WO2009004938A1 - 単糖類および/または水溶性多糖類の製造方法ならびにスルホン酸基含有炭素質材料の製造方法 - Google Patents

単糖類および/または水溶性多糖類の製造方法ならびにスルホン酸基含有炭素質材料の製造方法 Download PDF

Info

Publication number
WO2009004938A1
WO2009004938A1 PCT/JP2008/061380 JP2008061380W WO2009004938A1 WO 2009004938 A1 WO2009004938 A1 WO 2009004938A1 JP 2008061380 W JP2008061380 W JP 2008061380W WO 2009004938 A1 WO2009004938 A1 WO 2009004938A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfonic acid
acid group
carbonaceous material
containing carbonaceous
water
Prior art date
Application number
PCT/JP2008/061380
Other languages
English (en)
French (fr)
Inventor
Shinichirou Yanagawa
Hidesato Kondo
Michikazu Hara
Original Assignee
Nippon Oil Corporation
Tokyo Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation, Tokyo Institute Of Technology filed Critical Nippon Oil Corporation
Priority to JP2009521579A priority Critical patent/JPWO2009004938A1/ja
Publication of WO2009004938A1 publication Critical patent/WO2009004938A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated

Definitions

  • the present invention relates to a method for producing monosaccharides and / or water-soluble polysaccharides by hydrolysis of polysaccharides using carbonaceous materials containing sulfonic acid groups obtained by carbonizing and sulfonating woods and / or herbs. And a method for producing the sulfonic acid group-containing carbonaceous material.
  • Sulfuric acid is an important catalyst widely used in various chemical reactions. However, generally required in large quantities, there is a problem of corrosion of the equipment, separation from the product after the reaction, recovery, purification, reuse process, neutralization of sulfuric acid remaining in the product, In addition, there are many problems such as requiring steps such as removal and disposal of salt produced thereby, and wastewater treatment, and that these steps require a lot of energy.
  • the solid acid catalyst can be used as a substitute for a mineral acid catalyst such as sulfuric acid, so that there is no corrosion of the equipment, and various steps after the above reaction are omitted or greatly simplified.
  • a mineral acid catalyst such as sulfuric acid
  • Typical solid acids include inorganic compounds such as silica, alumina, crystalline aluminosilicate (zeolite), and heteropolyacid, and resin compounds such as ion exchange resins.
  • Non-Patent Document 1 Non-Patent Document 1
  • Non-Patent Document 1 Non-Patent Document 1
  • there is a problem of corrosion of the equipment by sulfuric acid and it requires many steps such as separation, recovery, purification, concentration, and reuse of sulfuric acid catalyst from reaction products.
  • the method using phosphoric acid as a catalyst has the same problem as when sulfuric acid is used as a catalyst.
  • solid acid catalysts are used as a means to solve the above problems that occur when mineral acid catalysts such as sulfuric acid are used in chemical reactions, and they are used in chemical reactions that use water as a raw material.
  • a strong acid cation exchange resin can be mentioned.
  • ion exchange resins have poor heat resistance, so the usable temperature range is narrow, expensive, and there are problems such as insufficient activity depending on the reaction, so it is not widely used as a substitute for mineral acid catalysts such as sulfuric acid. There is no current situation.
  • investigation with a solid acid catalyst has not been made so far because cellulose is a solid.
  • Patent Document 1 Special Table 1 1 1 5 0 6 9 3 4
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-0 1 1 0 0 0 1 1
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 4-2 3 8 3 1 1
  • Patent Document 4 Japanese Patent Application Laid-Open No. 10-6 6 5 94
  • Non-Patent Document 2 Tada, M., Takagaki, A., Okamura, M., Kondo, J., Hayash i, S., Doraen, K., Hara, M., Nature, 483, 178 (2005)
  • Non-Patent Document 4 Yoshikazu Hara et al., The 86th Annual Meeting of the Chemical Society of Japan 2D 1-38, (2004) Disclosure of Invention
  • the object of the present invention is to use an inexpensive, large-volume, and stably available material as a raw material for the sulfonic acid group-containing carbonaceous material.
  • An industrially useful sulfonic acid group-containing carbonaceous material having a water content is produced, and an inexpensive method for hydrolyzing a polysaccharide is provided using the carbonaceous material.
  • the present inventors have conducted intensive research.
  • the present invention includes a case in which woody materials and / or herbs are carbonized and sulfonated and inexpensive and conventional raw materials are used.
  • a sulfonic acid group-containing carbonaceous material having equivalent hydrolysis performance
  • polysaccharides including cellulose in the presence of the sulfonic acid group-containing carbonaceous material obtained by the production method. From the above, it was found that monosaccharides and Z or water-soluble polysaccharides can be obtained at a low cost and with the same efficiency as when a conventional sulfonic acid group-containing carbonaceous material is used.
  • raw materials for sulfonic acid group-containing carbonaceous materials include organic low-molecular weight compounds such as aromatic hydrocarbons, petroleum heavy hydrocarbon mixtures such as heavy oil, sugars such as glucose, and natural organic substances such as starch and cellulose.
  • organic low-molecular weight compounds such as aromatic hydrocarbons, petroleum heavy hydrocarbon mixtures such as heavy oil, sugars such as glucose, and natural organic substances such as starch and cellulose.
  • none of these raw materials are sufficiently inexpensive raw materials to be applied to bioethanol production methods and the like to produce the target at a lower cost than sulfuric acid.
  • a sulphonic acid group-containing carbonaceous material which is significantly less expensive than before, can be obtained by a manufacturing method based on a completely new viewpoint, in which tree owners and herbs are applied to the raw material of the material without treatment. Successful.
  • the first of the present invention is a method of hydrolyzing a polysaccharide using a sulfonic acid group-containing carbonaceous material obtained by carbonizing and sulfonating woods and Z or herbs to monosaccharides and / or This is a method for producing a water-soluble polysaccharide.
  • the carbonization treatment is performed at a temperature of 300 to 600 ° C., and then with concentrated sulfuric acid or fuming sulfuric acid, 40 to 25 to 50 ° C.
  • the sulfonation treatment is performed at a temperature of 1.
  • a third aspect of the present invention is a method for producing a sulfonic acid group-containing carbonaceous material, characterized in that woods and / or herbs are carbonized and sulfonated.
  • the carbonization treatment is performed at a temperature of 300 to 600 ° C., and thereafter, concentrated sulfuric acid or fuming sulfuric acid is used at a temperature of 40 to 250.
  • a method for producing a sulfonic acid group-containing carbonaceous material, wherein the sulfonation treatment is performed.
  • the sulfonic acid group-containing carbonaceous material used in the present invention can be easily and inexpensively produced, the material can be supplied in large quantities for industrial use, and various chemical reactions as a solid acid catalyst, especially a polysaccharide containing cellulose. When used as a catalyst in these reactions, there is no need for neutralization and purification steps after the reaction, and the catalyst can be reused.
  • the target product can be produced efficiently and at low cost without any problems.
  • the method for producing a sulfonic acid group-containing carbonaceous material used in the present invention is a method of carbonizing and sulfonating a woody material and / or herbaceous material as a starting material.
  • the methods disclosed in the non-patent literature can be used.
  • the starting materials for carbonaceous materials containing sulfonic acid groups are woods and Z or herbs. is there.
  • the term “woods” and “Z” or “herbs” as used herein refers to all plants mainly composed of lignocellulose, and any plant that can be carbonized and sulfonated can be used.
  • woody species both coniferous trees and broad-leaved trees can be used. Specific examples include eucalyptus, cedar, pine, pine pine, acacia, hinoki, bamboo shoots, geese, bamboo shoots, and bamboo. These trees can be used directly after they have been cut down, or can be used after being used for other purposes, such as aggregates and boards such as construction waste.
  • Herbs include rice straw and wheat straw, agricultural products such as bagasse (sugar cane squeezed), rice husks and onion cob, and Lin Yuichi (short fiber growing on cotton seeds). can give.
  • waste materials rich in plant fibers obtained from products processed from plant fibers such as waste paper and waste pulp, can also be used.
  • the particle size of these starting materials is not particularly limited as long as a carbonization process is possible, but it is preferably 0.1 mm or more and less than 1 m. If it is less than 0.1 mm, the pulverization process of wood or grass is not preferable because it is expensive, and if it is 1 m or more, the carbonization process is difficult, it is not preferable.
  • the sulfonic acid group-containing carbonaceous material can be produced by a method according to the method disclosed in Non-Patent Document 4 and the like.
  • the carbonization of the organic material as a starting material is performed by heat treatment in an atmosphere of an inert gas such as nitrogen, whereby an amorphous black solid (carbide) is obtained.
  • the sulfonation treatment of the carbide is carried out by heat treatment in concentrated sulfuric acid or fuming sulfuric acid, whereby sulfonic acid groups are introduced into the carbide skeleton.
  • Carbonization and sulfonation can be performed independently or simultaneously as a single step.
  • preferred embodiments for the case where the carbonization treatment and the sulfonation treatment are performed in different processes will be described below.
  • Heating for carbonization treatment is preferably an inert gas atmosphere such as nitrogen or argon. In the air, the temperature is 3 00 to 60 ° C.
  • the temperature of carbonization treatment is less than the lower limit of the above range, the heat resistance of the sulfonic acid group-containing carbonaceous material obtained by sulfonation treatment is inferior, or there are many components dissolved in water or organic matter. It tends to cause problems.
  • a temperature exceeding the upper limit of the above range a sufficient amount of sulfonic acid groups cannot be imparted when sulfonating this, and the resulting sulfonic acid group-containing carbonaceous material is subjected to hydrolysis reaction. There is a tendency that the catalytic activity against is insufficient.
  • the heating time for the carbonization treatment is 1 to 100 hours, preferably 2 to 30 hours. If the carbonization time is less than the lower limit of the above range, the heat resistance of the sulfonic acid group-containing carbonaceous material obtained by sulfonating this is inferior or dissolved in water or organic matter. Tend to cause problems such as On the other hand, the necessary carbonization proceeds sufficiently in the upper limit of the above range, and it is not necessary to spend more time than that, and at the same time, excess energy is consumed, which is not preferable.
  • concentrated sulfuric acid or fuming sulfuric acid is generally used as the sulfonating agent used for the sulfonation treatment.
  • the amount of concentrated sulfuric acid or fuming sulfuric acid to be used is not particularly limited, but is 2 to 100 times (mass ratio), preferably 5 to 80 times the amount of carbide to be sulfonated.
  • mass ratio mass ratio
  • a sufficient amount of sulfonic acid groups cannot be imparted to the carbide, and the resulting sulfonic acid group-containing carbonaceous material has insufficient catalytic activity for various chemical reactions. It tends to be.
  • the upper limit of this range is exceeded, excessive concentrated sulfuric acid or fuming sulfuric acid will be used, which is not preferable because it increases costs including the treatment of used sulfuric acid.
  • the temperature of the sulfonation treatment is 40 to 25 ° C., preferably 80 to 200 ° C.
  • the temperature of the sulfonation treatment is less than the lower limit of this range, a sufficient amount of sulfonic acid groups cannot be imparted to the carbide, and the catalyst for various chemical reactions of the resulting sulfonic acid group-containing carbonaceous material. The tendency to become inactive In the direction.
  • the temperature exceeds the upper limit of this range, the added sulfonic acid group tends to decompose.
  • the sulfonation treatment time is preferably 5 minutes to 30 hours. If the time of the sulfonation treatment is less than the lower limit of this range, sufficient sulfonic acid groups cannot be imparted to the carbide, and the resulting sulfonic acid group-containing carbonaceous material has catalytic activity for various chemical reactions. It tends to be insufficient. On the other hand, the necessary sulfonation is sufficiently advanced in the upper limit of this range, and it is not necessary to spend more time.
  • excess sulfuric acid is preferably removed by washing with hot water, and further dried to obtain the sulfonate group-containing carbonaceous material of the present invention.
  • Washing with hot water is easy to carry out under reflux at about 10 ° C., for example, by a soxle extraction method. Washing time can be shortened by washing at higher temperatures under pressure.
  • the shape of the sulfonic acid group-containing carbonaceous material of the present invention varies depending on the raw material, but when prepared from a powder raw material, the shape is a powder.
  • the shape thereof may be as it is, or may be formed into granules, spheres, plates, pellets, etc.
  • the powder state is preferable in terms of reaction efficiency.
  • the molding may be performed by blending an inorganic substance called a binder.
  • This binder is formulated for the purpose of improving moldability, improving the strength of the molded catalyst, and improving mechanical properties such as friction resistance.
  • Alumina, Alumina-Polyer, Siri-Power, Alumina, etc. Preferably used.
  • pulverization may be carried out at any stage, but preparation after the carbonization process or after the washing process is easy.
  • the average particle diameter is preferably 0.1 to 100; m.
  • the grinding method is not particularly limited, but general mechanical grinding methods such as automatic mortar, pole mill, hammering, and cutting can be used.
  • the sulfonic acid group-containing carbonaceous material of the present invention cannot be confirmed from any X-ray diffraction pattern, and is substantially amorphous.
  • the acid group content is lmmo 1 / g or more. When the acid group content is less than the lower limit of the above range, the activity for the hydrolysis reaction tends to be insufficient.
  • the acid group content here is a value obtained by measuring a sulfonic acid group-containing carbonaceous material by a back titration method. The content of the combined carboxylic acid group and phenolic hydroxyl group.
  • the desirable sulfonic acid content of the sulfonic acid group-containing carbonaceous material of the present invention is 0.5 mmo 1 / g or more.
  • the sulfonic acid content is a value determined by measuring the ion exchange capacity using sodium chloride.
  • the amount of sulfonic acid is the number of the acid group content.
  • the sulfur Z carbon element ratio (molar ratio) of the sulfonic acid group-containing carbonaceous material is a measure of the sulfonic acid group content added to and introduced into the sulfonic acid group-containing carbonaceous material.
  • the sulfur Z carbon atom ratio (molar ratio) of the sulfonic acid group-containing carbonaceous material of the present invention is
  • the sulfonic acid group-containing carbonaceous material obtained as described above can be manufactured at a low cost because of an inexpensive starting material and a simple manufacturing method.
  • mineral acid There is no problem of corrosion of the equipment as in the medium, and it is easy to separate, recover, regenerate and reuse the catalyst compared to the mineral acid catalyst, and it is also difficult to cause problems such as wastewater treatment.
  • the raw material for the hydrolysis reaction of the present invention is a polysaccharide, but is not particularly limited as long as it is a material having a 6 1 -4 glycosidic bond.
  • water-soluble materials such as cellobiose and cellotriose, polymer materials such as cellulose and hemicellulose, or lignocellulose combined with lignin.
  • Cellulose in particular constitutes a major part of plant biomass, which is often present in close association with hemicellulose and lignin in the plant body.
  • Specific examples of the plant-derived material comprising cellulose and Z or hemicellulose used as a raw material of the present invention and these and lignin include wood materials (including waste materials), waste paper, rice straw, wheat straw, and fir tree.
  • the ratio of water to the substrate used for hydrolysis is not particularly limited, it is usually 0.1 to 100 in terms of a molar ratio to the equivalent of ester bond or ether bond contained in the substrate.
  • the raw material polysaccharide is a solid material
  • its shape is preferably fine so that the hydrolysis reaction can proceed rapidly.
  • the number average particle diameter is preferably 0.1 / xm to lcm.
  • the mechanical energy required for powdering is large and impractical, and when the number average particle size is larger than 1 cm, the rate of hydrolysis reaction is not sufficient. It ’s not good.
  • the method of micronization is not particularly limited, but automatic mortar, ball mill Commonly known mechanical dusting techniques such as steel, hammering, cutter mill, and cutting are commonly used. Further, it can be mixed with a sulfonic acid group-containing carbonaceous material in advance and then pulverized, and it can be pulverized to a predetermined particle diameter during the reaction by applying a mechanical pressure.
  • the water used for the hydrolysis reaction of the present invention is not particularly limited, but distilled water (including condensed water of a steam generator), ion exchange water, and the like are preferably used. Further, when the aqueous solution containing the reaction product is concentrated in the step after the hydrolysis reaction step, the water removed and recovered by the concentration may be circulated and used. Furthermore, if the raw material contains a large amount of water, it is also possible to use that water as part of the hydrolyzed material.
  • the ratio of the raw material polysaccharide to the sulfonic acid group-containing carbonaceous material is from 1: 0.1 to 1: 100. And preferably 1: 1 to 1:30. If the sulfonic acid group-containing carbonaceous material, which is a catalyst, is less than 1 Z 10 relative to the raw material, the hydrolysis reaction does not proceed at a sufficient rate, and if it exceeds 100 times the raw material, This is not preferable because the equipment cost of the reactor and other equipment with a large amount increases and the energy cost required for heating and cooling also increases.
  • the ratio of polysaccharide to water (polysaccharide: water), which is a raw material in the hydrolysis reaction of polysaccharides, depends on the amount of catalyst added, but cannot be defined unconditionally. However, the mass ratio is 1: 0.1-1: 1 0. If the water-to-polysaccharide mass ratio is less than 1 Z 10, not only is sufficient water available for the hydrolysis reaction, but efficient stirring in the reactor becomes difficult. When the mass ratio of water to polysaccharide exceeds 10 Z 1, the acid concentration in the reaction system decreases and the hydrolysis reaction efficiency decreases.
  • the reaction temperature in the hydrolysis reaction of the polysaccharide is 20 to 25 ° C., preferably 80 to 150 ° C. At 20 and lower temperatures, the hydrolysis reaction does not proceed at a sufficient rate. Further, a temperature higher than 2500 ° C. is not preferable because the sulfonic acid group-containing carbonaceous material is deteriorated or the monosaccharide formed is further decomposed.
  • the reaction pressure in the hydrolysis reaction of the polysaccharide is not particularly specified, but when the reaction is carried out at a temperature of 100 ° C. or higher, it is preferably a pressure higher than atmospheric pressure in order to avoid water evaporation. .
  • the form of the reactor for carrying out the hydrolysis reaction of the polysaccharide of the present invention is not particularly limited, but may be any of batch type, continuous type and semi-continuous type. Further, it may have any shape such as a tank reactor, a tower reactor, or a loop reactor.
  • the type of contact between the sulfonic acid group-containing carbonaceous material and the raw material polysaccharide may be either a suspension phase or a stirring phase.
  • a form in which the catalyst is suspended in a tank reactor equipped with stirring equipment is preferably employed.
  • the reaction time in the polysaccharide hydrolysis reaction is 5 minutes to 100 hours, preferably 5 minutes to 48 hours, when a tank reactor having a stirring device is used. If the time is shorter than 5 minutes, the hydrolysis reaction does not proceed sufficiently. If the time is longer than 100 hours, the reaction tank becomes larger and the energy cost increases, and the residence time becomes longer. The produced monosaccharide is further decomposed to reduce the yield of monosaccharide, which is not preferable.
  • the cost of catalyst production is reduced by using a sulfonic acid group-containing carbonaceous material that is cheaper than that obtained by the conventional production method as a catalyst.
  • the high heat resistance which is the advantage of conventional sulfonic acid group-containing carbonaceous materials, realizes operation at high temperatures and downsizing of the reactor by improving the reaction speed.
  • E 1 er nt ar vari i EL was used.
  • the results were expressed as the ratio of sulfur atom to carbon atom (sulfur Z carbon ratio). This value is a measure of the sulfonic acid group content added to and introduced into the sulfonic acid group-containing carbonaceous material.
  • Raman spectroscopic analysis was performed for the purpose of examining the degree of graphitization.
  • a laser-Raman spectroscopy analyzer HOLOLAB 5000 R was used for the analysis.
  • the peak intensity ratio between the D peak near 1400 cm- 1 and the G peak near 1580 cm- 1 was used as a measure of the degree of graphitization. It is said that graphitization proceeds as the intensity of the D peak with respect to the G peak increases. It is recognized that the catalytic activity of the sulfonic acid group-containing carbonaceous material decreases when the intensity is too large.
  • a preferred intensity ratio is 0.7 or less.
  • the sulfonic acid content was determined by ion exchange capacity measurement using a sodium chloride solution. A predetermined amount of the sulfonic acid group-containing carbonaceous material was added to the sodium chloride solution, and the mixture was stirred for a certain period of time to exchange sulfonic acid group protons and sodium ions. Thereafter, the amount of HC 1 produced by ion exchange was quantified by neutralization titration to determine the amount of sulfonic acid.
  • the ion exchange reaction is represented by the following formula. R-SO3H + NaC 1 ⁇ R-SO s Na + HC 1 [Reaction Formula 1] (where R is a carbon residue of the sulfonic acid group-containing carbonaceous material).
  • Powder X-ray diffraction analysis From the diffraction pattern, no peak that could identify the structure was detected, and it was found to be substantially amorphous. Similarly, the sulfonic acid group-containing carbonaceous materials B to D obtained in Examples 2 and 3 and Comparative Example 1 described later were substantially amorphous.
  • Table 1 shows the results of measuring the sulfonic acid content determined by the ion exchange capacity measurement described above. The results for the sulfonic acid group-containing carbonaceous materials obtained in other examples and comparative examples are also shown in Table 1.
  • Table 1 shows the results.
  • the results for the sulfonic acid group-containing carbonaceous materials obtained in Examples 2 and 3 and Comparative Example 1 are also shown in Table 1.
  • the intensity of the D peak The intensity of the ZG peak was 0.7 or less.
  • Example 2 In place of the sulfonic acid group-containing carbonaceous material A as a catalyst, the sulfonic acid group-containing carbonaceous materials B, C, and D obtained in Examples 2 and 3 and Comparative Example 1 were used. Under the same conditions and operating method as in Example 1, cellulose hydrolysis was performed. Table 2 shows the amount of dalcose generated per unit catalyst amount per unit time.
  • Example 2 Cellulose hydrolysis reaction was performed under the same conditions as in Example 1 using concentrated sulfuric acid and “Amb er 1 y st 15 E (manufactured by Roam and Haas)” which is a strong solid acid as a catalyst.
  • Amb er 1 y st 15 E manufactured by Roam and Haas
  • Comparative Example 2 using a sulfuric acid catalyst the same amount of catalyst as in Example 1 was used.
  • the sulfonic acid group-containing carbonaceous material used in the present invention is the same as the conventional sulfonic acid group-containing carbonaceous material derived from a cellulose raw material, even though wood is used as a raw material directly without purification. It is clear that the polysaccharide has hydrolysis reaction activity to the extent that monosaccharides and Z or water-soluble polysaccharides can be produced in high yields. It was found that monosaccharides and Z or water-soluble polysaccharides can be produced at a much lower cost than when they are used. It has also been found that the present invention makes it possible to produce a sulfonic acid group-containing carbonaceous material inexpensively from unpurified woods or herbs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Saccharide Compounds (AREA)
  • Catalysts (AREA)

Abstract

 多糖類を加水分解して単糖類および/または水溶性多糖類を安価に製造する方法を提供する。すなわち、木本類や草本類を精製せずに炭化処理およびスルホン化処理することにより、上記スルホン酸基含有炭素質材料を安価に製造し、それにより安価に単糖類および/または水溶性多糖類を製造することが出来る。

Description

明細書 単糖類およびノまたは水溶性多糖類の製造方法ならびにスルホン酸基含有炭 素質材料の製造方法 技術分野
本発明は木本類および/又は草本類を炭化処理及びスルホン化処理して得 られるスルホン酸基含有炭素質材料を用いた多糖類の加水分解による単糖類 および/または水溶性多糖類の製造方法ならびに当該スルホン酸基含有炭素 質材料の製造方法に関する。 背景技術
硫酸は様々な化学反応に広く用いられている重要な触媒である。 しかし一 般的に大量に必要とすること、 装置の腐食の問題があること、 反応後の生成 物からの分離、 回収、 精製、 再利用の工程、 生成物中に残留する硫酸の中和、 およびそれにより生成する塩の除去および廃棄、 排水処理などの工程を必要 とすること、 さらにこれら工程では多くのエネルギーを要することなど多く の問題がある。
固体酸触媒は、 硫酸等の鉱酸触媒の代替として利用することにより、 装置 の腐食がなく、 上記の反応後の種々の工程が省略もしくは大幅に簡略化され ることから、 各種化学反応に対する触媒として有用であり、 様々な固体酸が 開発されている。 代表的な固体酸としては、 シリカ,アルミナ、 結晶性アル ミノ珪酸塩 (ゼオライト) 、 ヘテロポリ酸、 などの無機化合物やイオン交換 樹脂などの樹脂系化合物がある。
一方、 近年の地球環境問題、 特に二酸化炭素排出の削減等に関連して、 再 生可能資源であるバイオマスを活用する技術の開発が行われている。 その中 で、 バイオマスを構成する主成分であるセルロース類を加水分解することに より単糖類を得、 これを原料に発酵法によりバイオエタノールあるいは L一 乳酸等を製造する方法が提案されている。 この方法における第一の段階、 即 ちセルロース系原料から単糖類を得る工程については、 セルラ一ゼ等のセル ロース加水分解能を有する酵素を用いる方法 (特許文献 4 ) 、 硫酸を触媒に 用いる加水分解方法 (例えば特許文献 1 ) 、 リン酸を触媒に用いる加水分解 方法 (特許文献 2 ) 等が提案されている。 しかし酵素を用いる方法は、 高価 な酵素を使用すること、 反応効率が必ずしも高くないことなどが問題点であ る。
そのような中で、 硫酸を触媒に用いる方法はより実現性の高い方法として、 精力的に技術開発が進められており (非特許文献 1 ) 、 反応効率の点で酵素 法に比較して優れるが、 上述の通り、 硫酸による装置の腐食の問題があり、 硫酸触媒の反応生成物からの分離、 回収、 精製、 濃縮、 再利用等の多くのェ 程を必要とし、 これらの工程にはイオン交換樹脂等の高価な資材を使用し、 また多くのエネルギーを要することなどの問題があり、 さらには排水処理、 場合により硫酸の中和により発生する産業廃棄物等の問題もあり、 実用化に は至っていない。 リン酸を触媒に用いる方法も硫酸を触媒に用いる場合と同 様の問題がある。
一般的に、 化学反応に硫酸等の鉱酸触媒を使用する場合に発生する上記の ような問題点を解決する手段として固体酸触媒の利用があり、 水を原料に使 用する化学反応に使用される代表的な固体酸触媒として、 強酸型陽イオン交 換樹脂が挙げられる。 しかしイオン交換樹脂は耐熱性に乏しいため使用可能 な温度領域が狭い、 高価である、 反応によっては活性が十分でない等の問題 があり、 硫酸等の鉱酸触媒の代替手段として広く使用されてはいないのが現 状である。 またセルロース類の加水分解反応に対しては、 セルロースが固体 であることから、 固体酸触媒による検討はこれまでなされていない。
一方、 最近芳香族化合物や糖類などの有機物を出発原料とし、 これを炭化 およびスルホン化して得られるスルホン酸基含有炭素質材料が開発され、 触 媒として高活性であり、 イオン交換樹脂に比較して耐熱性に優れ、 また低コ ストである等の特徴から注目を集めている。 このスルホン酸基含有炭素質材 料を触媒に用いた化学反応としては、 酢酸および高級脂肪酸のエタノールに よるエステル化反応、 酢酸シクロへキシルの加水分解反応、 2, 3—ヂメチ ルー 2—プテンの水和反応、 ァニソ一ルのべンジルアルコールによるアルキ ル化が開示されている (特許文献 3、 非特許文献 2、 非特許文献 3 ) 。
一方で、 将来大量の使用が推測されるバイォェ夕ノールの工業的製造にス ルホン酸基含有炭素質材料を適用する際には、 スルホン酸基含有炭素質材料 のより安価な製造法かつ大量のスルホン酸基含有炭素質材料の製造に対して 十分に供給可能な原料が求められる。 しかしな力 Sら、 これまでに示されてい るスルホン酸基含有炭素質材料の原料は、 グルコース、 セルロース、 リグ二 ンなどいずれも精製された原料であり、 本目的に対しては十分に安価とはい えず、 工業的に適合する原料は提案されていない。
[特許文献 1 ]特表平 1 1一 5 0 6 9 3 4号公報
[特許文献 2 ]特開平 1 0— 1 1 0 0 0 1号公報
[特許文献 3 ]特開 2 0 0 4 - 2 3 8 3 1 1号公報
[特許文献 4 ]特開平 1 0— 6 6 5 9 4号公報
[非特許文献 1 ] N E D〇平成 1 3年度成果報告書、 「バイオマスェネル ギ一高効率転換技術開発 Zセルロース系バイオマスを原料とする新規なエタ ノール発酵技術の開発 Z前処理 ·糖化 ·エタノール発酵技術の開発」
[非特許文献 2 ] Tada, M., Takagaki, A., Okamura, M., Kondo, J. , Hayash i, S. , Doraen, K. , Hara, M. , Nature, 483, 178 (2005)
[非特許文献 3 ]高垣 敦, 原 亨和, PETROTECH, 29, 411 (2006)
[非特許文献 4 ]原 享和他、 日本化学会第 86回春季年次大会予稿集 2D 1-38, (2004) 発明の開示 本発明の課題は、 スルホン酸基含有炭素質材料の原料として安価でかつ大 量にかつ安定的に入手可能な材料を使用することにより、 従来原料を用いた よりも安価でかつ同等以上の性能を有する工業的に有用なスルホン酸基含有 炭素質材料を製造し、 それを用いて安価な多糖類の加水分解法を提供するこ とにある。
上記従来技術の問題点に鑑み、 本発明者らは鋭意研究を行った結果、 木本 類および/又は草本類を炭化処理およびスルホン化処理することにより安価 でかつ従来の原料を用いた場合と同等の加水分解性能を有するスルホン酸基 含有炭素質材料が得られること、 さらにはその製法で得られるスルホン酸基 含有炭素質材料の存在下に、 セルロース類を含む多糖類を加水分解反応する ことにより、 安価でかつ従来のスルホン酸基含有炭素質材料を用いた場合と 同等の効率で単糖類および Zまたは水溶性多糖類が得られることを見出した。 従来、 スルホン酸基含有炭素質材料の原料には、 芳香族炭化水素等の有機 低分子量化合物、 重油等の石油系重質炭化水素混合物、 グルコース等の糖 類 ·デンプン 'セルロース等の天然有機物などが提案されているが、 いずれ の原料もバイォエタノールの製造方法などに適用して硫酸等よりも安価に目 的物を製造するためには、 十分に安価な原料であるとはいえない。 しかしな がら、 木主類や草本類を未処理のまま本材料の原料に適用するという全く新 しい視点による製造方法により、 従来よりも大幅に安価なスルホン酸基含有 炭素質材料を得ることに成功した。 さらに本材料を固体酸触媒として多糖類 の加水分解に使用することにより、 従来のスルホン酸基含有炭素質材料と同 等以上の加水分解活性を有することを見出し、 本発明を完成するに至つた。 すなわち、 本発明の第 1は、 木本類および Z又は草本類を炭化処理および スルホン化処理して得られるスルホン酸基含有炭素質材料を用いて多糖類を 加水分解して単糖類および/または水溶性多糖類を製造する方法である。 本発明の第 2は、 本発明の第 1において、 3 0 0〜6 0 0 °Cの温度におい て前記炭化処理を行い、 その後濃硫酸又は発煙硫酸により、 4 0〜2 5 0 °C の温度において前記スルホン化処理を行うことを特徴とする方法である。 本発明の第 3は、 木本類および 又は草本類を炭化処理およびスルホン化 処理することを特徴とするスルホン酸基含有炭素質材料の製造方法である。 本発明の第 4は、 本発明の第 3において、 3 0 0〜6 0 0 °Cの温度におい て前記炭化処理を行い、 その後濃硫酸又は発煙硫酸により、 4 0〜 2 5 0 の温度において前記スルホン化処理を行うことを特徴とするスルホン酸基含 有炭素質材料の製造方法である。
本発明に用いるスルホン酸基含有炭素質材料は、 簡便かつ安価に製造でき るため、 工業用として大量に本材料を供給可能であり、 固体酸触媒として各 種化学反応、 中でもセルロースを含む多糖類の加水分解反応に対し高い活性 を有し、 これらの反応に触媒として用いた場合には、 反応後の中和、 精製ェ 程が不要で、 触媒の再利用が可能であり、 装置の腐食の問題もなく、 低コス トかつ効率的に目的物を製造することができる。
特にバイオエタノール原料であるセルロースを含む木本類および/または 草本類の加水分解反応においては、 反応基質である木本類および/または草 本類をそのまま触媒原料としても用いることが可能であることから、 プロセ スの簡略化が可能となり、 安価でかつ工業的価値の極めて高いプロセスが構 築可能である。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
(スルホン酸基含有炭素質材料の製法)
本発明に用いるスルホン酸基含有炭素質材料の製造方法は、 木本類および /または草本類を出発原料として、 これを炭化およびスルホン化処理する方 法であるが、 炭化処理およびスルホン化処理は、 前記非特許文献等に開示さ れている方法を使用可能である。
スルホン酸基含有炭素質材料の出発原料は木本類および Zまたは草本類で ある。 ここで木本類および Zまたは草本類とは、 リグノセルロースを主とし て構成材料とする植物全般を指し示すものであり、 炭化処理およびスルホン 化処理できるものであればいずれも利用可能である。 木本類としては、 針葉 樹*広葉樹ともに使用可能である。 具体的には、 ユーカリ、 杉、 ペイマツ、 唐松、 アカシア、 ヒノキ、 榷、 クヌギ、 樫、 竹などが挙げられる。 これら木 本類は伐採したものを直接用いることも出来るしまた、 一度他の目的に使用 した後のもの、 例えば建築廃材のような集合材、 ボードなどでも利用可能で ある。 草本類としては、 稲藁 ·麦藁等の藁類、 バガス (サトウキビの搾りか す) 、 籾殻、 玉蜀黍の穂軸等の農産廃棄物、 リン夕一 (綿花種子に生えてい る短繊維) などがあげられる。
また、 古紙や廃パルプなど、 植物繊維を加工した製品から得られる植物繊 維リッチな廃材などをも用いることが出来る。
これらの出発原料の粒度は炭化工程が可能であれば、 特に限定されるもの ではないが、 0 . 1 mm以上 l m未満であることが好ましい。 0 . 1 mm未 満であると木材や草の粉砕工程が高コストになることから好ましくなく、 1 m以上であると炭化工程が困難であることから好ましくない。
前記スルホン酸基含有炭素質材料の製造は、 前記非特許文献 4等に開示さ れている方法に準じた方法によって行うことができる。
即ち、 出発原料の有機物の炭化処理は、 窒素等の不活性気体雰囲気下で加 熱処理することにより行われ、 それによりアモルファス状の黒色固体 (炭化 物) が得られる。 炭化物のスルホン化処理は濃硫酸または発煙硫酸中で加熱 処理することにより行われ、 それにより前記炭化物の骨格にスルホン酸基が 導入される。
炭化処理とスルホン化処理は、 それぞれ独立して処理することも同時に 1 工程として行うことも可能である。 以下、 炭化処理とスルホン化処理を別ェ 程にて行う場合について好ましい態様を以下に記載する。
炭化処理のための加熱は、 好ましくは窒素、 アルゴン等の不活性気体雰囲 気下、 温度が 3 0 0〜6 0 0 °C、 で行われる。 炭化処理の温度が前記範囲の 下限に満たない場合には、 これをスルホン化処理して得られるスルホン酸基 含有炭素質材料の耐熱性が劣る、 あるいは水又は有機物への溶解分が多いな どの問題を生じる傾向にある。 一方、 前記範囲の上限を超える温度の場合に は、 これをスルホン化処理する際に十分な量のスルホン酸基を付与すること ができず、 得られるスルホン酸基含有炭素質材料の加水分解反応に対する触 媒活性が不十分なものとなる傾向にある。
炭化処理のための加熱時間は、 1〜1 0 0時間、 好ましくは 2〜3 0時間 である。 炭化処理の時間が前記範囲の下限に満たない場合には、 これをスル ホン化処理して得られるスルホン酸基含有炭素質材料の耐熱性が劣る、 ある いは水または有機物等への溶解分が多いなどの問題を生じる傾向にある。 一 方、 前記範囲の上限の時間で必要な炭化は十分進行しており、 それを超える 時間をかけることは不要であると同時に余分なエネルギーを消費することと なり好ましくない。
スルホン化処理に使用するスルホン化剤は濃硫酸又は発煙硫酸が一般的に 用いられる。 使用する濃硫酸又は発煙硫酸の量は特に限定されないが、 スル ホン化を行う炭化物の量の 2〜1 0 0倍 (質量比) 、 好ましくは 5〜8 0倍 である。 この範囲の下限に満たない場合には、 炭化物に十分な量のスルホン 酸基を付与することができず、 得られるスルホン酸基含有炭素質材料の種々 の化学反応に対する触媒活性が不十分なものとなる傾向にある。 一方、 この 範囲の上限を超える場合には、 必要以上の濃硫酸又は発煙硫酸を使用するこ ととなり、 使用済み硫酸の処理を含めコスト上昇をもたらすため、 好ましく ない。
スルホン化処理の温度は、 4 0〜2 5 0 °C、 好ましくは 8 0〜2 0 0 °Cで ある。 スルホン化処理の温度がこの範囲の下限に満たない場合には、 炭化物 に十分な量のスルホン酸基を付与することができず、 得られるスルホン酸基 含有炭素質材料の種々の化学反応に対する触媒活性が不十分なものとなる傾 向にある。 一方、 この範囲の上限を超える温度の場合には、 付加したスルホ ン酸基が分解する傾向となる。
スルホン化処理の時間は 5分〜 3 0時間で行うのが好ましい。 スルホン化 処理の時間がこの範囲の下限に満たない場合には、 炭化物に十分なスルホン 酸基を付与することができず、 得られるスルホン酸基含有炭素質材料の種々 の化学反応に対する触媒活性が不十分なものとなる傾向にある。 一方、 この 範囲の上限の時間で必要なスルホン化は十分進行しており、 それを超える時 間を掛けることは不要である。
炭化およびスルホン化処理工程後には、 好ましくは熱水で、 洗浄すること により余剰の硫酸を除去し、 さらに乾燥することによって、 本発明のスルホ ン酸基含有炭素質材料を得ることができる。 熱水による洗浄は、 例えばソッ クスレ一抽出法等により、 約 1 0 o °cでの還流下で行うのが簡便である。 加 圧下にさらなる高温で洗浄することにより、 洗浄時間を短縮することも可能 である。
本発明のスルホン酸基含有炭素質材料の形状は、 原料により異なるが、 粉 体原料から調製した場合その形状は粉末である。 これを多糖類の加水分解反 応に使用する際には、 その形状は、 そのまま粉末であってもよく、 また顆粒 状、 球状、 板状、 ペレット状等に成型されたものであってもよいが、 多糖類 が水に不溶性のものであることを考慮すると粉末状態が反応効率の面で好ま しい。 これら顆粒状、 球状、 板状、 ペレット状等の形状に成型する場合には、 バインダーと呼ばれる無機物質を配合して成型を行ってもよい。 このバイン ダ一は成型性の向上、 成型された触媒の強度、 耐摩擦性等の機械的特性の向 上などを目的に配合するものであり、 アルミナ、 アルミナ ·ポリア、 シリ 力 ·アルミナ等が好ましく使用される。
一方、 微粉末化させることも可能であり、 その場合粉砕はいずれの段階で 行ってもよいが、 炭化工程終了後、 もしくは洗浄工程終了後の調製が容易で ある。 例えば、 セルロース等の固形物の加水分解反応時には、 原材料および 水との接触機会を向上させる目的で、 微細な粉体であることが好ましく、 具 体的には平均粒子径が 0. 1〜100; mであることが好ましい。 平均粒子 径が 0. 1 より小さい場合には、 反応後のろ過工程での効率が低下し、 1 00 mより大きい場合には加水分解反応の速度が十分でないため好まし くない。 粉砕手法もまた特に限定されないが、 自動乳鉢、 ポールミル、 ハン マリング、 裁断のような一般的な機械的粉砕手法が用いることが可能である。 本発明のスルホン酸基含有炭素質材料は、 エックス線回折パターンからは いかなる構造も確認することができず、 実質的に無定形である。
また、 酸基含有量は、 lmmo 1/g以上である。 酸基の含有量が前記範 囲の下限未満の場合には、 加水分解反応に対する活性が不十分となる傾向に ある。 なおここでいう酸基含有量とは、 スルホン酸基含有炭素質材料を逆滴 定法により測定するものであり、 スルホン化処理により生成するスルホン酸 基と、 炭化処理時及び Z又はスルホン化処理時に生成するカルボン酸基及び フエノール性水酸基を併せたものの含有量を指す。
また、 本発明のスルホン酸基含有炭素質材料の望ましいスルホン酸含有量 は 0. 5mmo 1 /g以上である。 スルホン酸含有量が 0. 5mmo l/g に満たない場合にはスルホン酸基含有炭素質材料の加水分解反応に対する活 性が不十分となる傾向にある。 この場合スルホン酸含有量は塩化ナトリウム を用いたイオン交換容量を測定することにより求められる値である。 なお、 スルホン酸量は上記酸基含有量の内数である。
また、 スルホン酸基含有炭素質材料の硫黄 Z炭素元子比 (モル比) はスル ホン酸基含有炭素質材料に付加、 導入されたスルホン酸基含有量の尺度とな る。 本発明のスルホン酸基含有炭素質材料の硫黄 Z炭素原子比 (モル比) は
1. 5 X 1 0—2以上である。 この範囲の下限未満の場合には、 加水分解反応 に対する活性が不十分となる傾向にある。
以上のようにして得られるスルホン酸基含有炭素質材料は、 安価な出発原 料、 簡便な製造方法のため低コストでの製造が可能である。 さらに、 鉱酸触 媒のように装置の腐食の問題がなく、 また鉱酸触媒と比較して触媒の分離、 回収、 再生、 再使用が簡単に行え、 更には排水処理等の問題も発生し難いと いう特徴を有する。 本発明に用いるスルホン酸基含有炭素質材料は、 多糖類 の加水分解反応に優れた活性および耐性を示すので、 バイオマスを原料に安 価に単糖類および Zまたは水溶性多糖類を製造することが出来、 ひいては安 価なバイオエタノールを製造することも可能になるのである。
以下、 スルホン酸基含有炭素質材料を固体酸触媒として用いた多糖類の加 水分解反応について説明する。
本発明の加水分解反応の原料は、 多糖類であるが ;6 1 - 4グリコシド結合 を有する材料であれば、 特に制限されない。 例えば、 セロビオース、 セロト リオースなどの水溶性材料、 セルロース、 へミセルロースなどの高分子材料、 もしくはリグニンと結合したリグノセルロースなどである。 特にセルロース は植物バイオマスの主要部分を構成しており、 これは多くの場合植物体内で へミセルロースおよびリグニンと密接に会合して存在している。 本発明の原 料として用いられるセルロースおよび Z又はへミセルロース、 およびこれら とリグニンからなる植物由来の材料としては、 具体的には、 木材質 (廃材を 含む) 、 古紙、 稲藁、 麦藁、 もみ殻、 竹、 バガス (さとうきび圧搾残) 、 と うもろこし穂軸、 サゴヤシ (でんぷん搾りかす) 、 リン夕一、 綿、 パルプな どを挙げることが出来る。 加水分解に用いる水の基質に対する比率は特に限 定されないが、 基質中に含有されるエステル結合又はエーテル結合の当量に 対するモル比で通常は 0 . 1〜1 0 0である。
原料の多糖類が、 固体材料である場合その形状は、 加水分解反応を速やか に進行させるために微細であることが好ましい。 具体的には数平均粒子径が 0 . 1 /x m〜l c mであることが好ましい。 数平均粒子径が 0 . 1 x mより 小さい場合には、 粉碎の為に必要とする機械的エネルギーが大きく非実用的 であり、 1 c mより大きい場合には加水分解反応の速度が十分でないため好 ましくない。 微粉体化手法もまた特に限定されないが、 自動乳鉢、 ボールミ ル、 ハンマリング、 カッターミル、 裁断のような公知の機械的粉碎手法が一 般的に用いられる。 また、 スルホン酸基含有炭素質材料とあらかじめ混合し た後に粉碎することも可能であり、 機械的圧力を加えながらの反応により、 反応中に粉砕し所定の粒径とすることも可能である。
本発明の加水分解反応に使用する水は特に限定さないが、 蒸留水 (水蒸気 発生装置の凝縮水を含む) 、 イオン交換水などが好ましく使用される。 また 加水分解反応工程の後の工程で、 反応生成物を含む水溶液を濃縮する場合に は、 濃縮によって除去、 回収された水を循環して使用してもよい。 さらには 原材料が多量の水分を含有する場合は、 それらの水を加水分解材料の一部と して供することも可能である。
多糖類の加水分解反応において、 原料である多糖類とスルホン酸基含有炭 素質材料の比率 (多糖類:スルホン酸基含有炭素質材料) は質量比として 1 : 0 . 1〜 1 : 1 0 0とし、 好ましくは 1 : 1〜 1 : 3 0である。 触媒で あるスルホン酸基含有炭素質材料が原料に対して 1 Z 1 0未満であると、 加 水分解反応が十分な速度で進行せず、 原料に対して 1 0 0倍を超えると、 容 量の大きな反応器他の設備による設備コストが増大し、 また加熱、 冷却等に 要するエネルギーコストも増大するので好ましくない。
多糖類の加水分解反応における原料である多糖類と水との比 (多糖類: 水) は, 加える触媒量にもよるため一概には規定できないが、 質量比で 1 : 0 . 1〜1 : 1 0とする。 多糖類に対する水の質量比が 1 Z 1 0未満とした 場合、 加水分解反応に十分な水の量が確保できないばかりか, 反応器内での 効率よい攪拌が困難となる。 多糖類に対する水の質量比が 1 0 Z 1を超える と反応系内の酸濃度が低下し、 加水分解反応効率が低下する。 但し、 スルホ ン酸基含有炭素質材料が原料に対して十分に多く供給されている場合に関し てはこの限りではなく、 実質的に酸濃度低下により反応速度が十分に得られ なくなるまで使用可能である。 しかし、 そうした場合においてもスルホン酸 基含有炭素質材料に対して質量にして 1 0倍を超える水を供給することは、 反応速度の面からも、 また加熱、 冷却等に要するエネルギーコストが増大す ることからも好ましくない。
多糖類の加水分解反応における反応温度は 2 0〜 2 5 0 °C、 好ましくは 8 0〜 1 5 0 °Cである。 2 0でより低い温度では加水分解反応が十分な速度で 進行しない。 また 2 5 0 °Cより高い温度ではスルホン酸基含有炭素質材料の 劣化あるいは生成した単糖類がさらに分解することから好ましくない。
多糖類の加水分解反応における反応圧力は特に指定はないが、 1 0 0 °C以 上の温度で反応を行う際には、 水の蒸発を避けるため大気圧以上の圧力であ ることが好ましい。
本発明の多糖類の加水分解反応を行う場合の反応器の形態は特に限定され ないが、 回分式、 連続式、 半連続式のいずれであってもよい。 また槽型反応 器、 塔型反応器、 ループ型反応器などいずれの形状であってもよい。 スルホ ン酸基含有炭素質材料と原料多糖類の接触の形式は、 懸濁相、 攪拌相などい ずれであってもよい。 中でも撹拌設備を備えた槽型反応器内で触媒を懸濁さ せる形式が好ましく採用される。
多糖類の加水分解反応における反応時間は、 撹拌装置を有する槽型反応器 を用いる場合、 5分〜 1 0 0時間、 好ましくは 5分〜 4 8時間である。 5分 より短い場合には、 加水分解反応が十分に進行せず、 1 0 0時間より長い場 合には、 反応槽が大きくなりエネルギーコス卜が大きくなることに加えて、 滞留時間が長くなり生成した単糖類がさらに分解し単糖類の収率が低下して 好ましくない。
本発明の多糖類の加水分解反応では、 従来の製造方法で得られるよりも安 価なスルホン酸基含有炭素質材料を触媒に用いることにより、 触媒製造コス 卜が削減されることに加えて、 これまでのスルホン酸基含有炭素質材料の利 点であるところの高い耐熱性により、 高温下での運転の実現ならびに反応速 度向上による反応器の小型化が実現される。
以下、 実施例により本発明を具体的に説明するが、 これに限定されるもの ではない。
(スルホン酸基含有炭素質材料の分析方法)
実施例および比較例で得られた各スルホン酸基含有炭素質材料について、 以下の分析を実施した。
1. 粉末エックス線回折分析
分析にはマックサイエンス社製エックス線回折装置 (MXP 1 8 VAH F) を使用した。
2. 酸基含有量の測定
逆滴定法により測定した。
3. 元素分析
分析には E 1 erne n t a r Va r i o ELを使用した。 結果を硫黄原 子と炭素原子の比 (硫黄 Z炭素比) で表した。 この値はスルホン酸基含有炭 素質材料に付加、 導入されたスルホン酸基含有量の尺度となる。
4. 黒鉛化度
黒鉛化度を調べる目的でラマン分光分析を行った。 なお、 分析にはレーザ 一ラマン分光分析装置 HOLOLAB 5000 Rを用いた。 通常は黒鉛 化度の尺度として、 1400 cm—1付近の Dピークと 1580 cm—1付近の Gピークとのピーク強度比を使用した。 Gピークに対する Dピークの強度が 大きいほど黒鉛化が進行しているとされ、 大きすぎるとスルホン酸基含有炭 素質材料の触媒活性が低下することが認められている。 好ましい強度比は 0. 7以下である。
5. スルホン酸含有量の測定
スルホン酸含有量は、 塩化ナトリゥム溶液を用いたイオン交換容量測定に より求めた。 所定量のスルホン酸基含有炭素質材料を塩化ナトリゥム溶液に 加え入れて一定時間撹拌し、 スルホン酸基のプロトンとナトリウムイオンと を交換させた。 その後イオン交換により生成した HC 1の量を中和滴定によ り定量して、 スルホン酸量を求めた。 イオン交換反応は以下の式で示される。 R-SO3H + NaC 1 → R-SOsNa + HC 1 [反応式 1] (ここで Rはスルホン酸基含有炭素質材料のカーボン残基である) 。
[実施例 1]
(木材を原料とするスルホン酸基含有炭素質材料の製造)
数平均粒径 0. 250mmのュ一カリの粉末 40 gを、 容量 1000m 1 のナス型フラスコ中に取り、 窒素流通下に 400°C、 4h r加熱処理して 1 4 gの炭化物を得た。 この黒色粉末状の炭化物 3. 0 gに発煙硫酸 150 g を加え、 窒素雰囲気下で 150°C、 2 h r加熱処理してスルホン化を行った。 スルホン化後、 黒色固形物をガラスフィルタ一にてろ過し、 ソックスレ一抽 出器を使用して還流下 (約 100°C) で熱水による洗浄を繰り返し行い、 洗 浄液中に硫酸力 S検出されなくなることを確認した。 これを乾燥し、 黒色粉末 のスルホン酸基含有炭素質材料 Aを得た。 得られたスルホン酸基含有炭素質 材料について、 前記の各分析を行った。
粉末エックス線回折分析: 回折パターンからは構造を特定できるピーク は検出されず、 実質的にアモルファスであることがわかった。 後記の実施例 2、 3及び比較例 1で得られたスルホン酸基含有炭素質材料 B〜 Dも同様に 実質的にアモルファスであった。
酸基含有量の測定: 結果を表 1に示す。 なお他の実施例、 比較例で得ら れたスルホン酸基含有炭素質材料についての結果も表 1に示す。
スルホン酸含有量の測定:前記したイオン交換容量測定で求めたスルホン 酸含有量を測定した結果を表 1に示す。 なお、 他の実施例、 比較例で得られ たスルホン酸基含有炭素質材料についての結果も表 1に示す。
元素分析 (硫黄/炭素比) : 結果を表 1に示す。 なお後記実施例 2、 3、 比較例 1で得られたスルホン酸基含有炭素質材料についての結果も表 1に示 す。
黒鉛化度 (ラマン分光分析) :結果を表 1に示す。 なお後記実施例 2、 3、 比較例 1で得られたスルホン酸基含有炭素質材料についての結果も表 1に示 す。 実施例 1〜3、 比較例 1ともに Dピークの強度 ZGピークの強度は 0. 7以下であった。
(セルロースの加水分解反応)
内容積 10m lのナス型フラスコに、 蒸留水 1 100 1、 セルロース (A 1 d r i c h社製 310697) 0. 025 gを仕込み、 スルホン酸基 含有炭素質材料 Aを 0. 30 g加えて密閉し 700 r pmで攪拌しながらォ ィルバス中で 100°Cまで昇温し 3 h r加水分解反応を行った。 反応終了後、 反応液を冷却した後に遠心分離により固液分離し、 さらにマイクロフィルタ —にてろ過を行い、 得られた液体中のグルコース量を液体クロマトグラフに より定量分析を行った。 その結果を表 2に示す。
[実施例 2〜3] 及び [比較例 1]
(スルホン酸基含有炭素質材料の製造)
表 1に記載した原料、 炭化処理およびスルホン化処理条件を用い、 それ以 外は前記実施例 1と同様の操作により、 それぞれスルホン酸基含有炭素質材 料 B〜Dを製造した。
(セルロースの加水分解反応)
触媒としてスルホン酸基含有炭素質材料 Aに代えて、 前記実施例 2、 3お よび比較例 1にて得られたスルホン酸基含有炭素質材料 B, Cおよび Dを用 いた以外は、 前記実施例 1と同一の条件、 操作方法にて、 それぞれセルロー スの加水分解反応を行った。 単位触媒量、 単位時間当たりに換算したダルコ ースの生成量を表 2に示す。
[比較例 2および比較例 3]
触媒として濃硫酸および市販の固体強酸である 「Amb e r 1 y s t 15 E (Ro am and H a a s社製) 」 を用い、 実施例 1と同一条件でセル ロース加水分解反応を行った。 なお、 硫酸触媒を使用した比較例 2でも触媒 量は実施例 1と同じ重量を用いた。
結果を表 2に示す。 以上より、 本発明に用いるスルホン酸基含有炭素質材料は、 木類を未精製 のまま直接原料として用いているにも関らず、 従来のセルロース原料由来の スルホン酸基含有炭素質材料と同程度に多糖類の加水分解反応活性を有し、 単糖類および Zまたは水溶性多糖類を高収率で製造可能なことが明らかとな り、 このことから従来のスルホン酸基含有炭素質材料を用いる場合に比べ大 幅に安価に単糖類および Zまたは水溶性多糖類を製造可能なことが見出され た。 また本発明により、 精製してない木本類あるいは草本類を原料にして安 価にスルホン酸基含有炭素質材料を製造することが出来ることが見出された。
[表 1]
Figure imgf000018_0001
表 2 ]
Figure imgf000019_0001
産業上の利用可能性
以上説明したように、 本発明によれば、 極めて安価なスルホン酸基含有炭 素質材料を用いて安価な単糖類および Zまたは水溶性多糖類の提供が可能と なる。

Claims

請求の範囲
1 . 木本類およびノ又は草本類を炭化処理およびスルホン化処理して得られ るスルホン酸基含有炭素質材料を用いて多糖類を加水分解して単糖類お よび Zまたは水溶性多糖類を製造する方法。
2 . 3 0 0〜6 0 0 °Cの温度において前記炭化処理を行い、 その後濃硫酸又 は発煙硫酸により、 4 0〜2 5 0 °Cの温度において前記スルホン化処理 を行うことを特徴とする請求項 1記載の方法。
3 . 木本類および Z又は草本類を炭化処理およびスルホン化処理することを 特徴とするスルホン酸基含有炭素質材料の製造方法。
4. 3 0 0〜6 0 0 °Cの温度において前記炭化処理を行い、 その後濃硫酸又 は発煙硫酸により、 4 0〜2 5 0 °Cの温度において前記スルホン化処理 を行うことを特徴とする請求項 3記載のスルホン酸基含有炭素質材料の 製造方法。
PCT/JP2008/061380 2007-06-29 2008-06-17 単糖類および/または水溶性多糖類の製造方法ならびにスルホン酸基含有炭素質材料の製造方法 WO2009004938A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009521579A JPWO2009004938A1 (ja) 2007-06-29 2008-06-17 単糖類および/または水溶性多糖類の製造方法ならびにスルホン酸基含有炭素質材料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-172611 2007-06-29
JP2007172611 2007-06-29

Publications (1)

Publication Number Publication Date
WO2009004938A1 true WO2009004938A1 (ja) 2009-01-08

Family

ID=40225987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/061380 WO2009004938A1 (ja) 2007-06-29 2008-06-17 単糖類および/または水溶性多糖類の製造方法ならびにスルホン酸基含有炭素質材料の製造方法

Country Status (2)

Country Link
JP (1) JPWO2009004938A1 (ja)
WO (1) WO2009004938A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035832A1 (ja) * 2008-09-29 2010-04-01 株式会社日本触媒 単糖類の製造方法
JP2011143396A (ja) * 2010-01-18 2011-07-28 Hideki Shibata 有機物を分解炭化する為の触媒
JP2012005382A (ja) * 2010-06-23 2012-01-12 Equos Research Co Ltd バイオマス加水分解反応装置
WO2012117567A1 (ja) * 2011-02-28 2012-09-07 Shibata Hideki 有機物を分解炭化する為の触媒

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001696A1 (fr) * 2006-06-26 2008-01-03 Tokyo Institute Of Technology Procédé de production d'un polysaccharide et/ou d'un monosaccharide par l'hydrolyse d'un autre polysaccharide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001696A1 (fr) * 2006-06-26 2008-01-03 Tokyo Institute Of Technology Procédé de production d'un polysaccharide et/ou d'un monosaccharide par l'hydrolyse d'un autre polysaccharide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICHIKAZU HARA: "Kankyo.Energy Mondai no Kaiketsu o Mezashita Kotaisan Shokubai no Kaihatsu", ENEOS TECHNICAL REVIEW, vol. 48, 2006, pages 142 - 146 *
SATOSHI SUGANUMA ET AL.: "Torui o Genryo to shita Kotaisan Shokubai ni yoru beta-1,4 Glycoside Ketsugo no Kasui Bunkai", THE 87TH ANNUAL MEETING ON CHEMICAL SOCIETY OF JAPAN IN SPRING -KOEN YOKOSHU I, March 2007 (2007-03-01), pages 490, 3 M2 - 18 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035832A1 (ja) * 2008-09-29 2010-04-01 株式会社日本触媒 単糖類の製造方法
JP2011143396A (ja) * 2010-01-18 2011-07-28 Hideki Shibata 有機物を分解炭化する為の触媒
JP2012005382A (ja) * 2010-06-23 2012-01-12 Equos Research Co Ltd バイオマス加水分解反応装置
WO2012117567A1 (ja) * 2011-02-28 2012-09-07 Shibata Hideki 有機物を分解炭化する為の触媒

Also Published As

Publication number Publication date
JPWO2009004938A1 (ja) 2010-08-26

Similar Documents

Publication Publication Date Title
JP5263738B2 (ja) 多糖類の加水分解による他の多糖類および/または単糖類の製造方法
Mao et al. FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue
Tang et al. Complete recovery of cellulose from rice straw pretreated with ethylene glycol and aluminum chloride for enzymatic hydrolysis
Liu et al. Production of C5/C6 sugar alcohols by hydrolytic hydrogenation of raw lignocellulosic biomass over Zr based solid acids combined with Ru/C
CA2783942A1 (en) Method for producing furfural from lignocellulosic biomass material
CN101348430B (zh) 一种固体超强酸催化秸秆制备乙酰丙酸的方法
CN105518157A (zh) 转化木质素的方法和其用途
US8304535B2 (en) Sugar production by decrystallization and hydrolysis of polysaccharide enriched biomass
US20190031797A1 (en) Ionic polymers and use thereof in processing of biomass
CN106928285A (zh) 一种生物质催化热解制备左旋葡萄糖酮的方法
CA2727524A1 (en) Decrystallization of cellulosic biomass with an acid mixture comprising phosphoric and sulfuric acids
WO2009004938A1 (ja) 単糖類および/または水溶性多糖類の製造方法ならびにスルホン酸基含有炭素質材料の製造方法
JPWO2009004951A1 (ja) セルロースを含む材料の加水分解および酵素糖化による単糖類の製造方法
CN111943917A (zh) 一种甲酸预处理木质纤维素高效制备5-羟甲基糠醛的方法
CN102336728A (zh) 利用复合型固体酸催化纤维戊聚糖水解液制备糠醛的方法
CN108479802A (zh) 黏土基-so3h固体酸材料的制备方法及其在生物质水解制备还原糖中的应用
JP5574216B2 (ja) スルホン酸基含有炭素質材料の製造方法
Rajamani et al. Valorization of rice husk to value-added chemicals and functional materials
JP2009067730A (ja) 無水糖、有機酸、及びフルフラール類の生産方法
JPWO2009004950A1 (ja) セルロースを含む材料の加水分解による単糖類および/または水溶性多糖類の製造方法
US10227666B2 (en) Solid catalysts and method for preparing sugars using the same
Efiyanti et al. Synthesis and application of a sulfonated carbon catalyst for a hydrolisis reaction
JP2009296919A (ja) セルロース系バイオマスの液化方法
JP4025866B2 (ja) リグノセルロースの有効利用方法
Semerci et al. Pretreatment of crop wastes from edible biomass with a protic ionic liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08777499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009521579

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08777499

Country of ref document: EP

Kind code of ref document: A1