WO2009004185A2 - Dispositif et procédé d'ouverture de soupape, de lubrification et de refroidissement des moteurs à pistons alternatifs - Google Patents

Dispositif et procédé d'ouverture de soupape, de lubrification et de refroidissement des moteurs à pistons alternatifs Download PDF

Info

Publication number
WO2009004185A2
WO2009004185A2 PCT/FR2008/000761 FR2008000761W WO2009004185A2 WO 2009004185 A2 WO2009004185 A2 WO 2009004185A2 FR 2008000761 W FR2008000761 W FR 2008000761W WO 2009004185 A2 WO2009004185 A2 WO 2009004185A2
Authority
WO
WIPO (PCT)
Prior art keywords
piston
pneumatic
dead center
cylinder
valve
Prior art date
Application number
PCT/FR2008/000761
Other languages
English (en)
Other versions
WO2009004185A4 (fr
WO2009004185A3 (fr
Inventor
Michel Marchisseau
Original Assignee
Michel Marchisseau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michel Marchisseau filed Critical Michel Marchisseau
Priority to EP08805649A priority Critical patent/EP2167795A2/fr
Publication of WO2009004185A2 publication Critical patent/WO2009004185A2/fr
Publication of WO2009004185A3 publication Critical patent/WO2009004185A3/fr
Publication of WO2009004185A4 publication Critical patent/WO2009004185A4/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/04Engines with reciprocating-piston pumps; Engines with crankcase pumps with simple crankcase pumps, i.e. with the rear face of a non-stepped working piston acting as sole pumping member in co-operation with the crankcase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L11/00Valve arrangements in working piston or piston-rod
    • F01L11/02Valve arrangements in working piston or piston-rod in piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/16Pneumatic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/06Lubricating systems characterised by the provision therein of crankshafts or connecting rods with lubricant passageways, e.g. bores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • F02B33/10Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with the pumping cylinder situated between working cylinder and crankcase, or with the pumping cylinder surrounding working cylinder
    • F02B33/14Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with the pumping cylinder situated between working cylinder and crankcase, or with the pumping cylinder surrounding working cylinder working and pumping pistons forming stepped piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2125Shaft and armature construction
    • F01L2009/2126Arrangements for amplifying the armature stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/06Lubricating systems characterised by the provision therein of crankshafts or connecting rods with lubricant passageways, e.g. bores
    • F01M2001/062Crankshaft with passageways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/06Lubricating systems characterised by the provision therein of crankshafts or connecting rods with lubricant passageways, e.g. bores
    • F01M2001/066Connecting rod with passageways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid

Definitions

  • the present invention relates to a device for internal combustion engines with reciprocating pistons, which makes it possible to open a valve integrated in the piston, to lubricate and to effectively cool the piston.
  • the invention also relates to the method allowing the use of such a device.
  • FIG. 3 of DE 42 05 663 discloses a design which makes it possible to admit the air by means of a valve integrated in the piston and also to lubricate and cool the piston by means of a sealed circuit with respect to the placed compression chamber. in the crankcase.
  • This design has significant advantages.
  • the homogeneous combustion by auto-ignition makes it possible to obtain a higher energetic efficiency associated with a very low level of NOx emission.
  • Friction losses are reduced because the piston is effectively lubricated and the engine can operate with a two-stroke cycle. Note that the piston lubrication circuit is tight relative to the compression volume in the housing. As a result, polluting emissions are not penalized by significant oil consumption.
  • the piston is better protected against the risk of seizing or deterioration, because it is abundantly lubricated and also, because it cooled by both the intake air and the circuit of lubrication.
  • this design of FIG. 3 of DE 42 05 663 has a major disadvantage. Indeed, the opening of the integrated valve in the piston is achieved by the entry into mechanical contact during the descent of the piston, the rod of said valve with a boss made in the housing. Such a design generates a mechanical shock at each rotation of the engine, which is a factor of noise and longevity lower.
  • the present invention overcomes the disadvantages of the prior art.
  • the present invention relates to a method applied to an internal combustion engine comprising at least one cylinder with a combustion chamber, a mobile unit comprising a piston displaceable in translation under the action of a rod connected by an axis to said piston and connected to a crankpin of a crankshaft, said piston making a stroke between a top dead center and a bottom dead point while leaving, when the piston is at top dead center, a volume below and a dead volume above said piston, a valve intake valve being placed in said piston, characterized in that the opening of said intake valve is performed using a pneumatic fluid.
  • the present invention thus makes it possible to open a valve integrated in a piston of an internal combustion engine without causing mechanical shock.
  • the method consists in using the piston of the engine as a compression piston during its downward stroke, in order to convert at least a part of the kinetic energy of said piston into pneumatic energy and to use at least a part of said pneumatic energy, for operating in opening the inlet valve placed in said piston.
  • This first complementary characteristic makes it possible to generate the pneumatic energy to open the integrated valve in the piston.
  • said pneumatic energy is generated by the piston when approaching its bottom dead point.
  • This second complementary characteristic makes it possible to recover the kinetic energy of the piston which is usually lost in the friction due to the cancellation of the lever arm of the crank system at the bottom dead center.
  • the intake air is admitted into the combustion chamber through the piston through an intake valve placed in said piston and the exhaust gas is discharged through the cylinder head through a valve exhaust placed in the cylinder head.
  • This third complementary characteristic makes it possible to obtain a single direction of circulation in the combustion chamber, from bottom to top, for the exhaust gases and for the intake air.
  • This unidirectional circulation makes it possible to obtain a better filling of the cylinder.
  • the intake air cooled the piston which increases the maximum load level allowed by the piston.
  • the exhaust gases maintain a high temperature in the cylinder head, which widens the operating range in homogeneous combustion by self-ignition.
  • the lift of the exhaust valve is adjustable so as to regulate the amount of exhaust gas recycled internally into the combustion chamber, to operate the engine in homogeneous combustion mode by auto-ignition.
  • the present invention also relates to an internal combustion engine comprising at least one cylinder with a combustion chamber, a mobile unit comprising a piston displaceable in translation under the action of a connecting rod connected by an axis to said piston and connected to a crank pin of a crankshaft, said piston running between a top dead center and a bottom dead center. leaving, when the piston is at the top dead center, a volume below and a dead volume above said piston, an intake valve being placed in said piston, characterized in that said intake valve placed in said piston is operated by opening thanks to a pneumatic cylinder.
  • the engine is characterized in that the pneumatic fluid necessary to actuate the pneumatic cylinder is compressed by a pneumatic pump constituted between the piston and a compression chamber secured to the housing.
  • said pneumatic pump compresses the pneumatic fluid necessary to actuate the pneumatic cylinder only when the piston is approaching its bottom dead point.
  • the engine comprises a lubricant circuit that is substantially sealed with respect to the interior of the casing and with respect to the volume located under the piston, this lubricant circuit makes it possible to lubricate the interface between the piston and the liner.
  • a chamber 0 forms a gutter that retrieves drops of lubricant that flows along the jacket 0 under the piston down.
  • FIG. 1 which shows a cross-sectional view of an in-line engine according to the invention, in the section of a cylinder at the end of relaxation;
  • FIG. 3 which shows a cross-sectional view of an in-line motor according to the invention, in the section of a cylinder being admitted;
  • FIG. 1 shows an internal combustion engine 1, with reciprocating pistons, comprising at least one cylinder 9 with a combustion chamber 4, a mobile assembly comprising a piston 11 displaceable in translation under the action of a rod 15 connected by a axis to said piston 11 and connected to a crankpin of a crankshaft 17, said piston 11 making a race between a top dead center and a bottom dead center leaving, when the piston 11 is at the top dead center, a volume 13 below. and a dead volume above said piston 11.
  • the volume 13 and the interior of the housing 16 are in communication.
  • the direction of rotation of the motor on the representations of FIGS. 1 to 4 is the clockwise direction.
  • the engine 1 is equipped with an intake valve 10 placed in the piston 11 and an exhaust valve 3 placed in the cylinder head 2.
  • a pneumatic cylinder 5 makes it possible to actuate the intake valve 10 in opening.
  • the piston 11 is in the lower part of the cylinder 9, the inertial force of the intake valve 10 is oriented downwards.
  • the inlet valve 10 opens or remains open when the resultant of its inertia force and the force generated by the pneumatic cylinder 5 is oriented upwards.
  • the inlet valve 10 closes or remains closed when this resultant is oriented downward.
  • the actuators of the exhaust valve 3 are not shown.
  • FIGs 2, 3 and 4 show that when the piston 11 is sufficiently close to its bottom dead center, the annular piston 14, placed at the base of the piston 11, and the annular chamber 8 forms a pneumatic piston pump.
  • the pipes 6 and 7 connect the compression chamber of this pneumatic piston pump to the pneumatic cylinder 5.
  • This pneumatic piston pump compresses the pneumatic fluid present in the annular chamber 8 when the piston 11 approaches its bottom dead center. .
  • Figure 3 shows that this causes the opening of the intake valve 10.
  • FIG. 4 represents the cylinder 9 at the end of the admission phase; the intake and exhaust valves 10 and 3 are closed.
  • the piston 11 rises, fresh outside air is admitted into the casing 16 and the chamber 4 via an inlet not shown.
  • the piston 11 goes down, the air present in the housing 16 and in the volume 13 is pre-compressed.
  • the descent of the piston 11 from its top dead center also corresponds to the combustion and relaxation phase.
  • FIG. 1 represents the cylinder 9 at the end of the phase of expansion, just before the opening of the exhaust valve 3.
  • Figure 2 shows the cylinder 9 in the exhaust phase; the exhaust valve 3 is open; the annular piston 14 is at the inlet of the annular chamber 8.
  • Figure 3 shows the cylinder 9 in the intake phase; the piston 11 is at low dead point; the exhaust valve 3 is closed; the pneumatic pump constituted by the annular piston 14 and the annular chamber 8 is at the end of compression; the inlet valve 10 is open; the air pre-compressed in the casing 16 and the volume 13 is entered into the combustion chamber 4 via the inlet channel 12 and the inlet valve.
  • the present invention thus makes it possible to admit the intake air into the combustion chamber through the piston 11 thanks to an intake valve 10 placed in said piston 11 and to evacuate the exhaust gases through the cylinder head 2 thanks to an exhaust soup placed in the cylinder head 2. These functions are obtained while maintaining a light-free shirt or other lateral orifice. This feature is important to allow a long service life for fast engine applications.
  • FIG. 5 illustrates a design possibility that makes it possible to lubricate and cool the piston 11 by means of a circuit sealed with respect to the compression chamber placed in the casing 16 in combination with an intake valve 10 integrated in the piston 11.
  • lubricant is admitted from a bearing of the crankshaft 17, via the pipes 20c, 20b, 20a successively integrated in lever arm 26b of the crankshaft, in the connecting rod 15 and in the piston 11, into the annular cavity 25 formed in the interface between the piston 11 and the jacket 23.
  • the return of the lubricant is channeled from said annular cavity 25, via the pipes 20d, 20e, 20f successively integrated with the piston 11, the connecting rod 15 and the lever arm 26a of the crankshaft, into the overcome the crankshaft.
  • the sealing of the annular cavity 25 is ensured with respect to the combustion chamber 4 thanks to the segments 24 and with respect to the volume 13 thanks to the segments 21.
  • the position of the annular chamber 8 makes it possible to collect any drips of lubricant which may flow, under the piston 11, on the wall of the jacket 23.
  • the annular chamber 8 comprises a not shown discharge orifice, any dripping lubricant.
  • the sealing at the interfaces of the pipes 20a to 2Of between the piston 11, the connecting rod 15, the lever arms 26a, 26b and the bearings of the crankshaft 17 is produced by means of O-rings 22a, 22b, 22c, 22d, 22e and 22f .
  • This design significantly lubricates the piston - liner interface while minimizing oil consumption. Moreover, lubricating Significantly the piston - sleeve interface is in the direction of a long service life and reduced friction. In addition, this design is compatible with a piston of reduced height, which is in the sense of minimizing the inertia of the moving equipment, which is a factor of approval in the use of the engine combined with the economy of fuel consumption.
  • the present invention can be applied to any engine with reciprocating piston (s).
  • the present invention can be applied to significantly extend service life while minimizing oil consumption and also to broaden the operating range possible in homogeneous combustion mode by self-ignition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

L'invention concerne un procédé et un dispositif pour actionner, sans choc mécanique, une soupape intégrée dans le piston d'un moteur à combustion interne.

Description

Dispositif et procédé d'ouverture de soupape, de lubrification et de refroidissement des moteurs à pistons alternatifs.
Domaine technique
La présente invention se rapporte à un dispositif pour moteurs à combustion interne à pistons alternatifs, qui permet d'ouvrir une soupape intégrée au piston, de lubrifier et de refroidir efficacement le piston. L'invention se rapporte également au procédé permettant l'utilisation d'un tel dispositif.
Technique antérieure
La figure 3 du document DE 42 05 663 présente une conception qui permet d'admettre l'air grâce à une soupape intégrée au piston et également, de lubrifier et de refroidir le piston grâce à un circuit étanché par rapport à la chambre de compression placée dans le carter.
Cette conception présente des avantages déterminants.
En effet, la combustion homogène par auto inflammation est favorisée du fait que l'air d'admission n'abaisse pas dramatiquement la température de la culasse comme c'est le cas lorsque l'admission est réalisée par une ou deux soupapes placées dans la culasse.
La combustion homogène par auto inflammation permet d'obtenir un rendement énergétique plus élevé associé à de très bas niveau d'émission de NOx.
Effet bénéfique supplémentaire sur le rendement énergétique : les pertes par frottements sont réduites du fait que le piston est lubrifié efficacement et que le moteur peut fonctionner avec un cycle à deux temps. Notons que le circuit de lubrification du piston est étanche par rapport au volume de compression dans le carter. De ce fait, les émissions polluantes ne sont pas pénalisées par une consommation d'huile significative.
De part ailleurs, le piston est mieux protégé contre les risques de grippage ou de détérioration, du fait qu'il est abondamment lubrifié et également, du fait qu'il refroidi à la fois par l'air d'admission et par le circuit de lubrification.
Par contre, cette conception de la figure 3 du document DE 42 05 663 présente un inconvénient majeur. En effet, l'ouverture de la soupape intégrée dans le piston est réalisée par l'entrée en contact mécanique, pendant la descente du piston, de la tige de ladite soupape avec un bossage réalisé dans le carter. Une telle conception génère un choc mécanique à chaque rotation du moteur, ce qui est facteur de bruit et de longévité plus faible.
Le document US 4995359 présente un dispositif qui permet d'actionner en ouverture une soupape placée dans la culasse, grâce à de l'air comprimé prélevée dans la chambre de compression placée dans le carter.
Cette conception du document US 4 995359 est intéressante car elle permet d'actionner en ouverture sans choc mécanique, une soupape placée dans la culasse.
Cependant, cette conception présentée dans le document US 4995 359 ne donne aucune indication à l'homme de l'art, pour concevoir un dispositif d'actionnement en ouverture d'une soupape placée dans un piston.
Exposé de l'invention
La présente invention remédie aux inconvénients de l'art antérieur.
La présente invention concerne un procédé appliqué à un moteur à combustion interne comprenant au moins un cylindre avec une chambre de combustion, un équipage mobile comportant un piston déplaçable en translation sous l'action d'une bielle liée par un axe audit piston et raccordée à un maneton d'un vilebrequin, ledit piston effectuant une course entre un point mort haut et un point mort bas en laissant subsister, lorsque le piston est au point mort haut, un volume au dessous et un volume mort au dessus dudit piston, une soupape d'admission étant placée dans ledit piston, caractérisé en ce que l'ouverture de ladite soupape d'admission est réalisée à l'aide d'un fluide pneumatique.
La présente invention permet donc d'ouvrir une soupape intégrée dans un piston d'un moteur à combustion interne sans provoquer de choc mécanique.
Selon une première caractéristique complémentaire, le procédé consiste à utiliser le piston du moteur en tant que piston de compression au cours de sa course descente, afin de convertir en énergie pneumatique au moins une partie de l'énergie cinétique dudit piston et à utiliser au moins une partie de ladite énergie pneumatique, pour actionner en ouverture la soupape d'admission placée dans ledit piston.
Cette première caractéristique complémentaire permet de générer l'énergie pneumatique pour ouvrir la soupape intégrée dans le piston.
Selon une seconde caractéristique complémentaire, ladite énergie pneumatique est générée par le piston à l'approche son point mort bas.
Cette seconde caractéristique complémentaire permet de récupérer de l'énergie cinétique du piston qui est usuellement perdue dans les frottements du fait de l'annulation du bras de levier du système bielle manivelle au point mort bas.
Selon une troisième caractéristique complémentaire, l'air d'admission est admise dans la chambre de combustion à travers le piston grâce à une soupape d'admission placée dans ledit piston et les gaz d'échappement sont évacués à travers la culasse grâce à une soupape d'échappement placée dans la culasse.
Cette troisième caractéristique complémentaire permet d'obtenir un seul sens de circulation dans la chambre de combustion, du bas vers le haut, pour les gaz d'échappement et pour l'air d'admission. Cette circulation unidirectionnelle permet d'obtenir un meilleur remplissage du cylindre. De plus, l'air d'admission refroidi le piston ce qui accroît le niveau de charge maximal admissible par le piston. De part ailleurs, les gaz d'échappement maintiennent une température élevée dans la culasse, ce qui élargit la plage de fonctionnement en combustion homogène par auto inflammation.
Selon une quatrième caractéristique complémentaire, la levée de la soupape d'échappement est réglable de sorte de réguler la quantité de gaz d'échappement recyclé en interne dans la chambre de combustion, pour faire fonctionner le moteur en mode de combustion homogène par auto inflammation.
Cette quatrième caractéristique complémentaire, permet d'élargir la plage de fonctionnement possible en mode de combustion homogène par auto inflammation. La présente invention concerne également un moteur à combustion interne comprenant au moins un cylindre avec une chambre de combustion, un équipage mobile comportant un piston déplaçable en translation sous l'action d'une bielle reliée par un axe audit piston et raccordée à un maneton d'un vilebrequin, ledit piston effectuant une course entre un point mort haut et un point mort bas en laissant subsister, lorsque le piston est au point mort haut, un volume au dessous et un volume mort au dessus dudit piston, une soupape d'admission étant placée dans ledit piston, caractérisé en ce que ladite soupape d'admission placée dans ledit piston est actionnée en ouverture grâce à un vérin pneumatique.
Selon une première caractéristique complémentaire, le moteur est caractérisé en ce que le fluide pneumatique nécessaire pour actionner le vérin pneumatique est comprimé par une pompe pneumatique constituée entre le piston et une chambre de compression solidaire du carter.
Selon une seconde caractéristique complémentaire, ladite pompe pneumatique comprime le fluide pneumatique nécessaire pour actionner le vérin pneumatique seulement lorsque le piston est à l'approche de son point mort bas. Selon une troisième caractéristique complémentaire, le moteur comporte un circuit de lubrifiant quasiment étanche par rapport à l'intérieur du carter et par rapport au volume situé sous le piston, ce circuit de lubrifiant permet de lubrifier l'interface entre le piston et la chemise. Selon une quatrième caractéristique complémentaire, une chambre 0 forme une gouttière qui permet de récupérer les gouttes de lubrifiant qui s'écoule le long de la chemise 0 sous le piston vers le bas.
Description sommaire des dessins
D'autres caractéristiques et avantages de l'invention vont apparaître à la lecture de la description qui va suivre, donnée à titre uniquement illustratif et non limitatif, et à laquelle sont annexés : - la figure 1 qui montre une vue en coupe transversale d'un moteur en ligne selon l'invention, dans la section d'un cylindre en fin de détente ;
- la figure 2 qui montre une vue en coupe transversale d'un moteur en ligne selon l'invention, dans la section d'un cylindre en cours d'échappement ;
- la figure 3 qui montre une vue en coupe transversale d'un moteur en ligne selon l'invention, dans la section d'un cylindre en cours d'admission ;
- la figure 4 qui montre une vue en coupe transversale d'un moteur en ligne selon l'invention, dans la section d'un cylindre en début de compression ;
- la figure 5 qui montre une vue en coupe longitudinale d'un moteur en ligne selon l'invention, dans la section d'un cylindre au point mort haut. Manières de réaliser l'invention
La figure 1 montre un moteur 1 à combustion interne, à pistons alternatifs, comprend au moins un cylindre 9 avec une chambre de combustion 4, un équipage mobile comportant un piston 11 déplaçable en translation sous l'action d'une bielle 15 liée par un axe audit piston 11 et raccordée à un maneton d'un vilebrequin 17, ledit piston 11 effectuant une course entre un point mort haut et un point mort bas en laissant subsister, lorsque le piston 11 est au point mort haut, un volume 13 au dessous et un volume mort au dessus dudit piston 11. Le volume 13 et l'intérieur du carter 16 sont en communication. Le sens de rotation du moteur sur les représentations des figures 1 à 4 est le sens horaire.
Le moteur 1 est équipé d'une soupape d'admission 10 placée dans le piston 11 et d'une soupape d'échappement 3 placée dans la culasse 2. Un vérin pneumatique 5 permet d'actionner en ouverture la soupape d'admission 10. Lorsque le piston 11 est dans la partie inférieure du cylindre 9, la force d'inertie de la soupape d'admission 10 est orientée vers le bas. La soupape d'admission 10 s'ouvre ou reste ouverte lorsque la résultante de sa force d'inertie et de la force générée par le vérin pneumatique 5 est orientée vers haut. La soupape d'admission 10 se ferme ou reste fermée lorsque cette résultante est orientée vers le bas. Les actionneurs de la soupape d'échappement 3 ne sont pas représentés.
Les figures 2, 3 et 4 montrent que lorsque le piston 11 est suffisamment proche de son point mort bas, le piston annulaire 14, placé à la base du piston 11, et la chambre annulaire 8 forme une pompe pneumatique à piston. Les canalisations 6 et 7 relient la chambre de compression de cette pompe pneumatique à piston au vérin pneumatique 5. Cette pompe pneumatique à piston permet de comprimer le fluide pneumatique présent dans la chambre annulaire 8 lorsque le piston 11 s'approche de son point mort bas. La figure 3 montre que cela provoque l'ouverture de la soupape d'admission 10.
Ce paragraphe décrit le fonctionnement du cylindre 9 du moteur 1 en cycle à deux temps. La figure 4 représente le cylindre 9 en fin de phase d'admission ; les soupapes d'admission 10 et d'échappement 3 sont fermées. Lorsque le piston 11 monte, de l'air extérieur frais est admis dans le carter 16 et dans la chambre 4 via un orifice d'admission non représenté. Lorsque le piston 11 descend, l'air présent admis dans le carter 16 et dans le volume 13 est pré-comprimé. La descente du piston 11 depuis son point mort haut correspond également à la phase de combustion et de détente. La figure 1 représente le cylindre 9 à la fin de la phase de détente, juste avant l'ouverture de la soupape d'échappement 3. La figure 2 représente le cylindre 9 en phase d'échappement ; la soupape d'échappement 3 est ouverte ; le piston annulaire 14 est à l'entrée de la chambre annulaire 8. La figure 3 représente le cylindre 9 en phase d'admission ; le piston 11 est au point mort bas ; la soupape d'échappement 3 est fermée ; la pompe pneumatique constituée du piston annulaire 14 et de la chambre annulaire 8 est en fin de compression ; la soupape d'admission 10 est ouverte ; l'air pré-comprimée dans la carter 16 et le volume 13 est pénètre dans la chambre de combustion 4 via le canal d'admission 12 et la soupape d'admission.
La présente invention permet donc d'admettre l'air d'admission dans la chambre de combustion à travers le piston 11 grâce à une soupape d'admission 10 placée dans ledit piston 11 et d'évacuer les gaz d'échappement à travers la culasse 2 grâce à une soupe d'échappement placée dans la culasse 2. Ces fonctions sont obtenues tout en conservant une chemise exempte de lumière ou autre orifice latéral. Cette caractéristique est importante pour permettre une durée de vie élevée pour les applications concernant les moteurs rapides.
La figure 5 illustre une possibilité de conception qui permet de lubrifier et de refroidir le piston 11 grâce à un circuit étanché par rapport à la chambre de compression placée dans le carter 16 en combinaison avec une soupape d'admission 10 intégrée au piston 11. Le lubrifiant est admis depuis un pallier du vilebrequin 17, via les canalisations 20c, 20b, 20a intégrées successivement dans bras de levier 26b du vilebrequin, dans la bielle 15 et dans le piston 11, jusque dans la cavité annulaire 25 ménagée dans l'interface entre le piston 11 et la chemise 23. Le retour du lubrifiant est canalisé depuis ladite cavité annulaire 25, via les canalisations 2Od, 20e, 2Of intégrées successivement au piston 11, à la bielle 15 et au bras de levier 26a du vilebrequin, jusque dans le pallier du vilebrequin. L'étanchéité de la cavité annulaire 25 est assurée par rapport à la chambre de combustion 4 grâce aux segments 24 et par rapport au volume 13 grâce aux segments 21. La position de la chambre annulaire 8 permet de collecter les éventuelles égouttures de lubrifiant susceptible de s'écouler, sous le piston 11, sur la paroi de la chemise 23. La chambre annulaire 8 comporte un orifice d'évacuation non représenté, des éventuelles égouttures de lubrifiant. L'étanchéité aux interfaces des canalisations 20a à 2Of entre le piston 11, la bielle 15, les bras de levier 26a, 26b et les paliers du vilebrequin 17 est réalisée grâce à des joints toriques 22a, 22b, 22c, 22d, 22e et 22f.
Cette conception permet de lubrifier significativement l'interface piston - chemise tout en minimisant la consommation d'huile. De part ailleurs, le fait de lubrifier significativement l'interface piston — chemise va dans le sens d'une la durée de vie élevée et de frottements réduits. De plus, cette conception est compatible avec un piston de hauteur réduite, ce qui va dans le sens de minimiser l'inertie de l'équipage mobile, ce qui est facteur d'agrément dans l'utilisation du moteur conjuguée à l'économie de la consommation de carburant.
Possibilités d'application industrielle
La présente invention peut s'appliquer à tout moteur à piston(s) alternatifs.
Pour les moteurs à deux temps, la présente invention peut être appliquée afin d'allonger significativement la durée de vie tout en minimisant la consommation d'huile et également pour élargir la plage de fonctionnement possible en mode de combustion homogène par auto inflammation.

Claims

REVENDICATIONS
1) Procédé appliqué à un moteur (1) à combustion interne comprenant au moins un cylindre avec une chambre de combustion (4), un équipage mobile comportant un piston (11) déplaçable en translation sous l'action d'une bielle (15) liée par un axe audit piston (11) et raccordée à un maneton d'un vilebrequin (17), ledit piston (11) effectuant une course entre un point mort haut et un point mort bas en laissant subsister, lorsque le piston (11) est au point mort haut, un volume (13) au dessous et un volume mort au dessus dudit piston (11), une soupape d'admission (10) étant placée dans ledit piston (11), caractérisé en ce que l'ouverture de ladite soupape d'admission (10) est o réalisée à l'aide d'un fluide pneumatique.
2) Procédé selon la revendication 1 appliqué à un moteur (1) où au moins une partie de l'énergie cinétique dudit piston (11) est convertie en énergie pneumatique, caractérisé en ce que au moins une partie de cette énergie5 pneumatique est utilisée pour actionner en ouverture ladite soupape d'admission (10) placée dans ledit piston (11).
3) Procédé selon la revendication 2 caractérisé en ce que ladite énergie pneumatique est générée par le piston (11) à l'approche de son point mort bas.0
4) Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que les gaz d'échappement sont évacués à travers la culasse (2) grâce à une soupape d'échappement (3) placée dans la culasse (2). 5) Procédé selon la revendications 4 caractérisé en ce que la levée de la soupape d'échappement (3) est réglable de sorte de réguler la quantité de gaz d'échappement recyclé en interne dans la chambre de combustion (4) pour faire fonctionner le moteur (1) en mode de combustion homogène par auto inflammation.
6) Moteur (1) à combustion interne comprenant au moins un cylindre (9) avec une chambre de combustion (4), un équipage mobile comportant un piston (11) déplaçable en translation sous l'action d'une bielle (15) liée par un axe audit piston (11) et raccordée à un maneton d'un vilebrequin (17), ledit piston (11) effectuant une course entre un point mort haut et un point mort bas en laissant subsister, lorsque le piston (11) est au point mort haut, un volume (13) au dessous et un volume mort au dessus dudit piston (11), une soupape d'admission (10) étant placée dans ledit piston (11), caractérisé en ce que ladite soupape d'admission (10) placée dans ledit piston (11) est actionnée en ouverture grâce à un vérin pneumatique (5).
7) Moteur selon la revendication 6 caractérisé en ce que le fluide pneumatique nécessaire pour actionner le vérin pneumatique (5) est comprimé par une pompe pneumatique constituée entre un piston (14) solidaire du piston (11) et une chambre (8) solidaire du carter (16).
8) Moteur selon la revendication 6 caractérisé en ce que ladite pompe pneumatique comprime le fluide pneumatique nécessaire pour actionner le vérin pneumatique (5) seulement lorsque le piston (11) est à l'approche de son point mort bas.
9) Moteur selon l'une quelconque des revendications 6 à 8 caractérisé en ce que un circuit de lubrifiant quasiment étanche par rapport à l'intérieur du carter (16) et par rapport au volume (13) situé sous le piston (11), permet de lubrifier l'interface entre le piston (11) et la chemise 0-
10) Moteur selon l'une quelconque des revendications 6 à 9 caractérisé en ce que une chambre 0 forme une gouttière qui permet de récupérer les gouttes de lubrifiant qui s'écoule le long de la chemise Q sous le piston (11) vers le bas.
PCT/FR2008/000761 2007-06-06 2008-06-05 Dispositif et procédé d'ouverture de soupape, de lubrification et de refroidissement des moteurs à pistons alternatifs WO2009004185A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08805649A EP2167795A2 (fr) 2007-06-06 2008-06-05 Dispositif et procédé d'ouverture de soupape, de lubrification et de refroidissement des moteurs à pistons alternatifs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0704053 2007-06-06
FR0704053A FR2917121A1 (fr) 2007-06-06 2007-06-06 Dispositif et procede de lubrification,de refroidissement et d'amelioration du rendement des moteurs a pistons alternatifs

Publications (3)

Publication Number Publication Date
WO2009004185A2 true WO2009004185A2 (fr) 2009-01-08
WO2009004185A3 WO2009004185A3 (fr) 2009-03-19
WO2009004185A4 WO2009004185A4 (fr) 2009-05-14

Family

ID=39166709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/000761 WO2009004185A2 (fr) 2007-06-06 2008-06-05 Dispositif et procédé d'ouverture de soupape, de lubrification et de refroidissement des moteurs à pistons alternatifs

Country Status (3)

Country Link
EP (1) EP2167795A2 (fr)
FR (1) FR2917121A1 (fr)
WO (1) WO2009004185A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201916126D0 (en) * 2019-11-06 2019-12-18 Dice Ind Ltd An internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE596147C (de) * 1933-03-24 1934-04-27 Hermann Goebbels Zweitaktbrennkraftmaschine mit Stufenkolben
DE4205663A1 (de) * 1992-02-25 1993-08-26 Peter Tontch Zweitakt-verbrennungsmotor
US20030200955A1 (en) * 1996-08-23 2003-10-30 Cummins Inc. Premixed charge compression ignition engine with optimal combustion control
WO2004067929A1 (fr) * 2003-01-27 2004-08-12 Tihomir Sic Moteur a deux temps a systeme de distribution a soupapes
WO2008107515A1 (fr) * 2007-03-08 2008-09-12 Wärtsilä Finland Oy Moteur à deux temps amélioré

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1025439A (en) * 1911-08-24 1912-05-07 Harry Whidbourne Internal-combustion engine.
JPS60204911A (ja) * 1984-03-28 1985-10-16 Mitsubishi Heavy Ind Ltd 内燃機関用動弁装置
JPS62613A (ja) * 1985-06-27 1987-01-06 Mitsubishi Heavy Ind Ltd 掃気圧利用式動弁機構
JPH02108815A (ja) * 1988-10-17 1990-04-20 Kioritz Corp 二サイクル・ユニフロー火花点火機関
DE4007466A1 (de) * 1990-03-09 1991-02-14 Franz Josef Knott Spuel- und schmierverfahren fuer hubkolbenmotoren
JPH0610775A (ja) * 1992-06-30 1994-01-18 Fuji Oozx Inc 流体制御用バルブ装置
JPH07310554A (ja) * 1993-03-31 1995-11-28 Mitsubishi Heavy Ind Ltd クランクケース圧縮式2サイクルエンジン
US5797359A (en) * 1997-06-13 1998-08-25 Freeman; Quilla H. Stepped piston two-cycle internal combustion engine
US6397795B2 (en) * 2000-06-23 2002-06-04 Nicholas S. Hare Engine with dry sump lubrication, separated scavenging and charging air flows and variable exhaust port timing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE596147C (de) * 1933-03-24 1934-04-27 Hermann Goebbels Zweitaktbrennkraftmaschine mit Stufenkolben
DE4205663A1 (de) * 1992-02-25 1993-08-26 Peter Tontch Zweitakt-verbrennungsmotor
US20030200955A1 (en) * 1996-08-23 2003-10-30 Cummins Inc. Premixed charge compression ignition engine with optimal combustion control
WO2004067929A1 (fr) * 2003-01-27 2004-08-12 Tihomir Sic Moteur a deux temps a systeme de distribution a soupapes
WO2008107515A1 (fr) * 2007-03-08 2008-09-12 Wärtsilä Finland Oy Moteur à deux temps amélioré

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOICHI ISHIBASHI AND MASAHIKO ASAI: "IMPROVING THE EXHAUST EMISSIONS OF TWO-STROKE ENGINES BY APPLYING THE ACTIVATED RADIACAL COMBUSTION" 26 février 1996 (1996-02-26), SAE TECHNICAL PAPER SERIES , XP002509692 le document en entier *

Also Published As

Publication number Publication date
WO2009004185A4 (fr) 2009-05-14
EP2167795A2 (fr) 2010-03-31
WO2009004185A3 (fr) 2009-03-19
FR2917121A1 (fr) 2008-12-12

Similar Documents

Publication Publication Date Title
CA2974478C (fr) Moteur thermique a transfert-detente et regeneration
BE897345A (fr) Dispositif de controle d'circuit de gaz d'une chambre de combustion et organe d'etancheite pour sa mise en oeuvre
WO2009004185A2 (fr) Dispositif et procédé d'ouverture de soupape, de lubrification et de refroidissement des moteurs à pistons alternatifs
WO2010066980A1 (fr) Moteur a combustion interne a chambre de combustion a geometrie variable
WO2007085752A2 (fr) Dispositif permettant d'accelerer la montee en temperature d'huile de lubrification d'un moteur a combustion interne a turbocompresseur a gaz d'echappement
FR3067386B1 (fr) Machine de detente
EP1290326B1 (fr) Moteur a combustion interne sans refroidissement exterieur
FR3043717B1 (fr) Systeme de motorisation et vehicule automobile associe
EP0020806A1 (fr) Moteur 3 temps
FR3033595A1 (fr) Moteur deux temps compresse non polluant
CA2669322A1 (fr) Moteur thermique a recuperation d'energie equipe d'un piston multifonction double effet
FR2937380A1 (fr) Dispositif et procede d'ouverture de soupape pour moteurs a pistons alternatifs.
EP4423386A1 (fr) Pompe à haute pression pour moteur à combustion interne de véhicule automobile
EP2730758A1 (fr) Piston à soupape intégrée
FR3069277A1 (fr) Moteur thermique comprenant un circuit interne de limitation de pression des gaz de carter
FR2922951A1 (fr) Moteur a combustion interne a chambre de combustion a geometrie variable.
CH351434A (fr) Moteur à combustion interne
FR2888907A1 (fr) Dispositif pour ouvrir et fermer les lumieres de distribution dans les moteurs deux temps, et guider les pistons quand ils sont monocylindriques.
FR3065489A1 (fr) Moteur a combustion interne a cycle divise
BE524153A (fr)
BE364504A (fr)
EP2201233A2 (fr) Moteur a combustion interne a chambre de combustion a geometrie variable
FR2922953A1 (fr) Procede de controle du rapport volumetrique d'un moteur a combustion interne.
CH100546A (fr) Moteur à combustion interne.
FR2763641A1 (fr) Moteur rotatif a palettes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805649

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008805649

Country of ref document: EP