WO2009012970A1 - Vorrichtung und verfahren zur klassifizierung einer solarzelle - Google Patents

Vorrichtung und verfahren zur klassifizierung einer solarzelle Download PDF

Info

Publication number
WO2009012970A1
WO2009012970A1 PCT/EP2008/005988 EP2008005988W WO2009012970A1 WO 2009012970 A1 WO2009012970 A1 WO 2009012970A1 EP 2008005988 W EP2008005988 W EP 2008005988W WO 2009012970 A1 WO2009012970 A1 WO 2009012970A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
temperature
classifying
test parameter
voltage
Prior art date
Application number
PCT/EP2008/005988
Other languages
English (en)
French (fr)
Inventor
Holger Neuhaus
Detlef Sontag
Marco Prondzinski
Peter Handschack
Peter Eberlein
Original Assignee
Deutsche Cell Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Cell Gmbh filed Critical Deutsche Cell Gmbh
Publication of WO2009012970A1 publication Critical patent/WO2009012970A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2837Characterising or performance testing, e.g. of frequency response
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a device for classifying a solar cell.
  • the invention further relates to a method for classifying a solar cell.
  • Hot spots can arise when individual solar cells of the solar cell module are shaded.
  • causes of shading of individual solar cells can be, for example, shadows cast by trees or buildings as well as soiling on individual solar cells. In the shading of a single solar cell this provides no electricity.
  • the string containing the shaded solar cell no longer supplies any current.
  • the voltage of the remaining solar cells of the string in the reverse direction is applied to the shaded solar cell.
  • the solar cell acts like an ohmic resistor connected in parallel with a diode.
  • This shunt resistor also referred to as shunt, is essentially caused by crystal defects, non-ideal doping distributions and other material defects of the solar cell.
  • solar cells of good quality have a high parallel resistance
  • solar cells of poor quality have a low parallel resistance.
  • a power loss is generated due to this parallel resistance, which heats the solar cell.
  • the parallel resistor is location-dependent, individual areas of the shaded solar cell can become very hot. These hot areas are called hot spots.
  • BESTAETIGUNGSKOPIE It is customary to classify a solar cell into an error-free "good cell” or a faulty "bad cell” via the criterion of the reverse current or the resulting power loss. For this purpose, a dark characteristic is recorded with which the behavior of the solar cell in the reverse direction is determined. If the solar cell at a predetermined voltage in the reverse direction has a high reverse current, the parallel resistance is low. By determining the reverse current, it is possible to calculate a maximum of the solar cell incurred and averaged over the surface power loss in the case of shading this in a solar cell module. If the determined reverse current or the power loss calculated therefrom exceeds a limit value, then the solar cell is classified as faulty and sorted out. At night, however, solar cell modules have repeatedly caught fire in the past, and consequently the known method does not allow a reliable classification of solar cells.
  • the invention is based on the object to provide an apparatus and a method that allow a reliable classification of solar cells.
  • a quality criterion for example a maximum operating temperature
  • the solar cell can be calculated, for example by creating a weighting matrix that allows a calculation of the maximum operating temperature of the solar cell. If the calculated quality criterion exceeds a limit value, for example the calculated maximum operating temperature exceeds a temperature limit value, then the solar cell is classified as faulty and sorted out.
  • Solar cells which have a large-scale partial parallel resistance, which leads to a relatively small increase in temperature due to the low power loss density, are classified as error-free. These solar cells would have been sorted out according to the previously used method due to the high reverse current and high power dissipation. Solar cells, which have small-area or punctured areas with a low partial-parallel resistance, are sorted out due to the high power dissipation density and the associated high temperature. These solar cells would have been classified as faultless according to the hitherto known method, since the reverse current and the power loss are below the limit value.
  • FIG. 1 is a schematic diagram of a device for classifying a solar cell
  • FIG. 2 is a diagram for illustrating the calculation of a maximum operating temperature according to a first embodiment
  • FIG. 3 shows a diagram for illustrating the reliability of the prognosis when calculating a maximum operating temperature according to further exemplary embodiments.
  • Fig. 1 shows the basic structure of a device 1 for classifying a solar cell 2.
  • the device 1 is hereinafter referred to as Klassifizier- device.
  • the classifying device 1 has a voltage source 3, a test parameter determination device 4, a temperature measuring device 5, a current measuring device 6, a series resistor 7 and a classifying device 8.
  • the solar cell 2 to be classified is fastened in a holder (not shown).
  • the solar cell 2 has a plate-shaped design and has a first contact area 9 on a first side and a second contact area 10 on a second side.
  • the voltage source 3 is electrically conductively connected to the first contact region 9 by means of a first line 11. Furthermore, the voltage source 3 by means of a second line 12 via the current-measuring device 6 and the resistor 7 with electrically connected to the second contact region 10.
  • the solar cell 2, the voltage source 3, the current measuring device 6 and the series resistor 7 are thus connected in series.
  • a voltage U 5 to the solar cell 2 can be applied.
  • the voltage U s results from a voltage U generated by the voltage source 3 minus a voltage U M dropping across the current measuring device 6 and minus a voltage U v dropped across the series resistor 7.
  • the voltage U s can be determined by means of the test parameter determination device 4.
  • the test parameter determination device 4 is formed in a microcomputer 13.
  • the microcomputer 13 is preferably a commercial PC.
  • the voltage source 3 is connected to the microcomputer 13 by means of a first signal line 14, so that the voltage U generated by the voltage source 3 is present in the test parameter determination device 4.
  • the current measuring device 6 is connected to the microcomputer 13 via a second signal line 15, so that a current Is measured by the current measuring device 6, which flows through the solar cell 2, is present in the test parameter determination device 4.
  • the classifier 8 is formed in the microcomputer 13.
  • the classifying device 8 is connected to the temperature measuring device 5 by means of a third signal line 16.
  • the temperature measuring device 5 is designed as an infrared camera.
  • the temperature-measuring device 5 is arranged and designed such that a temperature distribution T XY is measurable, which is caused by a flowing through the solar cell 2 current I 8 .
  • the measurable by the temperature measuring device 5 temperature distribution T xY is a local Temperature distribution in the solar cell 2 in an X direction and a Y direction. For each grid point P, which is characterized by associated coordinates X P and Yp in the X and Y directions, a temperature T P can thus be measured by means of the temperature measuring device 5.
  • the classifying device 8 is designed such that the temperature measuring device 5 can be controlled with this. In particular, the time of a measurement, the number of measurements and their time interval can be predetermined by means of the classifier 8.
  • the Klassif ⁇ zier device 8 is in signal communication with the test parameter determination device 4, the voltage source 3 and the current measuring device 6.
  • the classifying device 8 is further designed such that by means of this voltage source 3 by specifying a desired voltage U So ii controllable and the setpoint voltage Us o ii can be transmitted to the test parameter determination device 4.
  • the setpoint voltage U Sol i can be used as an alternative to the voltage U actually generated by the voltage source 3 for determining the voltage Us in the voltage determination device 4.
  • test parameter determination device 4 may be designed such that the voltage U 8 between the contact regions 9, 10 can be measured directly by means of a voltmeter and can be fed to the microcomputer 13.
  • the classifying device 8 is designed such that a maximum operating temperature T max of the solar cell 2 can be calculated from the determined test parameter in the form of the voltage Us and the measured temperature distribution T XY and a location P max of the solar cell associated with the maximum operating temperature T max 2 is determinable.
  • the maximum operating temperature T max represents an estimated value for the maximum achievable temperature of the solar cell 2 when it is incorporated into a solar cell module. is built and shaded.
  • the classifying device 8 is designed such that, depending on the maximum operating temperature T max, the solar cell 2 can be classified as faulty if the maximum operating temperature T max exceeds a predefinable temperature limit value TQ.
  • a classification of the solar cell 2 in several error classes for the use of the solar cell 2 in different module sizes is possible.
  • the classifying means 8 outputs the voltage source 3 from a first target voltage U So ii (l) so that the voltage source 3 generates the voltage U (I). Due to the voltage U (I), a current Is (I) flows through the solar cell 2, wherein at the current measuring device 6, a voltage U M (1) on the series resistor 7, a voltage U v (l) and the solar cell 2 a Voltage U s (l) drops.
  • the voltage Us as the test parameter is calculated by the test parameter determination device 4 from the voltage U (I), the current I 5 (I) and the known resistances of the current measuring device 6 and the series resistor 7.
  • the first setpoint voltage U So ii (I) for calculating the voltage U 5 (I).
  • the first voltage U 5 (I) can be measured directly by means of a voltmeter.
  • the current I 5 (I) due to a parallel resistance formed in the solar cell 2 leads to a power loss in the solar cell 2 and a corresponding increase in temperature.
  • the temperature measuring device 5 embodied as an infrared camera, under the control of the classifying device 8, takes up a plurality of thermographic images until the temperature changes. T xY has reached a static state. The thermographic image of the static state is converted in the temperature measuring device 5 in a first temperature distribution T ⁇ (l) and fed via the signal line 16 of the classifier 8.
  • the described temperature measurement is repeated as long as required for the calculation of the maximum operating temperature T max , so that in the classifier 8 a first voltage U 8 (I), a second voltage Us (2) up to an n
  • the voltage U s (n) and an associated local first temperature distribution T ⁇ (l), an associated local second temperature distribution T ⁇ (2) and an associated local n-th temperature distribution T ⁇ (n) are present.
  • the measured temperature distributions T XY are evaluated in the classifier 8, the classifier 8 recognizing points P having comparatively high temperatures T ⁇ (P). In the case of a hotspot, these points P are typically located next to one another and form a small-area or punctiform area. From the number N of these points, their coordinates in the X direction and Y direction and the measured temperatures T XY these points, the location and area of the hot spot and a maximum operating temperature T max of the solar cell 2 in the hot spot be determined. The location and the area of the hotspot are determined directly by the number N and the coordinates of the points P. The maximum operating temperature T max is determined by extrapolation of the measured temperature distributions T ⁇ (P) at the points P.
  • FIG. 2 illustrates the calculation of the maximum operating temperature T max (P) for a point P according to a first embodiment.
  • the Voltages U s (l) to Us (n) and the temperature distributions T ⁇ (l, P) to T ⁇ (n, P) are extrapolated so that a curve for the maximum operating temperature T max (P) at point P results. Since it is known that the temperature T ⁇ (P) strives for a limit value, the extrapolation takes place in such a way that the extrapolated temperature profile has a saturation characteristic.
  • the maximum operating temperature T max (P) at the point P is calculated from a limit value determination of the temperature curve T ⁇ (P) for high voltages U s .
  • the calculation of the maximum operating temperature T max (P) for a point P is carried out with the comparatively highest measured temperatures T ⁇ y (P). If a plurality of equivalent points P exist, the calculation of the maximum operating temperature T max (P) for a plurality of points P can be carried out.
  • the calculated maximum operating temperature T max is an estimated value for the maximum achievable temperature of the solar cell 2 when installed and shaded in a solar cell module.
  • the maximum operating temperature T max is compared with a limit value T G , which represents a maximum permissible temperature of the solar cell 2, wherein the solar cell 2 is classified as faulty when the maximum operating temperature T max exceeds the threshold T 0 .
  • the classifying device 8 is designed such that a multiplicity of determined test parameters and measured temperature distributions T XY can be evaluated.
  • the Klassif ⁇ zier device 8 is designed such that the duration t s of a measurement period is freely adjustable.
  • the temperature measuring device 5 designed as an infrared camera is controlled by the classifier 8, multiple thermographic images.
  • the voltage U s is applied to the solar cell 2, wherein the temperature of the solar cell 2 changes during the measurement period.
  • the thermographic images are converted in the temperature measuring device 5 into temperature distributions T XY and fed via the signal line 16 to the classifier 8.
  • the temperature measurement is continuously repeated in the predetermined measurement period, wherein continuously thermographic images are taken and fed to the classifier 8. Accordingly, the test parameter determination device 4 constantly determines the relevant test parameters in the given measurement period, such as, for example, the voltage U s applied to the solar cell 2 and the current I s flowing through the solar cell 2, and transmits this to the classifier 8 determined data are evaluated in the classifier 8. For the calculation of the maximum operating temperature T max of the solar cell 2, the following influencing variables are extracted from the determined data:
  • the maximum temperature T XY (ts, P ma ⁇ ) of the solar cell 2 at the end of the measurement period the duration referred to as reaction time t R until the solar cell 2 shows a conspicuous behavior, for example exceeds a predetermined temperature value at a point P, the position of the strongest shunt, - the size of the strongest shunt, the number of faulty areas, the current I s (ts) at the end of the measurement period, the voltage U 5 .
  • the duration t s of the measurement period is in the range of 0.3 seconds to 5 seconds. It is typically 1 second. From the extracted influencing variables, according to the following equation, a classifying value X is calculated whose size is a measure of the quality of the solar cell 2.
  • the classifying value X is directly correlated with the maximum operating temperature T max and results in:
  • the classification value X as a measure of the quality of the solar cell 2 is used to classify the solar cell 2, with a classification into two or more classes. In a division into two classes, the solar cell 2 is either as "Gutzelle" or as
  • the maximum operating temperature T max can be determined from the classification value X.
  • FIG. 3 illustrates the reliability of the prognosis in the calculation of the maximum operating temperature T max as a function of the influencing variables involved.
  • the temperature T Smax designates the actual maximum operating temperature of the solar cell 2 with shading.
  • Three cases a, b and c are shown in FIG. 3, wherein in the case a in the calculation of the classifying value X only the maximum temperature T xY (t s , P max ) of the solar cell 2 was used at the end of the measuring period. 3 clarifies that in case a the calculated maximum operating temperatures T max have a large standard deviation, that is, the uncertainty in the calculation of the maximum operating temperature T max is large.
  • the standard deviation when calculating the maximum operating temperature T max decreases in the cases b and c, wherein in case b additionally the reaction time t R and in case c the current Is (ts) were considered at the end of the measuring period.
  • the maximum operating temperature T ma ⁇ was calculated on the basis of the maximum temperature 7 ⁇ (t s , P max ) at the end of the measuring period, the reaction time t R and the current I s (ts) at the end of the measuring period.
  • any influencing variables in any combination and weighting can be taken into account in the calculation of the classification value X, wherein the influencing variables are determined from the determined test parameters and the measured temperature distributions.
  • the invention thus enables a reliable determination of hot spots, wherein the location and the area of the hot spot can be determined. Furthermore, a quality criterion, for example a maximum operating temperature T max , of the solar cell 2 can be calculated, which serves as a criterion for a classification of the solar cell 2. As a result, solar cells 2 can be classified more reliably than is possible with previously known methods. In particular, problems that can only occur in the solar cell module can already be detected in advance and thus sort out the corresponding solar cells 2.
  • a hot spot By determining the temperature distribution T XY , the voltage Us, the reaction time t R and the current I s , a hot spot can be located and its cause can be determined, in addition to the preventive sorting of thermographically conspicuous solar cells 2 by a timely feedback to the production a quick elimination of the cause of the hot spot is possible.
  • a heat source here is for example a hot plate. As a result of this heating, an even greater certainty of the predicted final temperature of the solar cells 2 is achieved.

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Bei einer Vorrichtung (1) und einem Verfahren zur Klassifizierung einer Solarzelle (2) ist eine Temperatur-Messeinrichtung (5) zur Messung einer Temperaturverteilung der Solarzelle (2) und eine Klassifizier-Einrichtung (8) vorgesehen, wobei die Klassifizier-Einrichtung (8) aus mindestens einem Testparameter der Solarzelle (2) und der Temperaturverteilung eine maximal Betriebstemperatur der Solarzelle (2) berechnet und in Abhängigkeit dieser die Solarzelle (2) als fehlerhaft klassifiziert.

Description

Vorrichtung und Verfahren zur Klassifizierung einer Solarzelle
Die Erfindung betrifft eine Vorrichtung zur Klassifizierung einer Solarzelle. Die Erfindung betrifft ferner ein Verfahren zur Klassifizierung einer Solarzelle.
Ein in der Fotovoltaik bekanntes Problem sind sogenannte Hot- Spots. In Solarzellen-Modulen sind alle Solarzellen in Reihe geschaltet, wobei einzelne Gruppen (Strings) über eine Bypassdiode überbrückbar sind. Hot- Spots können entstehen, wenn einzelne Solarzellen des Solarzellen-Moduls abgeschattet sind. Ursachen für eine Abschattung einzelner Solarzellen können beispielsweise Schattenwürfe von Bäumen oder von Gebäuden sowie Verschmutzungen auf einzelnen Solarzellen sein. Bei der Abschattung einer einzelnen Solarzelle liefert diese keinen Strom mehr. In Folge der Reihenschaltung der Solarzellen liefert der die abgeschattete Solarzelle enthaltende String keinen Strom mehr. In diesem Fall liegt an der abgeschatteten Solarzelle die Spannung der restlichen Solarzellen des Strings in Sperrrichtung an. Die Solarzelle wirkt in diesem Fall wie ein parallel zu einer Diode geschalteter Ohmscher Widerstand. Dieser Parallelwiderstand, der auch als Shunt bezeichnet wird, wird im Wesentlichen durch Kristallfehler, nicht ideale Dotierungsverteilungen und andere Materialdefekte der Solarzelle verursacht. Prinzipiell weisen Solarzellen guter Qualität einen hohen Parallelwiderstand auf, wohingegen Solarzellen schlechter Qualität einen niedrigen Parallelwiderstand aufweisen. Bei einer Abschattung einer einzelnen Solarzelle wird aufgrund dieses Parallelwiderstands eine Verlustleistung erzeugt, die die Solarzelle aufheizt. Da der Parallelwiderstand ortsabhängig ist, können einzelne Bereiche der abgeschatteten Solarzelle sehr heiß werden. Diese heißen Bereiche werden als Hot-Spots bezeichnet.
BESTAETIGUNGSKOPIE Es ist üblich, die Klassifizierung einer Solarzelle in eine fehlerfreie „Gutzelle" oder eine fehlerbehaftete „Schlechtzelle" über das Kriterium des Rückwärtsstroms oder der daraus resultierenden Verlustleistung vorzunehmen. Hierzu wird eine Dunkelkennlinie aufgenommen, mit der das Verhalten der Solarzelle in Sperrrichtung ermittelt wird. Hat die Solarzelle bei einer vorgegebenen Spannung in Sperrrichtung einen hohen Rückwärtsstrom, so ist der Parallelwiderstand niedrig. Durch die Ermittlung des Rückwärtsstroms ist es möglich, eine maximal an der Solarzelle anfallende und über die Fläche gemittelte Verlustleistung im Falle der Abschattung dieser in einem Solarzellen-Modul zu berechnen. Überschreitet der ermittelte Rückwärtsstrom beziehungsweise die daraus berechnete Verlustleistung einen Grenzwert, so wird die Solarzelle als fehlerhaft klassifiziert und aussortiert. Nachtteilig ist, dass in der Vergangenheit dennoch immer wieder Solarzellen-Module in Brand geraten sind und folglich das bekannte Verfahren keine zuverlässige Klassifizierung von Solarzellen ermöglicht.
Der Erfindung liegt die Aufgabe zu Grunde, eine Vorrichtung und ein Verfahren zu schaffen, die eine zuverlässige Klassifizierung von Solarzellen ermöglichen.
Diese Aufgabe wird durch die Merkmale der unabhängigen Ansprüche 1 und 12 gelöst. Erfindungsgemäß wurde erkannt, dass nicht der Rückwärtsstrom oder die Verlustleistung das entscheidende Kriterium sind, sondern die Temperaturverteilung, die sich aufgrund der Verlustleistung in der So- larzelle einstellt. Aufgrund der Ortsabhängigkeit des Parallelwiderstands kann die Solarzelle kleinflächige oder punktuelle Bereiche mit einem sehr niedrigen Teil-Parallelwiderstand aufweisen. Die Verlustleistungsdichte, also die Verlustleistung bezogen auf die Fläche, ist in diesen Bereichen sehr hoch, was zu einer entsprechend hohen Temperatur der Solarzelle in diesen Bereichen führt. Mittels der Temperatur-Messeinrichtung ist es möglich, bei einer an der Solarzelle in Sperrrichtung anliegenden Spannung die durch eingestellte Testparameter hervorgerufene örtliche Temperaturverteilung der Solarzelle zu messen. Wird die Messung der örtlichen Temperaturverteilung für die eingestellten Testparameter durchgeführt, so können Bereiche erhöhter Temperatur erkannt werden. Aus den eingestellten und erfassten Testparametern und den gemessenen Temperaturverteilungen kann ein Gütekriterium, beispielsweise eine maximale Betriebstemperatur, der Solarzelle berechnet werden, beispielsweise durch Erstellen einer Bewertungsmatrix, die eine Berechung der maximalen Betriebstemperatur der Solarzelle zulässt. Überschreitet das berechnete Gütekriterium einen Grenzwert, beispielsweise die berechnete maximale Betriebstemperatur einen Temperatur-Grenzwert, so wird die Solarzelle als fehlerhaft klassifiziert und aussortiert. Durch die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren ist eine wesentlich zuverlässigere Klassifizierung von Solarzellen möglich. Solarzellen, die einen großflächigen Teil- Parallelwiderstand aufweisen, der aufgrund der geringen Verlustleistungsdichte zu einer relativ geringen Temperaturerhöhung führt, werden als fehlerfrei klassifiziert. Diese Solarzellen wären nach dem bisher angewandten Verfahren aufgrund des hohen Rückwärtsstroms und der hohen Verlustleistung aussortiert worden. Solarzellen, die kleinflächige oder punktuelle Bereiche mit einem niedrigen Teil-Parallelwiderstand aufweisen, werden aufgrund der hohen Verlustleistungsdichte und der damit verbundenen hohen Temperatur aussortiert. Diese Solarzellen wären nach dem bisher bekann- ten Verfahren als fehlerfrei klassifiziert worden, da der Rückwärtsstrom und die Verlustleistung unterhalb des Grenzwertes sind.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen. - A -
Zusätzliche Merkmale und Einzelheiten der Erfindung ergeben sich aus der Beschreibung mehrerer Ausführungsbeispiele anhand der Zeichnung. Es zeigen:
Fig. 1 eine Prinzipdarstellung einer Vorrichtung zur Klassifizierung einer Solarzelle,
Fig. 2 ein Diagramm zur Veranschaulichung der Berechnung einer maximalen Betriebstemperatur gemäß einem ersten Ausfüh- rungsbeispiel, und
Fig. 3 ein Diagramm zur Veranschaulichung der Prognosesicherheit bei der Berechnung einer maximalen Betriebstemperatur gemäß weiteren Ausführungsbeispielen.
Fig. 1 zeigt den prinzipiellen Aufbau einer Vorrichtung 1 zur Klassifizierung einer Solarzelle 2. Die Vorrichtung 1 wird nachfolgend als Klassifizier- Vorrichtung bezeichnet. Die Klassifizier- Vorrichtung 1 weist eine Spannungsquelle 3, eine Testparameter-Ermittlungseinrichtung 4, eine Temperatur-Messeinrichtung 5, eine Strom-Messeinrichtung 6, einen Vorwiderstand 7 und eine Klassifizier-Einrichtung 8 auf.
Die zu klassifizierende Solarzelle 2 ist in einer nicht dargestellten Halte- rung befestigt. Die Solarzelle 2 ist plattenfbrmig ausgebildet und weist an einer ersten Seite einen ersten Kontaktbereich 9 und an einer zweiten Seite einen zweiten Kontaktbereich 10 auf. Die Spannungsquelle 3 ist mittels einer ersten Leitung 11 mit dem ersten Kontaktbereich 9 elektrisch leitend verbunden. Weiterhin ist die Spannungsquelle 3 mittels einer zweiten Leitung 12 über die Strom-Messeinrichtung 6 und den Vorwiderstand 7 mit dem zweiten Kontaktbereich 10 elektrisch leitend verbunden. Die Solarzelle 2, die Spannungsquelle 3, die Strom-Messeinrichtung 6 und der Vorwiderstand 7 sind somit in Reihe geschaltet.
Mittels der Spannungsquelle 3 ist eine Spannung U5 an die Solarzelle 2 anlegbar. Die Spannung Us ergibt sich aus einer von der Spannungsquelle 3 erzeugten Spannung U abzüglich einer an der Strom-Messeinrichtung 6 abfallenden Spannung UM und abzüglich einer an dem Vorwiderstand 7 abfallenden Spannung Uv. Die Spannung Us ist mittels der Testparameter- Ermittlungseinrichtung 4 ermittelbar.
Die Testparameter-Ermittlungseinrichtung 4 ist in einem Mikrocomputer 13 ausgebildet. Der Mikrocomputer 13 ist vorzugsweise ein handelsüblicher PC. Die Spannungsquelle 3 ist mittels einer ersten Signalleitung 14 mit dem Mikrocomputer 13 verbunden, so dass die von der Spannungsquelle 3 erzeugte Spannung U in der Testparameter-Ermittlungseinrichtung 4 vorliegt. Weiterhin ist die Strom-Messeinrichtung 6 über eine zweite Signalleitung 15 mit dem Mikrocomputer 13 verbunden, so dass ein von der Strom-Messeinrichtung 6 gemessener Strom Is, der durch die Solarzelle 2 fließt, in der Testparameter-Ermittlungseinrichtung 4 vorliegt.
Die Klassifizier-Einrichtung 8 ist in dem Mikrocomputer 13 ausgebildet. Die Klassifizier-Einrichtung 8 ist mittels einer dritten Signalleitung 16 mit der Temperatur-Messeinrichtung 5 verbunden. Die Temperatur- Messeinrichtung 5 ist als Infrarotkamera ausgebildet. Die Temperatur- Messeinrichtung 5 ist derart angeordnet und ausgebildet, dass eine Temperaturverteilung TXY messbar ist, die durch einen durch die Solarzelle 2 fließenden Strom I8 hervorgerufen wird. Die von der Temperatur- Messeinrichtung 5 messbare Temperaturverteilung TxY ist eine örtliche Temperaturverteilung in der Solarzelle 2 in einer X-Richtung und einer Y- Richtung. Zu jedem Rasterpunkt P, der durch zugehörige Koordinaten XP und Yp in X- und Y-Richtung charakterisiert ist, ist mittels der Temperatur- Messeinrichtung 5 somit eine Temperatur TP messbar. Die Klassifizier- Einrichtung 8 ist derart ausgebildet, dass mit dieser die Temperatur- Messeinrichtung 5 steuerbar ist. Insbesondere ist mittels der Klassifizier- Einrichtung 8 der Zeitpunkt einer Messung, die Anzahl von Messungen und deren zeitlicher Abstand vorgebbar. Die Klassifϊzier-Einrichtung 8 steht in Signalverbindung mit der Testparameter-Ermittlungseinrichtung 4, der Spannungsquelle 3 und der Strom-Messeinrichtung 6. Die Klassifizier- Einrichtung 8 ist weiterhin derart ausgebildet, dass mittels dieser die Spannungsquelle 3 durch Vorgabe einer Soll-Spannung USoii steuerbar und die Soll-Spannung Usoii an die Testparameter-Ermittlungseinrichtung 4 übermittelbar ist. Die Soll-Spannung USoli ist alternativ zu der tatsächlich von der Spannungsquelle 3 erzeugten Spannung U für die Ermittlung der Spannung Us in der Spannungs-Ermittlungseinrichtung 4 verwendbar.
Alternativ kann die Testparameter-Ermittlungseinrichtung 4 derart ausgebildet sein, dass mittels eines Spannungsmessers die Spannung U8 zwi- sehen den Kontaktbereichen 9, 10 direkt messbar ist und dem Mikrocomputer 13 zufuhrbar ist.
Weiterhin ist die Klassifϊzier-Einrichtung 8 derart ausgebildet, dass aus dem ermittelten Testparameter in Form der Spannung Us und der gemesse- nen Temperaturverteilung TXY eine maximale Betriebstemperatur Tmax der Solarzelle 2 berechenbar und ein der maximalen Betriebstemperatur Tmax zugehöriger Ort Pmax der Solarzelle 2 bestimmbar ist. Die maximale Betriebstemperatur Tmax stellt einen Schätzwert für die maximal erreichbare Temperatur der Solarzelle 2 dar, wenn diese in ein Solarzellen-Modul ein- gebaut und abgeschattet ist. Weiterhin ist die Klassifizier-Einrichtung 8 derart ausgebildet, dass in Abhängigkeit der maximalen Betriebstemperatur Tmax die Solarzelle 2 als fehlerhaft klassifizierbar ist, sofern die maximale Betriebstemperatur Tmax einen vorgebbaren Temperatur-Grenzwert TQ überschreitet. Alternativ ist eine Klassifizierung der Solarzelle 2 in mehrere Fehlerklassen für den Einsatz der Solarzelle 2 in verschiedenen Modulgrößen möglich.
Nachfolgend wird die Funktionsweise der Klassifizier- Vorrichtung 1 ge- maß einem ersten Ausführungsbeispiel beschrieben. Die Klassifizier- Einrichtung 8 gibt der Spannungsquelle 3 eine erste Soll-Spannung USoii(l) vor, so dass die Spannungsquelle 3 die Spannung U(I) erzeugt. Aufgrund der Spannung U(I) fließt ein Strom Is(I) durch die Solarzelle 2, wobei an der Strom-Messeinrichtung 6 eine Spannung UM(1) an dem Vorwiderstand 7 eine Spannung Uv(l) und an der Solarzelle 2 eine Spannung Us(l) abfällt. Die Spannung Us als Testparameter wird von der Testparameter- Ermittlungseinrichtung 4 aus der Spannung U(I), dem Strom I5(I) und den bekannten Widerständen der Strom-Messeinrichtung 6 und des Vorwiderstandes 7 berechnet. Alternativ zu der tatsächlich von der Spannungsquelle 3 erzeugten Spannung U(I) kann auch die erste Soll-Spannung USoii(l) zur Berechnung der Spannung U5(I) verwendet werden. Weiterhin kann alternativ hierzu die erste Spannung U5(I) direkt mittels eines Spannungsmessers gemessen werden.
Der Strom I5(I) führt aufgrund eines in der Solarzelle 2 ausgebildeten Parallelwiderstands zu einer Verlustleistung in der Solarzelle 2 und einer entsprechenden Temperaturerhöhung. Die als Infrarotkamera ausgebildete Temperatur-Messeinrichtung 5 nimmt, gesteuert von der Klassifizier- Einrichtung 8, mehrere thermografische Bilder auf, bis die Temperaturver- teilung TxY einen statischen Zustand erreicht hat. Das thermografische Bild des statischen Zustands wird in der Temperatur-Messeinrichtung 5 in eine erste Temperaturverteilung Tχγ(l) umgerechnet und über die Signalleitung 16 der Klassifizier-Einrichtung 8 zugeführt.
Die beschriebene Temperaturmessung wird so lange wiederholt, wie dies für die Berechnung der maximalen Betriebstemperatur Tmax erforderlich ist, so dass in der Klassifizier-Einrichtung 8 eine erste Spannung U8(I), eine zweite Spannung Us(2) bis zu einer n-ten Spannung Us(n) und eine zugehö- rige örtliche erste Temperaturverteilung Tχγ(l), eine zugehörige örtliche zweite Temperaturverteilung Tχγ(2) und eine zugehörige örtliche n-te Temperaturverteiiung Tχγ(n) vorliegen.
Die gemessenen Temperaturverteilungen TXY werden in der Klassifizier- Einrichtung 8 ausgewertet, wobei die Klassifizier-Einrichtung 8 Punkte P erkennt, die vergleichsweise hohe Temperaturen Tχγ(P) aufweisen. Bei einem Hot- Spot liegen diese Punkte P typischerweise nebeneinander und bilden einen kleinflächigen oder punktuellen Bereich. Aus der Anzahl N dieser Punkte, deren Koordinaten in X-Richtung und Y-Richtung und den gemessenen Temperaturen TXY dieser Punkte kann der Ort und die Fläche des Hot-Spots sowie eine maximale Betriebstemperatur Tmax der Solarzelle 2 im Bereich des Hot-Spots bestimmt werden. Der Ort und die Fläche des Hot-Spots ergibt sich unmittelbar aus der Anzahl N und den Koordinaten der Punkte P. Die maximale Betriebstemperatur Tmax wird durch Extrapola- tion der gemessenen Temperaturverteilungen Tχγ(P) an den Punkten P ermittelt.
Fig. 2 veranschaulicht die Berechnung der maximalen Betriebstemperatur Tmax(P) für einen Punkt P gemäß einem ersten Ausführungsbeispiel. Die Spannungen Us(l) bis Us(n) und die Temperaturverteilungen Tχγ(l,P) bis Tχγ(n,P) werden extrapoliert, so dass sich ein Kurvenverlauf für die maximale Betriebstemperatur Tmax(P) im Punkt P ergibt. Da bekannt ist, dass die Temperatur Tχγ(P) einem Grenzwert zustrebt, erfolgt die Extrapolation derart, dass der extrapolierte Temperaturverlauf eine Sättigungscharakteristik aufweist. Die maximale Betriebstemperatur Tmax(P) im Punkt P wird aus einer Grenzwertbestimmung des Temperaturverlaufs Tχγ(P) für große Spannungen Us berechnet. Vorzugsweise wird die Berechnung der maximalen Betriebstemperatur Tmax(P) für einen Punkt P mit den vergleichswei- se höchsten gemessenen Temperaturen Tχy(P) durchgeführt. Sofern mehrere, gleichwertige Punkte P existieren, kann die Berechnung der maximalen Betriebstemperatur Tmax(P) für mehrere Punkte P durchgeführt werden.
Die berechnete maximale Betriebstemperatur Tmax ist ein Schätzwert für die maximal erreichbare Temperatur der Solarzelle 2, wenn diese in ein Solarzellen-Modul eingebaut und abgeschattet ist. Die maximale Betriebstemperatur Tmax wird mit einem Grenzwert TG, der eine maximal zulässige Temperatur der Solarzelle 2 darstellt, verglichen, wobei die Solarzelle 2 als fehlerhaft klassifiziert wird, wenn die maximale Betriebstemperatur Tmax den Grenzwert T0 überschreitet.
Nachfolgend wird die Funktionsweise der Klassifizier- Vorrichtung 1 gemäß weiteren Ausführungsbeispielen beschrieben. Zur Erhöhung der Prognosesicherheit der maximalen Betriebstemperatur Tmax ist die Klassifizier- Einrichtung 8 derart ausgebildet, dass eine Vielzahl von ermittelten Testparametern und gemessenen Temperaturverteilungen TXY auswertbar sind. Die Klassifϊzier-Einrichtung 8 ist derart ausgebildet, dass die Dauer ts einer Messperiode frei einstellbar ist. Während der Messperiode nimmt die als Infrarotkamera ausgebildete Temperatur-Messeinrichtung 5, gesteuert von der Klassifizier-Einrichtung 8, mehrere thermografische Bilder auf. Während der Messperiode liegt an der Solarzelle 2 die Spannung Us an, wobei sich die Temperatur der Solarzelle 2 während der Messperiode verändert. Die thermografischen Bilder werden in der Temperatur-Messeinrichtung 5 in Temperaturverteilungen TXY umgerechnet und über die Signalleitung 16 der Klassifizier-Einrichtung 8 zugeführt.
Die Temperaturmessung wird in der vorgegebenen Messperiode ständig wiederholt, wobei kontinuierlich thermografische Bilder aufgenommen und der Klassifizier-Einrichtung 8 zugeführt werden. Entsprechend ermittelt die Testparameter-Ermittlungseinrichtung 4 in der vorgegebenen Messperiode ständig die relevanten Testparameter, wie beispielsweise die an der Solarzelle 2 anliegende Spannung Us und den durch die Solarzelle 2 fließenden Strom Is, und übermittelt diese an die Klassifizier-Einrichtung 8. Die so ermittelten Daten werden in der Klassifizier-Einrichtung 8 ausgewertet. Für die Berechnung der maximalen Betriebstemperatur Tmax der Solarzelle 2 werden aus den ermittelten Daten folgende Einflussgrößen extrahiert:
die maximale Temperatur TXY (ts, Pmaχ) der Solarzelle 2 am Ende der Messperiode, die als Reaktionszeit tR bezeichnete Dauer, bis die Solarzelle 2 ein auffälliges Verhalten zeigt, beispielsweise an einem Punkt P einen vorgegebenen Temperaturwert überschreitet, die Position des stärksten Shunts, - die Größe des stärksten Shunts, die Anzahl fehlerbehafteter Bereiche, der Strom Is (ts) am Ende der Messperiode, die Spannung U5. Die Dauer ts der Messperiode liegt im Bereich von 0,3 Sekunden bis 5 Sekunden. Sie beträgt typischerweise 1 Sekunde. Aus den extrahierten Einflussgrößen wird entsprechend der nachfolgenden Gleichung ein Klassifizier- Wert X berechnet, dessen Größe ein Maß für die Güte der Solarzelle 2 ist. Der Klassifizier- Wert X ist direkt mit der maximalen Betriebstemperatur Tmax korreliert und ergibt sich zu:
X = a, TXY (ts, Pmax) + a2 tR + a3 -I8 (ts) + ...,
wobei ah a2, a3, ... Wichtungskoeffizienten sind. Die Wichtungskoeffizienten wurden anhand geeigneter Voruntersuchungen unter Dauerbestro- mung ermittelt. Der Klassifizier- Wert X als Maß für die Güte der Solarzelle 2 wird zur Klassifizierung der Solarzelle 2 verwendet, wobei eine Klasseneinteilung in zwei oder mehr Klassen erfolgt. Bei einer Einteilung in zwei Klassen wird die Solarzelle 2 entweder als „Gutzelle" oder als
„Schlechtzelle" klassifiziert. Alternativ oder zusätzlich kann aus dem Klassifizier- Wert X die maximale Betriebstemperatur Tmax ermittelt werden.
Fig. 3 veranschaulicht die Prognosesicherheit bei der Berechnung der ma- ximalen Betriebstemperatur Tmax in Abhängigkeit der einbezogenen Einflussgrößen. Die Temperatur TSmax bezeichnet die tatsächliche maximale Betriebstemperatur der Solarzelle 2 bei einer Abschattung. In Fig. 3 sind drei Fälle a, b und c dargestellt, wobei im Fall a bei der Berechnung des Klassifizier- Wertes X lediglich die maximale Temperatur TxY (ts, Pmax) der Solarzelle 2 am Ende der Messperiode verwendet wurde. Fig. 3 verdeutlicht, dass im Fall a die berechneten maximalen Betriebstemperaturen Tmax eine große Standardabweichung aufweisen, also die Unsicherheit bei der Berechnung der maximalen Betriebstemperatur Tmax groß ist. Die Standardabweichung bei der Berechnung der maximalen Betriebstemperatur Tmax sinkt in den Fälien b und c, wobei im Fall b zusätzlich die Reaktionszeit tR und im Fall c der Strom Is (ts) am Ende der Messperiode berücksichtigt wurden.
Als vorteilhaft hat sich erwiesen, wenn die maximale Betriebstemperatur Tmaχ auf Basis der maximalen Temperatur 7χγ (ts, Pmax) am Ende der Messperiode, der Reaktionszeit tR und des Stroms Is (ts) am Ende der Messperiode berechnet wurde. Prinzipiell können bei der Berechnung des Klassifizier- Wertes X beliebige Einflussgrößen in beliebiger Kombination und Gewichtung berücksichtigt werden, wobei die Einflussgrößen aus den ermittelten Testparametern und den gemessenen Temperaturverteilungen bestimmt werden.
Die Erfindung ermöglicht somit eine zuverlässige Ermittlung von Hot- Spots, wobei der Ort und die Fläche des Hot-Spots ermittelbar sind. Weiterhin kann ein Gütekriterium, beispielsweise eine maximale Betriebstemperatur Tmax, der Solarzelle 2 berechnet werden, das als Kriterium für eine Klassifizierung der Solarzelle 2 dient. Demzufolge können Solarzellen 2 zuverlässiger klassifiziert werden, als dies mit bisher bekannten Verfahren möglich ist. Insbesondere Probleme, die erst im Solarzellen-Modul auftreten können, lassen sich bereits im Vorfeld detektieren und somit die entsprechenden Solarzellen 2 aussortieren. Durch die Ermittlung der Temperaturverteilung TXY, der Spannung Us, der Reaktionszeit tR und des Stroms Is kann ein Hot-Spot lokalisiert und dessen Ursache ermittelt werden, wobei neben der präventiven Aussortierung thermografisch auffälliger Solarzellen 2 auch durch eine zeitnahe Rückkopplung an die Produktion eine schnelle Beseitigung der Ursache für den Hot-Spot möglich ist. Zur besseren Nachbildung der Verhältnisse im fertigen Solarzellenmodul ist außerdem vorgesehen, die Solarzellen 2 mittels einer Wärmequelle auf die in Solarzellen-Modulen übliche Betriebstemperatur zu erwärmen. Als Wärmequelle dient hierbei beispielsweise eine Heizplatte. Durch diese Er- wärmung wird eine noch größere Sicherheit der prognostizierten Endtemperatur der Solarzellen 2 erreicht.

Claims

Patentansprüche:
1. Vorrichtung zur Klassifizierung einer Solarzelle, mit a. einer Testparameter-Ermittlungseinrichtung (4) zur Ermittlung von mindestens einem Testparameter (U8, Is) der Solarzelle (2), b. einer Temperatur-Messeinrichtung (5) zur Messung einer durch den mindestens einen Testparameter (Us, Is) hervorgerufenen Temperaturverteilung (TXY) der Solarzelle (2), und c. einer Klassifizier-Einrichtung (8), welche derart ausgebildet ist, dass i. aus dem mindestens einen ermittelten Testparameter (Us, Is) und der gemessenen Temperaturverteilung (TXY) ein Gütekriterium (TmaX; x) der Solarzelle (2) berechenbar ist, und ii. in Abhängigkeit des Gütekriteriums (TmaX; x) die Solarzelle (2) in mindestens zwei Klassen klassifizierbar ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Klassifizier-Einrichtung (8) derart ausgebildet ist, dass als Gütekriterium eine maximale Betriebstemperatur (Tmax) der Solarzelle (2) bere- chenbar ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Klassifizier-Einrichtung (8) derart ausgebildet ist, dass als Gütekriterium ein Klassifizier- Wert (X) berechenbar ist, wobei der Klassifi- zier- Wert (X) eine Summe aus gewichteten Einflussgrößen ist, wobei die Einflussgrößen aus dem mindestens einen ermittelten Testparameter und der gemessenen Temperaturverteilung ermittelbar sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Temperatur-Messeinrichtung (5) als Infrarotkamera ausgebildet ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Spannungsquelle (3) zum Anlegen einer Spannung (Us) an die Solarzelle (2) vorgesehen ist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Klassifizier-Einrichtung (8) derart ausgebildet ist, dass mittels dieser die Spannungsquelle (3) durch Vorgabe einer Soll-Spannung (USoii) steuerbar ist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Klassifizier-Einrichtung (8) derart ausgebildet ist, dass die Soll-
Spannung (Usoii) an die Testparameter-Ermittlungseinrichtung (4) übermittelbar ist.
8. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekenn- zeichnet, dass die Testparameter-Ermittlungseinrichtung (4) einen
Spannungsmesser zur Messung einer Spannung (Us) umfasst.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Klassifizier-Einrichtung (8) derart ausgebildet ist, dass mittels dieser die Temperatur-Messeinrichtung (5) steuerbar ist.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine Strom-Messeinrichtung (6) zur Messung eines Stroms (Is) durch die Solarzelle (2) vorgesehen ist.
11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Temperatur-Messeinrichtung (5) und die Klassifl- zier-Einrichtung (8) derart ausgebildet sind, dass ein der maximalen Betriebstemperatur (Tmax) zugehöriger Ort (P) bestimmbar ist.
12. Verfahren zur Klassifizierung einer Solarzelle, umfassend die folgenden Schritte: a. Ermitteln zumindest eines Testparameters (Us, Is) der Solarzelle
(2) mittels einer Testparameter-Ermittlungseinrichtung (4), b. Messen zumindest einer durch den mindestens einen Testparameter
(Us, Is) hervorgerufenen Temperaturverteilung (TXY) der Solarzelle (2) mitteis einer Temperatur-Messeinrichtung (5), c. Berechnen eines Gütekriteriums (Tmax> x) der Solarzelle (2) aus dem mindestens einen ermittelten Testparameter (Us, Is) und der gemessenen Temperaturverteilung (TXY) mittels einer Klassifizier-
Einrichtung (8), und d. Klassifizieren der Solarzelle (2) in mindestens zwei Klassen in Abhängigkeit des errechneten Gütekriteriums (Tmax> x).
13. Verfahren gemäß Anspruch 12, dadurch gekennzeichnet, dass die
Solarzelle (2) mittels einer Wärmequelle auf eine in Solarzellen- Modulen übliche Betriebstemperatur erwärmt wird.
PCT/EP2008/005988 2007-07-25 2008-07-22 Vorrichtung und verfahren zur klassifizierung einer solarzelle WO2009012970A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007034814A DE102007034814A1 (de) 2007-07-25 2007-07-25 Vorrichtung und Verfahren zur Klassifizierung einer Solarzelle
DE102007034814.4 2007-07-25

Publications (1)

Publication Number Publication Date
WO2009012970A1 true WO2009012970A1 (de) 2009-01-29

Family

ID=39885103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/005988 WO2009012970A1 (de) 2007-07-25 2008-07-22 Vorrichtung und verfahren zur klassifizierung einer solarzelle

Country Status (2)

Country Link
DE (1) DE102007034814A1 (de)
WO (1) WO2009012970A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038653A (zh) * 2010-07-30 2013-04-10 陶氏环球技术有限责任公司 薄膜太阳能电池加工和测试方法和设备
DE112010004353B4 (de) * 2009-11-11 2015-10-22 International Business Machines Corporation Verfahren und Vorrichtung zur Diagnostik von flachen Solarzellenplatten am Einsatzort
CN105609442A (zh) * 2015-12-28 2016-05-25 光为绿色新能源股份有限公司 一种新型晶硅太阳能电池测试分档的方法
CN106340563A (zh) * 2015-07-09 2017-01-18 英稳达科技股份有限公司 太阳能电池的制作方法
CN113466253A (zh) * 2020-03-31 2021-10-01 苏州阿特斯阳光电力科技有限公司 太阳能电池热斑缺陷的检测方法与检测设备
CN114121697A (zh) * 2020-08-31 2022-03-01 盐城阿特斯阳光能源科技有限公司 太阳能电池片的热斑风险检测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009003544B4 (de) * 2009-02-26 2012-10-18 Q-Cells Se Verfahren zur Überprüfung von Solarzellenoberflächen
DE102010010509A1 (de) * 2010-03-06 2011-09-08 Adensis Gmbh Verfahren zur Identifizierung leistungsschwacher Photovoltaikmodule in einer bestehenden PV-Anlage
DE102011052047A1 (de) * 2011-07-21 2013-01-24 Wavelabs Solar Metrology Systems Gmbh Verfahren zur Vermessung von Solarzellen und korrespondierende Vorrichtung
DE102012208364B4 (de) 2012-05-18 2014-12-11 Robert Bosch Gmbh Vorrichtung, Verfahren und Steuereinheit zur Funktionskontrolle einer Komponente einer Photovoltaikanlage

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033283A1 (de) * 1994-06-01 1995-12-07 Markus Real Verfahren zum schutz von solarzellenanlagen gegen hot spot sowie vorrichtung hierzu
JPH0837317A (ja) * 1994-07-22 1996-02-06 Sharp Corp 薄膜太陽電池および薄膜太陽電池の欠陥検出方法およびその方法を用いた薄膜太陽電池の欠陥検出除去装置
DE4440167A1 (de) * 1994-11-10 1996-08-29 Max Planck Gesellschaft Verfahren und Anordnung zur Messung der lateralen Stromverteilung in Halbleiterbauelementen
DE19738302A1 (de) * 1997-09-02 1999-03-04 Zae Bayern Verfahren zur Leistungsoptimierung von Solarmodulen mittels infrarotoptischer Wärmebildaufnahme und lokaler Beseitigung innerer Defekte
DE19814978A1 (de) * 1998-04-03 1999-10-14 Hahn Meitner Inst Berlin Gmbh Verfahren zur Messung strominduzierter Temperaturänderungen eines Objektes
US20040003840A1 (en) * 2002-06-06 2004-01-08 Sharp Kabushiki Kaisha Method for regenerating photovoltaic module and photovoltaic module
DE10240060A1 (de) * 2002-08-30 2004-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Anordnung zur strahlungsinduzierten Bestimmung der lokalen Verteilung von Verlustströmen bzw. Verlustleistung in Halbleiterbauelementen
JP2004247618A (ja) * 2003-02-17 2004-09-02 Kyocera Corp 太陽電池素子の検査方法
JP2004363196A (ja) * 2003-06-02 2004-12-24 Kyocera Corp 太陽電池モジュールの検査方法
EP1758178A2 (de) * 2005-08-23 2007-02-28 SCHOTT Solar GmbH Verfahren und Vorrichtung zur Ermittlung von Produktionsfehlern in einem Halbleiterbauelement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238897A (ja) * 1998-02-23 1999-08-31 Canon Inc 太陽電池モジュール製造方法および太陽電池モジュール
DE19914115A1 (de) * 1998-04-20 1999-11-04 Gfai Ges Zur Foerderung Angewa Verfahren und System zur Fehleranalyse bei polykristallinen Wafern, Solarzellen und Solarmodulen, insbesondere zur Bestimmung der prozeß- und strukturbedingten mechanischen Spannungen
US6225640B1 (en) * 1999-05-19 2001-05-01 Hughes Electronics Corporation Method for electrical shunt detection and removal on semiconductors
DE10233855A1 (de) * 2002-07-22 2004-02-05 Westphal, Klaus-Dieter, Dr.sc.techn. Verfahren und Anordnung zum Optimieren der Fertigung photovoltaischer Erzeugnisse

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033283A1 (de) * 1994-06-01 1995-12-07 Markus Real Verfahren zum schutz von solarzellenanlagen gegen hot spot sowie vorrichtung hierzu
JPH0837317A (ja) * 1994-07-22 1996-02-06 Sharp Corp 薄膜太陽電池および薄膜太陽電池の欠陥検出方法およびその方法を用いた薄膜太陽電池の欠陥検出除去装置
DE4440167A1 (de) * 1994-11-10 1996-08-29 Max Planck Gesellschaft Verfahren und Anordnung zur Messung der lateralen Stromverteilung in Halbleiterbauelementen
DE19738302A1 (de) * 1997-09-02 1999-03-04 Zae Bayern Verfahren zur Leistungsoptimierung von Solarmodulen mittels infrarotoptischer Wärmebildaufnahme und lokaler Beseitigung innerer Defekte
DE19814978A1 (de) * 1998-04-03 1999-10-14 Hahn Meitner Inst Berlin Gmbh Verfahren zur Messung strominduzierter Temperaturänderungen eines Objektes
US20040003840A1 (en) * 2002-06-06 2004-01-08 Sharp Kabushiki Kaisha Method for regenerating photovoltaic module and photovoltaic module
DE10240060A1 (de) * 2002-08-30 2004-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Anordnung zur strahlungsinduzierten Bestimmung der lokalen Verteilung von Verlustströmen bzw. Verlustleistung in Halbleiterbauelementen
JP2004247618A (ja) * 2003-02-17 2004-09-02 Kyocera Corp 太陽電池素子の検査方法
JP2004363196A (ja) * 2003-06-02 2004-12-24 Kyocera Corp 太陽電池モジュールの検査方法
EP1758178A2 (de) * 2005-08-23 2007-02-28 SCHOTT Solar GmbH Verfahren und Vorrichtung zur Ermittlung von Produktionsfehlern in einem Halbleiterbauelement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAVID J P ET AL: "Electrical and thermal testing and modelling of breakdown in space solar cells and generators", PROCEEDINGS OF THE PHOTOVOLTAIC SPECIALISTS CONFERENCE. LOUISVILLE, MAY 10 - 14, 1993; [PROCEEDINGS OF THE PHOTOVOLTAIC SPECIALISTS CONFERENCE], NEW YORK, IEEE, US, vol. CONF. 23, 10 May 1993 (1993-05-10), pages 1415 - 1420, XP010113135, ISBN: 978-0-7803-1220-3 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010004353B4 (de) * 2009-11-11 2015-10-22 International Business Machines Corporation Verfahren und Vorrichtung zur Diagnostik von flachen Solarzellenplatten am Einsatzort
CN103038653A (zh) * 2010-07-30 2013-04-10 陶氏环球技术有限责任公司 薄膜太阳能电池加工和测试方法和设备
CN106340563A (zh) * 2015-07-09 2017-01-18 英稳达科技股份有限公司 太阳能电池的制作方法
CN106340563B (zh) * 2015-07-09 2017-10-10 英稳达科技股份有限公司 太阳能电池的制作方法
CN105609442A (zh) * 2015-12-28 2016-05-25 光为绿色新能源股份有限公司 一种新型晶硅太阳能电池测试分档的方法
CN113466253A (zh) * 2020-03-31 2021-10-01 苏州阿特斯阳光电力科技有限公司 太阳能电池热斑缺陷的检测方法与检测设备
CN114121697A (zh) * 2020-08-31 2022-03-01 盐城阿特斯阳光能源科技有限公司 太阳能电池片的热斑风险检测方法

Also Published As

Publication number Publication date
DE102007034814A1 (de) 2009-01-29
DE102007034814A8 (de) 2009-05-14

Similar Documents

Publication Publication Date Title
WO2009012970A1 (de) Vorrichtung und verfahren zur klassifizierung einer solarzelle
DE112007001071B4 (de) Verfahren und Vorrichtung zur Bewertung von Solarzellen und deren Verwendung
DE102016206760B4 (de) Diagnoseverfahren für ein Photovoltaikenergiesystem und eine Überwachungsvorrichtung
DE3003091A1 (de) Anlage zur steuerung einer schaltung
DE102013100593B4 (de) Verfahren und Vorrichtung zum Vermessen von Solarzellen
DE102016113624B4 (de) Motorantrieb mit Funktion zum Detektieren von Schaltungsabnormalitäten aufgrund eindringender Fremdstoffe, bevor es zu einer erheblichen Abnormalität kommt
DE102008028385B4 (de) Mess- und Steuerverfahren zum Widerstandsschweißen
WO2017085174A1 (de) Verfahren und vorrichtung zur erkennung von fehlern in einem photovoltaik (pv)-generator
DE102009048691A1 (de) Gleichstrommessstelle zum Auffinden defekter PV-Module in einer PV-Anlage
EP3289657A1 (de) Verfahren zum prüfen der stränge an solarmodulen einer photovoltaikanlage und photovoltaik-wechselrichter zur durchführung des verfahrens
EP2369354A2 (de) Verfahren und Vorrichtung zum Auffinden leistungsschwacher PV-Module in einer PV-Anlage
DE102012224112A1 (de) Verfahren zum Einrichten eines Stromsensors
DE102009021799A1 (de) Verfahren zur ortsaufgelösten Bestimmung des Serienwiderstandes einer Halbleiterstruktur
EP1925923B1 (de) Verfahren und Vorrichtung zur Ermittlung von Messwerten, die für die solare Bestrahlungsstärke am Ort eines PV-Generators charakteristisch sind
DE102018206487A1 (de) Verfahren zur Ermittlung eines Zustandes der thermischen Anbindung mindestens einer Komponente innerhalb eines elektrischen Energiespeichersystems an eine Wärmequelle oder Wärmesenke
DE102006028056B4 (de) Verfahren zum Prüfen von Solarzellenmodulen und Prüfvorrichtung
DE102014013197A1 (de) Brennstoffzellensystem und Verfahren zur Bewertung des Zustands des Wasserhaushalts
DE102019218308A1 (de) Widerstandsbaugruppe für Stromsensor sowie Stromsensor und Verfahren zur Messung eines Batteriestroms
DE102011077754A1 (de) Schweißvorrichtung mit Wärmestrahlungsdetektion und Verfahren zur Überwachung des Schweißvorgangs
DE102017218562A1 (de) Elektrischer Energiespeicher und Verfahren zum Identifizieren eines Speichermodultyps eines elektrischen Energiespeichers
EP4136680A1 (de) Verfahren zur verbesserung des ohmschen kontaktverhaltens zwischen einem kontaktgitter und einer emitterschicht einer siliziumsolarzelle
DE10305662A1 (de) Verfahren zur Serieninnenwiderstandsmessung von photovoltaischen Zellen und Modulen (PV-Modulen)
DE102015209612A1 (de) Verfahren zur Prüfung der Chip-Befestigung einer Fotovoltaikzellenanordnung
DE102019218959A1 (de) Verfahren des steuerns der messung von zellenspannung von brennstoffzelle und einrichtung zum ausführen desselben
DE102015111959B3 (de) Verfahren und Vorrichtung zum Ermitteln einer Schichtdickenverteilung bei Solarzellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08784952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08784952

Country of ref document: EP

Kind code of ref document: A1