WO2009024485A2 - Rotor d'un moteur de traction - Google Patents

Rotor d'un moteur de traction Download PDF

Info

Publication number
WO2009024485A2
WO2009024485A2 PCT/EP2008/060450 EP2008060450W WO2009024485A2 WO 2009024485 A2 WO2009024485 A2 WO 2009024485A2 EP 2008060450 W EP2008060450 W EP 2008060450W WO 2009024485 A2 WO2009024485 A2 WO 2009024485A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
laminated core
traction motor
cooling
pressure ring
Prior art date
Application number
PCT/EP2008/060450
Other languages
German (de)
English (en)
Other versions
WO2009024485A3 (fr
Inventor
Thomas Lange
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2009024485A2 publication Critical patent/WO2009024485A2/fr
Publication of WO2009024485A3 publication Critical patent/WO2009024485A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium

Definitions

  • the invention relates to a rotor of a traction motor with means for rotor excitation, which are arranged on or in an axially stacked sheets.
  • Traction motors are used primarily as drives for locomotives, locomotives, mining trucks or buses, and due to the limited space available there, a compact design of the electric machine is necessary.
  • the disadvantage here is that due to the compact design, inadequate heat removal from the heat sources of the traction motor can take place.
  • Another aspect is the not insignificant masses of the traction motors, which are also to move and thereby reduce the permissible payload or axle load.
  • the object of the invention is to provide a traction motor which, in addition to saving weight, ensures an extremely compact design while at the same time providing sufficient heat dissipation.
  • a rotor of a traction motor with means for rotor excitation which are arranged on and / or in a stack of axially stacked laminations, wherein the radial extent of the laminated core substantially corresponds to the radial extent of the respective means for rotor excitation and wherein on each end face of the laminated cores at least one pressure ring is present.
  • the laminated core of the rotor now has the shape of a tube. Its radial extent is limited to the electrically necessary yoke height, which is due to electromagnetic see interaction induced torque is transmitted by acting on the two end faces of the laminated core rotor pressure rings via known shaft-hub connections to the shaft.
  • the rotor pressure rings are advantageously carried out plate-shaped, so that in the now available axial cavity of the rotor, the positioning of the rotor bearing partially or completely radially between the laminated core of the rotor and the shaft is arranged.
  • the power flow and in addition the centering between the individual sheets can in the above embodiments via form or frictional, for. be ensured by punching packet.
  • the necessary pressure in the laminated core is produced, for example, via tie rods and / or via axially prestressed shaft-hub connections via the rotor pressure rings or the rotor end plates.
  • the rotor pressure rings or the T-shaped support elements are advantageously provided with openings which have recesses shaped in a special embodiment such that these recesses or the remaining spokes between the recesses act as fan blades and so on cause a flow of cooling air within the rotor and / or the electric machine.
  • the associated air turbulence creates a virtually uniform temperature level within the rotor and thus the electric machine.
  • the circulated and heated internal air is cooled by outside air bypassed on the housing and / or by a liquid cooling arranged on the circumference of the electric machine.
  • the invention is also applicable to an electric machine with a generally known open cooling circuit, especially when the pollution level of the environment is comparatively low.
  • the cooling effect within the electric machine, equal or open or closed cooling circuit is provided by additional guide elements such as baffles, e.g. further optimized in the area of the winding heads or nozzle elements.
  • the rotor 1 shows a schematic longitudinal section of a rotor 1 of a not shown in this illustration Electrical machine 10.
  • the rotor 1 has in the present embodiment as a means for rotor excitation axially successively arranged permanent magnets 3, which are arranged in a substantially axially extending recess 25 in the laminated core 9 of the rotor 1.
  • This inventive principle is also applicable to a well-known squirrel-cage rotor.
  • the axial recess 25 can be performed to suppress torque ripple also beveled with respect to its axial course by a predetermined angular offset be, so that the permanent magnets 3 follow in its axial course of this tapered recess.
  • the radial extent of the sheets between the permanent magnet 3 and the shaft 7 is determined by the electromagnetically necessary height in order, for example, to obtain no saturation in this area.
  • the laminated core 9 of the rotor 1 is provided on its front sides with an A-side rotor pressure ring 2 and a B-side rotor pressure ring 4 and fixed in this embodiment by a tie rod 8.
  • the rotor pressure rings 2 and 4 are shrunk onto a shaft 7 or rotatably connected with other known structural shaft-hub connections with this shaft 7.
  • the rotor pressure ring 2 on the A-side arrangement of the rotor 1 has means, in particular labyrinth seals 14 or brush seals for sealing the machine interior against the environment, as shown in principle in FIG. This will damp and
  • a carrier element 6 Radial immediately adjacent to the laminated core 9 on the inner shell side, there is advantageously a carrier element 6, which, for example, carried out as a rolled sheet facilitates the fixing and positioning of the laminations of the laminated core 9.
  • This carrier element 6 can be designed as a rolled sheet or from spirally rolled up wires.
  • the carrier element 6 has a sufficiently good heat transfer capability, thus to ensure the power loss from the laminated core 9 in the interior of the rotor 1.
  • the heat is then released to a cooling air flow 5, which flows through the openings 15 and 16.
  • the flow is generated by special fans or by the fan-shaped design of the openings 15,16.
  • FIG. 2 shows, in a basic representation, a permanent-magnet synchronous motor as a traction drive, with a rotor 1, similar to the rotor 1 according to FIG. 1, wherein differently the A-side rotor pressure ring 2 is dish-shaped, so that storage devices 13 almost or at least for Part radially within the laminated core 9 of the rotor 1 are located.
  • the plate-shaped configuration of at least one rotor pressure ring 2.4 advantageously permits plate bending, in order to thus improve the seating behavior of the axially strained laminated core 9, e.g. during assembly and / or due to thermal processes.
  • plate deflection means that the region of the rotor pressure ring located on the shaft 7 does not move while the radially outer region of this rotor pressure ring permits axial movement.
  • additional high-strength plates 26 can be used for fixing the laminated core 9.
  • An internal cooling circuit is formed by the conveying action of, for example, the apertures, the hollow rotor 1 and not shown axial cooling channels in and / or on the stator 11.
  • Labyrinth seals 14 seal the interior of the traction motor, especially on the A side.
  • stator 11 Radially outside of the rotor 1 is the stator 11 with its winding system and its axially projecting end windings 12, which are mitgekühlt by the cooling circuit described above. The heat is released via the housing of the electric machine 10 and / or via the shaft 7 to the outside.
  • FIG. 4 shows in a further embodiment a rotor 1 of an electric machine 10, wherein the laminated core 9 is shrunk with only one rotor pressure ring 4 directly to the shaft 7.
  • the other rotor pressure ring 2 is rotatably connected by a clamping sleeve 20 with the shaft 7.
  • a possible course of a cooling channel 28 in the back of the stator 11 as part of the housing 17, which thus forms part of the internal cooling circuit, is shown by dashed lines in FIG.
  • the laminated core 9 of the rotor 1 is additionally fixed a tie rod 8, which does not necessarily abut on its axial course on the laminated core 9.
  • the carrier element 6 is designed T-shaped, which is connected in a rotationally fixed manner with respect to the axial extent of the rotor 1 essentially centrally with the shaft 7 ,
  • the shaft of the support member 6 is formed spoke-shaped wherein apertures 21 are formed as cooling channels and are advantageously designed such that they take on fan function.
  • the located on the shaft 7 part of the support member 6 thus forms a hub 19, which is also referred to as a rotor bar in particular in two-part support member 6 and is rotatably connected to the shaft 7.
  • the two-part carrier element 6 is constructed from a carrier tube 22 and a rotor bar.
  • both the rotor bar on the shaft 7 and the support tube 22 are rotatably mounted on the rotor bar, in particular positively and or materially connected, for example, by a shrink connection.
  • the rotor 1 is thereby fixed at its end sides by rotor end disks 23 by screws 24 in the carrier element. Screws 24 are also used to fix fan blades 18 on carrier element 6 or laminated core 9. It is therefore necessary that, at least in the area of the end faces of rotor 1, carrier element 6 has extensions which allow a screw connection.
  • the sheet-metal package 9 is replaced by a sintered mold 90 on the left side of the illustration.
  • FIG. 7 shows a perspective illustration of a rotor 1 with a T-shaped carrier element 6 with several lugs.
  • ferendusionn 23 are attached to the fan blades 18 and / or spacers not shown.
  • the invention is ultimately not limited to the described embodiments, but also extends to combinations of individual components of said embodiments, which in turn can then form a separate embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

La présente invention concerne un rotor (1) d'un moteur de traction, comprenant des moyens d'excitation de rotor qui se trouvent sur et/ou dans un empilage de tôles (9) formé de tôles empilées en direction axiale. La dimension radiale de l'empilage de tôles (9) correspond sensiblement à la dimension radiale de chacun des moyens d'excitation de rotor. Au moins une bague de serrage de rotor (2, 4) se trouve sur chaque face de l'empilage de tôles (9).
PCT/EP2008/060450 2007-08-20 2008-08-08 Rotor d'un moteur de traction WO2009024485A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710039186 DE102007039186A1 (de) 2007-08-20 2007-08-20 Läufer eines Traktionsmotors
DE102007039186.4 2007-08-20

Publications (2)

Publication Number Publication Date
WO2009024485A2 true WO2009024485A2 (fr) 2009-02-26
WO2009024485A3 WO2009024485A3 (fr) 2009-04-30

Family

ID=40259135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/060450 WO2009024485A2 (fr) 2007-08-20 2008-08-08 Rotor d'un moteur de traction

Country Status (2)

Country Link
DE (1) DE102007039186A1 (fr)
WO (1) WO2009024485A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202283A1 (de) * 2014-02-07 2015-08-13 Bühler Motor GmbH Ölpumpenantrieb
US10224774B2 (en) 2014-05-12 2019-03-05 Thussenkrupp Presta Teccenter Ag Rotor shaft with a laminated core
US11984765B2 (en) 2018-09-26 2024-05-14 Siemens Mobility GmbH Rotor tube for an electric machine of a vehicle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012852A1 (de) * 2009-03-12 2010-09-16 Siemens Aktiengesellschaft Verfahren zur Herstellung von Rotorblechpaketen
DE102011012429A1 (de) * 2011-02-25 2012-08-30 Neumayer Tekfor Holding Gmbh Rotorwelle und Elektromotor
DE102012215236A1 (de) 2012-08-28 2014-03-06 Siemens Aktiengesellschaft Rotor einer elektrischen Maschine und elektrische Maschine
DE102012110157A1 (de) * 2012-10-24 2014-06-12 Thyssenkrupp Presta Teccenter Ag Rotor für einen Asynchronmotor
DE102014106453A1 (de) * 2014-05-08 2015-11-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektromaschine für den Einsatz im KFZ-Bereich
DE102016215090A1 (de) * 2016-08-12 2018-02-15 Thyssenkrupp Ag Verfahren zur Montage einer Rotorwelle eines Elektromotors
DE102018200865B4 (de) * 2018-01-19 2023-10-05 Vitesco Technologies GmbH Rotor für eine elektrische Maschine
DE102018204436A1 (de) 2018-03-22 2019-09-26 Volkswagen Aktiengesellschaft Verfahren zur Montage von Lamellen- oder Blechpaketen auf einer Hohlwelle sowie ein auf diese Weise hergestellter Rotor für eine elektrische Maschine
DE102021122998A1 (de) 2021-09-06 2023-03-09 Bayerische Motoren Werke Aktiengesellschaft Wellenloser Rotor für eine elektrische Maschine, Fertigungsverfahren, elektrische Maschine und Kraftfahrzeug

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1996946A (en) * 1933-12-14 1935-04-09 United American Bosch Corp Magnetic rotor
EP0909004A2 (fr) * 1997-10-01 1999-04-14 Denyo Co., Ltd Rotor à aimants permanent et dispositif de refroidissement
JP2002325394A (ja) * 2001-04-26 2002-11-08 Nissan Motor Co Ltd 電機子
US20030146667A1 (en) * 2002-02-06 2003-08-07 Nissan Motor Co., Ltd. Cooling method and structure for a rotation object
WO2004084376A1 (fr) * 2003-02-26 2004-09-30 Robert Bosch Gmbh Moteur electrique comportant un aimant permanent
EP1473816A1 (fr) * 2003-04-29 2004-11-03 Robert Bosch Gmbh Aimant permanent et sa fixation dans une machine électrique
US20050140235A1 (en) * 2003-12-26 2005-06-30 Yoshihiko Yamagishi Electric motor
JP2005184957A (ja) * 2003-12-18 2005-07-07 Toshiba Corp 永久磁石式リラクタンス型回転電機
WO2005099065A1 (fr) * 2004-04-10 2005-10-20 Robert Bosch Gmbh Rotor d'une machine electrique
US20060022541A1 (en) * 2004-07-30 2006-02-02 Raymond Ong Rotor hub and assembly for a permanent magnet power electric machine
WO2007007420A1 (fr) * 2005-09-28 2007-01-18 Toyota Jidosha Kabushiki Kaisha Rotor pour machine électrique rotative
WO2007091692A1 (fr) * 2006-02-08 2007-08-16 Toyota Jidosha Kabushiki Kaisha Procede de fabrication de rotor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH665063A5 (de) * 1984-11-29 1988-04-15 Bbc Brown Boveri & Cie Asynchronlaeufer.
DE4447880B4 (de) * 1994-07-07 2007-09-20 Indramat Gmbh Radialmagnetmotor
EP0854558A3 (fr) * 1997-01-21 2000-07-12 Isuzu Ceramics Research Institute Co., Ltd. Structure de rotor pour générateurs et procédé de fabrication du rotor
JPH11196555A (ja) * 1997-12-26 1999-07-21 Isuzu Ceramics Res Inst Co Ltd 永久磁石を用いた発電・電動機
DE10349442A1 (de) * 2003-10-23 2005-05-25 Robert Bosch Gmbh Elektrische Maschine mit Permanentmagnetrotor und Verfahren zu dessen Herstellung
DE102005044327B4 (de) * 2005-09-16 2008-04-17 Siemens Ag Elektrische Maschine mit Permanentmagneten
DE102006015064B4 (de) * 2006-03-31 2008-05-29 Siemens Ag Elektrische Maschine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1996946A (en) * 1933-12-14 1935-04-09 United American Bosch Corp Magnetic rotor
EP0909004A2 (fr) * 1997-10-01 1999-04-14 Denyo Co., Ltd Rotor à aimants permanent et dispositif de refroidissement
JP2002325394A (ja) * 2001-04-26 2002-11-08 Nissan Motor Co Ltd 電機子
US20030146667A1 (en) * 2002-02-06 2003-08-07 Nissan Motor Co., Ltd. Cooling method and structure for a rotation object
WO2004084376A1 (fr) * 2003-02-26 2004-09-30 Robert Bosch Gmbh Moteur electrique comportant un aimant permanent
EP1473816A1 (fr) * 2003-04-29 2004-11-03 Robert Bosch Gmbh Aimant permanent et sa fixation dans une machine électrique
JP2005184957A (ja) * 2003-12-18 2005-07-07 Toshiba Corp 永久磁石式リラクタンス型回転電機
US20050140235A1 (en) * 2003-12-26 2005-06-30 Yoshihiko Yamagishi Electric motor
WO2005099065A1 (fr) * 2004-04-10 2005-10-20 Robert Bosch Gmbh Rotor d'une machine electrique
US20060022541A1 (en) * 2004-07-30 2006-02-02 Raymond Ong Rotor hub and assembly for a permanent magnet power electric machine
WO2007007420A1 (fr) * 2005-09-28 2007-01-18 Toyota Jidosha Kabushiki Kaisha Rotor pour machine électrique rotative
WO2007091692A1 (fr) * 2006-02-08 2007-08-16 Toyota Jidosha Kabushiki Kaisha Procede de fabrication de rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202283A1 (de) * 2014-02-07 2015-08-13 Bühler Motor GmbH Ölpumpenantrieb
US10224774B2 (en) 2014-05-12 2019-03-05 Thussenkrupp Presta Teccenter Ag Rotor shaft with a laminated core
US11984765B2 (en) 2018-09-26 2024-05-14 Siemens Mobility GmbH Rotor tube for an electric machine of a vehicle

Also Published As

Publication number Publication date
WO2009024485A3 (fr) 2009-04-30
DE102007039186A1 (de) 2009-02-26

Similar Documents

Publication Publication Date Title
WO2009024485A2 (fr) Rotor d'un moteur de traction
EP1891725B1 (fr) Moteur electrique a excitation par aimants permanents, a refroidissement du rotor
EP2368308B1 (fr) Machine électrique à courant de refroidissement axial et déplacé radialement, et procédé correspondant
EP3103183B1 (fr) Rotor à réluctance à stabilisation mécanique
DE19780317B4 (de) Elektrische Maschine
DE102017201117A1 (de) Verfahren zum Kühlen einer elektrischen Maschine sowie elektrische Maschine
DE102008022105A1 (de) Flüssigkeitsgekühlte elektrische Maschine sowie Verfahren zur Kühlung einer solchen elektrischen Maschine
DE102005060180A1 (de) Elektrische Maschinen und Anordnungen mit einem jochlosen Stator mit modularen Blechstapeln
DE102009051651A1 (de) Windkraftgenerator mit Innenkühlkreislauf
EP3504774B1 (fr) Rotor en court circuit pour une machine asynchrone
DE102013020331A1 (de) Elektrische Maschine, insbesondere Asynchronmaschine
DE102010063973A1 (de) Elektrische Maschine mit einer Kühleinrichtung
EP3403316A1 (fr) Rotor pour une machine dynamoélectrique tournante excitée par aimants permanents et son utilisation
EP3611828A1 (fr) Machine tournante dynamoélectrique doté d'un blindage de fente d'aération
EP3476023A1 (fr) Rotor pour machine électrique tournante
DE102019205153A1 (de) Statorzahn mit asymmetrischer Zahngeometrie
EP2434618B1 (fr) Rotor à segment d'une machine électrique
EP1796249A2 (fr) Machine électrique
EP4008047A1 (fr) Unité d'entraînement électrique, module hybride et ensemble d'entraînement pour véhicule automobile
WO2018019487A1 (fr) Rotor pour machine électrique tournante
EP3472922B1 (fr) Rotor pour une machine asynchrone électrique à cage d'écureuil surmoulée, machine électrique et procédé de fabrication
DE102020122523A1 (de) Gekühlter Rotor einer elektrischen Maschine
AT512853A1 (de) Differentialantrieb für eine Energiegewinnungsanlage
DE102010036890A1 (de) Permanentmagnetmaschine und Rotor
DE102022120771A1 (de) Rotor für eine elektrische Traktionsmaschine eines Kraftfahrzeugs, elektrische Traktionsmaschine für ein Kraftfahrzeug sowie Blechpaket für eine elektrische Traktionsmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787045

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08787045

Country of ref document: EP

Kind code of ref document: A2