CN210683947U (zh) 一种可变光斑的振镜扫描式激光熔覆加工头装置
CN214768946U (zh) 一种三光束丝粉混合激光熔覆系统
CN108544092A (zh) 一种用于激光金属打印的同轴送丝熔敷头
CN206356731U (zh) 激光熔覆送料装置
CN1271236C (zh) 一种内置式激光熔覆喷嘴
CN110684974A (zh) 一种可变光斑的振镜扫描式激光熔覆加工头装置
CN112159978B (zh) 可预热回火的中心送粉式熔覆头
CN201574192U (zh) 一种用于激光熔覆成形的光、粉、气同轴输送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08800787

Country of ref document: EP

Kind code of ref document: A1