WO2009006998A1 - Elektrochemische energiespeichereinheit - Google Patents

Elektrochemische energiespeichereinheit Download PDF

Info

Publication number
WO2009006998A1
WO2009006998A1 PCT/EP2008/005068 EP2008005068W WO2009006998A1 WO 2009006998 A1 WO2009006998 A1 WO 2009006998A1 EP 2008005068 W EP2008005068 W EP 2008005068W WO 2009006998 A1 WO2009006998 A1 WO 2009006998A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage unit
energy storage
electrochemical energy
unit according
flat
Prior art date
Application number
PCT/EP2008/005068
Other languages
English (en)
French (fr)
Inventor
Herbert Damsohn
Tobias Isermeyer
Jürgen Eckstein
Original Assignee
Behr Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg filed Critical Behr Gmbh & Co. Kg
Priority to EP08784536.8A priority Critical patent/EP2165379B1/de
Publication of WO2009006998A1 publication Critical patent/WO2009006998A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0472Vertically superposed cells with vertically disposed plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to an electrochemical energy storage unit according to the preamble of claim 1.
  • electrochemical energy storage units of high power density are known.
  • these are lithium-ion or lithium-polymer energy storage units, which consist for example of stacked flat cells.
  • DE 100 03 740 C1 shows a battery with a heat dissipation device, wherein a plurality of battery cells are connected in series, wherein the series arrangement of the battery cells has an outer positive pole and an outer negative pole, wherein at the poles cell connectors attached and introduced Means are provided for dissipating heat loss of the series arrangement, wherein at least one cell connector is connected to heat dissipating means.
  • an electrochemical energy storage unit is designed with a plurality of flat cells, wherein the flat cells each have at least two arresters and a casing with a first and a second end face and a first and a second flat side, wherein the arrester at least partially from the emerge first and / or second end face and at least one arrester of a first flat cell with at least one arrester of a second flat cell via at least one connecting element are electrically connected together.
  • the "flat side" is the side of the flat
  • the storage unit is constructed in such a way that the flat cells are arranged with their flat sides to one another and thus result in two common end faces of the flat cells.
  • a plurality of connecting elements which in each case electrically connect at least one arrester of a first flat cell to at least one arrester of a second flat cell, are then joined together to form a structural unit.
  • the connecting elements are connected to one another at their respective ends by webs. This arrangement creates a unit with slots into which the arresters of the flat cells are introduced.
  • portions of the structural unit in particular the webs, are encapsulated with plastic so that recesses in the plastic permit a later notching or punching out of the webs.
  • the removal of the webs is necessary for a serial interconnection of the flat cells, since otherwise a galvanic separation of the individual connecting elements can not be achieved. If a parallel connection of the flat cells is desired, individual or all webs can be maintained.
  • a serial or parallel connection of the energy storage unit can be realized by a very simple manufacturing process.
  • the arresters are materially bonded to a connecting element, in particular by an ultrasound welding process, connected.
  • the connecting elements are positively and / or non-positively connected, in particular by rivets, to a heat sink.
  • the heat sink can be represented, for example, by pipes through which cooling or refrigerant flows, in particular flat tubes.
  • the heat sink which is in particular plate-shaped, to flow with cooling air.
  • heat sinks are arranged on both end sides of the flat cells.
  • an electrically insulating heat conducting foil is arranged between the heat sink and the connecting elements, which consist of metal, preferably aluminum or copper, in order to avoid short circuits via the heat sink.
  • Figure 1 is a schematic front view of a section of an electrochemical energy storage unit according to the present invention along the line l-l of Figure 2.
  • FIG. 2 is a schematic plan view of an assembly consisting of three connecting elements
  • FIG. 3 shows a further embodiment of a structural unit according to the invention.
  • FIG. 1 shows a schematic front view of a section of an electrochemical energy storage unit 1 according to a first exemplary embodiment of the present invention along the line II of FIG. 2.
  • Such an energy store has a plurality of flat cells 2, which with their flat side 3 parallel to one another are arranged and form a cell stack.
  • a typical energy storage unit comprises about forty flat cells. However, it is quite possible that the energy storage unit comprises more or less than forty cells.
  • the arrester 4 is led out via the end face 5 from the flat cell 2 and contacted electrically and mechanically via a connecting element 6 with a surge arrester 4 of a further cell 2.
  • the connection between the arrester 4 and the connecting element 6 is realized by a cohesive method, in particular by an ultrasonic welding method. Of course it is also possible Lich the connection by another method, for example by a soldering process to produce.
  • the connecting element 6, which is preferably made of copper or aluminum, is U-shaped and, according to FIG. 2, provided with three apertures 7, which serve as a receptacle for rivet mandrels 8.
  • rivet mandrels 8 and rivet heads 9, which are preferably made of plastic, a mechanical connection between the connecting element 6 and a heat sink 10 is ensured.
  • the rivet pins 8 have import scans 18 for easy insertion of the arrester 4 during assembly.
  • the flank length of the U-shaped connecting element 6 allows not only an enlarged contact surface between arrester 4 and connecting element 6 at the same time a tolerance compensation in the way that the arrester position can be arranged parallel to the contact surface shifted.
  • the heat sink 10 is shown only schematically and may for example consist of one or more flat tubes through which a refrigerant flows. Of course it is also possible to supply the heat sink with cooling air.
  • a heat-conducting foil 11 is arranged between the heat sink 10 and the connecting element 6.
  • the heat-conducting foil 11 serves to release the heat from the connecting element 6 to the heat sink 10 and, on the other hand, to avoid a short circuit of the individual cells via the heat sink 10.
  • the flat cells 2 are combined to form identical pairs of lines.
  • Larger cell stacks are constructed of identical Zeil pairs, wherein other cell pairs, not shown in Fig. 1 via a nonwoven fabric 12 which is arranged parallel to the flat side 3 of the flat cell 2, can be added.
  • the nonwoven represents a leveling layer, with which the Dückentoieranz the little compressible cells can be compensated by bias and thus a cell stack can be represented with uniform division.
  • the uniform division is necessary because each flat cell has to be electrically contacted.
  • the fleece allows a thickness variation of the cells, which results depending on the state of charge.
  • the thermal connection of the heat sink 10 to the first end face 5 of the flat cells 2 is shown.
  • a substantially identical thermal connection to the second end face, not shown, of the flat cells can be realized.
  • FIG. 2 shows a first embodiment of a structural unit 16 according to the invention made of three connecting elements 6 in a schematic plan view.
  • FIG. 2 omits a representation of the flat cells 2 and the heat sink 10.
  • the structural unit consists of three connecting elements 6.
  • a structural unit according to the invention can have any number of connecting elements 6.
  • the connecting elements 6 are connected to one another by webs 13, which consist in particular of the same material as the connecting elements.
  • the webs are arranged substantially at right angles or in alignment with the connecting elements, and bind the respective ends of the fasteners.
  • the assembly 16 has between the connecting elements 6 slots 17, in which the arresters of the flat cells are introduced during assembly.
  • the connecting elements each have three openings 7, from which rivet pins 8 protrude.
  • These rivet mandrels are formed into rivet heads, for example by ultrasonic welding or another thermal method, in order to connect the heat sink 10 and the heat-conducting foil 11 in a positive and / or non-positive manner to the unit 16.
  • any other mechanical connection between the heat sink and the connecting elements is possible.
  • a heated nippled mold can be pressed short.
  • the connecting elements 6 each have three openings for the rivet mandrels.
  • the connecting elements may have any number of openings.
  • the rivet mandrels are preferably made of plastic, in particular POM, or may be reinforced by a metal core.
  • FIG. 3 shows a further embodiment of a structural unit 16 consisting of three connecting elements 6.
  • the structural unit is encapsulated with plastic 14 in regions, in particular at the respective ends of the connecting elements 6.
  • the plastic 14 has substantially rectangular recesses 15 in order to separate the webs 13 for a serial interconnection of the flat cells.
  • the plastic injection-molded part 14 assumes the function of pre-positioning the individual connecting elements 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Elektrochemische Energiespeichereinheit (1), umfassend eine Mehrzahl von Flachzellen (2), jeweils umfassend mindestens zwei Ableiter (4) und eine Ummantelung mit einer ersten und einer zweiten Stirnseite (5) und einer ersten und einer zweiten flächigen Seite (3), wobei die Ableiter zumindest teilweise aus der ersten und/oder zweiten Stirnseite hervortreten und über Verbindungselemente (6) elektrisch miteinander verbunden sind, dadurch gekennzeichnet, dass auf einer Stirnseite mehrere Verbindungselemente zu einer Baueinheit (16) zusammengefügt sind.

Description

Elektrochemische Energiespeichereinheit
Die Erfindung betrifft eine elektrochemische Energiespeichereinheit nach dem Oberbegriff des Anspruchs 1.
Insbesondere aus dem Bau von Kraftfahrzeugen mit elektrischem Antrieb, zum Beispiel einem Hybrid-Antrieb, sind elektrochemische Energiespeichereinheiten von hoher Leistungsdichte bekannt. Unter anderem handelt es sich dabei um Lithium-Ionen oder Lithium-Polymer Energiespeichereinheiten, die beispielsweise aus gestapelten Flachzellen bestehen.
Ferner ist es bekannt, dass bei dem für diese Einsatzzwecke geforderten Profil so viel Verlustwärme erzeugt wird, dass eine permanente Kühlung derartiger elektrochemischer Energiespeichereinheiten unumgänglich ist. Die DE 100 03 740 C1 zeigt eine Batterie mit einer Wärmeabführeinrichtung, wobei eine Mehrzahl von Batteriezellen in Serie geschaltet sind, wobei die Serienanordnung der Batteriezellen einen äußeren positiven Pol und einen äußeren negativen Pol aufweist, wobei an den Polen Zellverbinder ange- bracht sind und wobei Mittel zur Abfuhr von Verlustwärme der Serienanordnung vorgesehen sind, wobei zumindest ein Zellverbinder mit wärmeabführenden Mitteln verbunden ist.
Eine derartige Anordnung lässt jedoch noch einige Wünsche offen. Insbe- sondere wird durch die Vielzahl der Zeiiverbinder die Montage erheblich erschwert.
Es ist daher Aufgabe der Erfindung eine elektrochemische Energiespeichereinheit zur Verfügung zu stellen, bei der durch eine Verringerung der Anzahl der Teile die Montage erheblich vereinfacht wird. Ferner soll eine ausreichende Kühlung der elektrochemischen Energiespeichereinheit während der gesamten Betriebszeit gewährleistet werden.
Diese Aufgabe wird gelöst durch eine elektrochemische Speichereinheit mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
In einem Grundgedanken der Erfindung ist eine elektrochemische Energiespeichereinheit mit einer Mehrzahl von Flachzellen ausgeführt, wobei die Flachzellen jeweils mindestens zwei Ableiter und eine Ummantelung mit einer ersten und einer zweiten Stirnseite und einer ersten und einer zweiten flächigen Seite aufweisen, wobei die Ableiter zumindest teilweise aus der ersten und/oder zweiten Stirnseite hervortreten und zumindest ein Ableiter einer ersten Flachzelle mit zumindest einem Ableiter einer zweiten Flachzelle über zumindest ein Verbindungselement elektrisch miteinander verbunden sind. Im Sinne der Erfindung wird unter „flächiger Seite" die Seite der Flach- zelle mit der größeren Fläche und unter „Stirnseite" die Seite der Flachzelle mit der kleineren Fläche verstanden. Die Speichereinheit ist derart aufgebaut, dass die Flachzellen mit ihren flächigen Seiten zueinander angeordnet sind und sich somit zwei gemeinsame Stirnseiten der Flachzellen ergeben.
Erfindungsgemäß sind nun auf einer Stirnseite mehrere Verbindungselemente, die jeweils zumindest einen Ableiter einer ersten Flachzelle mit zumindest einem Ableiter einer zweiten Flachzelle elektrisch verbinden, zu einer Baueinheit zusammengefügt. Durch diese Anordnung wird eine erhebliche Re- duktion der Teile der elektrochemischen Energiespeichereinheit erreicht und die Montage erheblich vereinfacht.
In einer weiteren Ausführungsform der Erfindung sind die Verbindungselemente an ihren jeweiligen Enden durch Stege miteinander verbunden. Durch diese Anordnung entsteht eine Baueinheit mit Schlitzen, in die die Ableiter der Flachzellen eingeführt werden.
In einer bevorzugten Ausführungsform der Erfindung werden Bereiche der Baueinheit, insbesondere die Stege, mit Kunststoff umspritzt, so dass Aus- sparungen im Kunststoff ein späteres ausklinken oder ausstanzen der Stege ermöglichen. Das Entfernen der Stege ist für eine serielle Verschaltung der Flachzellen notwendig, da andernfalls eine galvanische Trennung der einzelnen Verbindungselemente nicht erreicht werden kann. Wird eine Parallelschaltung der Flachzellen angestrebt, können einzelne oder alle Stege erhal- ten bleiben. Somit kann durch einen sehr einfachen Herstellungsprozess eine serielle oder parallele Verschaltung der Energiespeichereinheit realisiert werden.
In einer weiteren Ausführungsform der Erfindung sind die Ableiter mit einem Verbindungselement stoffschlüssig, insbesondere durch ein Ultraschall- schweißverfahren, verbunden. Durch dieses Verfahren wird der Wärmeeintrag während der Montage der Speichereinheit erheblich reduziert.
In einer weiteren Ausführungsform der Erfindung sind die Verbindungsele- mente form- und/oder kraftschlüssig, insbesondere durch Niete, mit einer Wärmesenke verbunden. Durch eine derartige Anordnung wird eine thermisch effiziente Anbindung der Wärmesenke an die Verbindungselemente erreicht. Die Wärmesenke kann beispielsweise durch kühl- oder kältemitteldurchströmte Rohre, insbesondere Flachrohre, dargestellt werden. Selbst- verständlich ist es auch möglich, die Wärmesenke, die insbesondere platten- förmig ausgebildet ist, mit Kühlluft zu beströmen.
In einer weiteren Ausführungsform der Erfindung sind Wärmesenken auf beiden Stirnseiten der Flachzellen angeordnet.
In einer weiteren Ausführungsform der Erfindung ist zwischen der Wärmesenke und den Verbindungselementen, die aus Metall, bevorzugt Aluminium oder Kupfer, bestehen, eine elektrisch isolierende Wärmeleitfolie angeordnet, um Kurzschlüsse über die Wärmesenke zu vermeiden.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Weitere wichtige Merkmale der vorliegenden Erfindung ergeben sich aus der nachfolgenden detaillierten Beschreibung in Verbindung mit den Ansprüchen und den Zeichnungen. Nachfolgend werden bevorzugte Ausführungsbeispiele einer erfindungsgemäßen elektrochemischen Speichereinheit beschrieben und anhand der anliegenden Zeichnungen näher erläutert.
Es zeigen:
Fig. 1 eine schematische Vorderansicht eines Ausschnittes einer elektrochemischen Energiespeichereinheit gemäß vorliegender Erfindung entlang der Linie l-l aus Figur 2;
Fig. 2 eine schematische Draufsicht auf eine aus drei Verbindungselementen bestehende Baueinheit;
Fig. 3 eine weitere Ausführungsform einer erfindungsgemäßen Baueinheit;
Fig. 4 eine weitere Ausführungsform einer erfindungsgemäßen Baueinheit;
Fig. 1 zeigt eine schematische Vorderansicht eines Ausschnittes einer elektrochemischen Energiespeichereinheit 1 gemäß eines ersten Ausführungs- beispieles der vorliegenden Erfindung entlang der Linie l-l aus Fig. 2. Ein derartiger Energiespeicher weist eine Mehrzahl von Flachzellen 2 auf, die mit ihrer flächigen Seite 3 parallel zueinander angeordnet sind und einen Zellstapel bilden. Eine typische Energiespeichereinheit umfasst etwa vierzig Flachzellen. Es ist jedoch durchaus möglich, dass die Energiespeichereinheit mehr oder weniger als vierzig Zellen umfasst. Der Ableiter 4 wird über die Stirnseite 5 aus der Flachzelle 2 herausgeführt und über ein Verbindungselement 6 mit einem Ableiter 4 einer weiteren Zelle 2 elektrisch und mechanisch kontaktiert. Die Verbindung zwischen dem Ableiter 4 und dem Verbindungselement 6 wird durch ein stoffschlüssiges Verfahren, insbesondere durch ein Ultraschallschweißverfahren, realisiert. Natürlich ist es auch mög- lich die Verbindung durch ein anderes Verfahren, beispielsweise durch ein Lötverfahren, herzustellen.
Das Verbindungselement 6, das bevorzugt aus Kupfer oder Aluminium be- steht, ist U-förmig ausgebildet und gemäß Fig. 2 mit drei Durchbrüchen 7 versehen, die als Aufnahme für Nietdorne 8 dienen. Durch die Nietdorne 8 beziehungsweise Nietköpfe 9, die bevorzugt aus Kunststoff bestehen, wird eine mechanische Verbindung zwischen dem Verbindungselement 6 und einer Wärmesenke 10 sichergestellt. Auf die Herstellung der Nietköpfe 9 soll später eingegangen werden. Die Nietdorne 8 weisen Einfuhrscnrägen 18 für eine einfache Einführung der Ableiter 4 bei der Montage auf.
Die Flankenlänge des U-förmigen Verbindungselements 6 ermöglicht neben einer vergrößerten Kontaktierungsfläche zwischen Ableiter 4 und Verbin- dungselement 6 gleichzeitig einen Toleranzausgleich und zwar in der Art, dass die Ableiterposition parallel zur Kontaktfläche verschoben angeordnet sein kann.
Die Wärmesenke 10 ist nur schematisch dargestellt und kann beispielsweise aus einem oder mehreren Flachrohren, durch die ein Kältemittel strömt, bestehen. Natürlich ist es auch möglich die Wärmesenke mit Kühlluft zu be- strömen.
Gemäß Fig. 1 ist zwischen der Wärmesenke 10 und dem Verbindungsele- ment 6 eine Wärmeleitfolie 11 angeordnet. Die Wärmeleitfolie 11 dient einerseits dazu, die Wärme aus dem Verbindungselement 6 an die Wärmesenke 10 abzugeben und andererseits dazu, einen Kurzschluss der einzelnen Zellen über die Wärmesenke 10 zu vermeiden.
Durch diese Ausführungsform wird eine relativ einfache und bauraumsparende thermische Anbindung der Wärmesenke an die Flachzelle realisiert, da die Wärme über die Ableiter und das Verbindungselement zur Wärmesenke transportiert wird und somit auf Kühlplatten oder Umströmungskanäle für ein Kühlmedium zwischen den Flachzellen verzichtet werden kann.
Gemäß Fig. 1 werden die Flachzellen 2 zu baugleichen Zeil-Paaren zusam- mengefasst. Größere Zellstapel werden aus baugleichen Zeil-Paaren aufgebaut, wobei weitere in Fig. 1 nicht dargestellte Zellpaare über ein Vlies 12, das parallel zur flächigen Seite 3 der Flachzelle 2 angeordnet ist, angefügt werden können. Das Vlies stellt eine Ausgleichsschicht dar, mit der die Di- ckentoieranz der wenig kompressiblen Zellen durch Vorspannung ausgeglichen und damit ein Zellstapel mit gleichmäßiger Teilung dargestellt werden kann. Die gleichmäßige Teilung ist notwendig, weil jede Flachzelle definiert elektrisch kontaktiert werden muss. Weiterhin ermöglicht das Vlies eine Dickenschwankung der Zellen, die sich abhängig vom Ladezustand ergibt.
Bei dem Ausführungsbeispiel nach Fig. 1 ist die thermische Anbindung der Wärmesenke 10 an die erste Stirnseite 5 der Flachzellen 2 dargestellt. In einer nicht gezeigten Ausführungsform kann eine im Wesentlichen baugleiche thermische Anbindung an die zweite nicht dargestellte Stirnseite der Flachzellen realisiert werden.
In Fig. 2 ist eine erste Ausführungsform einer erfindungsgemäßen Baueinheit 16 aus drei Verbindungselementen 6 in einer schematischen Draufsicht dargestellt. Der Übersichtlichkeit wegen wurde in Fig. 2 auf eine Darstellung der Flachzellen 2 und der Wärmesenke 10 verzichtet. Gemäß Fig. 2 besteht die Baueinheit aus drei Verbindungselementen 6. Selbstverständlich kann eine erfindungsgemäße Baueinheit beliebig viele Verbindungselemente 6 aufweisen. Die Verbindungselemente 6 sind durch Stege 13, die insbesondere aus demselben Material wie die Verbindungselemente bestehen, mit- einander verbunden. Die Stege sind im Wesentlichen rechtwinklig beziehungsweise fluchtend zu den Verbindungselementen angeordnet und ver- binden die jeweiligen Enden der Verbindungselemente. Die Baueinheit 16 weist zwischen den Verbindungselementen 6 Schlitze 17 auf, in die die Ableiter der Flachzellen bei der Montage eingeführt werden.
Die Verbindungselemente weisen jeweils drei Durchbrüche 7 auf, aus denen Nietdorne 8 auskragen. Diese Nietdorne werden beispielsweise durch Ultraschallschweißen oder ein anderes thermisches Verfahren in Nietköpfe umgeformt, um die Wärmesenke 10 und die Wärmeleitfolie 11 form- und/oder kraftschlüssig mit der Baueinheit 16 zu verbinden. Selbstverständlich ist auch eine beliebige andere mechanische Verbindung zwischen der Wärmesenke und den Verbindungselementen möglich.
Um die Nietköpfe in einem Arbeitsgang auszuformen, kann beispielsweise eine beheizte mit Noppen versehene Form kurz aufgepresst werden.
Gemäß Fig. 2 weisen die Verbindungselemente 6 jeweils drei Durchbrüche für die Nietdorne auf. In einem nicht gezeigten Ausführungsbeispiel können die Verbindungselemente eine beliebige Anzahl an Durchbrüchen aufweisen. Die Nietdorne sind bevorzugt aus Kunststoff, insbesondere POM, oder können durch einen Metallkern verstärkt werden.
Fig. 3 zeigt eine weitere Ausführungsform einer aus drei Verbindungselementen 6 bestehenden Baueinheit 16. In dieser Ausführungsform ist die Baueinheit bereichsweise, insbesondere an den jeweiligen Enden der Ver- bindungselemente 6, mit Kunststoff 14 umspritzt. Der Kunststoff 14 weist im Wesentlichen rechtwinklige Aussparungen 15 auf, um die Stege 13 für eine serielle Verschaltung der Flachzellen trennen zu können. Eine derartige Ausführungsform ist in Fig. 4 dargestellt. Ferner übernimmt das Kunststoffspritzteil 14 die Funktion die einzelnen Verbindungselemente 6 vorzupositionieren.

Claims

P a t e n t a n s p r ü c h e
1. Elektrochemische Energiespeichereinheit (1), umfassend eine Mehrzahl von Flachzellen (2), jeweils umfassend mindestens zwei Ableiter (4) und eine Ummantelung mit einer ersten und einer zweiten Stirnseite (5) und einer ersten und einer zweiten flächigen Seite (3), wobei die Ableiter zumindest teilweise aus der ersten und/oder zweiten Stirnsei- te hervortreten und zumindest ein Ableiter einer ersten Flachzelle mit zumindest einem Ableiter einer zweiten Flachzelle über zumindest ein Verbindungselement (6) elektrisch miteinander verbunden sind, dadurch gekennzeichnet, dass auf einer Stirnseite mehrere Verbindungselemente zu einer Baueinheit (16) zusammengefügt sind.
2. Elektrochemische Energiespeichereinheit nach Anspruch 1 , dadurch gekennzeichnet, dass die Baueinheit (16) Stege (13) aufweist.
3. Elektrochemische Energiespeichereinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Baueinheit (16) Schlitze (17) aufweist.
4. Elektrochemische Energiespeichereinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Baueinheit zumindest bereichsweise mit Kunststoff (14) umspritzt ist.
5. Elektrochemische Energiespeichereinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ableiter stoffschlüssig, insbesondere durch ein Ultraschallschweißverfahren, mit einem Verbindungselement verbunden sind.
6. Elektrochemische Energiespeächereinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verbindungselement U-förmig, I-förmig, L-förmig oder kastenförmig ausgebildet ist.
7. Elektrochemische Energiespeichereinheit nach einem der vorherge- henden Ansprüche, dadurch gekennzeichnet, dass das Verbindungselement aus Metall, insbesondere aus Kupfer oder Aluminium, besteht.
8. Elektrochemische Energiespeichereinheit nach einem der vorherge- henden Ansprüche, dadurch gekennzeichnet, dass das Verbindungselement zumindest mittelbar mit einer Wärmesenke (10) in thermischen Kontakt steht.
9. Elektrochemische Energiespeichereinheit nach Anspruch 8, dadurch gekennzeichnet, dass die Wärmesenke plattenförmig ausgebildet ist.
10. Elektrochemische Energiespeichereinheit nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Wärmesenke aus mindestens einem fluiddurchströmbaren Rohr, insbesondere einem Flachrohr, be- steht.
11. Elektrochemische Energiespeichereinheit nach Anspruch 10, dadurch gekennzeichnet, dass das Fluid ein Kältemittel ist.
12. Elektrochemische Energiespeichereinheit nach einem der vorherge- henden Ansprüche, dadurch gekennzeichnet, dass die Wärmesenke form- und/oder kraftschlüssig, insbesondere durch Niete (8), mit dem Verbindungselement verbunden ist.
13. Elektrochemische Energiespeichereinheit nach Anspruch 12, dadurch gekennzeichnet, dass die Niete aus Kunststoff bestehen.
14. Elektrochemische Energiespeichereinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Verbindungselement und der Wärmesenke eine Wärmeleitfolie (11) angeordnet ist.
15. Elektrochemische Energiespeichereinheit nach Anspruch 14, dadurch gekennzeichnet, dass die Wärmeleitfolie elektrisch isolierend wirkt.
16. Elektrochemische Energiespeichereinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Flachzellen als Lithium-Ionen oder Lithium-Polymer-Zellen ausgebildet sind.
17. Elektrochemische Energiespeichereinheit nach einem der vorherge- henden Ansprüche, dadurch gekennzeichnet, dass zwischen benachbarten Flachzellen, insbesondere nach jeder zweiten Flachzelle, ein Vlies angeordnet ist.
PCT/EP2008/005068 2007-07-06 2008-06-24 Elektrochemische energiespeichereinheit WO2009006998A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08784536.8A EP2165379B1 (de) 2007-07-06 2008-06-24 Elektrochemische energiespeichereinheit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007031674.9 2007-07-06
DE200710031674 DE102007031674A1 (de) 2007-07-06 2007-07-06 Elektrochemische Energiespeichereinheit

Publications (1)

Publication Number Publication Date
WO2009006998A1 true WO2009006998A1 (de) 2009-01-15

Family

ID=39817042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/005068 WO2009006998A1 (de) 2007-07-06 2008-06-24 Elektrochemische energiespeichereinheit

Country Status (3)

Country Link
EP (1) EP2165379B1 (de)
DE (1) DE102007031674A1 (de)
WO (1) WO2009006998A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042270A1 (de) 2009-09-22 2011-03-31 Behr Gmbh & Co. Kg Isolationsvorrichtung und Verfahren zur Herstellung einer Isolationsvorrichtung
DE102013002152A1 (de) 2013-02-07 2014-08-07 Volkswagen Aktiengesellschaft Elektrische Speicherzelle, elektrisches Speichermodul sowie Verfahren zum Herstellen einer elektrischen Speicherzelle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034841A1 (de) 2008-07-24 2010-01-28 Behr Gmbh & Co. Kg Elektrische Energiespeichereinheit
DE102009004543A1 (de) * 2009-01-14 2010-07-15 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Spannungsversorgung eines Kraftfahrzeugs mit optimierter Wärmeabführung
DE102009013727A1 (de) 2009-03-20 2010-09-30 Clean Mobile Ag Batterie mit einem Stapel aus Flachzellen, Rahmen zur Halterung einer Flachzelle und Fahrzeug mit einer solchen Batterie
JP5448116B2 (ja) 2009-04-01 2014-03-19 エルジー・ケム・リミテッド 向上させた安全性を有するバッテリーモジュール
DE102009016868A1 (de) * 2009-04-08 2010-10-14 Li-Tec Battery Gmbh Galvanische Zelle, Zellenstapel und Kühlkörper
DE102009025579A1 (de) 2009-06-19 2010-12-23 Li-Tec Battery Gmbh Batterieanordnung sowie Verfahren zu deren Herstellung
DE102009056607B4 (de) * 2009-12-02 2014-11-13 Amphenol-Tuchel Electronics Gmbh Zellverbinderdeckel und Hochstromzellanordnung mit einem Zellverbinderdeckel
DE102009061220B3 (de) * 2009-12-02 2016-12-01 Amphenol-Tuchel Electronics Gmbh Kühlkörperadapter für eine Hochstromzellanordnung
AT510644B1 (de) * 2010-11-12 2014-01-15 Avl List Gmbh Polbrücke
DE102011016899A1 (de) * 2011-04-13 2012-10-18 Ads-Tec Gmbh Akkupack mit einer Kühlvorrichtung
DE102011085467A1 (de) * 2011-10-28 2013-05-02 Elringklinger Ag Elektrochemische Vorrichtung
DE102012212937A1 (de) 2012-07-24 2013-09-05 Continental Automotive Gmbh Batterie mit mehreren elektrischen Energiespeichern und Verfahren zum Herstellen einer solchen Batterie
DE102012018038A1 (de) 2012-09-13 2014-03-13 Daimler Ag Einzelzelle und Batterie aus einer Mehrzahl von Einzelzellen
FR3015126B1 (fr) * 2013-12-16 2018-04-27 Valeo Systemes Thermiques Dispositif de refroidissement d'un module de batterie electrique
DE102015008080A1 (de) 2015-06-25 2017-01-12 E-Wolf Gmbh Reversible Kontaktierungsanordnung für vorrangig Lithium-lonen Batterien ein Verfahren und die Verwendung reversibler Kontaktierungseinrichtungen
DE102015217790B4 (de) * 2015-09-17 2021-05-06 Volkswagen Aktiengesellschaft Anordnung zur Kühlung von Batteriezellen eines Antriebsenergiespeichers eines Kraftfahrzeuges

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771037A1 (de) * 1995-10-24 1997-05-02 Matsushita Electric Industrial Co., Ltd. Speicherbatterie mit Lüftungs- und Kühlungssystem
US20030118898A1 (en) * 1999-10-08 2003-06-26 Matsushita Electric Industrial Co., Ltd. Battery pack
EP1333520A2 (de) * 2002-02-01 2003-08-06 Nec Corporation Flachzelle und deren Verwendung in einer kombinierten Batterie
US20030190522A1 (en) * 2002-04-08 2003-10-09 Nissan Motor Co., Ltd. Thin battery connection structure and battery pack

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250151A (ja) * 1995-03-14 1996-09-27 Matsushita Electric Ind Co Ltd 密閉形アルカリ蓄電池の単位電池
US6117584A (en) * 1997-07-25 2000-09-12 3M Innovative Properties Company Thermal conductor for high-energy electrochemical cells
JP4220649B2 (ja) * 1999-06-10 2009-02-04 パナソニック株式会社 組電池
DE10003740C1 (de) 2000-01-28 2001-06-13 Daimler Chrysler Ag Batterie
US20050026014A1 (en) * 2003-07-31 2005-02-03 Michael Fogaing Polymer batteries having thermal exchange apparatus
JP4036805B2 (ja) * 2003-08-05 2008-01-23 三洋電機株式会社 パック電池
JP4728758B2 (ja) * 2005-05-10 2011-07-20 日本電気株式会社 電気デバイスモジュールの製造方法及び電気デバイスモジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771037A1 (de) * 1995-10-24 1997-05-02 Matsushita Electric Industrial Co., Ltd. Speicherbatterie mit Lüftungs- und Kühlungssystem
US20030118898A1 (en) * 1999-10-08 2003-06-26 Matsushita Electric Industrial Co., Ltd. Battery pack
EP1333520A2 (de) * 2002-02-01 2003-08-06 Nec Corporation Flachzelle und deren Verwendung in einer kombinierten Batterie
US20030190522A1 (en) * 2002-04-08 2003-10-09 Nissan Motor Co., Ltd. Thin battery connection structure and battery pack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042270A1 (de) 2009-09-22 2011-03-31 Behr Gmbh & Co. Kg Isolationsvorrichtung und Verfahren zur Herstellung einer Isolationsvorrichtung
US9269939B2 (en) 2009-09-22 2016-02-23 Mahle International Gmbh Insulating device and method for producing an insulating device
DE102013002152A1 (de) 2013-02-07 2014-08-07 Volkswagen Aktiengesellschaft Elektrische Speicherzelle, elektrisches Speichermodul sowie Verfahren zum Herstellen einer elektrischen Speicherzelle

Also Published As

Publication number Publication date
EP2165379A1 (de) 2010-03-24
EP2165379B1 (de) 2014-09-10
DE102007031674A1 (de) 2009-01-08

Similar Documents

Publication Publication Date Title
EP2165379B1 (de) Elektrochemische energiespeichereinheit
EP2026387B1 (de) Elektrochemische Energiespeichereinheit
EP2153487B1 (de) Elektrochemische energiespeichereinheit mit kühlvorrichtung
EP2550697B1 (de) Batterie mit einer mehrzahl von einzelzellen
EP2789029B1 (de) Batterie und zellblock für eine batterie
DE102011013845B4 (de) Batteriemodul und vorrichtung sowie verfahren zum zusammenbauen eines batteriemoduls
AT512028B1 (de) Elektrischer energiespeicher
EP2541669B1 (de) Kühlvorrichtung für eine Fahrzeugbatterie, Fahrzeugbatterie sowie Verfahren zur Herstellung einer Kühlvorrichtung
DE102007050400A1 (de) Vorrichtung zur elektronischen Energiespeicherung
DE102007001590A1 (de) Elektrischer Energiespeicher
EP2367220B1 (de) Kühleelement und Energiespeicher
DE102008034875A1 (de) Batterie, insbesondere Fahrzeugbatterie
DE102011076580A1 (de) Energiespeichermodul aus mehreren prismatischen Speicherzellen
DE102013021549A1 (de) Hochvoltbatterie
DE102012218082A1 (de) Trägerelement für eine elektrische Energiespeicherzelle mit Kühlkanälen mit einem nicht kreisförmigen Querschnitt, elektrischer Energiespeicher und Herstellverfahren für ein Trägerelement
WO2011116807A1 (de) Einzelzelle und batterie mit einer mehrzahl von einzelzellen
DE102012200400A1 (de) Anordnung eines elektrischen Energiespeichers und einer Kühleinrichtung
DE202017105488U1 (de) Batteriezellenanordnung
DE102009035461A1 (de) Batterie mit einer Vielzahl von Batterieeinzelzellen
DE102018105044A1 (de) Akkumulator, insbesondere für ein Kraftfahrzeug und Kraftfahrzeug umfassend einen solchen Akkumulator
DE102015217790B4 (de) Anordnung zur Kühlung von Batteriezellen eines Antriebsenergiespeichers eines Kraftfahrzeuges
DE102010050998A1 (de) Batterie mit einem Zellverbund
WO2019015832A1 (de) Batteriezellenanordnung
DE102010013028A1 (de) Zellverbund mit einer vorgebbaren Anzahl von parallel und/oder seriell miteinander verschalteten Einzelzellen
WO2019228823A1 (de) Elektrischer energiespeicher

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08784536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008784536

Country of ref document: EP