WO2009004008A1 - Machine frigorifique à absorption - Google Patents

Machine frigorifique à absorption Download PDF

Info

Publication number
WO2009004008A1
WO2009004008A1 PCT/EP2008/058453 EP2008058453W WO2009004008A1 WO 2009004008 A1 WO2009004008 A1 WO 2009004008A1 EP 2008058453 W EP2008058453 W EP 2008058453W WO 2009004008 A1 WO2009004008 A1 WO 2009004008A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorber
module
expeller
modules
refrigerant
Prior art date
Application number
PCT/EP2008/058453
Other languages
German (de)
English (en)
Inventor
Georg Buchholz
Franz GÖBEL
Original Assignee
Sk Sonnenklima Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sk Sonnenklima Gmbh filed Critical Sk Sonnenklima Gmbh
Publication of WO2009004008A1 publication Critical patent/WO2009004008A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/007Parallel systems therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention relates to an absorption refrigerating machine containing
  • Absorption chillers With absorption chillers, refrigeration is generally generated for the operation of, for example, building air conditioning systems.
  • Absorption chillers use heat depending on the application at different temperature levels, as drive energy for the thermal compression of a refrigerant, eg solar heat or waste heat. It is up to the low energy for pumps and control no electrical energy required. As a result, a high efficiency in the provision of cold can be achieved.
  • An absorption chiller essentially comprises four components: evaporator, absorber, expeller (also referred to as generator) and condenser.
  • Evaporator is the refrigerant, e.g. Water, evaporated at a low pressure level. In doing so, the refrigerant deprives an air conditioning circuit of energy, d. H. the cooling capacity is provided. This is done, for example, in the form that water of a building Klimakaltwasser cycle flows through the evaporator designed as a heat exchanger and is cooled there. In an absorber, the refrigerant vapor of a
  • Absorbent for example, absorbed concentrated LiBr solution.
  • the refrigerant is now present in the solution in liquid form.
  • the refrigerant dissolved in the Li-Br solution by the absorption process is pumped to a higher pressure level in an expeller.
  • the absorber comprises a heat exchanger, which is traversed by cooling liquid at a medium temperature level.
  • the exporter includes one
  • Heat exchanger which is flowed through by hot water.
  • the hot water is generated, for example, by solar energy.
  • the refrigerant is evaporated from the refrigerant-rich solution and thereby absorbs energy.
  • the low-refrigerant solution ie, for example, the concentrated LiBr solution is then available again for the absorption process.
  • the evaporated refrigerant is in a
  • Condenser liquefied and then brought back to a lower pressure level by means of a throttle device. It is then available again in the evaporator.
  • the condenser also includes a heat exchanger which is cooled by coolant at a medium temperature level, e.g. Ambient temperature is flowed through.
  • Such an arrangement is disclosed, for example, in WO 2006/018216.
  • the arrangement is limited to a predetermined power range.
  • the evaporator and the absorber are arranged in a common housing and so form an absorber-evaporator module, which is connectable to an expeller-capacitor module, in which the expeller and the
  • Capacitor are arranged in a common housing, (H) the absorber-evaporator module and the expeller-capacitor module are provided with terminals to which similar components of similar modules are detachably connected, and
  • each module is detachably connectable to a common supply arrangement in which are control devices and the solvent pump.
  • the arrangement can therefore be shared on the one hand.
  • several equal components can be made into larger power ranges, e.g. 50 kW are assembled.
  • different performance groups can be covered without increasing the production cost.
  • the size of the individual components can remain the same.
  • Vacuum-tight connections which can be quickly disconnected or closed, allow for easy assembly.
  • the absorption chiller can be powered by solar or other heat sources.
  • the modules have dimensions which are less than 100 cm in at least two directions and in particular at least in one direction less than
  • the modules can also be transported through doors, stairs and winding cellar corridors. The arrangement can be used accordingly at virtually any location.
  • the modules can also be transported by simple vehicles and in normal transport.
  • kits with several modules of different power classes makes it possible to realize more performance requirements by means of suitable combinations.
  • the use of uniform connection elements makes it possible to roast an arrangement at a later time to a higher power class.
  • Fig.l shows a modular absorption chiller with an active
  • Basic module one passive base module, two small absorber-evaporator modules and two small capacitor driver modules.
  • Basic module three passive base modules, four small absorber evaporator modules and four small capacitor driver modules.
  • FIG. 3 shows a modular absorption chiller with a
  • FIG. 4 shows a modular absorption chiller with a larger base module and four unit modules in large or small
  • Basic module one passive base module and two unit modules in a low power class.
  • Fig.6 shows a modular absorption chiller with an active
  • FIG. 7 shows a modular absorption chiller with a large, common base module, arranged side by side and one behind the other Absorber-evaporator modules and side-by-side and successively arranged capacitor-expeller modules.
  • the exemplary embodiment comprises a modular construction kit comprising a base assembly 10, 20.
  • the base assembly 10, 20 includes a purge bin, a bubble trap, a heat exchanger, pumps, and a controller.
  • the controller is integrated in the basic module 10, 20.
  • the controller is coupled to the base assembly 10 by means of connectors.
  • the modular kit further comprises a capacitor-expeller module 14 and an evaporator-absorber module 12.
  • the modules 10, 12 and 14 are detachably connectable to each other.
  • the connection is made vacuum-tight by plug-in or flange or screw connections.
  • An alternative embodiment comprises a unit module 22 in which both the condenser and the expeller, as well as the evaporator and the absorber are housed in a common housing.
  • One passive basic module for the piping is provided for each expansion module in addition to the basic module.
  • FIG. 1 shows the simplest variant of an absorption refrigeration machine.
  • the capacitor-expeller module 14 is mounted on the evaporator-absorber module 12.
  • Modules 12 and 14 are placed on the base module 10. All modules have
  • Capacitor expander module 18 on the side of the provided lateral connections connected to the modules 12 and 14. Both modules 16 and 18 are mounted on an expansion base module 19.
  • Fig. 2 shows how the performance of the absorption chiller can be increased by other modules.
  • FIG. 3 and 4 show embodiments in which a base module for a unit module 22 is provided.
  • the unit module 22, in which all the components are combined in a housing, is also expandable, as shown in Fig. 4.
  • the modules can be arranged side by side 24 and 26 in succession. Modules of different power classes can also be combined with each other, so that more power classes are available in principle.
  • FIG. 7 illustrates how large performance classes are realized with a large base module 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

L'invention concerne une machine frigorifique à absorption contenant un évaporateur pour évaporer un fluide frigorigène à basse pression, un absorbeur pour l'absorption de la vapeur de fluide frigorigène produite dans l'évaporateur par un solvant pauvre en fluide frigorigène à basse pression, une pompe de solvant pour refouler le solvant riche en fluide frigorigène à une plus haute pression, des moyens pour générer de l'eau chaude, un extracteur parcouru par l'eau chaude pour évaporer le fluide frigorigène hors du solvant, et un condenseur pour liquéfier la vapeur de fluide frigorigène à la plus haute pression, se présentant sous la forme d'un échangeur de chaleur parcouru par du liquide de refroidissement, qui est disposé dans le même boîtier que l'extracteur. La machine frigorifique à absorption selon l'invention est caractérisée en ce que l'évaporateur et l'absorbeur sont disposés dans un boîtier commun et forment ainsi un module absorbeur-évaporateur, qui peut être connecté à un module extracteur-condenseur. En l'occurrence, l'extracteur et le condenseur sont disposés dans un boîtier commun, le module absorbeur-évaporateur et le module extracteur-condenseur sont munis de raccords, auxquels peuvent se raccorder, de manière amovible, des composants de même type de modules de même type, et chaque module peut être raccordé de manière amovible à un agencement d'alimentation commun dans lequel sont disposés des dispositifs de commande et la pompe de solvant.
PCT/EP2008/058453 2007-07-03 2008-07-01 Machine frigorifique à absorption WO2009004008A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007030911.4 2007-07-03
DE102007030911A DE102007030911A1 (de) 2007-07-03 2007-07-03 Absorptionskältemaschine

Publications (1)

Publication Number Publication Date
WO2009004008A1 true WO2009004008A1 (fr) 2009-01-08

Family

ID=39735580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/058453 WO2009004008A1 (fr) 2007-07-03 2008-07-01 Machine frigorifique à absorption

Country Status (2)

Country Link
DE (1) DE102007030911A1 (fr)
WO (1) WO2009004008A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198983A1 (fr) 2013-06-14 2014-12-18 Universitat Politècnica De Catalunya Machine à absorption réfrigérée par l'air

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337226A (ja) * 1998-05-21 1999-12-10 Toyo Radiator Co Ltd 蒸発器、吸収器および過冷却器の組合せ一体型熱交換器およびその製造方法
DE10028543A1 (de) * 2000-06-08 2001-12-13 Schneider Und Partner Ingenieu Kälteaggregat
DE10325933A1 (de) * 2003-06-07 2004-12-23 Entex Energy Ltd. Diffusionsabsorptionsanlage
DE102004039327A1 (de) * 2004-08-12 2006-03-02 Phönix Sonnen Wärme AG Absorptionskältemaschine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259205A (en) * 1991-06-18 1993-11-09 Kawasaki Thermal Engineering Co., Ltd. Element for absorption chillier/absorption chiller-heater, and absorption chiller/absorption chiller-heater comprising the elements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337226A (ja) * 1998-05-21 1999-12-10 Toyo Radiator Co Ltd 蒸発器、吸収器および過冷却器の組合せ一体型熱交換器およびその製造方法
DE10028543A1 (de) * 2000-06-08 2001-12-13 Schneider Und Partner Ingenieu Kälteaggregat
DE10325933A1 (de) * 2003-06-07 2004-12-23 Entex Energy Ltd. Diffusionsabsorptionsanlage
DE102004039327A1 (de) * 2004-08-12 2006-03-02 Phönix Sonnen Wärme AG Absorptionskältemaschine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198983A1 (fr) 2013-06-14 2014-12-18 Universitat Politècnica De Catalunya Machine à absorption réfrigérée par l'air
US10527324B2 (en) 2013-06-14 2020-01-07 Universitat Politècnica De Catalunya Machine for air-cooled absorption

Also Published As

Publication number Publication date
DE102007030911A1 (de) 2009-01-08

Similar Documents

Publication Publication Date Title
EP0597822B1 (fr) Appareil multi-étage avec des circuits de circulation pour des fluides de travail et des fluides d'absorption et procédé pour l'exploitation d'un tel appareil
DE4019669C2 (de) Adsorptionsthermischer Speicher
EP2199706A1 (fr) Appareil de climatisation
DE102020117471A1 (de) Wärmepumpenanordnung mit indirekter Batterieerwärmung für batteriebetriebene Kraftfahrzeuge und Verfahren zum Betreiben einer Wärmepumpenanordnung
DE102016213679A1 (de) Wärmepumpensystem mit eingangsseitig und ausgangsseitig gekoppelten Wärmepumpenanordnungen
EP2162687A1 (fr) Machine frigorifique comprenant différentes matières de sorption
DE102016204153B4 (de) Wärmepumpenanlage mit Pumpen, Verfahren zum Betreiben einer Wärmepumpenanlage und Verfahren zum Herstellen einer Wärmepumpenanlage
WO2009004008A1 (fr) Machine frigorifique à absorption
DE3536953C1 (en) Resorption-type heat converter installation with two solution circuits
DE3013518A1 (de) Waermepumpe oder kaeltemaschine
EP2732221B1 (fr) Machine frigorifique à absorption
DE102008027473B4 (de) Druckmaschinen-Kühlsystem
EP3559564A1 (fr) Procédé et dispositif de production de froid de processus et de vapeur de processus
WO2015055159A1 (fr) Machine frigorifique à absorption
EP2989397B1 (fr) Procédé et dispositif de refroidissement d'un moteur
DE102016213680A1 (de) Wärmepumpensystem mit CO2 als erstem Wärmepumpenmedium und Wasser als zweitem Wärmepumpenmedium
DE19923242A1 (de) Verfahren und Vorrichtung zum Abkühlen eines Gasstromes
DE3129957A1 (de) "kaeltmaschine mit einem verdichter und verfahren zu ihrem betrieb"
AT504762B1 (de) Wärmepumpe
CH691744A5 (de) Adsorptionswärmepumpenanordnung.
DE3129999A1 (de) "waermepumpe mit einer speichereinrichtung und verfahren zu ihrem betrieb"
DE10038637A1 (de) Absorptionswärmepumpe mit mehreren Modulen
DE102007062343A1 (de) Verfahren und Anordnung zur Kälteerzeugung nach einem Wasser-Lithiumbromid-Resorptionskälteprozess
EP1111315A2 (fr) Pompe à chaleur à adsorption avec plusieurs modules
DE102021214258A1 (de) Wärmepumpenkaskade und Verfahren zur Erwärmung oder Abkühlung eines Kühlmittels mittels einer Wärmepumpenkaskade

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08774599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 112(1) EPUE (EPA FORM 1205A VOM 04-10-2010 & 10-12-2010)

122 Ep: pct application non-entry in european phase

Ref document number: 08774599

Country of ref document: EP

Kind code of ref document: A1