WO2009024011A1 - Réflecteur et récupérateur de chaleur de type cuve solaire l'utilisant - Google Patents

Réflecteur et récupérateur de chaleur de type cuve solaire l'utilisant Download PDF

Info

Publication number
WO2009024011A1
WO2009024011A1 PCT/CN2008/001274 CN2008001274W WO2009024011A1 WO 2009024011 A1 WO2009024011 A1 WO 2009024011A1 CN 2008001274 W CN2008001274 W CN 2008001274W WO 2009024011 A1 WO2009024011 A1 WO 2009024011A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting surface
edge
secondary mirror
receiving tube
mirror
Prior art date
Application number
PCT/CN2008/001274
Other languages
English (en)
French (fr)
Inventor
Juha Ven
Original Assignee
Kang, Xuehui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kang, Xuehui filed Critical Kang, Xuehui
Priority to US12/672,121 priority Critical patent/US8511298B2/en
Priority to EP08773019A priority patent/EP2192360A4/en
Publication of WO2009024011A1 publication Critical patent/WO2009024011A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/80Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/83Other shapes
    • F24S2023/838Other shapes involutes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the invention belongs to the field of solar energy technology, and in particular relates to a mirror for collecting sunlight, and a solar collector using the same. Background technique
  • Solar trough collectors consist of linear mirrors, mostly linear parabolic, that typically track the sun around its center of gravity and reflect solar radiation onto the linear receiver.
  • a receiver can have several shapes, but for mechanical reasons, a cylindrical tube is often used, and there is a liquid circulating inside the receiver, so that the heat collected by the receiver is transferred to the application through the liquid flow.
  • the receiver is a steel tube coated with a spectrally selective absorption film that absorbs most of the solar radiation and substantially reduces radiant heat loss.
  • One or more layers of the glass envelope enclosing the receiver can further reduce the heat loss of the receiving tube.
  • Commercially produced heat collecting units have a closed vacuum between the receiving tube and the glass envelope for further reducing heat loss.
  • NREL's "Parabolic Trough Workshop" in the March 9, 2007 issue of Golden Colorado magazine reported a number of vacuum damage caused by hydrogen leakage.
  • Increasing the operating temperature is important because it increases the efficiency of the thermal cycle at the point of use.
  • the efficiency loss caused by the heat radiation of the receiving tube will increase faster than the obtained thermal cycle efficiency, and the reduction of heat loss can be achieved by increasing the concentration ratio.
  • Today's technology uses primary mirrors consisting of several or a few facets to try to concentrate as much solar radiation as possible on the receiving tube.
  • the parabolic shape is shortened so that the sun-facing surface of the receiver cannot be illuminated by the reflected light of the primary mirror, so the maximum concentration is reduced. At the same time, uneven illumination is caused, and uneven heat causes the receiving tube to bend, often smashing the glass envelope.
  • Figure 1 shows the secondary mirror in the Duke Solar vacuum envelope. There is no gap between the secondary mirror receiving tubes. The mirror has a large radius of curvature and a small boundary angle.
  • Figure 2 is a large boundary angle parabolic trough collector with a composite secondary mirror and receiver tube in a transparent glass tube (Reference: JM Gordon 1991 Solar energy vol 47 No 6 pp 457 "C 466. High rim parabolic trough with complex secondary reflector and absorber tube inside a transparent glass tube) 0 3 is preclude compound parabolic trough collector with a collector mirror and the plate-type secondary receiver, its initial large mirror radius of curvature, the boundary The angle is small (reference: JM Gordon 1991 Solar energy vol 47 No 6 pp 457 "C 466, parabolic trough with CPC secondary and a flat receiver. The primary parabolic reflector has a low rim angle).
  • Figure 4 shows various forms of secondary mirrors for trough collectors (Reference: Harald Ries (1996) Applied optics I Vol 35 No 13 / 1 May 1996, various shapes of secondaries for parabolic trough collectors) Gordon's ice cream egg roll shaped CPC (composite parabolic collector) in 1993. It was developed for a cylindrical receiver with a glass envelope, so there is a gap between the mirror of this form of CPC and the receiving tube. The gap loss is compensated by the increased reflective area.
  • This CPC is combined with Dewar solar vacuum tubes and is widely used in domestic hot water systems.
  • the top of the secondary mirror should be connected to the receiving tube to close the light-harvesting sleeve, but this is very difficult.
  • the receiving tube is bent due to uneven heating, and the secondary mirror is made of a glass material and cannot withstand the huge thermal shock generated when it comes into contact with the extremely hot receiving tube. Leaving a certain gap between the secondary mirror and the receiving tube causes the light-receiving sleeve to open, resulting in a loss of gap.
  • Another problem is that some of the concentrated light will reach the receiver after the secondary mirror has been reflected multiple times. These two causes optical losses.
  • trough collectors with secondary concentrators are less efficient than none. For this reason, secondary mirrors are not used in commercial trough collectors. Summary of the invention
  • Another object of the present invention is to provide a solar collector that has a higher concentrating effect while increasing the ability to capture light, avoiding gap loss and secondary reflection mirror multiple reflection.
  • the reflector of the present invention includes at least a first reflecting surface, a second emitting surface located on the left side of the first reflecting surface, and two reflecting surfaces in a third reflecting surface on the right side of the first reflecting surface, and features
  • the first reflective surface is configured to reflect direct light to a first focal line or quasi-focal line
  • the second reflective surface configured to reflect direct light to the first focus On the right side of the line or quasi-focal line
  • the third reflecting surface is configured to reflect direct light to the left side of the first focal line or quasi-focal line.
  • the second reflective surface is configured to reflect the direct light to a second focal line or quasi-focal line on the right side of the first focal line
  • the third reflective surface is configured to reflect the direct light to a left focal line The third focal line or quasi-focal line on the side.
  • the first reflecting surface includes two left and right portions, wherein the left portion is connected to the second reflecting surface, and the right portion is connected to the third reflecting surface.
  • the mirror of the present invention can adopt a bilaterally symmetrical structure.
  • the solar trough collector of the present invention comprises a primary mirror, a secondary mirror, and a receiving tube.
  • the primary mirror includes at least a first reflecting surface and a second surface located on the left side of the first reflecting surface.
  • the right side reflecting surface of the secondary mirror is reflected by the secondary mirror onto the receiving tube, and the third reflecting surface is configured to reflect the direct light to the left reflecting surface of the secondary mirror and is reflected by the secondary mirror to the receiving tube on.
  • the above secondary mirror is an ice cream shaped egg roll secondary mirror.
  • the first reflective surface is configured to reflect direct light to a first focal line or quasi-focal line, the first focal line being a centerline of the receiving tube.
  • the second reflecting surface of the primary mirror is configured to reflect direct light to a second focal line or quasi-focal line on the right side of the first focal line
  • the third reflective surface is configured to reflect the direct light to a first The third focal line or quasi-focal line on the left side of a focal line.
  • the light that reflects the direct light to the secondary mirror on the second reflecting surface and/or the third reflecting surface is the center line of the edge source light region, that is, the light rays are the center lines of a certain edge light region.
  • the second reflective surface may include one or more of the following regions:
  • a second reflecting surface area wherein the reflecting surface of the area is configured to reflect direct light to the secondary mirror is a center line of the edge ray area, and an edge ray of the edge ray area is tangentially incident on the receiving tube. The other one is reflected by the right side of the secondary mirror and is tangentially incident on the receiving tube;
  • a second reflecting surface area 2 wherein the reflecting surface of the area is configured to reflect direct rays to the secondary mirror, and the light rays of the edge are all the center line of the edge ray area, and an edge ray of the edge ray area is tangentially incident on the receiving tube. The other one is reflected by the right edge of the secondary mirror and is tangentially incident on the receiving tube;
  • a second reflecting surface area 3 wherein the reflecting surface of the area is configured to reflect the direct light to the secondary mirror is a center line of the edge ray area, and an edge ray of the edge ray area is tangentially incident on the receiving tube. Another One of the right side edges of the secondary mirror is reflected once onto the surface of the receiving tube;
  • a second reflective surface area 4 wherein the reflective surface is configured such that the light that reflects the direct light to the secondary mirror is a center line of the edge ray region, and one edge of the edge ray region passes through the left edge of the secondary mirror Shot on the receiving tube, and the other one is reflected by the right edge of the secondary mirror to the receiving tube;
  • the third reflecting surface may include one or several of the following regions:
  • a third reflecting surface area wherein the reflecting surface of the area is configured to reflect direct light to the secondary mirror is a center line of the edge light area, and an edge light of the edge light area is incident on the receiving tube by a tangential line. The other one is reflected by the left reflecting surface of the secondary mirror to be tangentially incident on the receiving tube;
  • a third reflecting surface area 2 wherein the reflecting surface of the area is configured to reflect the direct light to the secondary mirror, and the light rays of the edge light are the center line of the edge light area, and an edge light of the edge light area is incident on the receiving tube by a tangential line. The other one is reflected once by the left edge of the secondary mirror to tangentially hit the receiving tube;
  • a third reflecting surface area 3 wherein the reflecting surface of the area is configured to reflect the direct light to the secondary mirror is a center line of the edge ray area, and an edge ray of the edge ray area is tangentially incident on the receiving tube. The other one is reflected by the left edge of the secondary mirror to the surface of the receiving tube;
  • a third reflective surface area four wherein the reflective surface is configured to reflect direct light to a center line of a uniform edge ray region of the secondary mirror, and an edge ray of the edge ray region is incident on a right edge of the secondary mirror On the receiving tube, the other side is reflected once to the receiving tube by the left edge of the secondary mirror.
  • the primary mirror is a silver plated low iron glass and the receiving tube is a cylindrical steel tube having a spectrally selective absorption layer.
  • the receiver is provided with one or more layers of cylindrical glass envelopes having a vacuum of less than 100 Pa.
  • the secondary mirror is not in contact with the receiving tube and may have a distance therebetween.
  • the first reflecting surface of the primary mirror comprises separate left and right portions, the distance between the two being the orthographic projection width of the secondary mirror on the primary mirror.
  • the surface of the secondary mirror has a low heat radiation coating
  • the back surface is provided with a heat insulation layer
  • the heat insulation layer wraps the steel sheet
  • the side of the secondary mirror facing the primary reflection surface is closed with a glass piece or a Teflon sheet, the glass piece or special
  • the surface of the fluorocarbon sheet has an anti-reflection layer.
  • the collector also includes a primary mirror rotation axis to automatically track the sun's rays.
  • the heat collector further includes an inclined axis that is not coplanar with the primary mirror.
  • the glass envelope of the receiving tube or the receiving tube can be supported by the guiding roller
  • the present invention can uniformly distribute solar radiation around the receiving tube, thereby greatly reducing Thermal stress and bending of the receiving tube.
  • the invention can bring higher concentrating effect and reduce the requirement for optical precision.
  • the primary mirror of the present invention requires a large gap between the top of the CPC and the receiving tube, and the top of the receiver and the secondary mirror The large gap makes the production process easier and the product performance more reliable.
  • FIG. 2 Schematic diagram of the existing large boundary angle parabolic trough collector
  • Figure 3 is a schematic view of a trough collector using a CPC secondary mirror and a flat panel receiver in the prior art.
  • Figures 4a) - 4d) Schematic diagrams of various forms of secondary mirrors in the prior art
  • Figure 5 Schematic diagram of ice cream egg roll shape
  • FIGS 6a)-6b) are left and rear views, respectively, of the solar collector of the present invention.
  • Figure 7 is a cross-sectional view of the inclined collector of the present invention
  • Figure 8 is a schematic view showing the relationship between the primary mirror and the CPC of the present invention
  • Figure 9 is a schematic diagram of light reflection of the present invention.
  • Figure 10 Schematic diagram of cutting off the top linear ice cream egg roll
  • Figure 11 is a schematic diagram of the edge ray, where the edge rays d, e are reflected by the secondary mirror and then tangentially shot on the receiving tube.
  • Figure 12 is a schematic diagram of the edge ray, in which the edge rays f, g are once reflected by the secondary mirror and then tangentially incident on the receiving tube, but the incident angle is larger.
  • Figure 13 Schematic diagram of optical gap loss when reflected light is not located in the edge region, gap loss between the same direction light between i, j
  • Fig. 14 is a schematic diagram of the edge ray, wherein the edge ray m is incident on the receiving tube by a tangential line, and the tangential line is reflected by the secondary mirror and then tangentially incident on the receiving tube
  • Figure 15 is a schematic diagram of the edge ray, in which the edge ray 0 is incident on the receiving tube with a tangential line, n is reflected once by the edge 21 of the secondary mirror, and the tangential line is incident on the receiving tube.
  • Figure 16 is a schematic diagram of the edge ray, wherein the edge ray q is incident on the receiving tube with a tangential line, p is reflected by the edge 21 of the secondary mirror and then incident on the receiving tube
  • Figure 17 is a schematic diagram of the edge ray, wherein the edge ray q' is incident on the receiving tube via the secondary mirror edge 22, and p' is reflected by the secondary mirror edge 21 and is incident on the receiving tube.
  • Figure 24 Direct light S1, S2, S3, S4, S5
  • the light reflected by the primary mirror is the edge light region.
  • FIG. 25 Schematic diagram of the primary reflector reflection surface design
  • Figure 27 is a comparison diagram of the optical response of the present invention and the existing LS3
  • the structure of the collector of the present invention is shown in Fig. 6, wherein the CPC 1 comprises a secondary mirror and a steel receiving tube, the primary mirror 2 is made of silver-plated low-iron glass, and the component 3 is a steel structure supporting the primary mirror. , component 4 is a steel structural pillar, and component 5 is a cement steel reinforcement base. Component 6 is a torque box.
  • Figure 7 shows a slanted trough collector with a different axis of rotation that tracks the sun's rays.
  • the axis of rotation is horizontal, the angle of inclination is 8 degrees, and the two are not coplanar.
  • This structure is north-south and can generate more energy in winter.
  • the schematic of the present invention is shown in Figure 8, with a large gap between the receiving tube and the secondary mirror.
  • the curvature of the primary mirror is slightly larger than the parabola, including the upper left part, the left middle part, the upper right part, and the right middle part.
  • the reflection principle of the primary mirror is shown in Figure 9.
  • the upper left part of the primary mirror reflects the sunlight to the second inverse.
  • the right side of the mirror is then reflected through the right side of the secondary mirror onto the right side of the receiver tube.
  • the upper right part of the primary mirror reflects sunlight to the left part of the secondary mirror, and then reflects the light to the left side of the receiving tube through the left part of the secondary mirror.
  • the middle part of the primary mirror is divided into two, because the place where the primary mirror is shaded by the shadow of the secondary mirror has no effect and is omitted.
  • the middle portion of the primary mirror reflects light directly onto the underside or upper side of the receiving tube.
  • Figure 10 is a cut-off linear ice cream egg roll shaped CPC. Because the tip is truncated, there is a large gap between the secondary mirror and the receiving tube, and the receiving angle is half of 50 degrees.
  • the receiving tube is made of steel and plated. There is a solar light selective absorption layer. Parallel rays a, b and c shoot directly on the CPC. Light rays a and c are reflected by the secondary mirror and are absorbed by the upper half of the receiving tube.
  • a part of the CPC's secondary mirror is an involute, meaning that any light that is tangent to the receiving tube (such as b), as long as its angle of incidence is less than the receiving angle, will be reflected back by the CPC's mirror, still with the same receiving The tube is tangent.
  • Figure 11 shows: edge rays d and e (f and g).
  • the edge rays are two lines that draw a maximum area in which any light of the same angle as the incident angle of the edge rays falls directly or after a reflection onto the receiving tube.
  • a light is edge light under the following conditions -
  • Figure 13 shows that from a certain angle of incidence, the light between i and j is reflected in the wrong direction in the left part of the CPC. The light between i and j will be lost. In this case, there is a gap loss, so in order to close the light sleeve, the secondary mirror and the receiving tube are connected in the previous design. Because the edge rays in the present invention are h and i (1 and m)
  • the present invention does not have the problem of slot loss, because the primary mirror reflects the linear light as the center line of the edge region, so that any light reflected by the primary mirror onto the secondary mirror is located in an edge ray region, thus Both fall directly or after a reflection and fall onto the receiving tube.
  • the light n falls on the edge of the CPC.
  • the edge ray p is no longer reflected to be tangent to the receiving tube.
  • the edge ray q is no longer tangent to the receiving tube.
  • Figures 18 through 23 show the light in the middle of the area formed by the two edge rays.
  • the rays in the middle are r , S , t, w, v ⁇ nu. If the primary mirror is reflected by these intermediate rays, then we get a system with no gap loss. All light will fall directly or at most once on the receiver tube. This feature gives the present invention a high level of performance.
  • Figure 24 shows how to get the primary mirror. All media rays r, s, t, u, v and w are also plotted in the figure.
  • the intersection XI is obtained where the first focal length r intersects with the set focal length.
  • the incident ray S1 needs to be reflected as r.
  • This condition defines the slope of a portion of the primary mirror, R1.
  • the intersection of this part R1 and S2 gives the second point X2.
  • Figure 25 shows incident light S3 and reflected light t. Since the angle Alfa (reflection angle) and the angle Betha (incident angle) are equal, the slope of the mirror (R3) at point X3 is known. A portion of the primary mirror, R3 and S4, gives the next point X4 on the primary mirror. Repeat the above steps with a large number of calculated intermediate rays to get the shape of the entire primary mirror.
  • the R1 portion corresponds to the first reflecting surface of the primary mirror, and reflects the direct light to the center line of the receiving tube;
  • R2 corresponds to the aforementioned third reflecting surface region 1, and the reflecting surface of the region is configured to direct light.
  • the light reflected to the secondary mirror is the center line of the edge ray region, and one edge ray of the edge ray region is incident on the receiving tube with a tangential line, and the other is reflected by the left reflecting surface of the secondary mirror with a tangential line.
  • R3 corresponds to the aforementioned third reflecting surface area 2, wherein the reflecting surface is configured to reflect direct rays to the secondary mirror, and the light rays are the center line of the edge ray area, and one edge of the edge ray area The light is incident on the receiving tube by a tangential line, and the other is reflected by the left edge of the secondary mirror to be tangentially incident on the receiving tube;
  • R4 is equivalent to the aforementioned third reflecting surface area three, and the reflecting surface of the area is configured to reflect the direct light
  • the light rays to the secondary mirror are the center line of the edge ray region, and one edge of the edge ray region is tangentially incident on the receiving tube, and The strip is reflected by the left edge of the secondary mirror onto the surface of the receiving tube;
  • R5 is equivalent to the aforementioned third reflecting surface area 4, and the reflecting surface of the area is configured to reflect the direct light to the uniform edge of the light of the secondary mirror.
  • the center line, one edge of the edge ray region is incident on
  • R1 of the primary mirror turns the light to the middle of the receiving tube; R3, R4, R5, turn the light to the quasi-focal line on the left side of the receiving tube.
  • the corresponding area on the left side of the primary mirror turns the light toward the quasi-focal line on the right side of the receiving tube.
  • the primary mirror is more curved than the existing parabola.
  • This new type of primary mirror can be roughly regarded as a parabola containing three parts.
  • the middle part can be left untouched, and the two sides need to be slightly bent inward to move their focal line to the calculated pseudo-poly line, and the primary mirror focal line in the upper left part falls on the calculated focal line on the right side of the receiving tube.
  • the primary mirror focal line in the upper right portion falls on the calculated focal line on the left side of the receiving tube.
  • Using the parabolic shape described above will degrade the performance of the R2 region from the ends to the middle of the primary mirror because the above R2 region cannot be reflected to the focal line or quasi-focal line, but it is faster to install.
  • the structure of the receiving tube and the secondary mirror is as shown in Fig. 26.
  • the secondary mirror 101 is provided with an insulating layer from the back surface for heat insulation treatment, and the entrance portion of the primary mirror is also made of glass sheet 9 or special
  • the fluorocarbon sheet is covered to reduce heat loss.
  • Such glasses can be tempered glass or borosilicate glass because they can withstand large thermal and temperature variations and temperature changes.
  • the reflection loss can be reduced by using an anti-reflection layer or a sewage layer.
  • Such a coating must have a low refractive index, and porous silica has such a property.
  • Adding a layer of glass or Teflon in parallel to the glass or Teflon can further reduce heat loss.
  • the steel sheet 8 around the insulation layer keeps it dry on rainy days, and these steel sheets can also form a stable bearing structure, and all parts can be attached to it.
  • the receiving tube 102 or its glass envelope is thermally expanded, supporting the two guide rollers 10 on the bearing, which allows the receiving tube 102 to be easily moved, thereby reducing its thermal stress.
  • the receiving tube needs to have a selective absorption layer, such a selective absorption layer has a high absorption rate of sunlight and a low external heat radiation.
  • the mirror can be made of hot-bend borosilicate glass, which can withstand large temperature differences.
  • the reflective coating can be silver with a protective layer such as silica or alumina.
  • Figure 27 shows the optical response of this invention compared to the existing LS3.
  • the new structure is 25% higher in concentration than LS3, and the optical effect is 60% higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Description

一种反射镜及采用该反射镜的太阳能槽式集热器 技术领域
本发明属于太阳能技术领域, 尤其涉及一种用来收集太阳光线的反射镜, 以及一种 采用这种反射镜的太阳能集热器。 背景技术
太阳能槽式集热器包含直线型反射镜, 大多为直线形的抛物面形, 通常围绕其重心 转动跟踪太阳, 把太阳辐射反射到直线型接收器上。这种接收器可以有几种形状, 但出 于机械方面的考虑, 大多使用圆柱形管, 内部有循环于整个接收器的液体, 这样通过液 体流动把接收器收集到的热量传送到应用处。大多数情况下, 接收器是一根镀有光谱选 择性吸收膜的钢管, 这层膜可以吸收大部分太阳辐射并充分减少辐射热损失。
一层或多层封闭接收器的玻璃封套可以进一步减少接收管的热损。商业上生产的集 热单元(HEC)在接收管和玻璃封套之间有封闭的真空, 用于再进一步减少热损。 但在 温度高达 400摄氏度的环境中长久保持低于 13帕的真空是非常困难的。 NREL在 Golden Colorado杂志 2007年 3月 9日的 "Parabolic Trough Workshop"—文中曾报道了很多因 氢渗漏而造成的真空被破坏。
提高操作温度是很重要的, 因为这样可以提高使用处的热循环效率。但是, 从某个 温度点开始, 由接收管热辐射造成的效率损失会比得到的热循环效率增长得更快, 减 少热损失可以通过提高聚光率来实现。当今技术使用由几部分或几个小面组成的初次反 射镜, 设法把尽可能多的太阳辐射集中到接收管上。
出于经济上和实用性的考虑, 抛物形状是缩短了的, 这样接收器朝阳面就不能被初 次反射镜的反射光照射到, 因此最大聚光率减小了。 同时造成光照不均勾, 同时不均匀 的热量使接收管弯曲, 经常挤碎玻璃封套。
为了增大聚光率, 有过几种设计, 其中包括在接收器旁边安装一种二次反射镜。接 收器的尺寸变小,通常初次反射镜反射的无法聚集到接收器上的光就会被二次反射镜反 射到原来接收器没有被照射到的部分。二次反射镜就像一个捕光套, 把散落的光线聚集 到接收器上原来没有被照射到的地方。基本上, 二次反射镜能把聚光效果提高一倍, 并 能允许更高的光学误差。 现有技术中带有二次反射镜的槽式集熱器如图 1-5所示: 图 1为 Duke Solar真空封 套中的二次反射镜, 二次反射镜接收管之间无空隙, 初次反射镜的曲率半径大, 边界角 小。 图 2为大边界角抛物面槽式集熱器, 带有在透明玻璃管中的复合二次反射镜与接收 管(参考: J. M. Gordon 1991 Solar energy vol 47 No 6 pp 457 "C 466. High rim parabolic trough with complex secondary reflector and absorber tube inside a transparent glass tube)0 图 3为釆用复合抛物面集热器式二次反射镜和平板接收器的槽式集熱器,其初次反射镜 曲率半径大,边界角小(参考: J. M. Gordon 1991 Solar energy vol 47 No 6 pp 457 "C 466, parabolic trough with CPC secondary and a flat receiver. The primary parabolic reflector has a low rim angle)。图 4展示了槽式集熱器的各种形式的二次反射镜 (参考: Harald Ries (1996) Applied optics I Vol 35 No 13 / 1 May 1996, various shapes of secondaries for parabolic trough collectors) 图 5为 1993年 Gordon的冰淇淋蛋卷形 CPC (复合抛物面式集热器)。 它是为带玻璃封套的圆柱形接收器开发的, 因此这种形式的 CPC的反光镜与接收管之 间有缝隙。缝隙损失被增加的反光面积所补偿。这种 CPC与杜瓦瓶太阳能真空管结合, 广泛运用于家用热水系统。
理论上,二次反射镜的顶部应该与接收管相接以使捕光套闭合起来,但这十分困难。 接收管由于受热不均产生弯曲, 而二次反射镜是由玻璃材料制成, 不能承受与极热的接 收管接触时产生的巨大冷热冲击。在二次反射镜和接收管之间留出一定空隙会使捕光套 张开则会导致缝隙损失。另一个问题是部分被聚集的光会在二次反射镜被多次反射之后 才到达接收器上。这两个原因导致光学损失。通常, 有二次聚光镜的槽式集热器光学性 能都比没有的效率较低一些。 由于这个原因, 二次反射镜没有在商业槽式集熱器上得到 运用。 发明内容
本发明的目的在于给出一种采用新型反射镜的太阳能集热器, 使得接收器的采光更 加均匀。
本发明的另一目的在于提供一种太阳能集热器, 具有更高的聚光效果, 同时增加对 光线的捕捉功能, 避免缝隙损失和二次反射镜面多次反射问题。
本发明的反射器, 至少包括一第一反射面、 位于第一反射面左侧的一第二发射面和 位于第一反射面右侧的一第三反射面中的两个反射面,其特征在于该第一反射面构造为 将直射光线反射至一第一焦线或准焦线,该第二反射面构造为将直射光线反射至第一焦 线或准焦线的右侧, 第三反射面构造为将直射光线反射至第一焦线或准焦线的左侧。 所述第二反射面构造为将直射光线反射至一位于第一焦线右侧的第二焦线或准焦 线上, 第三反射面构造为将直射光线反射至一位于第一焦线左侧的第三焦线或准焦线 上。
所述第一反射面包括分开的左右两个部分, 其中左边部分与第二反射面连接, 右边 部分与第三反射面连接。
本发明的反射镜可采用左右对称的结构。
本发明的太阳能槽式集热器, 包括一初次反射镜, 一二次反射镜, 一接收管, 所述 初次反射镜至少包括一第一反射面、位于第一反射面左侧的一第二发射面和位于第一反 射面右侧的一第三反射面中的两个反射面,第一反射面构造为将直射光线反射至接收管 上,第二反射面构造为将直射光线反射至二次反射镜的右侧反射面并经二次反射镜反射 至接收管上,第三反射面构造为将直射光线反射至二次反射镜的左侧反射面并经二次反 射镜反射至接收管上。
上述二次反射镜为冰淇淋形蛋卷二次反射镜。
所述第一反射面构造为将直射光线反射至第一焦线或准焦线,所述第一焦线为接收 管的中心线。
所述初次反射镜的第二反射面构造为将直射光线反射至一位于第一焦线右侧的第 二焦线或准焦线上,第三反射面构造为将直射光线反射至一位于第一焦线左侧的第三焦 线或准焦线上。
所述第二反射面和 /或第三反射面将直射光线反射至二次反射镜的光线均为边源光 线区域的中心线, 即这些光线都是某一边缘光线区域的中心线。
所述第二反射面可以包括一个或几个如下区域:
第二反射面区域一,该区域反射面构造为将直射光线反射至二次反射镜的光线均 为边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管上, 另 一条经二次反射镜右侧反射面一次反射以切线射在接收管上;
第二反射面区域二,该区域反射面构造为将直射光线反射至二次反射镜的光线均 为边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管上, 另 一条经二次反射镜右侧边缘一次反射以切线射在接收管上;
第二反射面区域三,该区域反射面构造为将直射光线反射至二次反射镜的光线均 为边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管上, 另 一条经二次反射镜右侧边缘一次反射至接收管表面上;
第二反射面区域四,该区域反射面构造为将直射光线反射至二次反射镜的光线均 为边缘光线区域的中心线,所述边缘光线区域的一条边缘光线经二次反射镜左侧边缘射 在接收管上, 另一条经二次反射镜右侧边缘一次反射至接收管上;
所述第三反射面可以包括一个或几个如下区域:
第三反射面区域一,该区域反射面构造为将直射光线反射至二次反射镜的光线均 为边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管上, 另 一条经二次反射镜左侧反射面一次反射以切线射在接收管上;
第三反射面区域二,该区域反射面构造为将直射光线反射至二次反射镜的光线均 为边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管上, 另 一条经二次反射镜左侧边缘一次反射以切线射在接收管上;
第三反射面区域三,该区域反射面构造为将直射光线反射至二次反射镜的光线均 为边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管上, 另 一条经二次反射镜左侧边缘一次反射至接收管表面上;
第三反射面区域四,该区域反射面构造为将直射光线反射至二次反射镜的光线均 一边缘光线区域的中心线,所述边缘光线区域的一条边缘光线经二次反射镜右侧边缘射 在接收管上, 另一条经二次反射镜左侧边缘一次反射至接收管上。
所述初次反射镜为镀银的低铁玻璃,所述接收管为有光谱选择性吸收层的圆柱形钢 管。 '
所述接收器设一层或多层圆柱形玻璃封套, 玻璃封套内的真空度为低于 100帕。 所述二次反射镜与接收管不接触, 之间可以有距离。
所述初次反射镜的第一反射面包括分开的左右两部分,两者之间的距离为二次反射 镜在初次反射镜上的正投影宽度。
所述二次反射镜的表面有低热辐射涂层, 背面设保温层, 保温层包裹钢片, 二次反 射镜面向初次反射面的一面用玻璃片或特氟纶薄片封闭,该玻璃片或特氟纶薄片表面有 减反层。
所述集热器还包括一初次反射镜转动轴, 以自动追踪太阳光线。
所述集热器还包括包括一倾斜轴, 与所述初次反射镜不共面。
所述接收管或接收管的玻璃封套可由导向滚轮支撑
与现有技术不同, 本发明能把太阳辐射均匀地分布到接收管周围, 从而大大减少了 热应力和接收管的弯曲。
本发明能带来更高的聚光效果, 降低了对光学精度的要求, 本发明的初次反射镜需 要的 CPC顶部与接收管之间可以有很大的空隙, 接收器与二次反射镜顶部的大空隙让 生产过程更容易、 产品性能更可靠。
而且当本发明的二次反射镜的背面被良好地隔热、 面向初次反射镜的一面用玻璃片 封住时, 这样的二次反射镜不需使用昂贵的真空技术, 就能比已知的任何有类似反光面 积的槽式集熱器上的 HCE热损小。 这个特色能帮助接受更高的工作温度, 从而提高整 体效率。 由于不需使用高真空技术, 其造价降低, 而可靠性大大增加。 附图说明:
图 lDuke Solar真空封套中的二次反射镜示意图
图 2现有的大边界角抛物面槽式集熱器示意图
图 3现有技术中采用 CPC式二次反射镜和平板接收器的槽式集熱器示意图 图 4a)-4d)现有技术中的各种形式的二次反射镜示意图
图 5冰淇淋蛋卷形 CPC示意图
图 6a)-6b)分别为本发明太阳能集热器左视图和后视图
图 7本发明倾斜的集热器剖示图
图 8本发明初次反射镜与 CPC位置关系示意图
图 9本发明的光线反射示意图
图 10切去顶端的线性冰淇淋蛋卷形 CPC示意图
图 11边缘光线示意图, 其中边缘光线 d,e均经二次反射镜一次反射后切线射在接 收管上
图 12边缘光线示意图,其中边缘光线 f,g均经二次反射镜一次反射后切线射在接收 管上, 但入射角度较大
图 13反射光线不位于边缘区域时的光缝隙损失示意图, i, ,j之间的同向光线发生 缝隙损失
图 14边缘光线示意图, 其中边缘光线 m以切线射在接收管上 ,Ι经二次反射镜一次 反射后切线射在接收管上
图 15边缘光线示意图, 其中边缘光线 0以切线射在接收管上, n经二次反射镜边缘 21一次反射后切线射在接收管上 图 16边缘光线示意图, 其中边缘光线 q以切线射在接收管上,p经二次反射镜边缘 21—次反射后射在接收管上
图 17边缘光线示意图, 其中边缘光线 q'经二次反射镜边缘 22射在接收管上, p' 经二次反射镜边缘 21反射后射在接收管上
图 18边缘光线 d,e的中心线 r示意图
图 19边缘光线 f,g的中心线 s示意图
图 20边缘光线 l,m的中心线 t示意图
图 21边缘光线 n,o的中心线 u示意图
图 22边缘光线 p,q的中心线 V示意图
图 23边缘光线 p',q'的中心线 w示意图
图 24直射光线 S1, S2, S3, S4, S5经初次反射镜反射的光线为边缘光线区域 中心线 r, s, t, u, v, w的示意图
图 25初次反射镜反射面设计原理图
图 26接收管及二次反射镜的结构图
图 27本发明的光学响应与现有的 LS3的对比效果图
其中
1 -CPC 2—初次反射镜 3—支撑初次反射镜的钢结构 4一钢结构支柱 5—水泥钢筋底座 6—扭矩盒 7—转动轴 8—钢片 9一玻璃片 10—导向滚 轮 101— 二次反射镜 102—接收管 。 具体实施方式
本发明集热器的结构如图 6所示, 其中 CPC 1包含二次反射镜和钢制接收管, 初次 反射镜 2材料为镀银的低铁玻璃, 部件 3为支撑初次反射镜的钢结构, 部件 4为钢结构 支柱, 部件 5为水泥钢筋底座。 部件 6为扭矩盒。
图 7为倾斜的槽式集熱器, 追踪太阳光线的转动轴 7与倾斜角不同。 在此情况下转 动轴是水平的, 倾斜角为 8度, 且两者不共面。这样的结构为南北朝向, 能在冬季产生 更多的能量。
本发明的原理图如图 8所示, 接收管和二次反射镜之间有很大的空隙。 初次反射镜 的弯曲度比抛物线略大一些, 包括左上部分, 左中部分, 右上部分, 右中部分。
初次反射镜的反射原理图如图 9所示, 初次反射镜左上部分把阳光反射到二次反 射镜的右边部分, 然后通过二次反射镜的右边部分将光线反射到接收管右侧上。初次反 射镜右上部分把阳光反射到二次反射镜的左边部分,然后通过二次反射镜的左边部分将 光线反射到接收管左侧上。
初次反射镜中间部分一分为二, 因为初次反射镜上被二次反射镜阴影遮挡的地方没 有作用, 被省略了。 初次反射镜中间部分将光线直接反射到接收管的下侧或上侧上。
初次反射镜形状设计如图 10〜图 25所示:
图 10为切去顶端的线性冰淇淋蛋卷形 CPC, 因为顶端被截去, 所以二次反射镜与 接收管之间有较大缝隙, 其接收角度的一半为 50度; 接收管钢制、 镀有太阳光选择性 吸收层。 平行的光线 a,b和 c直接射在 CPC上。 光线 a和 c经二次反射镜反射后被接收 管的上半部分吸收。 CPC的二次反射镜一部分是渐开线,意味着任何与接收管相切的光 线 (如 b), 只要其入射角小于接收角度, 就会被 CPC的反射镜反射回来, 仍然与同一 支接收管相切。
图 11 (图 12)所示: 边缘光线 d和 e (f和 g)。 边缘光线是这样的两条线, 它们划 出一个最大的区域,这个区域之中任何与边缘光线入射角相同的光线都直接或经过一次 反射后落到接收管上。
因此, 一条光线在以下条件下就是边缘光线-
1、 以切线射在接收管上, 或
2、 经过 CPC的一次反射后, 以切线射在接收管上, 或
3、 经过点 Z1或者点 Z2, 直接落在接收管上, 或
4、 经过点 Z1或者点 Z2, 经过 CPC的一次反射落在接收管上
在边缘光线 d和 e (f和 g)形成的区域之外, 并与 d (f)方向一致的光线, 不会直 接或经过一次反射后落到接收管上。 很多这样的光线会在接收管和 CPC的反射镜之间 通过而流失。
图 13所示:从某一个入射角开始, i和 j之间的光线在 CPC的左边部分被反射到一 个错误的方向。 i和 j之间的光线会流失。 这种情况存在缝隙损失, 所以为了使光套闭 合, 以前的设计中二次反射镜和接收管是相接的。 因为本发明中的边缘光线是 h和 i (1 和 m)
本发明不存在缝隙损失问题, 因为初次反射镜将直线光线反射为边缘区域的中心 线,这样一来,任何被初次反射镜反射向二次反射镜上的光线都位于一边缘光线区域内, 因而都直接或经过一次反射后落到接收管上。 图 15所示, 光线 n落在 CPC的边缘上。 由于入射角增大了 (图 16和 17所示), 边缘光线 p不再被反射到与接收管相切。 边缘光线 q也不再与接收管相切。
图 18到图 23所示的是两条边缘光线所形成区域正中间的光线。 这些正中的光线是 r,S,t,w,v^n u。如果初次反射镜按这些中间光线反射, 那么我们就会得到一个没有缝隙损 失的系统。所有的光线都会直接或最多经过一次反射后落在接收管上。这个特点使本发 明有很高的性能。
图 24所示为如何得出初次反射镜。 所有正中的光线 r,s,t,u,v和 w也在图中绘出。 按照设定的焦距长度与第一条中间光线 r相交的地方得到交点 XI。 在这个交点 XI 的位置, 入射光线 S1需要被反射为 r。 这个条件定义了初次反射镜的一部分即 R1的斜 率。 这个部分 R1与 S2的交点得出第二个点 X2。
图 25所示为入射光线 S3、反射光线 t。因为角 Alfa (反射角)和角 Betha (入射角) 相等, 那么反射镜(R3 )在点 X3的斜率可知。初次反射镜的一部分 R3与 S4的交点给 出初次反射镜上的下一个点 X4。 用大量已经计算好的中间光线, 重复以上步骤, 即可 得到整个初次反射镜的形状。
如图 24, R1部分相当于初次反射镜的第一反射面, 将直射光线反射到接收管的中 心线上; R2相当于前述的第三反射面区域一, 该区域反射面构造为将直射光线反射至 二次反射镜的光线均为边缘光线区域的中心线,所述边缘光线区域的一条边缘光线以切 线射在接收管上, 另一条经二次反射镜左侧反射面反射以切线射在接收管上; R3 相当 于前述的第三反射面区域二,该区域反射面构造为将直射光线反射至二次反射镜的光线 均为边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管上, 另一条经二次反射镜左侧边缘反射以切线射在接收管上; R4相当于前述的第三反射面 区域三,该区域反射面构造为将直射光线反射至二次反射镜的光线均为边缘光线区域的 中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管上, 另一条经二次反射镜 左侧边缘反射至接收管表面上; R5相当于前述的第三反射面区域四, 该区域反射面构 造为将直射光线反射至二次反射镜的光线均一边缘光线区域的中心线,所述边缘光线区 域的一条边缘光线经二次反射镜右侧边缘射在接收管上,另一条经二次反射镜左侧边缘 反射至接收管上。
初次反射镜的 R1把光线转向到接收管中部; R3, R4, R5, 把光线转向接受管左部 的准焦线上。 同样的, 出于对称, 初次反射镜的左部对应区域把光线转向接受管右部的 准焦线上。 这些准焦线有个优点: 使得二次反射镜很容易调整, 方法是在 CPC开口处 放置一个有刻度的屏幕, 检査这些准焦线是否落在正确的位置上。
初次反射镜比现有的抛物线弯曲度更大一些。 这种新型的初次反射镜可以大致当作 包含三个部分的拋物线。 中间部分可以不必改动, 两边需要向里略微弯一些以使他们的 焦线移到计算好的准聚线上,左上部分的初次反射镜焦线落在位于接收管右边计算好的 焦线上, 右上部分的初次反射镜焦线落在位于接收管左边计算好的焦线上。使用上面所 述的这种抛物线形状, 会使初次反射镜两端至中间的 R2区域性能降低, 因为上述 R2 区域不能反射到所述焦线或准焦线上, 但是在安装上更快捷, 可以使用现有的装置, 或 者可以使用市场上的标准部件。
实际操作中, 接收管及二次反射镜的结构如图 26所示, 二次反射镜 101会从背面 设置保温层进行隔热处理,面向初次反射镜的入口部分也会用玻璃片 9或特氟纶薄片盖 住, 目的是为了减少热损失。这种玻璃可以是钢化玻璃或硼硅玻璃, 因为它们可以经受 较大的冷热温差和温度变化。用减反层或排污层可以减少反射损失。这样的涂层必须是 折射率低的, 多孔硅土就有这样的性质。再在玻璃或特氟纶上平行地加一层玻璃或特氟 纶可以进一步减少热损。 隔热层周围包裹钢片 8可以使之在雨天保持干燥, 同时这些钢 片还可以形成稳定的轴承结构, 所有部件都可以依附其上。 为了使这钢片不受到集中的 辐射影响, 我们可以在钢片周围装上防辐射档片。
接收管 102或其玻璃封套会受热膨胀,支撑它的是轴承上的两个导向滚轮 10,这样 可以使接收管 102容易移动, 从而减小其热应力。 为提高性能, 接收管需要有选择性吸 收层, 这样的选择性吸收层对阳光吸收率高而对外热辐射低。反射镜可以用热弯硼硅玻 璃制成, 这种材料可以承受大的温差。 反射涂层可以是银, 上面加保护层, 如硅土或氧 化铝。
图 27显示此发明的光学响应与现有的 LS3的对比。 在这个分析里, 新结构比 LS3 在聚光率上高出 25%, 光学效应高出 60%。

Claims

权利要求书
1. 一种反射镜, 至少包括一第一反射面、 位于第一反射面左侧的一第二发射面和位于 第一反射面右侧的一第三反射面中的两个反射面,其特征在于该第一反射面构造为将直 射光线反射至一第一焦线或准焦线,该第二反射面构造为将直射光线反射至第一焦线或 准焦线的右侧, 第三反射面构造为将直射光线反射至第一焦线或准焦线的左侧。
2. 如权利要求 1所述的反射镜, 其特征在于所述第二反射面构造为将直射光线反射至 一位于第一焦线右侧的第二焦线或准焦线上,第三反射面构造为将直射光线反射至一位 于第一焦线左侧的第三焦线或准焦线上。
3. 如权利要求 1或 2所述的反射镜, 其特征在于所述第一反射面包括分开的左右两个 部分, 其中左边部分与第二反射面连接, 右边部分与第三反射面连接。
4. 如权利要求 1或 2所述的反射镜, 其特征在于该反射镜左右对称。
5. 一种太阳能槽式集热器, 包括一初次反射镜, 一二次反射镜, 一接收管, 其特征在 于所述初次反射镜至少包括一第一反射面、位于第一反射面左侧的一第二发射面和位于 第一反射面右侧的一第三反射面中的两个反射面,第一反射面构造为将直射光线反射至 接收管上,第二反射面构造为将直射光线反射至二次反射镜的右侧反射面并经二次反射 镜反射至接收管上,第三反射面构造为将直射光线反射至二次反射镜的左侧反射面并经 二次反射镜反射至接收管上。
6. 如权利要求 5所述的太阳能槽式集热器, 其特征在于所述二次反射镜为冰淇淋形蛋 卷二次反射镜。
7. 如权利要求 5或 6所述的太阳能槽式集热器, 其特征在于所述第一反射面构造为将 直射光线反射至第一焦线或准焦线, 所述第一焦线为接收管的中心线。
8. 如权利要求 7所述的太阳能槽式集热器, 其特征在于所述初次反射镜的第二反射面 构造为将直射光线反射至一位于第一焦线右侧的第二焦线或准焦线上,第三反射面构造 为将直射光线反射至一位于第一焦线左侧的第三焦线或准焦线上。
9. 如权利要求 7所述的太阳能槽式集热器, 其特征在于所述第二反射面和 /或第三反射 面将直射光线反射至二次反射镜的光线均为边源光线区域的中心线。
10. 如权利要求 9所述的太阳能槽式集热器, 其特征在于
所述第二反射面包括一个或几个如下区域- 第二反射面区域一,该区域反射面构造为将直射光线反射至二次反射镜的光线 均为边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管 上, 另一条经二次反射镜右侧反射面一次反射以切线射在接收管上;
第二反射面区域二,该区域反射面构造为将直射光线反射至二次反射镜的光线 均为边缘光线区域的中心线,所述边缘光线区域的一条边缘光线以切线射在接收管 上, 另一条经二次反射镜右侧边缘一次反射以切线射在接收管上;
第二反射面区域三,该区域反射面构造为将直射光线反射至二次反射镜的光线 均为边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管 上, 另一条经二次反射镜右侧边缘一次反射至接收管表面上;
第二反射面区域四,该区域反射面构造为将直射光线反射至二次反射镜的光线 均为边缘光线区域的中心线,所述边缘光线区域的一条边缘光线经二次反射镜左侧 边缘射在接收管上, 另一条经二次反射镜右侧边缘一次反射至接收管上; 所述第三反射面包括一个或几个如下区域:
第三反射面区域一,该区域反射面构造为将直射光线反射至二次反射镜的光线 均为边缘光线区域的中心线,所述边缘光线区域的一条边缘光线以切线射在接收管 上, 另一条经二次反射镜左侧反射面一次反射以切线射在接收管上;
第三反射面区域二,该区域反射面构造为将直射光线反射至二次反射镜的光线 均为边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管 上, 另一条经二次反射镜左侧边缘一次反射以切线射在接收管上;
第三反射面区域三,该区域反射面构造为将直射光线反射至二次反射镜的光线 均为边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线以切线射在接收管 上, 另一条经二次反射镜左侧边缘一次反射至接收管表面上;
第三反射面区域四, 该区域反射面构造为将直射光线反射至二次反射镜的光线 均一边缘光线区域的中心线, 所述边缘光线区域的一条边缘光线经二次反射镜右侧 边缘射在接收管上, 另一条经二次反射镜左侧边缘一次反射至接收管上。
11. 如权利要求 5所述的太阳能槽式集热器, 其特征在于所述初次反射镜为镀银的低铁 玻璃, 所述接收管为有光谱选择性吸收层的圆柱形钢管。
12. 如权利要求 11所述的太阳能槽式集热器, 其特征在于所述接收器设一层或多层圆 柱形玻璃封套, 玻璃封套内的真空度为低于 100帕。
13. 如权利要求 5或 6所述的太阳能槽式集热器, 其特征在于所述二次反射镜与接收管 不接触。
14. 如权利要求 5或 6所述的太阳能槽式集热器, 其特征在于所述初次反射镜的第一反 射面包括分开的左右两部分,两者之间的距离为二次反射镜在初次反射镜上的正投影宽 度。
15. 如权利要求 5或 6所述的太阳能槽式集热器, 其特征在于所述二次反射镜的表面有 低热辐射涂层, 背面设保温层, 保温层包裹钢片, 二次反射镜面向初次反射面的一面用 玻璃片或特氟纶薄片封闭, 该玻璃片或特氟纶薄片表面有减反层。
16. 如权利要求 5或 6所述的太阳能槽式集热器, 其特征在于所述集热器还包括一初次 反射镜转动轴。
17. 如权利要求 16所述的太阳能槽式集热器, 其特征在于所述集热器还包括包括一倾 斜轴, 与所述初次反射镜不共面。
18. 如权利要求 5或 6所述的太阳能槽式集热器, 其特征在于所述接收管由导向滚轮支 撑。
PCT/CN2008/001274 2007-08-17 2008-07-04 Réflecteur et récupérateur de chaleur de type cuve solaire l'utilisant WO2009024011A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/672,121 US8511298B2 (en) 2007-08-17 2008-07-04 Reflective solar energy collection system
EP08773019A EP2192360A4 (en) 2007-08-17 2008-07-04 REFLECTOR AND HEATING SOLAR HEATING COLLECTOR USING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710143301 2007-08-17
CN200710143301.X 2007-08-17

Publications (1)

Publication Number Publication Date
WO2009024011A1 true WO2009024011A1 (fr) 2009-02-26

Family

ID=40106509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001274 WO2009024011A1 (fr) 2007-08-17 2008-07-04 Réflecteur et récupérateur de chaleur de type cuve solaire l'utilisant

Country Status (4)

Country Link
US (1) US8511298B2 (zh)
EP (1) EP2192360A4 (zh)
CN (1) CN100582820C (zh)
WO (1) WO2009024011A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2369460A1 (es) * 2009-03-30 2011-12-01 Francesc Martínez-Val Piera Colector solar cilindro-parabólico con radiación uniformizada.

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099516A1 (en) * 2009-02-28 2010-09-02 Richard Welle Segmented fresnel solar concentrator
US8752542B2 (en) 2010-07-05 2014-06-17 Glasspoint Solar, Inc. Direct solar steam generation
WO2012006255A2 (en) * 2010-07-05 2012-01-12 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
BR112013010749A2 (pt) * 2010-11-04 2016-08-09 Magna Int Inc braço e sistema de suporte, método para suportar um conjunto de coletor solar em forma de calha, e, sistema de suporte ajustável no campo
IL220220A (en) 2011-06-08 2017-01-31 Heliofocus Ltd Spatial structure assemblies
US9958185B2 (en) * 2012-07-12 2018-05-01 The Regents Of The University Of California Solar thermal concentrator and method of forming same
CN102798230B (zh) * 2012-08-14 2014-04-16 中国华能集团清洁能源技术研究院有限公司 一种新型cpc二次反射装置及其固定装置
CN104329810B (zh) * 2014-11-14 2016-02-24 西安交通大学 一种均匀聚光器及其设计方法
WO2017004225A1 (en) 2015-06-30 2017-01-05 Glasspoint Solar, Inc. Supports for suspended solar enhanced oil recovery concentrators and receivers, and associated systems and methods
US20230155545A1 (en) * 2021-11-12 2023-05-18 L'garde, Inc. Lightweight, Low Stow Volume, Deployable Solar concentrator for Space Applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013104A1 (en) * 1995-10-02 1997-04-10 Hwa Rang Pak Concentrating optical system and concentrated light utilizing apparatus
JP2001082811A (ja) * 1999-09-14 2001-03-30 Nobuoki Sugi 集熱装置
CN2491778Y (zh) * 2001-07-05 2002-05-15 胡金高 太阳能抛物面聚光反射板
CN1811297A (zh) * 2006-02-20 2006-08-02 河海大学 二级反射聚光集热器

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US503004A (en) * 1893-08-08 severy
US1880938A (en) * 1929-08-19 1932-10-04 Abbot Charles G Apparatus for utilizing solar heat
US4324225A (en) * 1975-07-11 1982-04-13 Trihey John M Solar tracking device
US4304221A (en) * 1975-07-11 1981-12-08 Vulcan Australia Limited Solar tracking device
US4065053A (en) * 1975-07-24 1977-12-27 Nasa Low cost solar energy collection system
US4038972A (en) * 1976-03-29 1977-08-02 Orrison William W Solar energy collector apparatus
US4078549A (en) * 1976-08-05 1978-03-14 Mckeen Thomas Ray Solar energy collector
US4158356A (en) * 1977-02-22 1979-06-19 Wininger David V Self-powered tracking solar collector
US4249516A (en) * 1979-01-24 1981-02-10 North American Utility Construction Corp. Solar energy collection
US4290418A (en) * 1979-06-25 1981-09-22 Alpha Solarco Inc. Solar collectors
US4355630A (en) * 1980-03-27 1982-10-26 Arthur Fattor Concentrating solar collector with tracking multipurpose targets
US4432345A (en) * 1981-03-13 1984-02-21 The United States Of America As Represented By The United States Department Of Energy Receiver for solar energy collector having improved aperture aspect
US4784700A (en) * 1987-05-26 1988-11-15 General Dynamics Corp./Space Systems Div. Point focus solar concentrator using reflector strips of various geometries to form primary and secondary reflectors
WO1990010182A1 (de) * 1989-03-01 1990-09-07 Bomin Solar Gmbh & Co Kg Solarkonzentrator-anordnung
FR2656679A1 (fr) * 1990-01-02 1991-07-05 Armines Dispositif concentrateur de rayonnements.
US5288337A (en) * 1992-06-25 1994-02-22 Siemens Solar Industries, L.P. Photovoltaic module with specular reflector
DE4430517C2 (de) * 1993-09-18 1997-01-09 Deutsche Forsch Luft Raumfahrt Rinnenkollektor
US5655515A (en) * 1994-01-26 1997-08-12 Myles, Iii; John F. Tracking solar energy concentrating system having a circular primary and a compound secondary
US5431866A (en) * 1994-01-27 1995-07-11 Phillips Petroleum Company Method and apparatus for positioning a pipe
AU706605B2 (en) * 1994-09-15 1999-06-17 Colin Francis Johnson Solar concentrator for heat and electricity
US5542409A (en) * 1995-01-06 1996-08-06 Sampayo; Eduardo A. Solar concentrator system
US6244264B1 (en) * 1999-06-09 2001-06-12 Solar Enterprises, International, Llc Non-imaging optical illumination system
BE1013638A3 (nl) * 2000-08-07 2002-05-07 Ven Juha Inrichting voor het benutten van geconcentreerde zonne-energie.
DE10305428B4 (de) * 2003-02-03 2007-08-09 Schott Ag Hüllrohr, Receiverrohr und Parabolrinnenkollektor
US7741557B2 (en) * 2005-12-19 2010-06-22 Corning Incorporated Apparatus for obtaining radiant energy
WO2008157560A2 (en) * 2007-06-18 2008-12-24 Peter Vincent Schwartz Solar concentrator with simplified tracking
US20100043779A1 (en) * 2008-08-20 2010-02-25 John Carroll Ingram Solar Trough and Receiver
US9127822B2 (en) * 2008-10-10 2015-09-08 Sunflower Corporation Afocal optical concentrator
MX2011009760A (es) * 2009-03-20 2011-09-29 Skyline Solar Inc Superficie reflectante para colector de energia solar.
US20110100419A1 (en) * 2009-11-03 2011-05-05 Palo Alto Research Center Incorporated Linear Concentrating Solar Collector With Decentered Trough-Type Relectors
US20110232633A1 (en) * 2009-12-11 2011-09-29 Lima Daniel D De Solar energy integrated building and solar collector system thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013104A1 (en) * 1995-10-02 1997-04-10 Hwa Rang Pak Concentrating optical system and concentrated light utilizing apparatus
JP2001082811A (ja) * 1999-09-14 2001-03-30 Nobuoki Sugi 集熱装置
CN2491778Y (zh) * 2001-07-05 2002-05-15 胡金高 太阳能抛物面聚光反射板
CN1811297A (zh) * 2006-02-20 2006-08-02 河海大学 二级反射聚光集热器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2369460A1 (es) * 2009-03-30 2011-12-01 Francesc Martínez-Val Piera Colector solar cilindro-parabólico con radiación uniformizada.

Also Published As

Publication number Publication date
CN101315437A (zh) 2008-12-03
US20110220092A1 (en) 2011-09-15
EP2192360A1 (en) 2010-06-02
CN100582820C (zh) 2010-01-20
EP2192360A4 (en) 2012-10-17
US8511298B2 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
WO2009024011A1 (fr) Réflecteur et récupérateur de chaleur de type cuve solaire l'utilisant
US4210463A (en) Multimode solar energy collector and process
US4520794A (en) Solar energy concentrating slat arrangement and collector
CN106839456B (zh) 具有自动除霜功能的复合多曲面槽式太阳能聚光集热器
US4136673A (en) Multimode solar energy collector and process
CN102620442A (zh) 基于槽式抛物面反射镜和人工黑体的太阳能集热器
TW201110386A (en) Non-imaging light concentrator
CN104990286A (zh) 复合抛物面集热器
Kalogirou Nontracking solar collection technologies for solar heating and cooling systems
JPS6361579B2 (zh)
US4124017A (en) Collimating solar radiation collector
CN201498523U (zh) 波形瓦聚光电池组件
US6044840A (en) Nonimaging solar collector
KR101233976B1 (ko) 곡률타입 반사판을 가지는 내집광 진공관식 태양열 집열기
JPS6078251A (ja) 真空管型太陽熱集熱器の集熱体構造
EP1095230A2 (en) Solar collector
AU784427B2 (en) Reflector for solar collector tube array
JPH0293253A (ja) 集光集熱装置
CN206683252U (zh) 一种自动跟踪太阳能的聚光装置、太阳能装置及太阳能系统
CN218269625U (zh) 一种全玻璃cpc聚光型热管式集热管
Kreith et al. Solar collectors for low and intermediate temperature applications
TWI732648B (zh) 太陽能百葉窗
CN209197172U (zh) 一种聚光型太阳能集热器
Gee et al. Operation and Preliminary Performance of the Duke Solar Power Roof™: A Roof-Integrated Solar Cooling and Heating System
Rabl Concentrating solar collectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08773019

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12672121

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008773019

Country of ref document: EP