WO2009021913A2 - Verfahren zur lastpunktverschiebung im hybridbetrieb bei einem parallelen hybridfahrzeug - Google Patents

Verfahren zur lastpunktverschiebung im hybridbetrieb bei einem parallelen hybridfahrzeug Download PDF

Info

Publication number
WO2009021913A2
WO2009021913A2 PCT/EP2008/060440 EP2008060440W WO2009021913A2 WO 2009021913 A2 WO2009021913 A2 WO 2009021913A2 EP 2008060440 W EP2008060440 W EP 2008060440W WO 2009021913 A2 WO2009021913 A2 WO 2009021913A2
Authority
WO
WIPO (PCT)
Prior art keywords
load point
combustion engine
internal combustion
limit
energy
Prior art date
Application number
PCT/EP2008/060440
Other languages
English (en)
French (fr)
Other versions
WO2009021913A3 (de
Inventor
Johannes Kaltenbach
Stefan Blattner
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Priority to EP08787036A priority Critical patent/EP2190710A2/de
Priority to JP2010520541A priority patent/JP2011502846A/ja
Priority to CN2008801092588A priority patent/CN102216137A/zh
Priority to US12/673,669 priority patent/US20110017534A1/en
Publication of WO2009021913A2 publication Critical patent/WO2009021913A2/de
Publication of WO2009021913A3 publication Critical patent/WO2009021913A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a method for load point displacement in hybrid operation in a parallel hybrid vehicle, comprising an internal combustion engine, at least one electric machine and an energy store, according to the preamble of patent claim 1.
  • hybrid vehicles comprising a hybrid transmission are known. They comprise, in addition to the internal combustion engine, at least one electric motor or one electrical machine.
  • a generator is driven by the internal combustion engine, with the generator supplying electric power to the electric motor driving the wheels.
  • parallel hybrid vehicles are known in which an addition of the torques of the internal combustion engine and at least one connectable to the internal combustion engine electric machine.
  • the electric machines can be connected to the belt drive or to the crankshaft of the internal combustion engine. The torques generated by the internal combustion engine and / or the at least one electric machine are transmitted to the driven axle via a downstream transmission.
  • a drive train with an electrically adjustable hybrid transmission and an electrohydraulic control system a plurality of electric power units and a plurality of torque-transmitting mechanisms is known.
  • the torque-transmitting mechanisms can be selectively engaged by the electro-hydraulic control system to four forward gears, a neutral state, a low and high speed electrical operation, a to provide electrically variable low and high speed operating modes and a hill hold mode.
  • a hybrid drive for vehicles at least including a main engine, in particular an internal combustion engine, a generator, an electric motor and a, a sun gear, a ring gear, a planet carrier and planetary gears having planetary gear, which includes at least one output shaft. It is provided that for a first driving range of the vehicle for adding the torques, the drive shafts of the main motor and the electric motor are coupled to the sun gear of the planetary gear and for another driving range of one of the two motors for mechanically adding the rotational speeds according to the superposition principle frictionally on the ring gear the planetary gear is coupled.
  • the task of a hybrid operating strategy in hybrid vehicles is the distribution of the driver's desired torque or the driver's desired performance on the internal combustion engine and the at least one electric machine when the internal combustion engine and the electric machine are operatively connected or adhere to hybrid systems with an integrated starter / generator all clutches.
  • Part of a hybrid operating strategy is the so-called load point shift, by which the internal combustion engine can be brought on the one hand into an operating range of improved specific consumption and, on the other hand, the state of charge of the energy accumulator can be influenced.
  • a load point shift can be performed as a load point increase or load point reduction.
  • the internal combustion engine provides more torque than the driver's desired torque, wherein the at least one electric machine of the vehicle compensates the difference as a generator, so that the sum of the moments of the internal combustion engine and the Electric machine corresponds to the driver's desired torque and the energy storage is loaded from fuel energy.
  • the internal combustion engine provides less torque than the driver's desired torque, wherein the electric motor compensates for the difference so that the sum of the moments of the internal combustion engine and the electric machine corresponds to the driver's desired torque; by the motor operation of the electric machine, the energy storage is discharged.
  • the known device comprises a device for determining a current state of dynamic or economical driving of the driver dependent desired state of charge of a E nergie arrivess the vehicle, as well as for determining the current operating case of the drive train as a function of the desired state of charge of the E nergie arrivess. Furthermore, the device comprises a device for determining the electrically possible nominal drive power for the at least one electric machine of the vehicle in dependence on the desired state of charge and the current operating case of the drive train and a device for determining the desired drive power for the internal combustion engine and the least one Electric machine depending on the electrically possible target drive power.
  • the driver's drive power requirement is detected and determines the minimum and maximum power of the engine at the currently existing engine speed. Furthermore, the actual state of charge of the energy store as well as the minimum and maximum state of charge are determined, a sportiness value assigned to the driver is detected, which detects minimum and maximum charging power of the energy storage and determines the minimum and maximum drive power of at least one electric machine. Subsequently, a desired state of charge is calculated from the values for the current drive power desired and the sportiness characteristic value; Furthermore, the current operating situation of the vehicle is determined as a function of the sportiness characteristic value and the minimum and maximum power of the internal combustion engine as well as the actual state of charge of the energy storage device.
  • an electrically possible setpoint drive power value for the at least one electric machine is determined, with the aid of this value, the minimum and maximum charging power and with the aid of the currently minimum and maximum drive power of the at least one electric machine drive power setpoint values for the at least one electric machine and the internal combustion engine are generated.
  • the characteristic map of specific consumption of the internal combustion engine of the hybrid vehicle is not taken into account.
  • a method and a device for determining an optimum operating point in vehicles which have a hybrid drive with an internal combustion engine and an electric machine.
  • operating point data are determined in a first coordinator using at least one stored characteristic map and in a second step in a second coordinator the operating point data determined in the first coordinator are optimized taking into account the dynamic behavior of the vehicle aggregates.
  • a method for controlling or regulating the state of charge of an energy store or the energy flow in a hybrid vehicle in which the state of charge or the energy flow is controlled or regulated in dependence on a cost function for the energy consumption or the emission output.
  • the costs for the electrical energy when sourced from the energy storage, the cost of the electrical energy when purchased from the internal combustion engine, as well as the costs of the mechanical energy when sourced from the energy storage and from the internal combustion engine are determined.
  • DE 699 32 487 T2 discloses a control / regulating method for a hybrid vehicle, in which the current state of charge of the energy store is monitored, wherein in the event that it drops to a threshold, the function of the internal combustion engine from discharging to charging the Energy storage is switched.
  • the present invention has for its object to provide a method for load point shift in hybrid operation in a parallel hybrid vehicle comprising an internal combustion engine, at least one electric machine and an energy storage, by its implementation, a low-consumption operating point of the engine and an optimal state of charge of the energy storage is adjustable.
  • a method for shifting the load point in hybrid operation in a parallel hybrid vehicle comprising an internal combustion engine, at least one electric machine and an energy storage
  • at least one limit curve is defined in the characteristic map of the specific consumption of the internal combustion engine and at least one limit value for the energy storage of the vehicle the energy / Load state is defined, wherein Lastyakverschiebungsmodi are defined, in which the specific consumption of the engine and the energy content of the energy storage of the vehicle does not exceed a predetermined limit curve or a predetermined limit.
  • the load point shift occurs in one of the load point shift modes or in a combination of multiple load point shift modes.
  • Figure 1 An exemplary map of the specific
  • Energy content / state of charge of an energy storage device of a hybrid vehicle and according to the invention defined EnergyVLadeGras- limits.
  • a first load point shift mode A is defined as follows: As shown in FIG. 1, which also shows the lines of constant specific consumption of the internal combustion engine, a limit line A1 is defined in the characteristic map of the specific engine consumption, which is preferably within a range from which the specific consumption of the internal combustion engine is no longer so much improved by increasing the load as by a load increase from below this line to this line.
  • the load point will be reached according to the invention of the internal combustion engine raised to the boundary line A1 in order to reach a region of better specific consumption, as a side effect in this case the energy storage of the vehicle is charged.
  • the load point increase of the internal combustion engine only with positive driving request, d. H. in the direction of vehicle acceleration, with no load point increase taking place when the engine is in overrun fuel cutoff.
  • an energy / state of charge limit A2 (SOC limit) of the energy storage of the vehicle is defined; this limit is shown in FIG.
  • the load point increase is reduced the further the state of charge of the energy store (in FIG. 2 from below) approaches the energy charge state limit value A2, whereby the charging of the energy store is limited to the limit value A2.
  • Another load point shift mode B is defined according to the invention in that an energy / charge state limit value B2 (see FIG. 2) of the energy store is defined, wherein, when the current energy content / charge state of the energy store is below the limit value B2, the load point of the internal combustion engine is raised is to charge the energy storage.
  • the amount of load increase is preferably proportional to the difference between the limit B2 and the current energy input. hold / charge state of the energy store; the larger this difference, the greater the amount of load increase.
  • the limit value B2 is lower than the limit value A1, as shown in FIG.
  • the power of the internal combustion engine is limited to a limit curve B1 (see FIG. 1) in the characteristic map of the specific combustion engine consumption.
  • the limit curve B1 is preferably close to the full load line or the consumption optimum of the internal combustion engine.
  • a limit curve C1 is defined in the characteristic map of the specific combustion engine consumption (see FIG. 1), wherein, when the specific consumption of the internal combustion engine in operation is above the limit curve C1, the load point of the internal combustion engine is lowered to the limit line C1, to get in a range of better specific consumption, while the energy storage of the vehicle is discharged.
  • an energy / charge state limit value C2 of the energy store is defined, wherein the load point reduction of the internal combustion engine is regulated, the further the state of charge of the energy store (in FIG. 2 from above) corresponds to the defined energy / state of charge.
  • Limit C2 approaches, so that the discharge of the energy storage is limited to the limit C2. By doing so, a reduction of the specific consumption of the internal combustion engine while maintaining a predetermined state of charge lower limit of the energy storage is achieved.
  • the limit curve C1 is in a range from which the specific consumption by lowering the load is no longer so strong or even no longer improved, such as by lowering the load from above this curve C1 to this curve.
  • an energy / load state limit value D2 of the energy store of the vehicle is defined, wherein, when the current energy content / charge state of the energy store is above the limit value D2, the load point of the internal combustion engine is lowered to the energy store to unload and wherein the amount of load reduction is preferably proportional to the difference between the limit value D2 and the current energy content / state of charge of the energy storage.
  • the power of the internal combustion engine is limited to a limit curve D1 (see FIG. 1) in the characteristic map of the specific combustion engine consumption.
  • the limit curve D1 is in a range where the specific consumption still has an economically acceptable value (i.e., as the load of the internal combustion engine further decreases, the specific consumption would increasingly increase substantially).
  • the energy store is discharged to a desired energy content with good specific consumption of the internal combustion engine.
  • the load point shift of the engine is continuously adjusted to a sudden Momenttial. Change in performance of the internal combustion engine and / or the electric machine to avoid.
  • the mentioned limit curves or the limit values A1, B1, C1, D1, A2, B2, C2 and / or D2 are either fixed parameters or are calculated dynamically on the basis of current vehicle variables, whereby a dependency of these variables on the vehicle speed is particularly advantageous in order to obtain Energy storage of the vehicle space for recuperative kinetic vehicle energy vorzuhalten or reserve.
  • a load point shift resulting from the sum or combination of the load point shift mode B and the load point shift mode D may be performed.
  • the energy storage of the vehicle is always brought into a predetermined desired range of the state of charge, as long as the internal combustion engine can remain in a predetermined range of predetermined values of specific consumption by the required load point shift.
  • Active compliance of predetermined energy limits while maintaining predetermined minimum values for the specific combustion engine consumption.
  • the efficiency of the at least one electric machine of the vehicle is calculated or taken into account in the characteristic map of the specific combustion engine consumption, whereby an overall efficiency improvement taking into account the internal combustion engine and the electric machine is achieved. It can also be provided that the efficiency of the at least one electric machine also includes the inverter efficiency.
  • a load point shift is only performed when the achievable improvement in the consumption of the engine overcompensates the energy conversion losses of the electrical system of the vehicle, comprising at least one electric machine, at least one inverter, lines and the energy storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Es wird ein Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, umfassend einen Verbrennungsmotor, zumindest eine Elektromaschine und einen Energiespeicher vorgeschlagen, im Rahmen dessen im Kennfeld des spezifischen Verbrauchs des Verbrennungsmotors zumindest eine Grenzkurve (A1, B1, C1, D1 ) definiert wird und für den Energiespeicher des Fahrzeugs zumindest ein Grenzwert (A2, B2, C2, D2) für den Energie-/Ladezustand definiert! wird, wobei Lastpunktverschiebungsmodi (A, B, C, D) definiert werden, bei denen der spezifische Verbrauch des Verbrennungsmotors und der Energieinhalt des Energiespeichers eine vorgegebene Grenzkurve (A1, B1, C1, D1 ) bzw. einen vorgegebenen Grenzwert (A2, B2, C2, D2) nicht überschreiten, wobei die Lastpunktverschiebung in einem der Lastpunktverschiebungsmodi (A, B, C, D) oder in einer Kombination mehrerer Lastpunktverschiebungsmodi (A, B, C, D) erfolgt.

Description

Verfahren zur Lastpunktverschiebunq im Hybridbetrieb bei einem parallelen
Hvbridfahrzeuα
Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, umfassend einen Verbrennungsmotor, zumindest eine Elektromaschine und einen Energiespeicher, gemäß dem Oberbegriff des Patentanspruchs 1.
Aus dem Stand der Technik sind Hybridfahrzeuge umfassend ein Hybridgetriebe bekannt. Sie umfassen zusätzlich zu dem Verbrennungsmotor zumindest einen Elektromotor bzw. eine elektrische Maschine. Bei seriellen Hybridfahrzeugen wird ein Generator vom Verbrennungsmotor angetrieben, wobei der Generator den die Räder antreibenden Elektromotor mit elektrischer Energie versorgt. Des weiteren sind parallele Hybridfahrzeuge bekannt, bei denen eine Addition der Drehmomente des Verbrennungsmotors und zumindest einer mit dem Verbrennungsmotor verbindbaren elektrischen Maschine erfolgt. Hierbei sind die elektrischen Maschinen mit dem Riementrieb oder mit der Kurbelwelle des Verbrennungsmotors verbindbar. Die vom Verbrennungsmotor und/oder der zumindest einen elektrischen Maschine erzeugten Drehmomente werden über ein nachgeschaltetes Getriebe an die angetriebene Achse übertragen.
Beispielsweise ist im Rahmen der DE102006019679 A1 ein Antriebsstrang mit einem elektrisch verstellbaren Hybridgetriebe und einem elektrohyd- raulischen Steuersystem, mehreren elektrischen Leistungseinheiten und mehreren Drehmomentübertragungsmechanismen bekannt. Hierbei können die Drehmomentübertragungsmechanismen durch das elektrohydraulische Steuersystem selektiv eingerückt werden, um vier Vorwärtsgänge, einen neutralen Zustand, eine elektrische Betriebsart mit niedriger und hoher Drehzahl, eine elektrisch verstellbare Betriebsart mit niedriger und hoher Drehzahl und eine Berghalte-Betriebsart bereitzustellen.
Aus der DE 102005057607 B3 ist ein Hybridantrieb für Fahrzeuge bekannt, zumindest beinhaltend einen Hauptmotor, insbesondere eine Brennkraftmaschine, einen Generator, einen Elektromotor und ein, ein Sonnenrad, ein Hohlrad, einen Planetenträger sowie Planetenräder aufweisendes Planetengetriebe, das mindestens eine Abtriebswelle beinhaltet. Hierbei ist vorgesehen, dass für einen ersten Fahrbereich des Fahrzeuges zur Addition der Drehmomente die Antriebswellen des Hauptmotors und des Elektromotors auf das Sonnenrad des Planetengetriebes gekoppelt sind und für einen weiteren Fahrbereich einer der beiden Motoren zur mechanischen Addition der Drehzahlen entsprechend dem Überlagerungsprinzip kraftschlüssig auf das Hohlrad des Planetengetriebes koppelbar ist.
Aufgabe einer Hybrid-Betriebsstrategie bei Hybridfahrzeugen ist die Verteilung des Fahrerwunschmoments bzw. der Fahrerwunschleistung auf den Verbrennungsmotor und die zumindest eine Elektromaschine, wenn Verbrennungsmotor und Elektromaschine wirkverbunden sind bzw. wenn bei Hybridsystemen mit einem integrierten Starter/Generator alle Kupplungen haften. Ein Teil einer Hybrid-Betriebsstrategie ist die so genannte Lastpunktverschiebung, durch die der Verbrennungsmotor einerseits in einen Betriebsbereich verbesserten spezifischen Verbrauchs gebracht werden kann und andererseits der Ladezustand des Energiespeichers beeinflusst werden kann.
Eine Lastpunktverschiebung kann als Lastpunktanhebung oder Lastpunktabsenkung ausgeführt werden. Im Fall einer Lastpunktanhebung erbringt der Verbrennungsmotor mehr Moment als das Fahrerwunschmoment, wobei die zumindest eine Elektromaschine des Fahrzeugs die Differenz generatorisch ausgleicht, sodass die Summe der Momente des Verbrennungsmotors und der Elektromaschine dem Fahrerwunschmoment entspricht und der Energiespeicher aus Kraftstoffenergie geladen wird.
Im Fall einer Lastpunktabsenkung erbringt der Verbrennungsmotor weniger Moment als das Fahrerwunschmoment, wobei die Elektromaschine die Differenz motorisch ausgleicht, sodass die Summe der Momente des Verbrennungsmotors und der Elektromaschine dem Fahrerwunschmoment entspricht; durch den motorischen Betrieb der Elektromaschine wird der Energiespeicher entladen.
Aus der DE 10 2004 043 589 A1 der Anmelderin ist eine Vorrichtung und ein Verfahren zur Bestimmung der Antriebsleistungsverteilung in einem Hybrid- Antriebsstrang eines Fahrzeuges bekannt. Die bekannte Vorrichtung umfasst eine Einrichtung zur Bestimmung eines von aktuellen dynamischen oder ökonomischen Fahrweise des Fahrers abhängigen Soll-Ladezustandes eines E- nergiespeichers des Fahrzeugs, sowie zur Bestimmung des aktuellen Betriebsfalls des Antriebsstranges in Abhängigkeit von dem Soll-Ladezustand des E- nergiespeichers. Des weiteren umfasst die Vorrichtung eine Einrichtung zur Bestimmung der elektrisch möglichen Soll-Antriebsleistung für die wenigstens eine Elektromaschine des Fahrzeugs in Abhängigkeit vom Soll-Ladezustand und dem aktuellen Betriebsfall des Antriebsstranges und eine Einrichtung zur Bestimmung der Soll-Antriebsleistung für den Verbrennungsmotor und die wenigsten eine Elektromaschine in Abhängigkeit von der elektrisch möglichen Soll-Antriebsleistung.
Im Rahmen des bekannten Verfahrens zur Bestimmung der Antriebsleistungsverteilung wird der Antriebsleistungswunsch des Fahrers erfasst und die minimale und maximale Leistung des Verbrennungsmotors bei der gerade vorliegenden Motordrehzahl bestimmt. Des weiteren werden der Ist- Ladezustand des Energiespeichers sowie der minimale und maximale Ladezustand bestimmt, ein dem Fahrer zugeordneter Sportlichkeitswert erfasst, die minimale und die maximale Ladeleistung des Energiespeichers erfasst und die minimale und maximale Antriebsleistung der wenigstens einen Elektromaschine bestimmt. Anschließend wird aus den Werten für den aktuellen Antriebsleistungswunsch und dem Sportlichkeitskennwert ein Soll-Ladezustand berechnet; des weiteren wird die aktuelle Betriebssituation des Fahrzeugs in Abhängigkeit vom Sportlichkeitskennwert und der minimalen und maximalen Leistung des Verbrennungsmotors sowie vom Ist-Ladezustand des Energiespeichers bestimmt. Zudem ist vorgesehen, dass ein elektrisch möglicher Soll- Antriebsleistungswert für die zumindest eine Elektromaschine bestimmt wird, wobei mit Hilfe dieses Wertes, der minimalen und maximalen Ladeleistung sowie mit Hilfe der aktuell minimalen und maximalen Antriebsleistung der zumindest einen Elektromaschine Antriebsleistungssollwerte für die zumindest eine Elektromaschine und den Verbrennungsmotor erzeugt werden.
Bei diesem bekannten Verfahren wird das Kennfeld spezifischen Verbrauchs des Verbrennungsmotors des Hybridfahrzeugs nicht berücksichtigt.
Aus der DE 10 2005 044 828 A1 ist ein Verfahren und eine Vorrichtung zur Ermittlung eines optimalen Betriebspunktes bei Fahrzeugen bekannt, die einen Hybridantrieb mit einer Verbrennungsmaschine und einer Elektromaschine aufweisen. Dabei werden in einem ersten Schritt in einem ersten Koordinator Betriebspunktdaten unter Verwendung mindestens eines abgespeicherten Kennfeldes ermittelt und in einem zweiten Schritt in einem zweiten Koordinator die im ersten Koordinator ermittelten Betriebspunktdaten unter Berücksichtigung des dynamischen Verhaltens der Fahrzeugaggregate optimiert.
Aus der DE 10 2005 044 268 A1 ist ein Verfahren zur Steuerung oder Regelung des Ladezustands eines Energiespeichers oder des Energieflusses in einem Hybridfahrzeug bekannt, im Rahmen dessen der Ladezustand oder der Energiefluss in Abhängigkeit einer Kostenfunktion für den Energieverbrauch oder den Emissionsausstoß gesteuert oder geregelt wird. Insbesondere werden bei der Durchführung des Verfahrens die Kosten für die elektrische Energie bei Bezug aus dem Energiespeicher, die Kosten für die elektrische Energie bei Bezug aus dem Verbrennungsmotor, sowie die Kosten für die mechanische Energie bei Bezug aus dem Energiespeicher und aus dem Verbrennungsmotor berücksichtigt, wobei unter Verwendung einer Schar von Energiekostenvektoren Solldrehmomente für den Verbrennungsmotor und die Elektromaschine ermittelt werden.
Des weiteren geht aus der DE 699 32 487 T2 ein Steuer/Regelverfahren für ein Hybridfahrzeug hervor, bei dem der gegenwärtige Ladezustand des Energiespeichers überwacht wird, wobei für den Fall, dass dieser auf eine Schwelle absinkt, die Funktion des Verbrennungsmotors vom Entladen zum Laden des Energiespeichers umgeschaltet wird.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, umfassend einen Verbrennungsmotor, zumindest eine Elektromaschine und einen Energiespeicher anzugeben, durch dessen Durchführung ein verbrauchsgünstiger Betriebspunkt des Verbrennungsmotors und ein optimaler Ladezustand des Energiespeichers einstellbar ist.
Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Weitere erfindungsgemäße Ausgestaltungen und Vorteile gehen aus den Unteransprüchen hervor.
Demnach wird ein Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, umfassend einen Verbrennungsmotor, zumindest eine Elektromaschine und einen Energiespeicher vorgeschlagen, im Rahmen dessen im Kennfeld des spezifischen Verbrauchs des Verbrennungsmotors zumindest eine Grenzkurve definiert wird und für den Energiespeicher des Fahrzeugs zumindest ein Grenzwert für den Energie- /Ladezustand definiert wird, wobei Lastpunktverschiebungsmodi definiert werden, bei denen der spezifische Verbrauch des Verbrennungsmotors und der Energieinhalt des Energiespeichers des Fahrzeugs eine vorgegebene Grenzkurve bzw. einen vorgegebenen Grenzwert nicht überschreiten. Gemäß der Erfindung erfolgt die Lastpunktverschiebung in einem der Lastpunktverschiebungsmodi oder in einer Kombination mehrerer Lastpunktverschiebungsmodi.
Die Erfindung wird anhand der beigefügten Figuren beispielhaft näher erläutert. Es zeigen:
Figur 1 : Ein beispielhaftes Kennfeld des spezifischen
Verbrauchs eines Verbrennungsmotors als Funktion des Drehmomentes und der Drehzahl; und
Figur 2: Eine schematische Darstellung des
Energieinhalts/Ladezustands eines Energiespeichers eines Hybridfahrzeugs und der gemäß der Erfindung definierten EnergieVLadezustands- Grenzwerte.
Gemäß der Erfindung wird ein erster Lastpunktverschiebungsmodus A wie folgt definiert: Es wird, wie in Figur 1 gezeigt, in der zudem die Linien konstanten spezifischen Verbrauchs des Verbrennungsmotors eingezeichnet sind, eine Grenzlinie A1 im Kennfeld des spezifischen Verbrennungsmotorverbrauchs definiert, welche vorzugsweise in einem Bereich liegt, ab dem sich der spezifische Verbrauch des Verbrennungsmotors durch Erhöhung der Last nicht mehr so stark verbessert wie durch eine Lastanhebung von unterhalb dieser Linie bis zu dieser Linie hin.
Wenn sich nun der spezifische Verbrauch des Verbrennungsmotors im Betrieb unter der Grenzlinie A1 befindet, wird erfindungsgemäß der Lastpunkt des Verbrennungsmotors auf die Grenzlinie A1 angehoben, um in einen Bereich besseren spezifischen Verbrauchs zu gelangen, wobei als Nebeneffekt hierbei der Energiespeicher des Fahrzeugs geladen wird.
Im Rahmen einer vorteilhaften Weiterbildung der Erfindung kann die Lastpunktanhebung des Verbrennungsmotors nur bei positiver Fahranforderung, d. h. in Richtung Fahrzeugbeschleunigung, durchgeführt werden, wobei keine Lastpunktanhebung stattfindet, wenn sich der Verbrennungsmotor in Schubabschaltung befindet.
Gemäß der Erfindung wird ein Energie-/Ladezustands -Grenzwert A2 (SOC - Grenzwert) des Energiespeichers des Fahrzeugs definiert; dieser Grenzwert ist in Figur 2 dargestellt. Die Lastpunktanhebung wird abgeregelt, je weiter sich der Ladezustand des Energiespeichers (in Figur 2 von unten) dem EnergieVLadezustands - Grenzwert A2 nähert, wodurch das Laden des Energiespeichers auf den Grenzwert A2 begrenzt wird.
Durch die Durchführung einer Lastpunktverschiebung gemäß dem Last- punktverschiebungsmodus A wird eine Verringerung des spezifischen Verbrauch des Verbrennungsmotors bei gleichzeitiger Einhaltung einer vorgegebenen Ladezustands-Obergrenze des Energiespeichers erzielt.
Ein weiterer Lastpunktverschiebungsmodus B wird erfindungsgemäß dadurch definiert, dass ein Energie-/Ladezustands-Grenzwert B2 (siehe Figur 2) des Energiespeichers definiert wird, wobei, wenn sich der aktuelle Energieinhalt/Ladezustand des Energiespeichers unterhalb des Grenzwertes B2 befindet, der Lastpunkt des Verbrennungsmotors angehoben wird, um den Energiespeicher zu laden.
Hierbei ist der Betrag der Lastanhebung vorzugsweise proportional zur Differenz zwischen dem Grenzwert B2 und dem aktuellen Energiein- halt/Ladezustand des Energiespeichers; je größer diese Differenz ist, desto größer ist der Betrag der Lastanhebung. Vorzugsweise ist der Grenzwert B2 niedriger als der Grenzwert A1 , wie Figur 2 zu entnehmen. Im Rahmen des Lastpunktverschiebungsmodus B wird die Leistung des Verbrennungsmotors auf eine Grenzkurve B1 (siehe Figur 1 ) im Kennfeld des spezifischen Verbrennungsmotorverbrauchs begrenzt. Die Grenzkurve B1 liegt vorzugsweise nahe der Volllastlinie oder des Verbrauchsoptimums des Verbrennungsmotors.
Durch die Durchführung einer Lastpunktverschiebung gemäß dem Lastpunktverschiebungsmodus B wird ein Laden des Energiespeichers des Fahrzeugs auf einen gewünschten Energieinhalt bei gutem spezifischen Verbrauch des Verbrennungsmotors erzielt.
Im Rahmen eines dritten Lastpunktverschiebungsmodus C wird im Kennfeld des spezifischen Verbrennungsmotorverbrauchs eine Grenzkurve C1 definiert (siehe Figur 1 ), wobei, wenn sich der spezifische Verbrauch des Verbrennungsmotors im Betrieb oberhalb der Grenzkurve C1 befindet, der Lastpunkt des Verbrennungsmotors auf die Grenzlinie C1 abgesenkt wird, um in einem Bereich besseren spezifischen Verbrauchs zu gelangen, wobei gleichzeitig der Energiespeicher des Fahrzeugs entladen wird. Gemäß der Erfindung und bezugnehmend auf Figur 2 wird ein Energie-/ Ladezustands -Grenzwert C2 des Energiespeichers definiert, wobei die Lastpunktabsenkung des Verbrennungsmotors abgeregelt wird, je weiter sich der Ladezustand des Energiespeichers (in Figur 2 von oben) dem definierten Energie-/ Ladezustands -Grenzwert C2 nähert, so dass das Entladen des Energiespeichers auf den Grenzwert C2 begrenzt wird. Durch diese Vorgehensweise wird eine Verringerung des spezifischen Verbrauchs des Verbrennungsmotors bei gleichzeitiger Einhaltung einer vorgegebenen Ladezustands-Untergrenze des Energiespeichers erzielt.
Vorzugsweise liegt die Grenzkurve C1 in einem Bereich, ab dem sich der spezifische Verbrauch durch Absenkung der Last nicht mehr so stark oder gar nicht mehr verbessert, wie durch Lastabsenkung von oberhalb dieser Kurve C1 bis zu dieser Kurve hin.
Im Rahmen eines vierten Lastpunktverschiebungsmodus D wird ein E- nergie-/Ladezustands-Grenzwert D2 des Energiespeichers des Fahrzeugs definiert, wobei, wenn sich der aktuelle Energieinhalt/Ladezustand des Energiespeichers oberhalb des Grenzwertes D2 befindet, der Lastpunkt des Verbrennungsmotors abgesenkt wird, um den Energiespeicher zu entladen und wobei der Betrag der Lastabsenkung vorzugsweise proportional zur Differenz zwischen dem Grenzwert D2 und dem aktuellen Energieinhalt/Ladezustand des Energiespeichers ist. Gemäß der Erfindung wird die Leistung des Verbrennungsmotors auf eine Grenzkurve D1 (siehe Figur 1 ) im Kennfeld des spezifischen Verbrennungsmotorverbrauchs begrenzt.
Vorzugsweise liegt die Grenzkurve D1 in einem Bereich, bei dem der spezifische Verbrauch noch einen wirtschaftlich akzeptablen Wert hat (d.h. bei weiterer Absenkung der Last des Verbrennungsmotors würde sich der spezifische Verbrauch zunehmend wesentlich erhöhen). Durch die Durchführung einer Lastpunktverschiebung gemäß dem Lastpunktverschiebungsmodus D wird demnach ein Entladen des Energiespeichers auf einen gewünschten E- nergieinhalt bei einem guten spezifischen Verbrauch des Verbrennungsmotors erzielt.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass, wenn der aktuelle Energieinhalt/Ladezustand des Energiespeichers einen definierten Grenzwert (A2, B2, C2, D2) erreicht, die Lastpunktverschiebung des Verbrennungsmotors kontinuierlich abgeregelt wird, um eine plötzliche Momentbzw. Leistungsänderung des Verbrennungsmotors und/oder der Elektroma- schine zu vermeiden. Die erwähnten Grenzkurven bzw. die Grenzwerte A1 , B1 , C1 , D1 , A2, B2, C2 und/oder D2 sind entweder festparametrierte Größen oder werden dynamisch anhand aktueller Fahrzeuggrößen berechnet, wobei eine Abhängigkeit dieser Größen von der Fahrzeuggeschwindigkeit besonders vorteilhaft ist, um im Energiespeicher des Fahrzeugs Platz für rekuperierbare kinetische Fahrzeugenergie vorzuhalten bzw. zu reservieren.
Im Rahmen einer besonders vorteilhaften Variante des erfindungsgemäßen Verfahrens wird vorgeschlagen, eine Lastpunktverschiebung durchzuführen, welche sich aus der Summe bzw. der Kombination des Lastpunktverschie- bungsmodus A und des Lastpunktverschiebungsmodus C ergibt. Dadurch wird eine Verbesserung des spezifischen Verbrennungsmotorverbrauchs bei „passiver Einhaltung" vorgegebener Energie bzw. Ladezustandsgrenzen erzielt (d.h. die Lastpunktverschiebung wird abgeregelt, wenn vorgegebene Energiegrenzen erreicht bzw. überschritten werden). Hierbei wird der Verbrennungsmotor ausgehend vom Fahrerwunschmoment bzw. -von einer gewünschten Leistung in einen Bereich günstigeren spezifischen Verbrauchs gebracht, solange vorgegebene Ladezustandsgrenzen des Energiespeichers dies erlauben.
Gemäß der Erfindung kann eine Lastpunktverschiebung durchgeführt werden, welche sich aus der Summe bzw. der Kombination des Lastpunktverschiebungsmodus B und des Lastpunktverschiebungsmodus D ergibt. Durch diese Vorgehensweise wird der Energiespeicher des Fahrzeugs immer in einen vorgegebenen gewünschten Bereich des Ladezustandes gebracht, solange der Verbrennungsmotor durch die hierfür notwendige Lastpunktverschiebung in einem vorgegebenen Bereich vorgegebener Werte des spezifischen Verbrauchs verbleiben kann. („Aktive Einhaltung" vorgegebener Energiegrenzen bei Einhaltung vorgegebener Mindestwerte für den spezifischen Verbrennungsmotorverbrauch). Des weiteren wird im Rahmen einer weiteren besonders vorteilhaften Variante des erfindungsgemäßen Verfahrens vorgeschlagen, eine Lastpunktverschiebung durchzuführen, welche sich aus der Summe bzw. der Kombination der Lastpunktverschiebungsmodi A, B, C und D ergibt, wodurch die Vorteile sämtlicher Modi ohne nachteilige gegenseitige Beeinflussung gleichzeitig genutzt werden.
Besonders vorteilhaft ist es, wenn im Kennfeld des spezifischen Verbrennungsmotorverbrauchs der Wirkungsgrad der zumindest einen Elekt- romaschine des Fahrzeugs hineingerechnet bzw. berücksichtigt wird, wodurch eine Gesamtwirkungsgradverbesserung unter Berücksichtigung des Verbrennungsmotors und der Elektromaschine erreicht wird. Hierbei kann auch vorgesehen sein, dass der Wirkungsgrad der zumindest einen Elektromaschine auch den Wechselrichterwirkungsgrad beinhaltet.
Gemäß einer Weiterbildung der Erfindung wird eine Lastpunktverschiebung nur dann durchgeführt, wenn die erzielbare Verbesserung des Verbrauchs des Verbrennungsmotors die Energiewandlungsverluste des elektrischen Systems des Fahrzeugs, umfassend zumindest eine Elektromaschine, zumindest einen Wechselrichter, Leitungen und den Energiespeicher überkompensiert.
Bezuqszeichen
A Lastpunktverschiebungsmodus
B Lastpunktverschiebungsmodus
C Lastpunktverschiebungsmodus
D Lastpunktverschiebungsmodus
A1 Grenzkurve im Kennfeld des spezifischen Verbrennungsmotorverbrauchs
B1 Grenzkurve im Kennfeld des spezifischen Verbrennungsmotorverbrauchs
C1 Grenzkurve im Kennfeld des spezifischen Verbrennungsmotorverbrauchs
D1 Grenzkurve im Kennfeld des spezifischen Verbrennungsmotorverbrauchs
A2 Grenzwert für den EnergieVLadezustand des Energiespeichers
B2 Grenzwert für den EnergieVLadezustand des Energiespeichers
C2 Grenzwert für den EnergieVLadezustand des Energiespeichers
D2 Grenzwert für den EnergieVLadezustand des Energiespeichers

Claims

Patentan sprü ch e
1. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, umfassend einen Verbrennungsmotor, zumindest eine Elektromaschine und einen Energiespeicher, dadurch geken n zei ch net, dass im Kennfeld des spezifischen Verbrauchs des Verbrennungsmotors zumindest eine Grenzkurve (A1 , B1 , C1 , D1 ) definiert wird und dass für den Energiespeicher des Fahrzeugs zumindest ein Grenzwert (A2, B2, C2, D2) für den EnergieVLadezustand definiert wird, wobei Lastpunktverschiebungsmo- di (A, B, C, D) definiert werden, bei denen der spezifische Verbrauch des Verbrennungsmotors und der Energieinhalt des Energiespeichers eine vorgegebene Grenzkurve (A1 , B1 , C1 , D1) bzw. einen vorgegebenen Grenzwert (A2, B2, C2, D2) nicht überschreiten, wobei die Lastpunktverschiebung in einem der Lastpunktverschiebungsmodi (A, B, C, D) oder in einer Kombination mehrerer Lastpunktverschiebungsmodi (A, B, C, D) erfolgt.
2. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach Anspruch 1 , dadurch geken n zei ch n et, dass ein erster Lastpunktverschiebungsmodus (A) derart definiert wird, dass im Kennfeld des spezifischen Verbrennungsmotorverbrauchs eine Grenzkurve (A1) definiert wird, wobei, wenn sich der spezifische Verbrauch des Verbrennungsmotors im Betrieb unterhalb der Grenzkurve (A1) befindet, der Lastpunkt des Verbrennungsmotors auf die Grenzlinie (A1) angehoben wird, um in einen Bereich besseren spezifischen Verbrauchs zu gelangen, wobei gleichzeitig der Energiespeicher geladen wird und wobei ein oberer EnergieVLadezustands - Grenzwert (A2) des Energiespeichers des Fahrzeugs definiert wird, derart, dass die Lastpunktanhebung des Verbrennungsmotors abgeregelt wird, je weiter sich der Ladezustand des Energiespeichers dem definierten Energie- /Ladezustands - Grenzwert (A2) nähert, so dass das Laden des Energiespeichers auf den Grenzwert (A2) begrenzt wird.
3. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach Anspruch 2, dadurch geken n zei ch n et, dass die Lastpunktanhebung nur bei positiver Fahranforderung durchgeführt wird, wobei keine Lastpunktanhebung stattfindet, wenn sich der Verbrennungsmotor in Schubabschaltung befindet.
4. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach Anspruch 2 oder 3, dadurch geken n zei ch n et, dass die eine Grenzkurve (A1 ) in einem Bereich liegt, ab dem sich der spezifische Verbrauch durch Erhöhung der Last des Verbrennungsmotors nicht mehr so stark reduziert wie durch Lastanhebung von unterhalb dieser Grenzkurve (A1) bis zu dieser Grenzkurve (A1) hin.
5. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach Anspruch 1 , dadurch geken n zei ch n et, dass ein zweiter Lastpunktverschiebungsmodus (B) derart definiert wird, dass ein EnergieVLadezustands-Grenzwert (B2) des Energiespeichers definiert wird, wobei, wenn sich der aktuelle Energieinhalt/Ladezustand des Energiespeichers unterhalb des Grenzwertes (B2) befindet, der Lastpunkt des Verbrennungsmotors angehoben wird, um den Energiespeicher zu laden, wobei der Betrag der Lastanhebung proportional zur Differenz zwischen dem Grenzwert (B2) und dem aktuellen Energieinhalt/Ladezustand ist und wobei die Leistung des Verbrennungsmotors auf eine Grenzkurve (B1) im Kennfeld des spezifischen Verbrennungsmotorverbrauchs begrenzt wird.
6. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach Anspruch 5, dadurch geken n zei ch n et, dass die Grenzkurve (B1 ) nahe der Volllastlinie oder des Verbrauchsoptimums des Verbrennungsmotors liegt.
7. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach Anspruch 1 , dadurch geken n zei ch n et, dass ein dritter Lastpunktverschiebungsmodus (C) derart definiert wird, dass im Kennfeld des spezifischen Verbrennungsmotorverbrauchs eine Grenzkurve (C1) definiert wird, wobei, wenn sich der spezifische Verbrauch des Verbrennungsmotors im Betrieb oberhalb der Grenzkurve (C1) befindet, der Lastpunkt des Verbrennungsmotors auf die Grenzlinie (C1) abgesenkt wird, um in einem Bereich besseren spezifischen Verbrauchs zu gelangen, wobei gleichzeitig der Energiespeicher des Fahrzeugs entladen wird und wobei ein Energie-/ Ladezustands -Grenzwert (C2) des Energiespeichers definiert wird, derart, dass die Lastpunktabsenkung des Verbrennungsmotors abgeregelt wird, je weiter sich der Ladezustand des Energiespeichers dem definierten Energie-/ Ladezustands -Grenzwert (C2) nähert, so dass das Entladen des Energiespeichers auf den Grenzwert (C2) begrenzt wird.
8. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach Anspruch 7, dadurch geken n zei ch n et, dass die Grenzkurve (C1) in einem Bereich liegt, ab dem sich der spezifische Verbrauch durch Absenkung der Last nicht mehr so stark oder gar nicht mehr verbessert, wie durch Lastabsenkung von oberhalb dieser Kurve (C1) bis zu dieser Kurve hin.
9. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach Anspruch 1 , dadurch geken n zei ch n et, dass ein vierter Lastpunktverschiebungsmodus (D) derart definiert wird, dass ein EnergieVLadezustands-Grenzwert (D2) des Energiespeichers des Fahrzeugs definiert wird, wobei, wenn sich der aktuelle Energieinhalt/Ladezustand des Energiespeichers oberhalb des Grenzwertes (D2) befindet, der Lastpunkt des Verbrennungsmotors abgesenkt wird, um den Energiespeicher zu entladen, wobei der Betrag der Lastabsenkung proportional zur Differenz zwischen dem Grenzwert (D2) und dem aktuellen Energieinhalt/Ladezustand ist und wobei die Leistung des Verbrennungsmotors auf eine Grenzkurve (D1) im Kennfeld des spezifischen Verbrennungsmotorverbrauchs begrenzt wird.
10. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach Anspruch 9, dadurch geken n zei ch n et, dass die Grenzkurve (D1) in einem Bereich liegt, bei dem der spezifische Verbrauch noch einen akzeptablen Wert hat, wobei bei einer weiteren Absenkung der Last des Verbrennungsmotors sich der spezifische Verbrauch zunehmend wesentlich erhöhen würde.
11. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach einem der vorangehenden Ansprüche, dadurch geken n zei ch n et, dass, wenn der aktuelle Energieinhalt/Ladezustand des Energiespeichers einen definierten Grenzwert (A2, B2, C2, D2) erreicht, die Lastpunktverschiebung des Verbrennungsmotors kontinuierlich abgeregelt wird, um eine plötzliche Moment- bzw. Leistungsänderung des Verbrennungsmotors und/oder der Elektromaschine zu vermeiden.
12. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach einem der vorangehenden Ansprüche, dadurch geken n zei ch n et, dass die Grenzkurven (A1 , B1 , C1 , D1 ) und/oder die Grenzwerte (A2, B2, C2, D2) festparametherte Größen sind.
13. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach einem der vorangehenden Ansprüche, dadurch geken n zei ch n et, dass die Grenzkurven (A1 , B1 , C1 , D1 ) und/oder die Grenzwerte (A2, B2, C2, D2) anhand aktueller Fahrzeuggrößen dynamisch berechnet werden.
14. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach Anspruch 13, dadurch geken n zei ch n et, dass die Grenzkurven (A1 , B1 , C1 , D1) und/oder die Grenzwerte (A2, B2, C2, D2) in Abhängigkeit von der Fahrzeuggeschwindigkeit berechnet werden, wobei im Energiespeicher Platz für rekuperierbare kinetische Fahrzeugenergie reserviert wird.
15. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach einem der vorangehenden Ansprüche, dadurch geken n zei ch n et, dass im Kennfeld des spezifischen Verbrennungsmotorverbrauchs der Wirkungsgrad der zumindest einen Elektromaschine des Fahrzeugs hineingerechnet wird, wodurch eine Gesamtwirkungsgradverbesserung unter Berücksichtigung des Verbrennungsmotors und der Elektromaschine erreicht wird.
16. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach Anspruch 15, dadurch geken n zei ch n et, dass der Wirkungsgrad der zumindest einen Elektromaschine den Wechselrichterwirkungsgrad beinhaltet.
17. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach einem der vorangehenden Ansprüche, dadurch geken n zei ch n et, dass eine Lastpunktverschiebung nur dann durchgeführt wird, wenn die erzielbare Verbesserung des Verbrauchs des Verbrennungsmotors die Energiewandlungsverluste des elektrischen Systems des Fahrzeugs, umfassend zumindest eine Elektromaschine, zumindest einen Wechselrichter, Leitungen und den Energiespeicher überkompensiert.
18. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach einem der vorangehenden Ansprüche, dadurch geken n zei ch n et, dass der Lastpunktverschiebungsmodus (A) mit dem Lastpunktverschiebungsmodus (C) kombiniert wird.
19. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach einem der vorangehenden Ansprüche 1 bis 17, dadurch geken n zei ch n et, dass der Lastpunktverschiebungsmodus (B) mit dem Lastpunktverschiebungsmodus (D) kombiniert wird.
20. Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug, nach einem der vorangehenden Ansprüche 1 bis 17, dadurch geken n zei ch n et, dass die Lastpunktverschiebungsmodi (A, B, C, D) miteinander kombiniert werden.
PCT/EP2008/060440 2007-08-16 2008-08-08 Verfahren zur lastpunktverschiebung im hybridbetrieb bei einem parallelen hybridfahrzeug WO2009021913A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08787036A EP2190710A2 (de) 2007-08-16 2008-08-08 Verfahren zur lastpunktverschiebung im hybridbetrieb bei einem parallelen hybridfahrzeug
JP2010520541A JP2011502846A (ja) 2007-08-16 2008-08-08 並列タイプのハイブリッド自動車において、ハイブリッド運転時の負荷ポイントをシフトするための方法
CN2008801092588A CN102216137A (zh) 2007-08-16 2008-08-08 并联式混合动力汽车上混合运行中的动力点移位方法
US12/673,669 US20110017534A1 (en) 2007-08-16 2008-08-08 Method for load point displacement during hybrid operation in a parallel hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007038585A DE102007038585A1 (de) 2007-08-16 2007-08-16 Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug
DE102007038585.6 2007-08-16

Publications (2)

Publication Number Publication Date
WO2009021913A2 true WO2009021913A2 (de) 2009-02-19
WO2009021913A3 WO2009021913A3 (de) 2010-06-24

Family

ID=40029001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/060440 WO2009021913A2 (de) 2007-08-16 2008-08-08 Verfahren zur lastpunktverschiebung im hybridbetrieb bei einem parallelen hybridfahrzeug

Country Status (6)

Country Link
US (1) US20110017534A1 (de)
EP (1) EP2190710A2 (de)
JP (1) JP2011502846A (de)
CN (1) CN102216137A (de)
DE (1) DE102007038585A1 (de)
WO (1) WO2009021913A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110196555A1 (en) * 2010-02-05 2011-08-11 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Control system for a vehicle having two axle drive devices and method for operating a control system
DE102014202103A1 (de) 2014-02-05 2015-08-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges
WO2015145237A3 (en) * 2014-03-24 2016-06-09 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
CN110682906A (zh) * 2018-07-05 2020-01-14 奥迪股份公司 用于运行混合动力车辆的方法和控制设备
WO2020152110A1 (de) * 2019-01-24 2020-07-30 Audi Ag Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988591B2 (en) 2007-09-11 2011-08-02 GM Global Technology Operations LLC Control architecture and method for one-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
DE102010022018B4 (de) 2010-05-29 2012-08-23 Audi Ag Verfahren zum Betreiben eines Fahrzeugs mit Verbrennungskraftmaschine und Generator
DE102011076403A1 (de) * 2011-05-24 2012-11-29 Robert Bosch Gmbh Hybridfahrzeug und Verfahren zum Betreiben eines Hybridfahrzeugs
DE102011111073B4 (de) 2011-08-18 2021-08-19 Audi Ag Energiemanagementverfahren für ein Kraftfahrzeug sowie Hybridantriebssystem eines Kraftfahrzeugs
DE102011116132B4 (de) 2011-10-15 2018-09-13 Volkswagen Aktiengesellschaft Verfahren zum Betrieb eines Fahrzeugs mit Hybridantrieb
JP5893435B2 (ja) * 2012-02-24 2016-03-23 Ntn株式会社 電気自動車の自動変速制御装置
JP5545309B2 (ja) * 2012-03-06 2014-07-09 株式会社デンソー エネルギ管理システム
DE102012216998A1 (de) * 2012-09-21 2014-03-27 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Hybridantriebsstrangs eines Fahrzeugs
DE102015002111A1 (de) * 2015-02-23 2016-10-20 Deutz Aktiengesellschaft Hybridantriebsstrang
FR3038277B1 (fr) * 2015-07-02 2017-07-21 Renault Sas Procede de calcul d’une consigne de gestion de la consommation en carburant et en courant electrique d’un vehicule automobile hybride
DE102015214886B4 (de) * 2015-08-04 2017-06-01 Borgward Trademark Holdings Gmbh Hybridelektrofahrzeug, Verfahren und Vorrichtung zur Steuerung der Betriebsart desselben
JP6753368B2 (ja) * 2017-06-28 2020-09-09 トヨタ自動車株式会社 ハイブリッド車両
DE102017222197A1 (de) 2017-12-07 2019-06-13 Audi Ag Verfahren zum Steuern einer elektrischen Anlage eines elektrisch antreibbaren Kraftfahrzeugs sowie Ladezustandssteuereinrichtung für ein Kraftfahrzeug
DE102019104324A1 (de) * 2019-02-20 2020-08-20 Volkswagen Aktiengesellschaft Verfahren zum Bestimmen eines Betriebspunktes eines Verbrennungsmotors
CN110304044B (zh) * 2019-05-20 2021-08-03 北京理工大学 基于ecms的phev四驱转矩分配方法
DE102019132445A1 (de) * 2019-11-29 2021-06-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung eines Hybridfahrzeugs
DE102020106911A1 (de) 2020-03-13 2021-09-16 Volkswagen Aktiengesellschaft Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors sowie Abgasnachbehandlungssystem

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69932487T2 (de) 1998-12-07 2007-05-03 Honda Giken Kogyo K.K. Regelsystem für ein Hybridfahrzeug

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305254A (en) * 1980-02-20 1981-12-15 Daihatsu Motor Co., Ltd. Control apparatus and method for engine/electric hybrid vehicle
DE4217668C1 (de) * 1992-05-28 1993-05-06 Daimler Benz Ag Verfahren zur Steuerung eines ein Fahrzeug antreibenden Hybridantriebes
JP3534271B2 (ja) * 1995-04-20 2004-06-07 株式会社エクォス・リサーチ ハイブリッド車両
US6847189B2 (en) * 1995-05-31 2005-01-25 The Regents Of The University Of California Method for controlling the operating characteristics of a hybrid electric vehicle
JP3171079B2 (ja) * 1995-07-24 2001-05-28 トヨタ自動車株式会社 車両用駆動制御装置
JP3698220B2 (ja) * 1996-04-10 2005-09-21 本田技研工業株式会社 ハイブリッド車両の制御装置
US6018694A (en) * 1996-07-30 2000-01-25 Denso Corporation Controller for hybrid vehicle
JP3257486B2 (ja) * 1997-11-12 2002-02-18 トヨタ自動車株式会社 動力出力装置および内燃機関制御装置
JP3489449B2 (ja) * 1998-07-13 2004-01-19 日産自動車株式会社 パラレル・ハイブリッド車両の駆動制御装置
JP3536704B2 (ja) * 1999-02-17 2004-06-14 日産自動車株式会社 車両の駆動力制御装置
JP2001020771A (ja) * 1999-07-02 2001-01-23 Toyota Motor Corp ハイブリッド車両における内燃機関の制御方法および車両
JP3832237B2 (ja) * 2000-09-22 2006-10-11 日産自動車株式会社 ハイブリッド車の制御装置
JP3666438B2 (ja) * 2001-10-11 2005-06-29 日産自動車株式会社 ハイブリッド車両の制御装置
JP3852402B2 (ja) * 2002-12-25 2006-11-29 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置
DE102004025460A1 (de) * 2004-05-25 2005-12-29 Bayerische Motoren Werke Ag Verfahren zum Betreiben eines Hybridkraftfahrzeugs
DE102004036581A1 (de) * 2004-07-28 2006-03-23 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridantriebs und Vorrichtung zur Durchführung des Verfahrens
DE102004043589B4 (de) 2004-09-09 2018-11-15 Zf Friedrichshafen Ag Vorrichtung und Verfahren zur Bestimmung der Antriebsleistungsverteilung in einem Hybrid-Antriebsstrang eines Fahrzeuges
US7395837B2 (en) 2005-04-28 2008-07-08 General Motors Corporation Multiplexed pressure switch system for an electrically variable hybrid transmission
JP4086053B2 (ja) * 2005-04-28 2008-05-14 三菱自動車工業株式会社 ハイブリッド式自動車の制御装置
DE102005044268A1 (de) 2005-09-16 2007-03-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung oder Regelung des Ladezustands eines Energiespeichers oder des Energieflusses in einem Fahrzeug mit einem Hybridantrieb
DE102005044828A1 (de) 2005-09-20 2007-03-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung eines optimalen Betriebspunktes bei Fahrzeugen mit Hybridantrieb
DE102005057607B3 (de) * 2005-12-02 2007-04-05 Hytrac Gmbh Hybridantrieb für Fahrzeuge
US8007401B2 (en) * 2007-05-02 2011-08-30 Nissan Motor Co., Ltd. Hybrid vehicle drive control apparatus and method
DE102008050737A1 (de) * 2008-10-08 2010-04-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines Antriebsstrangs

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69932487T2 (de) 1998-12-07 2007-05-03 Honda Giken Kogyo K.K. Regelsystem für ein Hybridfahrzeug

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110196555A1 (en) * 2010-02-05 2011-08-11 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Control system for a vehicle having two axle drive devices and method for operating a control system
US8812182B2 (en) * 2010-02-05 2014-08-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Control system for a vehicle having two axle drive devices and method for operating a control system
DE102014202103A1 (de) 2014-02-05 2015-08-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges
US9266531B2 (en) 2014-02-05 2016-02-23 Bayerische Motoren Werke Aktiengesellschaft Method and control apparatus for operating a road-bound hybrid vehicle
WO2015145237A3 (en) * 2014-03-24 2016-06-09 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
US9724992B2 (en) 2014-03-24 2017-08-08 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
CN110682906A (zh) * 2018-07-05 2020-01-14 奥迪股份公司 用于运行混合动力车辆的方法和控制设备
WO2020152110A1 (de) * 2019-01-24 2020-07-30 Audi Ag Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung

Also Published As

Publication number Publication date
DE102007038585A1 (de) 2009-03-19
JP2011502846A (ja) 2011-01-27
EP2190710A2 (de) 2010-06-02
CN102216137A (zh) 2011-10-12
US20110017534A1 (en) 2011-01-27
WO2009021913A3 (de) 2010-06-24

Similar Documents

Publication Publication Date Title
EP2190710A2 (de) Verfahren zur lastpunktverschiebung im hybridbetrieb bei einem parallelen hybridfahrzeug
EP1472108B9 (de) Verfahren zur einstellung eines betriebspunktes eines hybridantriebes eines fahrzeuges
DE102004043589B4 (de) Vorrichtung und Verfahren zur Bestimmung der Antriebsleistungsverteilung in einem Hybrid-Antriebsstrang eines Fahrzeuges
EP3377378A1 (de) Betreiben einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug
EP3377353A1 (de) Betreiben einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug
DE102015222690A1 (de) Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
EP1485266A1 (de) Verfahren zur steuerung eines hybridantriebes eines fahrzeuges
WO2005047039A2 (de) Hybridantriebssystem für ein kraftfahrzeug
DE112008004118T5 (de) Steuervorrichtung für eine Fahrzeug-Getriebevorrichtung
DE10162017A1 (de) Vorrichtung und Verfahren zur Regelung der Fahrgeschwindigkeit eines Fahrzeugs
WO2005115784A1 (de) Verfahren zum betrieb eines hybridfahrzeugs
EP2544909A1 (de) Antriebsvorrichtung
DE102006034297B4 (de) Verfahren zur Steuerung eines Verbrennungsmotors in einem Kraftfahrzeug
DE102019203721A1 (de) Verfahren zum Betreiben eines Antriebsstrangs für eine Arbeitsmaschine, Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine
WO2011088876A1 (de) Verfahren zur ermittlung eines soll-getriebegangs fuer ein hybridfahrzeug
WO2009021909A1 (de) Verfahren zum betrieb eines gleichstrom-spannungswandlers in einem hybridfahrzeug
DE102006036443A1 (de) Vorrichtung zum Steuern eines Hybridantriebs
EP1998978A1 (de) Verfahren zum betrieb eines hybridantriebs für ein fahrzeug
EP2613991A1 (de) Verfahren zur steuerung eines antriebssystems
EP2426022B1 (de) Verfahren und System zur Steuerung eines Antriebs eines Fahrzeugs
EP1575797B1 (de) Verfahren zur einstellung des betriebspunkts eines antriebsstrangs
CH706518A1 (de) Steuerung für das Antriebssystem einer Arbeitsmaschine.
DE102011002890A1 (de) Verfahren zur Regelung der Lastpunktverschiebung eines Verbrennungsmotors und zumindest einer elektrischen Maschine mit unterschiedlichem Ansprechverhalten im hybriden Fahrzustand in einem Parallel-Hybrid-Antriebsstrang
DE102019200840B4 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
WO2009065689A2 (de) Verfahren zur momentenverteilung bei einem parallelen hybridfahrzeug

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880109258.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12673669

Country of ref document: US

Ref document number: 2010520541

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008787036

Country of ref document: EP