WO2009011559A1 - Catalizador líquido iónico para el mejoramiento de crudos pesados y extrapesados - Google Patents

Catalizador líquido iónico para el mejoramiento de crudos pesados y extrapesados Download PDF

Info

Publication number
WO2009011559A1
WO2009011559A1 PCT/MX2008/000086 MX2008000086W WO2009011559A1 WO 2009011559 A1 WO2009011559 A1 WO 2009011559A1 MX 2008000086 W MX2008000086 W MX 2008000086W WO 2009011559 A1 WO2009011559 A1 WO 2009011559A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
weight
liquid catalyst
heavy
crude oil
Prior art date
Application number
PCT/MX2008/000086
Other languages
English (en)
French (fr)
Inventor
Rubén NARES OCHOA
Persi SCHACHT HERNÁNDEZ
María del Carmen CABRERA REYES
Marco Antonio RAMÍREZ GARNICA
Fernando CASTREJÓN VACIO
Ricardo Jesús RÁMIREZ LÓPEZ
Original Assignee
Instituto Mexicano Del Petróleo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Mexicano Del Petróleo filed Critical Instituto Mexicano Del Petróleo
Priority to US12/668,735 priority Critical patent/US9464239B2/en
Publication of WO2009011559A1 publication Critical patent/WO2009011559A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/27Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a liquid or molten state
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/043Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum

Definitions

  • the present invention is related to an ionic liquid catalyst for the improvement of heavy and extra heavy crudes through hydrodesintegration and hydrogenation reactions of asphaltene and resin molecules.
  • the ionic liquid catalyst is produced by dissolving in water, an iron salt, such as ferric sulfate (Fe 2 ⁇ 3 ), which is modified during the preparation with (SO 4 ) 2 " and promoted with metals of group Vl B and VIII B of the periodic table.
  • an iron salt such as ferric sulfate (Fe 2 ⁇ 3 )
  • Fe 2 ⁇ 3 ferric sulfate
  • This scheme manages to increase the quality of the oil between 6 and 12 0 API, which is why it is intended to be applied as a base, because this type of studies could represent an alternative to improve the quality of the oil under conditions of lower risk and investment costs lower compared to those required in the scheme of hydrotreatment of crude oil on the surface at high severity (high pressure, temperature and low velocity space), since the pressure and temperature conditions of the deposits would be used.
  • ionic liquids have been developed that operate under the process scheme that allows high molecular weight hydrocarbon chains to be broken by ionic mechanisms or free radical under conditions of reservoir pressure and temperature.
  • US Patent 6,274,031 refers to a technology for the adsorption of sulfur compounds in a fluid bed, in particular hydrogen sulfide dissolved in the hydrocarbon, using a fluidizable adsorbent material based on alumina, silica, zinc oxide and a metal oxide highly dispersed, which we note that differs from the present invention, because an ionic liquid catalyst is no longer used and chemical reactions are not carried out, but only a sulfide adsorption process.
  • US Patent 6,160,193 refers to an oxidation process of sulfur compounds using oxidizing agents such as peroxyacetic acid, followed by extraction with a non-miscible solvent, differentiating, therefore with the present invention, by not using a liquid catalyst ionic.
  • US Patent 6,274,026 refers to the polymerization of sulfur compounds in an electrochemical cell using an ionic liquid as an electrolyte, and does not mention the use of an iron-molybdenum-based ionic liquid catalyst in the presence of a hydrogenating atmosphere, such and as employed in the present invention.
  • US Patent 7,001, 504 refers to the use of ionic liquids for the extraction of organosulfurized compounds are extracted by the direct or partial oxidation of sulfur compounds to sulfoxides or sulfones to increase their solubility in the ionic liquid.
  • an ionic liquid catalyst is used in the presence of hydrogen to promote disintegration and hydrogenation reactions.
  • US Patent 6,969,693 refers only to the use of ionic liquids immobilized on a support as a catalyst in Friedel Craft reactions, especially in alkylation reactions.
  • the present invention utilizes a highly dispersed ionic liquid catalyst in the hydrocarbon for hydrodeintegration and hydrogenation reactions.
  • US Patent 5, 731, 101 refers to the use of ionic liquids from salts of metal halides and hydro halogen alkyl amines for the production of linear alkylbenzene.
  • the present invention uses an iron-molybdenum-based ionic liquid catalyst for hydrogenation and hydrodeintegration reactions in crude oil.
  • US 6,139,723 refers to the use of Fe-based ionic liquids for application in bitumen and waste.
  • US Patent 4,136,013 refers to a catalyst in the form of a homogenized suspension of Fe, Ti, Ni and V for the hydrogenation reaction of crude oil and waste.
  • the present invention uses an iron-molybdenum-based ionic liquid catalyst.
  • US patents US 4,077,867 and US 4,134,825 refer to the hydroconversion of coke and heavy crude oil with catalysts based on Mo naphthenates.
  • the present invention uses an iron-molybdenum ionic liquid catalyst in aqueous solution.
  • US Patent 4,486,293 uses a Fe catalyst in combination with a metal of the Vl group or Group VIII from organic salts of these metals for liquefaction of coke with a hydrogen donor plus an aqueous saline solution.
  • the catalyst is first impregnated in the coke prior to the liquefaction reaction.
  • the ionic liquid catalyst is prepared starting from inorganic salts of iron and molybdenum, and subsequently dispersed in the crude oil, it is not impregnated.
  • US Patent 5,168,088 refers to the use of a slurry phase catalyst for coke liquefaction through the precipitation of iron oxide in the coke matrix.
  • the ionic liquid catalyst is prepared starting from inorganic salts of iron and molybdenum that are dispersed in the crude oil and is not precipitated.
  • the present invention is related to optimizing the quality of the heavy and extra heavy crude oil by injecting an ionic liquid catalyst improving the API gravity and reducing its viscosity within the reservoir (in situ), carrying out hydroconversion reactions of asphaltenes and resins. in products of greater added value (gasoline, intermediate distillates and diesel fuels to FCC), as well as the reduction of the content composed of sulfur and nitrogen.
  • Another object of the present invention is to provide a catalyst in the form of an ionic liquid to improve the properties of heavy vacuum residue
  • Another object of the present invention is to propose the use of an ionic liquid catalyst to the oil field (in-situ).
  • another object of the present invention is to present the use of an ionic liquid catalyst in a two-stage process that is carried out with strict control in the addition thereof and under certain conditions, which allow obtaining crude oils with lower viscosity and higher severity API.
  • Figure 1 shows the schematic diagram of a two-step hydrodesintegration / hydrogenation process, in which the ionic liquid catalyst obtained in the present invention is used for the improvement of heavy and extra heavy crudes.
  • the present invention relates to an ionic liquid catalyst, the synthesis and the application in the improvement of heavy and extra heavy crude oil by means of a catalytic system in which hydrodesintegration and hydrogenation reactions are carried out in a cyclic process and within the reservoir.
  • the synthesis of the preparation of the ionic liquid catalyst, object of the present invention is carried out in a process, such that, the ionic liquid catalyst is prepared in an aqueous base, using inorganic salts of a metal of the VINA group, such as iron, in particular ferric sulfate and inorganic salts of a metal of the VIA group, such as molybdenum to obtain an ionic liquid, in which both iron and molybdenum are part of the ionic liquid catalyst.
  • a metal of the VINA group such as iron, in particular ferric sulfate and inorganic salts of a metal of the VIA group, such as molybdenum
  • the catalyst obtained has high catalytic activity in hydrodesintegration and hydrogenation reactions in heavy crude oil at temperatures between 250-420 0 C and pressures from 50 to 125 Kg / cm 2 and is used in the first stage of the process for the improvement of crude oil heavy and extra heavy in the present invention (Figure 1).
  • the preparation of ionic liquid catalyst of the present invention considers two steps, in the first ammonium molybdate and phosphoric acid in water are solubilised, conditions of temperatures between 15 and 60 0 C, preferably between 25 and 40 0 C, with stirring, until you have a perfectly clear solution.
  • the ferric sulfate is incorporated and solubilized at a temperature between 50 and 80 0 C, preferably between 60 and 70 0 C, to obtain a solution of the ionic liquid catalyst can be employed and activated directly in the process of hydrodesintegration - hydrogenation, or it can be previously activated in a hydrogen atmosphere at temperatures between 200 and 350 0 C, preferably between 250 and 300 0 C.
  • the catalyst of the present invention reports high catalytic activity in hydrodesintegration and hydrogenation reactions in heavy crude oil, at temperatures between 250-420 ° C and pressures of 50 to 125 kg / cm 2 .
  • the ionic liquid catalyst and crude oil are previously mixed and homogenized in Ia feed pump (A) at a temperature between 200-300 0 C preferably 270 0 C, before entering the reactor packed with a high efficiency static contactor containing several assembled mixing elements (B), so that they are each other at an angle of 90 °.
  • the crude oil (1) and ionic liquid catalyst (2) homogenized and pre-activated are mixed with a stream of hydrogen (3), in the temperature range between 350-450 0 C, preferably at 400 0 C.
  • the hydrodesintegration / hydrogenation reaction of asphaltenes and resins is carried out at 250-420 ° C and the pressure of 50 to 125 Kg / cm 2 , during a residence time of the reaction 2 to 20 hours.
  • the API gravity of the crude oil is increased from 10-12.5 to 19-21 due to the hydrodesintegration reactions of asphaltenes and resins.
  • the products obtained in this first stage have a sulfur removal between 30 and 45% by weight and the viscosity is drastically reduced.
  • there is a change in the molecular composition being reflected by the increase in paraffinic and aromatic compounds due to the conversion of resins and asphaltenes.
  • reaction stage (6) consisting of a fixed bed reactor packed with a multimetallic catalyst based on NiCoMoWP supported in alumina and / or in amorphous and / or crystalline silica-aluminate (D), in concentrations of 5 to 15% by weight with respect to the oil to be treated at a temperature between 250-420 0 C and a pressure between 50 and 125 Kg / cm 2 , during a residence time of the reaction 2 to 30 hours.
  • a multimetallic catalyst based on NiCoMoWP supported in alumina and / or in amorphous and / or crystalline silica-aluminate (D) in concentrations of 5 to 15% by weight with respect to the oil to be treated at a temperature between 250-420 0 C and a pressure between 50 and 125 Kg / cm 2 , during a residence time of the reaction 2 to 30 hours.
  • hydrodesintegration, hydrodesulfurization and hydrogenation reactions of some aromatic compounds are carried out, that is, the conversion of resins and asphaltens to structures of lower molecular weight is carried out, orienting their selectivity towards hydrocarbons of lower molecular weight (gasoline, intermediate distillates and diesel fuel to FCC), further improving the quality of the crude oil by the increase in API Gravity between 27 to 32 °, reduction of the kinematic viscosity and removal of sulfur compounds and metals.
  • the reaction products (7) of this last stage are sent to a high pressure separator (E) in which bitter gas (8) and light crude oil with API gravity between 27 to 30 (9) are obtained as the final product.
  • the light crude passes to a combined plant to obtain LP gas (10), gasoline (11), intermediate distillates (12), (13), light diesel (14), FCC cargo diesel (15) and waste (16) , which, can be recirculated to the first reactor, either in its entirety or a portion.
  • the processing scheme of the present invention considers recirculating the residue obtained in the second reactor to the first partially or totally.
  • the physical and chemical properties of loads and products are shown in example 10.
  • the present invention considers that the ionic liquid catalyst is applicable to intelligent horizontal deposits allowing to increase the recovery factor of the crude oils and therefore to achieve the production goals planned mainly in the heavy and extra crude oil deposits.
  • -heavy allowing to increase the API gravity, reduce the viscosity, remove sulfur and nitrogen compounds from heavy and extra-heavy crude oils within the reservoir, which will facilitate its exploitation and transport by decreasing the resin content and asphalt, transforming them into hydrocarbons Lightweight with higher added value.
  • the load used was KU-H heavy crude from the region of Campeche Oriente, Mexico, its properties are detailed in Table 1. Also, the ionic liquid catalyst was prepared as described in previous paragraphs:
  • the load used was KU-H heavy crude from the region of Campeche Oriente, Mexico, its properties are detailed in Table 2.
  • Table 2 shows the properties of KU-H crude oil, filler and hydrotreated product at 350 0 C with the ionic liquid prototype catalyst
  • Table 1 Properties of KU-H crude oil, filler and hydrotreated product with the ionic liquid catalyst based on 0.5% by weight of Fe and 0.3% by weight of Mo.
  • the load used was KU-H heavy crude from the region of Campeche Oriente, Mexico, its properties are detailed in Table 1.
  • KU-H heavy crude from the region of Campeche Oriente, Mexico, its properties are detailed in Table 1.
  • 150 g of KU-H crude were placed, 7.5 g of weight were added an ionic liquid catalyst based on 0.5% by weight of Fe and 0.3% by weight of Mo, at temperature from 20-25 0 C.
  • the reaction was brought to 350 0 C and 100 Kg / cm 2 for 15 hours.
  • Table 3 The results obtained are shown in Table 3.
  • the load used was KU-H heavy crude from the region of Campeche Oriente, Mexico, its properties are detailed in Table 1.
  • the load used was KU-H heavy crude from the region of Campeche Oriente, Mexico, its properties are detailed in Table 1.
  • the load used was KU-H heavy crude from the region of Campeche Oriente, Mexico, its properties are detailed in Table 1.
  • 200 g of KU-H crude were placed, 8.3 g of weight were added to an ionic liquid catalyst based on 0.5% by weight of Fe and 0.3% by weight of Mo, at temperature from 20-25 0 C.
  • the reaction was brought to 350 0 C and 100 Kg / cm 2 for 48 hours.
  • the results obtained are shown in Table 6.
  • the load used was extra heavy crude oil from the marine area of the Gulf of Mexico, its properties are detailed in Table 7.
  • Table 7 Properties of extra heavy crude oil (filler) and hydrotreated product with the ionic liquid catalyst based on 0.5% by weight of Fe and 0.3% by weight of Mo.
  • Table 8 Properties of hydrotreated extra heavy crude oil with ionic liquid catalyst based on 0.5% by weight of Fe and 0.3% by weight of Mo.
  • the load used was KU-H heavy crude from the region of Campeche Oriente, Mexico, its properties are detailed in Table 2.
  • the output current is sent to the second stage, a fixed bed reactor containing 100 ml of Co-Mo catalyst and with a hydrogen current.
  • the reaction is carried out at 350 0 C, 100 Kg / cm 2 and 0.5 h '1 of space velocity.
  • hydrogenation reactions, hydrodeintegration, hydrodesulfurization and hydrodesnitrogenation are carried out.
  • the reaction product of the two-stage process is sent to a high pressure separator in which LP LP and Improved Crude Oil with 27 or - 30 0 API are obtained as final product. Its properties are detailed in Table 10.
  • Table 10 Properties of KU-H crude oil, filler and hydrotreated products in two stages with the ionic liquid catalyst and a supported catalyst.
  • the API gravity of the crude oils is increased from 12.5 to 19 units in the first stage and the viscosities decreased from 5600-

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

La presente invención está relacionada con el mejoramiento de crudos pesados, y extrapesados a través de un esquema considerando el uso de catalizadores líquidos iónicos a base de Mo y Fe. El catalizador es altamente miscible en el aceite crudo y se encuentran en fase homogénea con el aceite crudo. Asimismo, la presente invención está relacionada con el mejoramiento de crudos pesados en dos etapas, la primera con catalizador líquido iónico, y la segunda con catalizador soportado. La gravedad API de los aceites crudos se incrementa de 12.5 a 19 unidades en la primera etapa y las viscosidades disminuyeron de 5600-1600 hasta 60-40 cSt determinadas a 37.8°C. Mientras que en la segunda etapa, se obtiene un aceite crudo mejorado con 32.9° de API, viscosidades de 4.0 cSt, reducción en el contenido de azufre total y nitrógeno de 0.85% peso y 0.295 ppm en peso, respectivamente. Así como, una reducción considerable de asfaltenos de 28.65 a 3.7 %peso.

Description

CATALIZADOR LÍQUIDO IÓNICO PARA EL MEJORAMIENTO DE CRUDOS
PESADOS Y EXTRAPESADOS
DESCRIPCIÓN
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención está relacionada con un catalizador líquido iónico para el mejoramiento de crudos pesados y extrapesados a través de reacciones de hidrodesintegración e hidrogenación de moléculas de asfáltenos y resinas.
El catalizador líquido iónico es producido al disolver en agua, una sal de hierro, tal como el sulfato férrico (Fe2θ3), el cual es modificado durante Ia preparación con (SO4)2" y promovido con metales del grupo Vl B y VIII B de Ia tabla periódica.
ANTECEDENTES DE LA INVENCIÓN
En los próximos años, una parte de los recursos naturales por explotar estará constituido principalmente por aceite crudo pesado, esto implica que Ia Industria Petrolera requiera desarrollar procesos de recuperación secundaria y terciaria más eficientes, por Io que el desarrollo y aplicación de nuevas alternativas de explotación para incrementar el índice de productividad de los yacimientos y mejorar el transporte de crudos a los centros de refinación, serán aspectos relevantes para mantener los niveles de producción de combustibles demandados y así cumplir con los compromisos de refinación y exportación de hidrocarburos. Los yacimientos de aceite crudo pesado son difíciles de explotar debido a Ia alta resistencia que presentan al flujo (alta viscosidad) y bajo rendimiento de fracción destilable (<538°C), adicionalmente, Ia existencia de penalizaciones en crudo con alta concentración de metales, que disminuyen los márgenes de rentabilidad. Al respecto, es importante señalar que existen diferentes tecnologías para mejorar Ia calidad de los crudos pesados dentro del yacimiento y permitir Ia recuperación del aceite crudo, destacando entre las mas importantes: Ia inyección de vapor, inyección de vapor cíclica, drenado de vapor por gravedad asistida, acuatermólisis, inyección de aire, combustión in-situ convencional y combustión in-situ a través de pozos inteligentes.
El crudo convencional de 20° a 32°API se extrae del yacimiento por sistemas artificiales de producción y métodos de recuperación secundaria. Sin embargo, en el caso del crudo pesado de entre 4 y 13°API, no es posible lograr su extracción con un buen factor de recuperación utilizando las técnicas convencionales en uso actualmente, por Io que es necesario emplear esquemas de extracción más complejos para incrementar significativamente el factor de recuperación y además cumplir con Ia calidad comprometida en los contratos de exportación de crudo a mediano y largo plazo.
Los solicitantes conocen que existen diferentes estudios para mejorar Ia calidad del crudo pesado y extra-pesado en los yacimientos (in situ) utilizando aditivos donadores de hidrógeno. De Ia misma manera, es sabido que se tienen otros estudios que han sido empleados en numerosos campos de observación citando como ejemplo: Ia combustión ¡n-situ con Ia inyección de un gas oxidante (aire o aire enriquecido con oxígeno) para generar el calor que permita Ia combustión en el yacimiento. Este esquema logra incrementar Ia calidad del aceite entre 6 y 12 0API, por Io que se pretendiendo aplicar como base, debido a que este tipo de estudios podrían representar una alternativa para mejorar Ia calidad del crudo bajo condiciones de menor riesgo y costos de inversión inferiores frente a los requeridos en el esquema de hidrotratamiento del crudo en Ia superficie a alta severidad (alta presión, temperatura y bajo espacio velocidad), ya que se aprovecharían las condiciones de presión y temperatura de los yacimientos. Asimismo, se han desarrollado líquidos iónicos que operen bajo el esquema de proceso que permita romper cadenas de hidrocarburos de alto peso molecular por mecanismos iónicos o radical libre bajo condiciones de presión y temperatura de yacimiento.
Con relación a Io anterior, a continuación se proporcionan las siguientes referencias encontradas dentro del estado de Ia técnica hasta Ia fecha: La patente norteamericana US 6,274,031 hace referencia a una tecnología para Ia adsorción de compuestos de azufre en lecho fluido, en particular sulfuro de hidrógeno disuelto en el hidrocarburo, empleando un material adsorbente fluidizable a base de alúmina, sílice, óxido de zinc y un óxido metálico altamente dispersos, de Io que hacemos notar que difiere de Ia presente invención, en virtud de que ya no se emplea un catalizador líquido iónico y no se llevan a cabo reacciones químicas, sino únicamente un proceso de adsorción de sulfuras.
La patente norteamericana US 6,160,193 hace referencia a un proceso de oxidación de compuestos de azufre utilizando agentes oxidantes como el ácido peroxiacético, seguida de una extracción con un solvente no miscible, diferenciándose, por Io tanto con Ia presente invención, al no utilizar un catalizador liquido iónico.
La patente norteamericana US 6,274,026 hace referencia a Ia polimerización de compuestos de azufre en una celda electroquímica utilizando un líquido iónico como electrolito, y pero no menciona el uso de un catalizador líquido iónico a base de hierro-molibdeno en presencia de una atmósfera hidrogenante, tal y como empleado en Ia presente invención.
La patente norteamericana US 7,001 ,504 hace referencia a al uso de líquidos iónicos para Ia extracción de compuestos organosulfurados son extraídos por Ia oxidación directa o parcial de los compuestos de azufre a sulfóxidos o sulfonas para incrementar su solubilidad en el líquido iónico. En Ia presente invención se emplea un catalizador líquido iónico en presencia de hidrógeno para promover reacciones de desintegración e hidrogenación.
La patente norteamericana US 6,969,693 hace referencia solamente al uso de líquidos iónicos inmovilizados en un soporte como catalizador en reacciones de Friedel Craft, especialmente en reacciones de alquilación. La presente invención utiliza un catalizador líquido iónico altamente disperso en el hidrocarburo para reacciones de hidrodesintegración e hidrogenación. La patente norteamericana US 5, 731 ,101 hace referencia al uso de líquidos iónicos a partir de sales de haluros metálicos e hidro halogen alquil aminas para Ia producción de alkilbenceno lineal. La presente invención utiliza un catalizador líquido iónico a base de hierro-molibdeno para reacciones de hidrogenación e hidrodesintegración en aceite crudo.
La patente norteamericana US 6,139,723 hace referencia al uso líquidos iónicos a base de Fe para su aplicación en bitumen y residuos.
La patente norteamericana US 4,136,013 hace referencia a un catalizador en forma de suspensión homogeneizada de Fe, Ti, Ni y V para Ia reacción de hidrogenación de aceite crudo y residuos. La presente invención usa un catalizador líquido iónico a base hierro -molibdeno.
Las patentes norteamericanas US 4,077,867 y US 4,134,825 hacen referencia a Ia hidroconversión de coke y aceite crudo pesado con catalizadores a base de naftenatos de Mo. La presente invención utiliza un catalizador líquido iónico a base de hierro -molibdeno en solución acuosa.
La patente norteamericana US 4,486,293 utiliza un catalizador de Fe en combinación con un metal del grupo Vl o del grupo VIII a partir de sales orgánicas de estos metales para Ia licuefacción de coke con un donador de hidrógeno más una solución acuosa salina. Sin embargo, el catalizador es primero impregnado en el coke previo a Ia reacción de licuefacción. En Ia presente invención, el catalizador líquido iónico es preparado partiendo de sales inorgánicas de hierro y molibdeno, y posteriormente se dispersan en el aceite crudo, no es impregnado.
La patente norteamericana US 5,168,088 hace referencia al uso de un catalizador en fase slurry para Ia licuefacción de coke por medio de Ia precipitación de óxido de hierro en Ia matriz de coke. En Ia presente invención, el catalizador líquido iónico es preparado partiendo de sales inorgánicas de hierro y molibdeno que se dispersan en el aceite crudo y no es precipitado. Las anteriores tecnologías conocidas por el solicitante son superadas, en virtud de que, mediante Ia aplicación del catalizador líquido iónico de Ia presente invención se mejoran notablemente las propiedades físicas y químicas de aceites crudos pesados y residuos de vacío.
La presente invención esta relacionada con optimizar Ia calidad del aceite crudo pesado y extrapesado mediante Ia inyección de un catalizador líquido iónico mejorando Ia gravedad API y reduciendo su viscosidad dentro del yacimiento (in- situ), llevándose a cabo reacciones de hidroconversión de asfáltenos y resinas en productos de mayor valor agregado (gasolina, destilados intermedios y gasóleos de carga a FCC), así como Ia reducción del contenido compuestos de azufre y nitrógeno.
Es por Io tanto, un objeto de Ia presente invención, proveer de un catalizador en forma de líquido iónico para mejorar las propiedades de aceites crudos pesados dentro del yacimiento.
Otro objeto de Ia presente invención es proporcionar un catalizador en forma de líquido iónico para mejorar las propiedades de residuo pesado de vacío
Otro objeto de Ia presente invención es proponer el uso de un catalizador líquido iónico al yacimiento de crudo (in-situ).
Aún más, otro objeto de Ia presente invención es presentar el uso de un catalizador líquido iónico en un proceso de dos etapas que se realiza con estricto control en Ia adición del mismo y bajo ciertas condiciones, las cuales permiten obtener aceites crudos con menor viscosidad y mayor gravedad API.
BREVE DESCRIPCIÓN DE LOS DIBUJOS DE LA INVENCIÓN
Con el propósito de tener un mayor entendimiento en cuanto a Ia utilización del catalizador líquido iónico obtenido en Ia presente invención, a continuación se hará referencia a Ia figura 1 que se acompaña: En Ia figura 1 se muestra el diagrama esquemático de un proceso de hidrodesintegración/hidrogenación de dos pasos, en el que se emplea el catalizador líquido iónico obtenido en Ia presente invención para el mejoramiento de crudos pesados y extrapesados.
Aún cuando el esquema de Ia figura 1 ilustra disposiciones específicas de equipos con los que se puede llevar a Ia práctica este invento, no debe entenderse que limita Ia invención a algún equipo específicamente.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere a un catalizador líquido iónico, Ia síntesis y a Ia aplicación en el mejoramiento de aceite crudo pesado y extrapesado mediante un sistema catalítico en el que se llevan a cabo reacciones de hidrodesintegración e hidrogenación en un proceso cíclico y dentro del yacimiento.
La síntesis de Ia preparación del catalizador líquido iónico, objeto de Ia presente invención, se lleva a cabo en un procedimiento, tal que, el catalizador líquido iónico se prepara en una base acuosa, empleando sales inorgánicas de un metal del grupo VINA, tal como el fierro, en particular sulfato férrico y sales inorgánicas de un metal del grupo VIA, tal como el molibdeno para obtener un líquido iónico, en el que tanto el hierro, como el molibdeno son parte del catalizador líquido iónico.
El estado químico de cada elemento componente del catalizador es muy complicado y no está totalmente elucidado. Sin embargo, se sabe que el molibdeno y el fósforo están formando un compuesto heteropoliácido y que el grupo amonio se encuentra formando Ia sal del heteopoliácido, de tal manera que el ion fosfomolibdato (PMθi2O4o)"3 se comporta como un anión y el grupo amonio como un catión, siendo igualmente factible Ia presencia del fierro como un catión (ion Fe+3) y el ion sulfato (SO4 "2) como contraparte aniónica en el catalizador líquido iónico. El catalizador obtenido presenta alta actividad catalítica en reacciones de hidrodesintegración e hidrogenación en aceite crudo pesado a temperaturas entre 250 - 420 0C y presiones de 50 a 125 Kg/cm2 y es utilizado en Ia primera etapa del proceso para el mejoramiento de aceite crudo pesado y extrapesado en Ia presente invención (Figura 1 ).
Preparación del Catalizador Líquido Iónico. La preparación del catalizador líquido iónico de Ia presenta invención, considera dos pasos, en el primero se solubilizan el molibdato de amonio y el ácido fosfórico en agua, a condiciones de temperaturas entre 15 y 600C, preferentemente entre 25 y 400C, con agitación, hasta tener una solución perfectamente clara. En el segundo paso, se incorpora el sulfato férrico y se solubiliza a una temperatura entre 50 y 800C, preferentemente entre 60 y 700C, a obtener una solución del catalizador líquido iónico que puede ser empleada y activada directamente en el proceso de hidrodesintegración - hidrogenación, o bien puede ser previamente activada en atmósfera de hidrógeno a temperaturas entre 200 y 3500C, preferentemente entre 250 y 3000C. Se deduce que en el catalizador líquido iónico, el molibdeno y el fósforo están formando un compuesto heteropoliácido y que el grupo amonio esta formando Ia sal del heteopoliácido de tal manera que el ion fosfomolibdato (PMo 12O40)"3 se comporta como un anión y el grupo amonio como un catión, siendo igualmente factible Ia presencia del fierro como un catión (ion Fe+3) y el ion sulfato (SO4 "2) como contraparte aniónica en el catalizador líquido iónico. El catalizador de Ia presente invención reporta alta actividad catalítica en reacciones de hidrodesintegración e hidrogenación en aceite crudo pesado, a temperaturas entre 250 - 420°C y presiones de 50 a 125 Kg/cm2.
Descripción del proceso empleando el catalizador líquido iónico. En Ia presente invención se utiliza un proceso catalítico en dos etapas para mejorar las propiedades de aceites crudos pesados y extrapesados de manera exitosa, a través de las reacciones de hidrodesintegración e hidrogenación de moléculas de asfáltenos y resinas. Haciendo referencia a Ia Figura 1 , el catalizador liquido iónico y el aceite crudo son previamente mezclados y homogeneizados en Ia bomba de alimentación (A) a una temperatura entre 200-3000C preferentemente 2700C, antes de entrar al reactor empacado con un contactor estático de alta eficiencia que contiene varios elementos de mezclado ensamblados (B), de tal manera que se encuentren entre si a un ángulo de 90°. Enseguida, el aceite crudo (1) y catalizador líquido iónico (2) homogenizados y preactivados se mezclan con una corriente de hidrógeno (3), en el intervalo de temperatura entre 350-4500C, preferentemente a 4000C. En esta primera etapa, Ia reacción de hidrodesintegración/hidrogenación de asfáltenos y resinas se efectúa a 250-420°C y Ia presión de 50 a 125 Kg/cm2, durante un tiempo de residencia de Ia reacción 2 a 20 horas.
A Ia salida del primer reactor (4), se incrementa Ia gravedad API del aceite crudo de 10-12.5 a 19-21 debido a las reacciones de hidrodesintegración de asfáltenos y resinas. Los productos obtenidos en esta primera etapa tienen un remoción del azufre entre el 30 al 45 % peso y se reduce drásticamente Ia viscosidad. Por otro lado, hay un cambio en Ia composición molecular viéndose reflejado por el incremento de los compuestos parafínicos y aromáticos debido a Ia conversión de las resinas y asfáltenos.
Los productos de reacción de Ia primera etapa (4), posteriormente se mezclan con una corriente de hidrógeno (5) y se alimentan a una segunda etapa de reacción (6) constituida por un reactor de lecho fijo empacado con un catalizador multimetálico a base de NiCoMoWP soportado en alúmina y/o en sílico-aluminato amorfos y/o cristalinos (D), en concentraciones de 5 a 15 %peso con respecto al crudo a tratar a una temperatura entre 250-4200C y una presión entre 50 y 125 Kg/cm2, durante un tiempo de residencia de Ia reacción 2 a 30 horas.
En esta segunda etapa se llevan a cabo las reacciones hidrodesintegración, hidrodesulfuración e hidrogenación de algunos compuestos aromáticos, es decir, se lleva a cabo, Ia conversión de resinas y asfáltenos a estructuras de menor peso molecular, orientando su selectividad hacia hidrocarburos de menor peso molecular (gasolina, destilados intermedios y gasóleos de carga a FCC), mejorándose adicionalmente Ia calidad del aceite crudo por el incremento de Ia Gravedad API entre 27 a 32°, reducción de Ia viscosidad cinemática y remoción compuestos de azufre y metales.
Los productos de reacción (7) de esta última etapa son enviados a un separador de alta presión (E) en el que se obtienen como producto final gas amargo (8) y aceite crudo ligero con gravedad API entre 27 a 30 (9). El crudo ligero pasa a una planta combinada para obtener gas L. P. (10), gasolina (11), destilados intermedio (12), (13), gasóleo ligero (14), gasóleo de carga a FCC (15) y residuo (16), el cual, puede ser recirculado al primer reactor, ya sea en su totalidad o una porción. El esquema de procesamiento de Ia presente invención considera recircular el residuo obtenido en el segundo reactor al primero de manera parcial o total. Las propiedades físicas y químicas de cargas y productos son mostradas en el ejemplo 10.
Adicionalmente, es de mencionar que, Ia presente invención considera que el catalizador líquido iónico es aplicable a yacimientos horizontales inteligentes permitiendo incrementar el factor de recuperación de los aceites crudos y por consiguiente lograr las metas de producción planeadas principalmente en los yacimientos de crudos pesados y extra-pesados, permitiendo incrementar Ia gravedad API, reducir Ia viscosidad, remover compuestos de azufre y nitrógeno de aceites crudos pesados y extra-pesados dentro del yacimiento, que facilitará su explotación y transporte al disminuir el contenido de resinas y asfáltenos, transformándose éstos a hidrocarburos ligeros de mayor valor agregado.
EJEMPLOS
A continuación se presentan ejemplos relacionados al catalizador líquido iónico, su síntesis, y a su uso, objetos de Ia presente invención, y descritos anteriormente, sin que éstos limiten su alcance. EJEMPLO 1
La carga utilizada fue crudo pesado KU-H de Ia región de Campeche Oriente, México, sus propiedades se detallan en Ia Tabla 1. Asimismo, el catalizador líquido iónico se preparó como se describe en párrafos anteriores:
En un reactor batch con una capacidad, 500 mi se colocaron 150 g de crudo KU-H y 7.5 g de catalizador líquido iónico elaborado a base de 0.5% en peso de Fe y 0.3% en peso de Mo, se mezclaron homogéneamente presurizándose con hidrógeno a 28 Kg/cm2. Se incrementó Ia temperatura del ambiente hasta los 350 0C alcanzándose Ia presión de 75 Kg/cm2 en el sistema. Una vez estabilizada las condiciones anteriores el tiempo de reacción fue de 72 horas. La Tabla 1 muestra las viscosidades de Ia carga y del producto hidrotratado, observándose que bajo las condiciones de hidroconversión anteriores, el crudo KU-H disminuyó considerablemente su viscosidad e incrementando su gravedad API de 13.5° a 20.2°.
A través del hidrotratamiento con el catalizador líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo, se tiene un incremento en los hidrocarburos saturados y aromáticos a expensa de Ia conversión de las resinas y asfáltenos, los que disminuyeron de 16.81 a 13.8 y de 28.65 a 10.82 % peso, respectivamente. También es notable Ia disminución del azufre de 5.14 a 2.6 %peso, por Io que hay una remoción aproximadamente del 70 %peso. El nitrógeno total se redujo de 780 a 633 ppm peso, equivalente a una desnitrogenación del 32 %peso.
EJEMPLO 2
La carga utilizada fue crudo pesado KU-H de Ia región de Campeche Oriente, México, sus propiedades se detallan en Ia Tabla 2.
En un reactor batch con una capacidad de 500 mi se colocaron 150 g de crudo KU-H y 7.5 g de un catalizador líquido iónico a base de 0.5 % en peso de Fe y 0.2% en peso de Mo se mezclaron homogéneamente presurizándose con hidrógeno a 28 Kg/cm2. Se incrementó Ia temperatura del ambiente hasta los 350 0C alcanzándose Ia presión de 75 Kg/cm2 en el sistema. Una vez estabilizada las condiciones anteriores el tiempo de residencia de Ia reacción fue de 72 horas.
La Tabla 2 muestra las propiedades del aceite crudo KU-H, carga y producto hidrotratado a 350 0C con el catalizador prototipo líquido iónico
A través del hidrotratamiento con el catalizador líquido iónico se tuvo un incremento en Ia gravedad API de 7 unidades, Ia viscosidad disminuyó notablemente a valores inferiores de 385 cSt. La remoción de azufre fue del 27 % peso (5.13 a 3.7 % peso).
Tabla 1. Propiedades del aceite crudo KU-H, carga y producto hidrotratado con el catalizador líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo.
Figure imgf000013_0001
EJEMPLO 3
La carga utilizada fue crudo pesado KU-H de Ia región de Campeche Oriente, México, sus propiedades se detallan en Ia Tabla 1. En un reactor batch con una capacidad de 500 mi, se colocaron 150 g de crudo KU-H, se adicionaron 7.5 g de peso un catalizador líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo, a temperatura de 20-25 0C. La reacción se llevó a 3500C y 100 Kg/cm2 durante 15 horas. Los resultados obtenidos se muestran en Ia Tabla 3.
Tabla 2. Propiedades del aceite crudo KU-H, hidrotratado con un catalizador líquido iónico a base de 0.5% en peso de Fe y 0.2% en peso de Mo.
Figure imgf000014_0001
EJEMPLO 4
La carga utilizada fue crudo pesado KU-H de Ia región de Campeche Oriente, México, sus propiedades se detallan en Ia Tabla 1.
En un reactor batch con una capacidad de 500 mi, se colocaron 150 g de crudo KU-H, se adicionaron 7.5 g de peso un catalizador líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo, a temperatura de 20-250C. La reacción se llevó a 3500C y 100 Kg/cm2 durante 24 horas. Los resultados obtenidos se muestran en Ia Tabla 4. EJEMPLO 5
La carga utilizada fue crudo pesado KU-H de Ia región de Campeche Oriente, México, sus propiedades se detallan en Ia Tabla 1.
En un reactor batch con una capacidad de 500 mi, se colocaron 150 g de crudo KU-H, se adicionaron 7.1 g de peso un catalizador líquido iónico a base de 0.5% en peso de Fe y 0.2% en peso de Mo, a temperatura de 20-25 0C. La reacción se llevó a 3500C y 100 Kg/cm2 durante 48 horas. Los resultados obtenidos se muestran en Ia Tabla 5.
Tabla 3. Propiedades del aceite crudo KU-H1 producto tratado con catalizador líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo.
Figure imgf000015_0001
Tabla 4 Propiedades del aceite crudo KU-H, producto tratado con catalizador líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo.
Figure imgf000015_0002
EJEMPLO 6
La carga utilizada fue crudo pesado KU-H de Ia región de Campeche Oriente, México, sus propiedades se detallan en Ia Tabla 1. En un reactor batch con una capacidad de 500 mi, se colocaron 200 g de crudo KU-H, se adicionaron 8.3 g de peso un catalizador líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo, a temperatura de 20-25 0C. La reacción se llevó a 3500C y 100 Kg/cm2 durante 48 horas. Los resultados obtenidos se muestran en Ia Tabla 6.
Tabla 5 Propiedades del aceite crudo KU-H1 producto tratado con catalizador líquido iónico a base deθ.5% en peso de Fe y 0.2% en peso de Mo.
Figure imgf000016_0001
EJEMPLO 7
La carga utilizada fue aceite crudo extrapesado del área marina del Golfo de México, sus propiedades se detallan en Ia Tabla 7.
En un reactor batch con una capacidad de 100 mi, se colocaron 55 g de aceite crudo extrapesado, se adicionaron 2 g de líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo, a temperatura de 20-25 0C. La reacción se llevó a 4000C y 150 Kg/cm2 durante 4 horas. Los resultados obtenidos se muestran en Ia Tabla 7. Tabla 6 Propiedades del aceite crudo KU-H, producto tratado con catalizador líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo.
Figure imgf000017_0001
Tabla 7. Propiedades del aceite crudo extrapesado (carga) y producto hidrotratado con el catalizador líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo.
Figure imgf000017_0002
EJEMPLO 8
En un reactor batch con una capacidad de 100 mi, se colocaron 55 g de aceite crudo extrapesado, se adicionaron 2 g de líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo, a temperatura de 20-25 0C. La reacción se llevó a 400°C y 100 Kg/cm2 durante 2 horas. Los resultados obtenidos se muestran en Ia Tabla 8.
Tabla 8 Propiedades del aceite crudo extrapesado hidrotratado con catalizador líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo.
Figure imgf000018_0001
EJEMPLO 9
En un reactor batch con una capacidad de 100 mi, se colocaron 55 g de aceite crudo extrapesado, se adicionaron 2 g de líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo, a temperatura de 20-25 0C. La reacción se llevó a 4000C y 100 Kg/cm2 durante 6 horas. Los resultados obtenidos se muestran en Ia Tabla 9. Tabla 9 Propiedades del aceite crudo extrapesado hidrotratado con catalizador líquido iónico a base de 0.5% en peso de Fe y 0.3% en peso de Mo.
Figure imgf000019_0001
EJEMPLO 10
La carga utilizada fue crudo pesado KU-H de Ia región de Campeche Oriente, México, sus propiedades se detallan en Ia Tabla 2.
En una planta piloto de dos etapas cada una con capacidad de 500 mi, se llevó a cabo el mejoramiento de aceite crudo. Inicialmente 7.5 g de catalizador liquido iónico y 150 g de aceite crudo son previamente mezclados, homogeneizados y activados a 23O0C antes de entrar a Ia primera etapa. Se colocaron aceite crudo con catalizador e hidrógeno. La reacción se efectúa a 4000C con una presión de 100 Kg/cm2 En esta primera etapa, se incrementa Ia gravedad API de 12.5 ° a 19° debido a las reacciones de hidroconversión de asfáltenos y resinas. En Ia tabla 10 se detallan sus propiedades.
La corriente de salida es enviada a Ia segunda etapa, un reactor de lecho fijo conteniendo 100 mi de catalizador Co-Mo y con una corriente de hidrógeno. La reacción se efectúa a 3500C, 100 Kg/cm2 y 0.5 h'1 de espacio velocidad. En esta etapa se llevan a cabo reacciones de hidrogenación, hidrodesintegración, hidrodesulfuración e hidrodesnitrogenación. El producto de reacción del proceso de dos etapas es enviado a un separador de alta presión en el que se obtienen como producto final Gas L. P. y Aceite Crudo mejorado con 27o- 300API. Sus propiedades se detallan en Ia Tabla 10.
Tabla 10. Propiedades del aceite crudo KU-H, carga y productos hidrotratado en dos etapas con el catalizador líquido iónico y un catalizador soportado.
Figure imgf000020_0001
De acuerdo a Ia Tabla 10, Ia gravedad API de los aceites crudos se incrementa de 12.5 a 19 unidades en Ia primera etapa y las viscosidades disminuyeron de 5600-
1600 hasta 60-40 cSt determinadas a 37.80C. Mientras que en Ia segunda etapa, se obtiene un aceite crudo mejorado con 32.9° de API, viscosidades de 4.0 cSt, reducción en el contenido de azufre total y nitrógeno de 0.85% peso y 0.295 ppm en peso, respectivamente. Así como, una reducción considerable de asfáltenos de 28.65 a 3.7 %peso.

Claims

REIVINDICACIONESHabiendo descrito Ia presente invención, se considera como novedad y por Io tanto, se reclama como propiedad Io contenido en las siguientes reivindicaciones:
1.- Un catalizador liquido iónico en el procesamiento de aceite crudo pesado y extra pesado, caracterizado porque está constituida de sales inorgánicas de un metal del grupo VINA, tal como el fierro, en un intervalo del 0. 3 al 0.7 % en peso, y sales inorgánicas de un metal del grupo VIA, tal como el molibdeno dentro de un intervalo del 0.1 al 0.5 % en peso en una base acuosa.
2. Un catalizador liquido iónico, de conformidad con Ia reivindicación 1 , caracterizada porque Ia sal inorgánica correspondiente del fierro, es particularmente el sulfato férrico.
3. Un catalizador liquido iónico, de conformidad con Ia reivindicación 1 , caracterizada porque Ia sal inorgánica correspondiente del molibdeno, es preferentemente el molibdato amonio.
4. El uso del catalizador líquido iónico en el procesamiento de aceite crudo pesado y extrapesado, de conformidad con Ia reivindicación 1 , el cual consiste en: a) adicionar al yacimiento de crudo (in-situ) el catalizador líquido iónico, en concentraciones de 0.5 a 10 %peso, preferentemente de 2.0 a 0.1%peso; b) mezclar homogéneamente; c) presurizar con hidrógeno a menos de 50 Kg/cm2; d) incrementar Ia temperatura a 250 - 420 0C y Ia presión de 50 a 125 Kg/cm2, durante un tiempo de residencia de Ia reacción 2 a 20 horas para Ia desintegración de resinas y asfáltenos hacia hidrocarburos de menor peso molecular, tal como gasolina y diesel.
5. El uso del catalizador líquido iónico, de conformidad con Ia reivindicación 4, en donde los elementos activos a base de Mo, y Fe, se activan in situ a temperaturas de 225-275°C.
6. El uso del catalizador líquido iónico, de conformidad con Ia reivindicación 4, con el que los aceites crudos pesados y extrapesados a tratar presentan una Gravedad API de 4 a 14 grados y viscosidad de hasta 60,000 cSt @25 0C.
7. El uso del catalizador líquido iónico, de conformidad con Ia reivindicación 4, con el que se incrementa Ia Gravedad API de por Io menos 4 unidades y hasta 10 unidades y se disminuye Ia viscosidad del crudo tratado hasta 40 cSt @25°C.
8. El uso del catalizador líquido iónico, de conformidad con Ia reivindicación 4, con el que se incrementa Ia fracción destilable de los aceites crudos pesados y extrapesados tratados en por Io menos 18 %peso.
9. El uso del catalizador líquido iónico, de conformidad con Ia reivindicación 4, en donde los aceites crudos pesados y extrapesados tratados disminuyen Ia concentración de asfáltenos contenidos hasta en un 50% y se elimina del 30 al 40 % del azufre contenido.
10. El uso del catalizador líquido iónico en dos etapas para el procesamiento de aceite crudo pesado y extrapesado, de conformidad con Ia reivindicación 1 , en donde Ia primera etapa consiste en: a) el catalizador liquido iónico y el aceite crudo son previamente mezclados y homogeneizados en Ia bomba de alimentación a una temperatura entre 200-3000C preferentemente 2700C, antes de entrar a un reactor empacado con un contactor estático que contiene varios elementos de mezclado ensamblados de tal manera que se encuentren entre sí, a un ángulo de 90°; b) enseguida, el aceite crudo y catalizador líquido iónico homogenizados y preactivados se mezclan con una corriente de hidrógeno, en el intervalo de temperatura entre 350-4500C, preferentemente a 4000C para que se produzcan las reacciones de hidrodesintegración/hidrogenación de asfáltenos y resinas a 250-4200C y una presión de 50 a 125 Kg/cm2, durante un tiempo de residencia de Ia reacción 2 a 20 horas; en Ia segunda etapa: c) se mezclan los productos de reacción de Ia primera etapa con una corriente de hidrógeno para alimentarlos a un reactor de lecho fijo empacado con un catalizador multimetálico a base de NiCoMoWP soportado en alúmina y/o en sílico- aluminato amorfos y/o cristalinos, en concentraciones de 5 a 15 % en peso a una temperatura entre 250-4200C y una presión entre 50 y 125 Kg/cm2 con un tiempo de residencia de 2 a 30 horas; llevándose a cabo las reacciones hidrodesintegración, hidrodesulfuración e hidrogenación de los compuestos aromáticos, Ia conversión de resinas y asfáltenos a estructuras de menor peso molecular, tal como, gasolina, destilados intermedios y gasóleos de carga a FCC.
11. El uso del catalizador líquido iónico, de conformidad con Ia reivindicación 10, en donde, Ia gravedad API de los aceites crudos se incrementa de 12.5 a 19 unidades en Ia primera etapa y las viscosidades disminuyen de 5600-
1600 hasta 60-40 cSt determinadas @37.8°C; mientras que en Ia segunda etapa, se obtiene un aceite crudo con gravedad API de 32.9°, viscosidades de 4.0 cSt, reducción en el contenido de azufre total y nitrógeno de 0.85% peso y 0.295 ppm en peso, respectivamente, y Ia reducción de asfáltenos de 28.65 a 3.7 % en peso.
PCT/MX2008/000086 2007-07-13 2008-07-07 Catalizador líquido iónico para el mejoramiento de crudos pesados y extrapesados WO2009011559A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/668,735 US9464239B2 (en) 2007-07-13 2008-07-07 Ionic liquid catalyst for improvement of heavy and extra heavy crude

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2007/008524 2007-07-13
MX2007008524A MX2007008524A (es) 2007-07-13 2007-07-13 Catalizador liquido ionico para el mejoramiento de crudos pesados y extrapesados.

Publications (1)

Publication Number Publication Date
WO2009011559A1 true WO2009011559A1 (es) 2009-01-22

Family

ID=40259823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2008/000086 WO2009011559A1 (es) 2007-07-13 2008-07-07 Catalizador líquido iónico para el mejoramiento de crudos pesados y extrapesados

Country Status (3)

Country Link
US (1) US9464239B2 (es)
MX (1) MX2007008524A (es)
WO (1) WO2009011559A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120318714A1 (en) * 2008-05-09 2012-12-20 Instituto Mexicano Del Petroleo Ionic liquid catalyst for the improvement of heavy crude and vacuum residues
CN103131467A (zh) * 2011-12-01 2013-06-05 北京海顺德钛催化剂有限公司 一种劣质汽油选择性加氢脱硫的工艺方法及装置
US11760944B2 (en) 2019-07-19 2023-09-19 Instituto Mexicano Del Petroleo Hydroprocessing of heavy crudes by catalysts in homogenous phase

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8888993B2 (en) 2010-07-30 2014-11-18 Chevron U.S.A. Inc. Treatment of a hydrocarbon feed
CN102407161B (zh) * 2011-11-15 2013-05-29 中国石油大学(华东) 一种用于生物质加氢液化的过渡金属离子液体催化剂
MX345342B (es) * 2012-08-20 2017-01-24 Inst Mexicano Del Petróleo Procedimiento para el mejoramiento de crudos pesados y extrapesados.
CN103410489A (zh) * 2013-08-14 2013-11-27 东北石油大学 用于火烧油层开采稠油的改质降粘方法
MX359374B (es) * 2013-10-22 2018-09-13 Mexicano Inst Petrol Aplicacion de una composicion quimica para la reduccion de la viscosidad de petroleos crudos pesados y extrapesados.
US10308880B2 (en) 2017-08-21 2019-06-04 Saudi Arabian Oil Company Non-solvent asphaltene removal from crude oil using solid heteropoly compounds
US10954454B2 (en) 2017-08-21 2021-03-23 Saudi Arabian Oil Company Non-solvent crude oil heavy oil stream de-asphalting process
EP3720920B1 (en) 2017-12-08 2024-01-24 Baker Hughes Holdings LLC Ionic liquid based well asphaltene inhibitors and methods of using the same
US10858604B2 (en) 2017-12-08 2020-12-08 Baker Hughes, A Ge Company, Llc Phenol aldehydes asphaltene inhibitors
EA202091413A1 (ru) 2018-07-11 2020-09-24 Бейкер Хьюз Холдингз Ллк Скважинные ингибиторы асфальтенов на основе ионной жидкости и способы их применения
CN111592912A (zh) * 2020-05-31 2020-08-28 南京克米斯璀新能源科技有限公司 一种烷基化方法及烷基化设备
US11225617B1 (en) 2020-06-25 2022-01-18 Saudi Arabian Oil Company Continuous catalytic deasphalting process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486293A (en) * 1983-04-25 1984-12-04 Air Products And Chemicals, Inc. Catalytic coal hydroliquefaction process
US5871638A (en) * 1996-02-23 1999-02-16 Hydrocarbon Technologies, Inc. Dispersed anion-modified phosphorus-promoted iron oxide catalysts
US6139723A (en) * 1996-02-23 2000-10-31 Hydrocarbon Technologies, Inc. Iron-based ionic liquid catalysts for hydroprocessing carbonaceous feeds

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862961A (en) * 1970-12-04 1975-01-28 Atlantic Richfield Co Expoxidation of olefins with less stable organic hydroperoxides by using an alcohol stabilizing agent
US4066530A (en) 1976-07-02 1978-01-03 Exxon Research & Engineering Co. Hydroconversion of heavy hydrocarbons
US4077867A (en) 1976-07-02 1978-03-07 Exxon Research & Engineering Co. Hydroconversion of coal in a hydrogen donor solvent with an oil-soluble catalyst
US4136013A (en) 1977-02-28 1979-01-23 The Dow Chemical Company Emulsion catalyst for hydrogenation processes
US5168088A (en) 1990-06-01 1992-12-01 The United States Of America As Represented By The United States Department Of Energy Method for dispersing catalyst onto particulate material and product thereof
US5914292A (en) 1994-03-04 1999-06-22 Phillips Petroleum Company Transport desulfurization process utilizing a sulfur sorbent that is both fluidizable and circulatable and a method of making such sulfur sorbent
US5731101A (en) 1996-07-22 1998-03-24 Akzo Nobel Nv Low temperature ionic liquids
US6160193A (en) 1997-11-20 2000-12-12 Gore; Walter Method of desulfurization of hydrocarbons
US6274026B1 (en) 1999-06-11 2001-08-14 Exxonmobil Research And Engineering Company Electrochemical oxidation of sulfur compounds in naphtha using ionic liquids
KR100606309B1 (ko) 1999-11-05 2006-07-28 존슨 맛쎄이 퍼블릭 리미티드 컴파니 고정화 이온성 액체
US7001504B2 (en) 2001-11-06 2006-02-21 Extractica, Llc. Method for extraction of organosulfur compounds from hydrocarbons using ionic liquids
US7678732B2 (en) * 2004-09-10 2010-03-16 Chevron Usa Inc. Highly active slurry catalyst composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486293A (en) * 1983-04-25 1984-12-04 Air Products And Chemicals, Inc. Catalytic coal hydroliquefaction process
US5871638A (en) * 1996-02-23 1999-02-16 Hydrocarbon Technologies, Inc. Dispersed anion-modified phosphorus-promoted iron oxide catalysts
US6139723A (en) * 1996-02-23 2000-10-31 Hydrocarbon Technologies, Inc. Iron-based ionic liquid catalysts for hydroprocessing carbonaceous feeds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120318714A1 (en) * 2008-05-09 2012-12-20 Instituto Mexicano Del Petroleo Ionic liquid catalyst for the improvement of heavy crude and vacuum residues
CN103131467A (zh) * 2011-12-01 2013-06-05 北京海顺德钛催化剂有限公司 一种劣质汽油选择性加氢脱硫的工艺方法及装置
CN103131467B (zh) * 2011-12-01 2015-11-25 北京海顺德钛催化剂有限公司 一种劣质汽油选择性加氢脱硫的工艺方法及装置
US11760944B2 (en) 2019-07-19 2023-09-19 Instituto Mexicano Del Petroleo Hydroprocessing of heavy crudes by catalysts in homogenous phase
US11866652B2 (en) 2019-07-19 2024-01-09 Instituto Mexicano Del Petroleo Hydroprocessing of heavy crudes by catalysts in homogeneous phase

Also Published As

Publication number Publication date
US20100193401A1 (en) 2010-08-05
US9464239B2 (en) 2016-10-11
MX2007008524A (es) 2009-01-14

Similar Documents

Publication Publication Date Title
WO2009011559A1 (es) Catalizador líquido iónico para el mejoramiento de crudos pesados y extrapesados
ES2728566T3 (es) Procedimiento de conversión de cargas que comprende una etapa de hidrocraqueo, una etapa de precipitación y una etapa de separación de sedimentos para la producción de fuelóleos
ES2656416T3 (es) Procedimiento de conversión de cargas petroleras que comprende una etapa de hidrocraqueo en lecho burbujeante, una etapa de maduración y una etapa de separación de sedimentos para la producción de fueloil con un bajo contenido de sedimentos
ES2555903T3 (es) Método de hidroconversión de cargas petrolíferas en lechos fijos para la producción de combustibles derivados del petróleo con bajo contenido de azufre
Muraza et al. Aquathermolysis of heavy oil: A review and perspective on catalyst development
ES2662605T3 (es) Procedimientos y sistemas de hidroprocesamiento de lecho fijo y procedimientos para la mejora de un sistema de lecho fijo existente
ES2875893T3 (es) Producción de combustibles parafínicos a partir de materiales renovables mediante un procedimiento de hidrotratamiento en continuo que comprende una etapa de pretratamiento con hidrógeno
CA2655569A1 (en) Methods for producing a total product with minimal uptake of hydrogen
CA2551164A1 (en) Systems and methods of producing a crude product
Kumar et al. Desulfurization of gas oil using a distillation, extraction and hydrotreating-based integrated process
CN104888821A (zh) 一种含高碱性氮页岩油加氢提质催化剂
US20120318714A1 (en) Ionic liquid catalyst for the improvement of heavy crude and vacuum residues
Mohammadi Ionic liquids for desulfurization
CN102851069B (zh) 一种汽油脱硫的方法
US11866652B2 (en) Hydroprocessing of heavy crudes by catalysts in homogeneous phase
KR102109707B1 (ko) 산화된 황-함유 탄화수소로부터 황 함량을 감소시키는 공정
CN104927914A (zh) 包含使用供氢烃的低氢油比预加氢过程的高芳烃加氢方法
CN104263407A (zh) 一种上流式床层与固定床串联操作的烃加氢方法
Théodet New generation of" bulk" catalyst precursors for hydrodesulfurization synthesized in supercritical fluids
Toro Chalen Diesel hydrodesulfurization and its impact on fuel market in Ecuador
Roman et al. Carbon-Based Materials for Oxidative Desulfurization and Denitrogenation of Fuels: A Review. Catalysts 2021, 11, 1239
US20130079220A1 (en) Desulfurizing agent and method for manufacturing the same
Quilfen Supercritical fluids synthesis, characterization and test of HDS catalysts: Assessment of criticality of metals contained in HDS catalysts
Burla Development of mixed matrix membrane for desulfurization of sulfur rich petroleum stream
Javadli Autoxidation for pre-refining of oil sands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08778976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12668735

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08778976

Country of ref document: EP

Kind code of ref document: A1