WO2009004130A1 - Moteur thermique à recyclage de gaz d'échappement intégré - Google Patents

Moteur thermique à recyclage de gaz d'échappement intégré Download PDF

Info

Publication number
WO2009004130A1
WO2009004130A1 PCT/FR2008/000668 FR2008000668W WO2009004130A1 WO 2009004130 A1 WO2009004130 A1 WO 2009004130A1 FR 2008000668 W FR2008000668 W FR 2008000668W WO 2009004130 A1 WO2009004130 A1 WO 2009004130A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
exhaust
valve
valves
engine
Prior art date
Application number
PCT/FR2008/000668
Other languages
English (en)
Inventor
Laurent Albert
Original Assignee
Valeo Systemes De Controle Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0703474A external-priority patent/FR2916238B1/fr
Priority claimed from FR0703473A external-priority patent/FR2916242B1/fr
Application filed by Valeo Systemes De Controle Moteur filed Critical Valeo Systemes De Controle Moteur
Publication of WO2009004130A1 publication Critical patent/WO2009004130A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0276Actuation of an additional valve for a special application, e.g. for decompression, exhaust gas recirculation or cylinder scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/04Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation using engine as brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/10Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air having secondary air added to the fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/37Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with temporary storage of recirculated exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a heat engine with integrated exhaust gas recirculation.
  • the exhaust gas recirculation is carried out by means of a device separate from the engine generally comprising a cooled duct and a uncooled duct connected in parallel, a bypass valve for guiding the exhaust gases. to recycle to the cooled duct or the uncooled duct, and a flow control valve to regulate the flow of the recycled exhaust gas.
  • the exhaust gas recirculation device is mounted between the exhaust pipe and the intake pipe upstream of the intake manifold.
  • the presence of the external exhaust recycling device increases the overall size of the engine.
  • a first object of the invention is to propose a heat engine in which the gas recycling device is at least partially integrated directly into the engine.
  • Another object of the invention is to associate with the architecture of the engine according to the invention, a reserve of compressed air for multiple improvements in engine performance.
  • a heat engine comprising at least two cylinders equipped with intake valves connected to an intake duct and exhaust valves connected to an exhaust duct via an exhaust manifold, the valves being associated with control members, wherein each cylinder comprises an additional valve associated with an independent control member, the additional valves being connected to the exhaust duct by an exhaust recirculation duct.
  • the engine comprises a first uncooled exhaust recycle duct and a second cooled exhaust recirculation duct connected in parallel and each provided with an isolation valve. .
  • the additional valves then provide the flow control function so that the exhaust recycling device is fully integrated with the engine.
  • the exhaust recirculation duct is connected to a compressed air reservoir via a connecting duct comprising a tank isolation valve, an isolating valve of exhaust being mounted between the exhaust duct and a junction point of the exhaust recirculation duct with the connecting duct.
  • FIG. 1 is a schematic representation of a heat engine according to the invention
  • FIG. 2 is a schematic representation of an alternative embodiment of the device of FIG. 1.
  • the heat engine 1 illustrated comprises, in a manner known per se, four cylinders 2 each equipped with two intake valves 3 connected to an intake duct 4 and associated with a control member. control 5. Also in a manner known per se, each cylinder is equipped with an exhaust valve 6 connected to an exhaust duct 7 and associated with a control member 8. In the illustrated embodiment, each valve is controlled by an individual control member such as an electromagnetic actuator, but the invention also relates to heat engines conventionally equipped with a camshaft or any other actuator for controlling the intake valves and exhaust.
  • each cylinder 2 is furthermore equipped with an additional valve 9 connected to a tank 10 by a connecting pipe generally designated at 11.
  • Each additional valve 9 is associated with a control member independent 32 which can be a hydraulic or pneumatic electromagnetic actuator connected to a processing unit 34.
  • the connecting duct 11 comprises successively from the engine 1 a manifold 12, a branch 13 connected to the collector 12 on which is mounted a heat exchanger 14 comprising a coil 33 connected to the engine cooling circuit, a branch 15 connected to the branch 13, a filter 16 arranged in the branch 15 at the junction with the branch 13, a non-return valve 17 mounted to allow a flow of gas to the tank 10, a pressure regulator 18 mounted in parallel with the check valve 17 to allow a flow of gas from of the reservoir 10, and a tank isolation valve 19 connected to the reservoir by a section of conduit 20.
  • the reservoir see 10 is itself equipped with a safety valve 21.
  • the branch 13 of the connecting duct 11 is connected to a first end of a recycling duct 22, one opposite end of which is connected to the exhaust manifold 23, an isolation valve. Exhaust 24 being mounted on the first recycling duct 22.
  • the branch 13 is therefore common to the connecting duct 11 and the recycling duct 22.
  • a second recycling duct 25 extends between the collector 12 of the connecting duct 11 and the exhaust manifold 23.
  • the second recycling duct 25 is equipped with an isolation valve 26.
  • a turbocharger 27 is mounted astride the intake duct 4 and the exhaust duct 7.
  • the different isolation valves are normally kept closed.
  • the isolation valve 19 is open and each additional valve 9 is opened during the corresponding compression phase of the cylinder concerned during a deceleration of the vehicle.
  • the air compressed by the cylinder thus passes into the branch 13 where it is cooled by the exchanger 14 and then by the nonreturn valve 17 and thus supplies the reservoir 10 until the pressure in the reservoir 10 is equal to the pressure at the end of compression.
  • the reservoir can also be stopped at a lower pressure by closing the isolation valve 19 when the pressure in the reservoir 10 reaches a predetermined threshold. In the moments when the engine runs at low load can operate two cylinders motor while the other two cylinders operate in compressor to fill the tank 10.
  • the isolation valve 19 is opened and the pressure regulator 18 is actuated to allow air to flow from the tank 10 to the independent valves 9.
  • the corresponding independent valve 9 is opened a short time to admit an additional air volume. The air mass compressed in the cylinder is thus increased so that the compressed gases in the cylinder reach a high temperature at the end of compression.
  • the exhaust isolation valve 26 is opened so that exhaust gas can flow into the uncooled recycle conduit.
  • the independent valve 9 is opened so that hot gases are admitted into the cylinders, which facilitates the temperature rise of the engine and the reduction of polluting emissions.
  • the isolation valve 26 When the engine is warm, the isolation valve 26 is closed while the isolation valve 22 is open. By opening an independent valve 9 during the intake phase, exhaust gases are thus admitted which have been cooled by the heat exchanger 14. At the end of admission, it is also possible to admit fresh air from the tank 10, which makes it possible to obtain stratification of the gases contained in the corresponding cylinder 2 . In this case the heat exchanger 14 is used to heat the air released from the tank 10. It thus benefits at the same time from the reduction of polluting emissions and good combustion of gases.
  • the architecture of the engine according to the invention makes it possible to eliminate the usual exhaust gas recycling circuit, which reduces the overall cost of producing the engine.
  • the additional valves 9 make it possible to admit an additional air into the cylinders, the exhaust isolation valves being closed, so that it is possible to work at a high temperature. promoting rapid acceleration while limiting pollutant emissions.
  • the supercharging can be further increased by opening the isolation valve 24 so that pressurized air from the tank 10 is sent into the exhaust pipe 7, which shortens the speed increase of the turbocharger 27 and allows a faster supercharging in the intake duct, thus increasing the efficiency of the thermodynamic cycle.
  • the elements identical to those of FIG. 1 bear the same numerical references as in FIG. 1.
  • the second recycling duct 25 has been eliminated and the recycling duct 22 is connected to a branch. 28 at the same time the engine is equipped with a recycling duct 29 connected in a manner known per se between the exhaust duct 7 and the intake duct 4.
  • the recycling duct 29 is equipped with a heat exchanger 30 and a recycling valve 31 so that this recycling circuit is distinguished from the usual recycling circuit by the deletion of the bypass line.
  • the invention is not limited to the embodiments described and variations can be made without departing from the scope of the invention as defined by the claims.
  • the invention has been described with an exhaust recirculation duct connected to a compressed air reservoir, which allows the multiple performance improvements outlined above, the engine according to the invention can also be achieved by simply providing an architecture for partial or total integration of the exhaust gas recirculation device.
  • the engine comprises a non-cooled recycling duct 28 integrated in the engine and a cooled recycling circuit 29 outside the engine
  • the invention can be realized by keeping the branch 13 and 1 exchanger 14 shown in Figure 1 and removing the heat exchanger 30 on the recycle conduit 29.
  • the exhaust valves 6 are controlled by independent control members others, as illustrated in the figures, it is possible to ensure uncooled recycling by opening the exhaust valve of a cylinder when the latter is in the intake phase so that the exhaust gases which are fed into the exhaust duct by a cylinder in exhaust phase are partially recycled in the cylinder in the intake phase.
  • the recycling duct 25 In the version of the engine comprising a compressed air reservoir, this latter can be externally powered, the connection with the engine then used exclusively during the phases of use of compressed air.
  • the invention also relates to a method for managing the performance of a heat engine comprising at least one cylinder equipped with an intake valve connected to an intake duct, an exhaust valve connected to an exhaust duct, the method comprising the step of introducing pressurized gas directly into said at least one cylinder during a thermal engine operating phase by using an independently controlled valve.
  • the gas under pressure is air introduced during an intake phase or at the beginning of a compression phase. This provides a supercharging favorable to a cold start or a strong acceleration.
  • the introduction of air during the intake phase may be preceded by an introduction of exhaust gas, which allows to obtain in the cylinder stratification favorable to the operation of a hot engine.
  • the introduction of air during the intake phase can also be accompanied or preceded by an introduction of air into the exhaust duct to a turbocharger.
  • presser mounted astride the exhaust duct and the intake duct. The increase in speed of the turbocharger is thus improved.
  • the gas under pressure is exhaust gas introduced during an intake phase or at the beginning of a compression phase.
  • the method comprises the step of operating at least one compressor cylinder while at least one other cylinder operates as a motor.
  • a heat engine comprising at least one cylinder equipped with an intake valve connected to an intake duct and an exhaust valve connected to an exhaust duct, the valves being each associated with a control member, at least one additional valve being associated with an independent control member and connected to a pressurized gas tank via a connecting pipe, the engine having means for controlling the valve or valves additional for introducing a pressurized gas during a thermal engine operating phase.
  • the engine includes a recycle conduit which connects the additional valve to the exhaust duct and is provided with an exhaust isolation valve.
  • the recycling duct is connected to the connecting duct, the exhaust isolation valve is mounted between the exhaust duct and a junction point of the recycling duct with the connecting duct. , and a tank isolation valve is mounted between the reservoir and the point of connection of the recycle conduit with the connecting conduit.
  • the recycling duct is a common section allowing a connection of the engine with the exhaust manifold or with the compressed air tank.
  • the connecting conduit comprises a heat exchanger. It is thus possible to use cooled exhaust gases to stratify gas in the cylinders.
  • a non-return valve is mounted to allow a flow of gas to the tank and a pressure regulator is connected in parallel with the check valve to allow a flow of gas from the tank. tank to the independent valve.
  • the connecting pipe is thus used not only for filling the tank but also for using the air stored in the tank. The overall size of the engine is reduced.
  • air from the tank is used only as a partial replacement of the air coming from the intake duct.
  • the air from the tank can be introduced into the cylinder before or after the air from the intake duct by appropriately controlling the opening of the valves 3 and 9.
  • the air from the duct admission is troduced into the cylinder before the air from the tank.
  • the air flow in the intake duct 4 is evaluated by a measurement or by a calculation and the amount of pressurized air introduced is a function of the evaluated flow rate.
  • the connecting duct 11 can be made without a check valve, the pressure in the tank 10 being then managed by determining the opening and closing times of the additional valves 9.
  • the pressure regulator 18 can also be suppressed, the pressure of admission of the compressed air by the additional valves 9 then being ensured by a pressure drop resulting from the lifting of the additional valves 9.
  • the gas under pressure may be a gas other than air or a gas mixture suitable for the intended applications.
  • the invention can be realized by putting several additional valves per cylinder or on the contrary by not equipping all the cylinders of the cylinder. an additional valve. In this case it will remain possible to feed the tank 10 but the uses of the air stored in the tank will be reduced.
  • one of these valves may also be used for the introduction of pressurized gas into the cylinders, the intake manifold and and / or exhaust then being equipped with an isolation valve appropriately placed to direct the gas under pressure to the desired valve.
  • the tank with a connection enabling it to be filled by means of an external compressor or using compressed air for purposes other than those set out above, for example to inflate a tire, generate electricity or supply pneumatic actuators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Le moteur thermique comporte plusieurs cylindres (2) équipés de soupapes d'admission (3) reliées à un conduit d'admission (4) et de soupapes d'échappement (6) reliées à un conduit d'échappement (7) par l'intermédiaire d'un collecteur d'échappement (23), et chaque cylindre comporte une soupape additionnelle (9) associée à un organe de commande (10) indépendant, les soupapes additionnelles (9) étant reliées au conduit d'échappement (7) par des conduits de recyclage d'échappement (22, 28).

Description

Moteur thermique à recyclage de gaz d'échappement intégré
La présente invention concerne un moteur thermique à recyclage de gaz d'échappement intégré.
ARRIERE PLAN DE L'INVENTION
Pour améliorer les performances d'un moteur thermique, en particulier en ce qui concerne une diminution de la pollution, il est connu de réinjecter des gaz d'échappement lors de l'admission.
Dans les moteurs existants, le recyclage de gaz d'échappement est effectué au moyen d'un dispositif séparé du moteur comprenant généralement un conduit refroidi et un conduit non refroidi montés en parallèle, une vanne de by- pass pour orienter les gaz d'échappement à recycler vers le conduit refroidi ou le conduit non refroidi, et une vanne de régulation de débit pour réguler le débit des gaz d'échappement recyclés. Le dispositif de recyclage de gaz d'échappement est monté entre le tube d'échappement et le conduit d'admission en amont du collecteur d'admission.
La présence du dispositif de recyclage d'échappement externe augmente l'encombrement global du moteur.
OBJET DE L'INVENTION
Un premier objet de l'invention est de proposer un moteur thermique dans lequel le dispositif de recyclage de gaz est au moins partiellement intégré directement au moteur.
Un autre objet de l'invention est d'associer à l'architecture du moteur thermique selon l'invention, une réserve d'air comprimé permettant de multiples améliorations des performances du moteur.
RESUME DE L'INVENTION
En vue de la réalisation de ce but, on prévoit selon 1 ' invention un moteur thermique comportant au moins deux cylindres équipés de soupapes d'admission reliées à un conduit d'admission et de soupapes d'échappement reliées à un conduit d'échappement par l'intermédiaire d'un collecteur d'échappement, les soupapes étant associées à des organes de commande, dans lequel chaque cylindre comporte une soupape additionnelle associée à un organe de commande in- dépendant, les soupapes additionnelles étant reliées au conduit d'échappement par un conduit de recyclage d'échappement .
Il est ainsi possible de simplifier le dispositif de recyclage d'échappement en supprimant le conduit de re- cyclage d'échappement non refroidi.
Selon un mode de réalisation préféré de cet aspect de l'invention, le moteur comporte un premier conduit de recyclage d'échappement non refroidi et un second conduit de recyclage d'échappement refroidi montés en parallèle et chacun pourvu d'une vanne d'isolement. Les soupapes additionnelles assurent alors la fonction de régulation de débit de sorte que le dispositif de recyclage d'échappement est totalement intégré au moteur.
Selon le deuxième aspect de l'invention, le conduit de recyclage d'échappement est relié à un réservoir d'air comprimé par l'intermédiaire d'un conduit de liaison comportant une vanne d'isolement de réservoir, une vanne d'isolement d'échappement étant montée entre le conduit d'échappement et un point de jonction du conduit de recy- clage d'échappement avec le conduit de liaison. Ainsi, par un contrôle approprié de la vanne d'isolement du réservoir, de la vanne d'isolement d'échappement et des soupapes additionnelles, on peut réaliser des multiples utilisations afin d'améliorer les performances du moteur. BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit d'un mode de réalisation préféré de l'invention et d'une variante de réalisation, en relation avec les figures ci- jointes parmi lesquelles :
- la figure 1 est une représentation schématique d'un moteur thermique selon l'invention,
- la figure 2 est une représentation schématique d'une variante de réalisation du dispositif de la figure 1.
DESCRIPTION DETAILLEE DE L'INVENTION En référence à la figure 1, le moteur thermique 1 illustré comporte de façon connue en soi quatre cylindres 2 chacun équipé de deux soupapes d'admission 3 reliées à un conduit d'admission 4 et associées à un organe de commande 5. Egalement de façon connue en soi, chaque cylindre est équipé d'une soupape d'échappement 6 reliée à un conduit d'échappement 7 et associée à un organe de commande 8. Dans le mode de réalisation illustré, chaque soupape est commandée par un organe de commande individuel tel qu'un action- neur électromagnétique, mais l'invention concerne également les moteurs thermiques équipés de façon classique d'un arbre à came ou de tout autre organe d' actionnement pour commander les soupapes d'admission et d'échappement.
Selon le mode de réalisation illustré de l'invention, chaque cylindre 2 est en outre équipé d'une soupape additionnelle 9 reliée à un réservoir 10 par un conduit de liaison généralement désigné en 11. Chaque soupape additionnelle 9 est associée à un organe de commande indépendant 32 qui peut être un actionneur électromagnétique hydraulique ou pneumatique relié à une unité de traitement 34. Le conduit de liaison 11 comporte successivement à partir du moteur 1 un collecteur 12, une branche 13 reliée au collecteur 12 sur laquelle est montée un échangeur de chaleur 14 comprenant un serpentin 33 relié au circuit de refroidissement du moteur, une branche 15 reliée à la branche 13, un filtre 16 disposé dans la branche 15 à la jonction avec la branche 13, un clapet anti-retour 17 monté pour permettre un écoulement de gaz vers le réservoir 10, un régulateur de pression 18 monté en parallèle au clapet antiretour 17 pour permettre un écoulement de gaz à partir du réservoir 10, et une vanne d'isolement de réservoir 19 raccordée au réservoir par un tronçon de conduit 20. Le réser- voir 10 est lui-même équipé d'un clapet de sûreté 21.
A son embranchement avec la branche 15, la branche 13 du conduit de liaison 11 est reliée à une première extrémité d'un conduit de recyclage 22 dont une extrémité op- posée est reliée au collecteur d'échappement 23, une vanne d'isolement d'échappement 24 étant montée sur le premier conduit de recyclage 22. La branche 13 est donc commune au conduit de liaison 11 et au conduit de recyclage 22. Un second conduit de recyclage 25 s'étend entre le collecteur 12 du conduit de liaison 11 et le collecteur d'échappement 23. Le second conduit de recyclage 25 est équipé d'une vanne d'isolement 26.
Par ailleurs, de façon connue en soi, un turbocompresseur 27 est monté à cheval sur le conduit d'admission 4 et le conduit d'échappement 7.
Les différentes vannes d'isolement sont normalement maintenues fermées. Pour le remplissage du réservoir, la vanne d'isolement 19 est ouverte et chaque soupape additionnelle 9 est ouverte pendant la phase de compression correspondante du cylindre concerné lors d'une décélération du véhicule. L'air comprimé par le cylindre passe ainsi dans la branche 13 où il est refroidi par 1 ' échangeur 14 puis par le clapet anti-retour 17 et alimente donc le réservoir 10 jusqu'à ce que la pression dans le réservoir 10 soit égale à la pression en fin de compression.
On notera à ce propos que la majeure partie de l'air contenu dans le cylindre est chassé pendant la phase de compression vers le réservoir 10 de sorte que dans la phase qui suit immédiatement la compression, le piston exerce un travail pour provoquer une détente des gaz restés dans le cylindre. Le couple global du cycle du moteur est alors négatif et agit comme un frein moteur important. Pendant cette phase, le couple de freinage peut être ajusté en modifiant la levée de la soupape indépendante ainsi que l'instant d'ouverture et/ou le temps pendant lequel la soupape est ouverte. Dans le cas d'un moteur associé à une transmission variable réversible, on peut également adapter le régime de rotation du moteur pour assurer une récupération d'énergie dans les meilleures conditions.
On peut également cesser le remplissage du réser- voir à une pression inférieure en fermant la vanne d'isolement 19 lorsque la pression dans le réservoir 10 atteint un seuil prédéterminé. Dans les instants où le moteur fonctionne à faible charge on peut faire fonctionner deux cylindres en moteur tandis que les deux autres cylindres fonctionnent en compresseur pour remplir le réservoir 10.
Par ailleurs, de façon non exhaustive, les différentes utilisations de l'architecture du moteur selon l'invention sont les suivantes :
Lors d'un démarrage à froid, la vanne d'isolement 19 est ouverte et le détendeur de pression 18 est actionné pour permettre un écoulement de l'air depuis le réservoir 10 vers les soupapes indépendantes 9. Lorsqu'un cylindre est en phase d'admission, juste après la fermeture des soupapes d'admission 3, la soupape indépendante 9 correspon- dante est ouverte un bref instant pour admettre un volume d'air supplémentaire. La masse d'air comprimée dans le cylindre est donc augmentée de sorte que les gaz comprimés dans le cylindre atteignent une température élevée en fin de compression. Après un démarrage du moteur et lorsque le moteur est encore froid, la vanne d'isolement d'échappement 26 est ouverte de sorte que des gaz d'échappement peuvent s'écouler dans le conduit de recyclage 25 non refroidi. Lors de la phase d'admission d'un cylindre, la soupape indépendante 9 est ouverte de sorte que des gaz chauds sont admis dans les cylindres, ce qui facilite la montée en température du moteur et la réduction des émissions polluantes.
Lorsque le moteur est chaud, la vanne d'isolement 26 est fermée tandis que la vanne d'isolement 22 est ou- verte. En ouvrant une soupape indépendante 9 pendant la phase d'admission, on admet ainsi des gaz d'échappement qui ont été refroidis par l ' échangeur de chaleur 14. En fin d'admission, on peut également admettre de l'air frais en provenance du réservoir 10, ce qui permet d'obtenir une stratification des gaz contenus dans le cylindre 2 corres- pondant. Dans ce cas l ' échangeur de chaleur 14 sert à réchauffer l'air détendu venant du réservoir 10. On bénéficie ainsi tout à la fois de la réduction des émissions polluantes et d'une bonne combustion des gaz.
A ce propos, on notera que l'architecture du moteur selon l'invention permet de supprimer le circuit habituel de recyclage de gaz d'échappement, ce qui réduit le coût global de réalisation du moteur.
Dans le cas d'une forte accélération, les soupapes additionnelles 9 permettent d'admettre un supplément d'air dans les cylindres, les vannes d'isolement d'échappement étant fermées, de sorte qu'il est possible de travailler à une richesse 1 favorisant une accélération rapide tout en limitant les émissions polluantes. En outre, la suralimentation peut encore être augmentée en ouvrant la vanne d'isolement 24 de sorte que de l'air sous pression en provenance du réservoir 10 est envoyé dans le conduit d'échappement 7, ce qui raccourcit la montée en vitesse du turbocompresseur 27 et permet une suralimentation plus rapide dans le conduit d'admission, augmentant ainsi le rendement du cycle thermodynamique.
En régime stable à forte charge, les vannes d'isolement d'échappement 24 et 26 sont ouvertes et les soupapes additionnelles 9 sont commandées de façon synchronisée avec les soupapes d'échappement 6, de sorte que le cylindre se vide plus rapidement lors de la phase d'échappement.
En fin d'échappement et alors que les soupapes d'échappement 6 sont encore ouvertes, on peut également fermer les vannes d'isolement 24 et 26 et alimenter le conduit de liaison 11 avec de l'air sous pression de sorte que cet air est injecté dans le cylindre correspondant et facilite l ' évacuation des gaz brûlés encore présents dans la chambre de combustion. Cela permet en outre d'assurer un refroidissement du cylindre de sorte que les phénomènes de cliquetis et l'émission de NOx sont réduits.
En référence à la figure 2 , les éléments identiques à ceux de la figure 1 portent les mêmes références numériques que sur la figure 1. Dans cette variante le second conduit de recyclage 25 a été supprimé et le conduit de recyclage 22 est relié à une branche 28 non refroidie du conduit de liaison 11. Parallèlement le moteur est équipé d'un conduit de recyclage 29 relié de façon connue en soi entre le conduit d'échappement 7 et le conduit d'admission 4. Le conduit de recyclage 29 est équipé d'un échangeur de chaleur 30 et d'une vanne de recyclage 31 de sorte que ce circuit de recyclage se distingue du circuit de recyclage habituel par la suppression de la ligne de by-pass.
Bien entendu l'invention n'est pas limitée aux modes de réalisation décrits et on peut y apporter des variantes de réalisation sans sortir du cadre de l'invention telle que définie par les revendications . En particulier, bien que l'invention ait été décrite avec un conduit de recyclage d'échappement relié à un réservoir d'air comprimé, ce qui permet les multiples améliorations de performances énoncées ci-dessus, le moteur selon l'invention peut également être réalisé en prévoyant simplement une architecture permettant une intégration partielle ou totale du dispositif de recyclage de gaz d'échappement .
Bien que dans la variante de réalisation qui est illustrée par la figure 2 le moteur comprenne un conduit de recyclage non refroidi 28 intégré au moteur et un circuit de recyclage refroidi 29 extérieur au moteur, l'invention peut être réalisée en conservant la branche 13 et 1 ' échangeur 14 illustrés sur la figure 1 et en supprimant 1 ' échangeur de chaleur 30 sur le conduit de recyclage 29. En outre, lorsque les soupapes d'échappement 6 sont commandées par des organes de commande indépendants les uns des autres, comme illustré sur les figures, il est possible d'assurer le recyclage non refroidi en ouvrant la soupape d'échappement d'un cylindre lorsque celui-ci est en phase d'admission de sorte que les gaz d'échappement qui sont en- voyés dans le conduit d'échappement par un cylindre en phase d'échappement sont partiellement recyclés dans le cylindre en phase d'admission. Par rapport à l'architecture de la figure 1, il est donc possible de supprimer le conduit de recyclage 25. Dans la version du moteur comportant un réservoir d'air comprimé, celui-ci peut être alimenté de façon externe, la liaison avec le moteur servant alors exclusivement lors des phases d'utilisation de l'air comprimé.
Indépendamment de ce qui précède, l'invention concerne également un procédé de gestion des performances d'un moteur thermique comportant au moins un cylindre équipé d'une soupape d'admission reliée à un conduit d'admission, une soupape d'échappement reliée à un conduit d'échappement, le procédé comportant l'étape d'introduire du gaz sous pression directement dans ledit au moins un cylindre pendant une phase de fonctionnement en moteur thermique en utilisant une soupape à commande indépendante.
Cela permet de multiplier les applications en fonction des conditions de fonctionnement du moteur. Selon une première application particulière, le gaz sous pression est de l'air introduit pendant une phase d'admission ou au début d'une phase de compression. On réalise ainsi une suralimentation favorable à un démarrage à froid ou à une forte accélération. L'introduction d'air pendant la phase d'admission peut être précédée d'une introduction de gaz d'échappement, ce qui permet d'obtenir dans le cylindre une stratification favorable au fonctionnement d'un moteur chaud.
L'introduction d'air pendant la phase d'admission peut également être accompagnée ou précédée d'une introduction d'air dans le conduit d'échappement vers un turbocom- presseur monté à cheval sur le conduit d'échappement et le conduit d'admission. La montée en vitesse du turbocompresseur est ainsi améliorée.
Selon une autre application particulière du procédé selon l'invention, le gaz sous pression est du gaz d'échappement introduit pendant une phase d'admission ou au début d'une phase de compression.
Selon encore une autre application particulière du procédé selon l ' invention pour un moteur comportant plu- sieurs cylindres, le procédé comporte l'étape de faire fonctionner au moins un cylindre en compresseur tandis qu'au moins un autre cylindre fonctionne en moteur. Ceci permet de reconstituer le stock d'air comprimé dans les situations où le moteur fonctionne à faible charge. Selon un autre aspect de l'invention, on prévoit un moteur thermique comportant au moins un cylindre équipé d'une soupape d'admission reliée à un conduit d'admission et d'une soupape d'échappement reliée à un conduit d'échappement, les soupapes étant chacune associée à un organe de commande, au moins une soupape additionnelle étant associée à un organe de commande indépendant et reliée à un réservoir de gaz sous pression par un conduit de liaison, le moteur comportant des moyens pour commander la ou les soupapes additionnelles pour introduire un gaz sous pression pendant une phase de fonctionnement en moteur thermique.
De préférence, le moteur comporte un conduit de recyclage qui relie la soupape additionnelle au conduit d'échappement et qui est pourvu d'une vanne d'isolement d ' échappement . Selon une version avantageuse de l'invention, le conduit de recyclage est relié au conduit de liaison, la vanne d'isolement d'échappement est montée entre le conduit d'échappement et un point de jonction du conduit de recyclage avec le conduit de liaison, et une vanne d'isolement du réservoir est montée entre le réservoir et le point de liaison du conduit de recyclage avec le conduit de liaison. Ainsi, le conduit de recyclage constitue un tronçon commun permettant une liaison du moteur avec le collecteur d'échappement ou avec le réservoir d'air comprimé.
Selon un autre aspect avantageux de l'invention, le conduit de liaison comporte un échangeur de chaleur. Il est ainsi possible d'utiliser des gaz d'échappement refroidis pour effectuer une stratification de gaz dans les cylindres .
Selon encore un autre aspect avantageux de 1 ' inven- tion, un clapet anti-retour est monté pour permettre un écoulement du gaz vers le réservoir et un régulateur de pression est monté en parallèle au clapet anti-retour pour permettre un écoulement de gaz du réservoir vers la soupape indépendante. On utilise ainsi le conduit de liaison non seulement pour remplir le réservoir mais également pour l'utilisation de l'air stocké dans le réservoir. L'encombrement global du moteur est donc réduit.
D'une façon générale, lorsque de l'air sous pression est introduit dans un cylindre en provenance du réser- voir 10 pendant une phase d'admission, cette introduction d'air en provenance du réservoir se substitue de façon partielle ou totale à l'air introduit par le conduit d'admission 4, que celui-ci soit ou non équipé d'un turbocompresseur. La pression de l'air en provenance du réservoir est supérieure à celle du conduit d'admission même lorsque le moteur est équipé d'un turbocompresseur. La quantité d'air totale introduite dans le cylindre est donc fonction de temps d'ouverture respectifs des soupapes 3 et 9.
De préférence, afin de ménager la réserve d'air dans le réservoir, de l'air en provenance du réservoir est utilisé seulement en remplacement partiel de l'air en provenance du conduit d'admission. L'air en provenance du réservoir peut être introduit dans le cylindre avant ou après l'air en provenance du conduit d'admission en commandant de façon appropriée l'ouverture des soupapes 3 et 9. De préférence, l'air en provenance du conduit d'admission est in- troduit dans le cylindre avant l'air en provenance du réservoir.
De préférence, dans ce cas le débit d'air dans le conduit d'admission 4 est évalué par une mesure ou par un calcul et la quantité d'air sous pression introduite est fonction du débit évalué .
Des variantes de réalisation sont possibles pour la mise en œuvre de ce procédé.
En particulier, le conduit de liaison 11 peut être réalisé sans clapet anti-retour, la pression dans le réservoir 10 étant alors gérée par la détermination des instants d'ouverture et de fermeture des soupapes additionnelles 9.
Le régulateur de pression 18 peut également supprimé, la pression d'admission de l'air comprimé par les sou- papes additionnelles 9 étant alors assurée par une perte de charge résultant de la levée des soupapes additionnelles 9.
Dans le cas où le réservoir 10 est alimenté par un compresseur extérieur, le gaz sous pression peut être un gaz autre que l'air ou un mélange de gaz adapté aux appli- cations envisagées.
Bien que l'invention ait été illustrée en relation avec un moteur comportant quatre cylindres, chacun équipé d'une soupape additionnelle, l'invention peut être réalisée en mettant plusieurs soupapes additionnelles par cylindre ou au contraire en n'équipant pas tous les cylindres d'une soupape additionnelle. Dans ce cas il restera possible d'alimenter le réservoir 10 mais les utilisations de l'air stocké dans le réservoir seront réduites. Dans le cas d'un moteur équipé de soupapes d'admission et/ou d'échappement à commande indépendante on peut également utiliser l'une de ces soupapes pour l ' introduction de gaz sous pression dans les cylindres, le collecteur d'admission et/ou d'échappement étant alors équipée d'une vanne d'isolement placée de façon appropriée pour diriger le gaz sous pression vers la soupape souhaitée. Bien entendu, on peut également équiper le réservoir d'un raccord permettant de remplir celui-ci au moyen d'un compresseur extérieur ou d'utiliser l'air comprimé à d'autres fins que celles exposées ci-dessus, par exemple pour regonfler un pneu, produire de l'électricité ou encore alimenter des actionneurs pneumatiques .

Claims

REVENDICATIONS
1. Moteur thermique comportant au moins deux cylindres (2) équipés de soupapes d'admission (3) reliées à un conduit d'admission (4) et de soupapes d'échappement (6) reliées à un conduit d'échappement (7) par l'intermédiaire d'un collecteur d'échappement (23), les soupapes étant associées à des organes de commande (5, 8), caractérisé en ce que chaque cylindre comporte une soupape additionnelle (9) associée à un organe de commande (32) indépendant, les soupapes additionnelles (9) étant reliées au conduit d'échappement (7) par un conduit de recyclage d'échappement (22, 28) .
2. Moteur thermique selon la revendication 1, ca- ractérisé en ce que le conduit de recyclage d'échappement
(22) comporte un échangeur de chaleur (14) .
3 Moteur thermique selon la revendication 2, caractérisé en ce qu'il comporte un second conduit de recyclage d'échappement (25) non refroidi reliant les soupapes addi- tionnelles (9) au conduit d'échappement (7) par l'intermédiaire d'une vanne d'isolement (26) en parallèle au premier conduit d'échappement (22), le premier conduit d'échappement (22) étant pourvu d'une vanne d'isolement (24) .
4. Moteur thermique selon la revendication 1, ca- ractérisé en ce qu'il comporte un second conduit de recyclage d'échappement (29) s ' étendant entre le conduit d'échappement (7) et le conduit d'admission (4) et comportant une vanne de régulation de recyclage (31) .
5. Moteur thermique selon la revendication 4, ca- ractérisé en ce que le second conduit de recyclage d'échappement (29) est équipé d'un échangeur de chaleur (30) .
6. Moteur thermique selon la revendication 1, caractérisé en ce que le conduit de recyclage d'échappement (22, 28) est relié à un réservoir d'air comprimé (10) par l'intermédiaire d'un conduit de liaison (11) comportant une vanne d'isolement de réservoir (19), une vanne d'isolement d'échappement (24) étant montée entre le conduit d'échappement (7) et un point de jonction du conduit de recyclage d'échappement (22, 28) avec le conduit de liaison (11).
7. Moteur thermique selon la revendication 6 , ca- ractérisé en ce que le conduit de liaison (11) comporte un échangeur de chaleur (14) .
8. Moteur thermique selon la revendication 7, caractérisé en ce que l ' échangeur de chaleur (14) est monté sur une branche (13) commune au conduit de liaison (11) et au conduit de recyclage d'échappement (22).
9. Moteur thermique selon la revendication 6, caractérisé en ce que le conduit de liaison (11) comporte un clapet anti retour (17) monté pour permettre un écoulement de gaz vers le réservoir.
10. Moteur thermique selon la revendication 9, caractérisé en ce qu'un régulateur de pression (18) est monté en parallèle au clapet anti-retour (17) pour permettre un écoulement de gaz à partir du réservoir (10) .
PCT/FR2008/000668 2007-05-15 2008-05-14 Moteur thermique à recyclage de gaz d'échappement intégré WO2009004130A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0703474 2007-05-15
FR0703473 2007-05-15
FR0703474A FR2916238B1 (fr) 2007-05-15 2007-05-15 Moteur thermique a recyclage de gaz d'echappement integre
FR0703473A FR2916242B1 (fr) 2007-05-15 2007-05-15 Procede de gestion des performances d'un moteur thermique et moteur thermique adapte a une mise en oeuvre de ce procede

Publications (1)

Publication Number Publication Date
WO2009004130A1 true WO2009004130A1 (fr) 2009-01-08

Family

ID=39941658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/000668 WO2009004130A1 (fr) 2007-05-15 2008-05-14 Moteur thermique à recyclage de gaz d'échappement intégré

Country Status (1)

Country Link
WO (1) WO2009004130A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2975728A1 (fr) * 2011-05-27 2012-11-30 Peugeot Citroen Automobiles Sa Moteur hybride pneumatique-thermique
FR2990471A1 (fr) * 2012-05-10 2013-11-15 Peugeot Citroen Automobiles Sa Architecture moteur a double collecteur d'echappement et reservoir haute pression

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623159A1 (de) * 1986-07-10 1988-02-04 Duis Peter Dipl Ing Ter Verfahren zur nutzung von durch bremsenergie erzeugten und gespeicherten druckluft als verbrennungsluft fuer verbrennungskraftmaschinen in kraftfahrzeugen
JP2000073875A (ja) * 1998-08-26 2000-03-07 Hino Motors Ltd ディーゼルエンジンのegr装置
US20040094117A1 (en) * 2002-11-19 2004-05-20 Caterpillar, Inc. Valve system for internal combustion engine
GB2402169A (en) * 2003-05-28 2004-12-01 Lotus Car An engine with several operating modes including operation by compressed air
DE102004037971A1 (de) * 2004-08-05 2006-02-23 Bayerische Motoren Werke Ag Verbrennungsmotor, insbesondere für Gasbetrieb

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623159A1 (de) * 1986-07-10 1988-02-04 Duis Peter Dipl Ing Ter Verfahren zur nutzung von durch bremsenergie erzeugten und gespeicherten druckluft als verbrennungsluft fuer verbrennungskraftmaschinen in kraftfahrzeugen
JP2000073875A (ja) * 1998-08-26 2000-03-07 Hino Motors Ltd ディーゼルエンジンのegr装置
US20040094117A1 (en) * 2002-11-19 2004-05-20 Caterpillar, Inc. Valve system for internal combustion engine
GB2402169A (en) * 2003-05-28 2004-12-01 Lotus Car An engine with several operating modes including operation by compressed air
DE102004037971A1 (de) * 2004-08-05 2006-02-23 Bayerische Motoren Werke Ag Verbrennungsmotor, insbesondere für Gasbetrieb

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2975728A1 (fr) * 2011-05-27 2012-11-30 Peugeot Citroen Automobiles Sa Moteur hybride pneumatique-thermique
WO2012164177A1 (fr) * 2011-05-27 2012-12-06 Peugeot Citroen Automobiles Sa Moteur hybride pneumatique-thermique
FR2990471A1 (fr) * 2012-05-10 2013-11-15 Peugeot Citroen Automobiles Sa Architecture moteur a double collecteur d'echappement et reservoir haute pression

Similar Documents

Publication Publication Date Title
EP1771649B1 (fr) Dispositif et procede de suralimentation en gaz comprime d'une tubulure d'admission d'un moteur turbo-compresse
US7607503B1 (en) Operating a vehicle with high fuel efficiency
FR2982846A1 (fr) Procede et architecture de recuperation d'energie dans un aeronef
CA2319268A1 (fr) Procede et dispositif de rechauffage thermique additionnel pour vehicule equipe de moteur depollue a injection d'air comprime additionnel
FR2865769A1 (fr) Procede de fonctionnement d'un moteur hybride pneumatique-thermique a suralimentation par turbocompresseur
WO2016193597A1 (fr) Ensemble moteur turbocompresse a deux conduits d'echappement munis de vanne de regulation
CA2810922A1 (fr) Moteur a air comprime a chambre active incluse et autodetendeur
FR2916238A1 (fr) Moteur thermique a recyclage de gaz d'echappement integre
WO2014057227A1 (fr) Moteur thermique pour l'entrainement d'un arbre moteur
FR2922162A1 (fr) Systeme de motorisation hybride pneumatique-thermique de vehicule routier
FR2535392A1 (fr) Systeme de suralimentation pour moteurs a combustion interne
FR2884866A1 (fr) Moteur a suralimentation sequentielle et a distribution variable
FR2916242A1 (fr) Procede de gestion des performances d'un moteur thermique et moteur thermique adapte a une mise en oeuvre de ce procede
EP2519728B1 (fr) Machine thermique à source chaude externe, groupe de production d'énergie et véhicule associés.
WO2009004130A1 (fr) Moteur thermique à recyclage de gaz d'échappement intégré
FR2990471A1 (fr) Architecture moteur a double collecteur d'echappement et reservoir haute pression
FR2907848A1 (fr) Moteur a combustion interne comportant au moins un turbocompresseur a fonctionnement a bas regime ameliore
WO2014155013A1 (fr) Dispositif de suralimentation par turbocompresseur a soutirage d'air et regeneration
FR2891310A3 (fr) Suralimentation d'un moteur par combinaison appropriee d'un turbocompresseur et d'un compresseur a ondes de pression
EP1316698A1 (fr) Dispositif et procédé de suralimentation d'un moteur à combustion interne
EP3256706A1 (fr) Ensemble moteur turbocompresse a deux conduits d'echappement avec vanne de regulation rapide
FR3028560A1 (fr) Architecture de moteur thermique suralimente munie d'un dispositif de stockage de pression
FR3032485A1 (fr) Ensemble moteur turbocompresse a deux conduits d’echappement avec ligne de recirculation
FR3032487A1 (fr) Ensemble moteur turbocompresse a deux conduits d’echappement avec ligne de recirculation et dispositif de regulation
FR2977914A1 (fr) Procede de fonctionnement d'un moteur thermique-pneumatique et moteur thermique-pneumatique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08805568

Country of ref document: EP

Kind code of ref document: A1