WO2009002192A1 - Procédé de calcul d'une dose chimique de traitement de l'eau - Google Patents

Procédé de calcul d'une dose chimique de traitement de l'eau Download PDF

Info

Publication number
WO2009002192A1
WO2009002192A1 PCT/NZ2007/000164 NZ2007000164W WO2009002192A1 WO 2009002192 A1 WO2009002192 A1 WO 2009002192A1 NZ 2007000164 W NZ2007000164 W NZ 2007000164W WO 2009002192 A1 WO2009002192 A1 WO 2009002192A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
content
range
calculating
water treatment
Prior art date
Application number
PCT/NZ2007/000164
Other languages
English (en)
Other versions
WO2009002192A9 (fr
Inventor
Jason Frederick Colton
Original Assignee
H2Ope Holdings Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H2Ope Holdings Limited filed Critical H2Ope Holdings Limited
Priority to AU2007355782A priority Critical patent/AU2007355782B2/en
Priority to PCT/NZ2007/000164 priority patent/WO2009002192A1/fr
Publication of WO2009002192A1 publication Critical patent/WO2009002192A1/fr
Publication of WO2009002192A9 publication Critical patent/WO2009002192A9/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/21Dissolved organic carbon [DOC]

Definitions

  • the present invention relates to a method of calculating a water treatment chemical dose for enabling determination of chemical dose in the treatment of raw water to potable water.
  • the present invention relates to a method of calculating a water treatment chemical dose enabling predictive calculation of chemical dosage applicable in the treatment of any raw water type with or without local WTP pre- calibration.
  • NOM natural organic matter
  • a mixture of hydrophobic and hydrophilic organic compounds in a range of molecular weights contains a mixture of hydrophobic and hydrophilic organic compounds in a range of molecular weights.
  • Compounds with high molecular weight and high hydrophobicity, such as aquatic humics and aquatic fulvics resulting from decaying organic matter like leaves, are more amenable to chemical treatment methods such as coagulation and subsequent solids separation.
  • the coagulant dose required for a given plant and given raw water conditions has traditionally been set based on either the plant operator's experience, physical jar testing, or by a streaming current meter.
  • Streaming current meters operate under feed back process control, measuring the quality of water after coagulant dosing and adjusting the coagulant dose based on that measurement to achieve a target water quality
  • feed forward, or predictive, control methods have been used utilising sampling of raw water, prediction of the chemical dose required and dosing accordingly for a given raw water condition.
  • WO2005022278 discloses a feed forward/feedback control method using calculation of a purity index based on outgoing water turbidity.
  • a low purity index valve causes a feedback controller to increase the chemical dose and a high purity index value causes the feedback controller to decrease the chemical dose to minimise deviation from the outgoing water turbidity set point.
  • the disadvantage with known feedback and feed forward methods is that they can be unreliable with different raw water chemistries with varying particulate and NOM components or with rapidly changing raw water conditions, such as after heavy rain fall, varying WTP flow rate, pH changes resulting from chemical treatment and incomplete mixing of water with the chemical treatment agent.
  • US6408227 discloses a system using predictive dosage based on colour, turbidity and coagulant dosed. Dosage is determined by multiplying the sum of the square colour and turbidity of the untreated water by a conversion factor. The conversion factor is determined by dividing the dosage of coagulant used to achieve the optimum treated water quality by the sum of the square colour and turbidity of the untreated water. US6408227 describes a system and method for controlling effluents in treatment systems using neural networks, genetic algorithms and deterministic models to control WTPs and predict parameters such as chemical dosage.
  • a method of calculating a water treatment chemical dose including the steps of:
  • the calculated SUVA is used to adjust the weightings of the particulate content and NOM content and predicting a water treatment chemical dose from the sum of the particulate content and NOM content.
  • a water treatment chemical dose including the steps of:
  • NOM natural organic matter
  • DOC dissolved organic carbon
  • SUVA UVAbsorbanaf/m] _ and DOQmglL]
  • constants A, B, D, E, F H, I, J, K L, M, N and P are predetermined values which can be applied by the user for any water source or selected by the user for a specific water source and/or WTP to increase the accuracy of the predicted water chemical treatment dose.
  • the constant A is in the range 150 to 300
  • constant B is the range 5 to 50
  • constant D is in the range -2 to -0.2
  • constant E is in the range 0.1 to 1.5
  • constant F is in the range 3 to 5
  • constant H is in the range 2 to 4
  • constant I is in the range 0.001 to 0.005
  • constant J is in the range 1 to 5
  • constant K is in the range 0.5 to 4
  • constant L is in the range 0.1 to 1.5
  • constant M is in the range -10 to -50
  • constant N is in the range -1 to -8
  • constant P is in the range 1 to 1.8.
  • the ultraviolet absorbance is in the range 250 to 750 nanometres (nm).
  • the ultraviolet absorbance is 254 nm.
  • the water treatment chemical is a metal based coagulant.
  • the water treatment chemical is based on aluminium and iron based coagulant.
  • the DOC content of the water is in the range 0 to 50 milligrams per litre (mg/L).
  • the particulate content of the water is in the range 0 to 200 nephelometric turbidity units (NTU).
  • water treatment control method may be used via a control apparatus including a programmable logic unit with computer executable instructions defining the algorithm of the present invention.
  • an additional user selectable coagulation mode enables the user to optimise treatment for either particulate or NOM removal.
  • FIG. 1 shows an illustration of the correlation of specific ultraviolet absorbance factor (SUVA) (the ratio of ultraviolet absorbance and dissolved organic carbon) with the character of NOM water content.
  • SUVA is a component of the algorithm used to implement the present invention.
  • Figure 2 shows a graph illustrating increasing percentage of dissolved organic carbon (DOC) removal with increasing coagulant dose as a result of implementation of the present invention
  • Figure 3 shows a schematic diagram of a feed forward coagulant dosage control process used to implement the present invention
  • FIT refers to Flow Indicating Transmitter
  • AIT refers to Analyser Instrument Transmitter
  • Fx refers to Function block
  • PID refers to Proportional Integral Derivative
  • SP refers to Set point
  • CV refers to Control Value (output from PID block);
  • PV refers to Process value
  • VSD refers to Variable speed drive
  • Figure 4 shows a graph of coagulant dose predictions achieved with the present invention over time compared to coagulant dose predictions derived from a streaming current meter of the prior art
  • Figure 5 shows a composite graph of coagulant dose and water turbidity versus coagulant dose response time using a user and preset mode dosage of the present invention compared to dose predictions derived from a streaming current meter of the prior art.
  • a preferred feed forward coagulant dosage control process used to implement the present invention in a WTP is generally shown by arrow 1.
  • the WTP must have a coagulant dose pump 2 which can automatically be controlled by a control unit 3 configured with a programmable logic unit (not shown) running the algorithm of the present invention.
  • An analyser instrument transmitter (AIT) 4 measures the turbidity, UV254nm absorbance and DOC of the raw water 5.
  • the algorithm of the present invention determines the coagulant dose set point (mg/litre) 6.
  • the raw water 5 flow rate is measured via a flow instrument transmitter (FIT) 7 and the coagulant flow rate 8 via a flow instrument transmitter (FIT) 9.
  • the raw water 5 flow rate is flow paced with the coagulant flow rate 8 via a variable speed drive 10 and the control unit 3.
  • the coagulant flow rate provides the process variable (PV) 11 and allows the actual coagulant dose to be monitored (in Litres/hour).
  • the control unit 3 is capable of using a proportional integral and derivative control block (PID) 12 and function block 12A.
  • PID 12 with output via a control valve (CV) 13 is configured with the required coagulant dose (referred to as the set point (SP) 14 in Litres/hour), the measured coagulant flow (in Litres/hour)' as the PV 11 and the output as the coagulant dose pump stroke 15.
  • Figure 4 shows tracked changes over a time period of 5.5 weeks.
  • Figure 5 shows a raw water quality change event starting at 19:25 and which peaks at 04:25 the next day as measured by water turbidity.
  • the predicted dose of the feed forward control method of the present invention peaks at 04:25 correlating with the peak of water turbidity whereas the known feedback method peaks significantly later at 09:45.
  • Such rapid changes in chemical dosage of the present invention provides for more consistent water quality.
  • the method of the present invention can be used in two user selectable modes of operation: a conventional mode which predicts the lowest coagulant dose possible to achieve particulate removal and an enhanced mode which predicts the lowest coagulant dose to achieve maximum NOM removal.
  • the conventional mode can account for an up to 15% reduction in chemical dosage in comparison to prior art methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)

Abstract

Cette invention porte sur un procédé de calcul d'une dose chimique de traitement de l'eau pour permettre la détermination d'une dose chimique dans le traitement d'une eau brute en eau potable. De préférence, la présente invention porte sur un procédé de calcul d'une dose chimique de traitement de l'eau permettant un calcul prédictif d'un dosage chimique applicable dans le traitement de tout type d'eau brute avec ou sans pré-étalonnage WTP local. Le procédé comprend les étapes consistant à: quantifier la turbidité de l'eau en tant que mesure d'une teneur en particules; quantifier l'absorbance ultraviolette de l'eau en tant que première mesure d'une teneur en matière organique naturelle (NOM); quantifier la teneur en carbone organique dissous (DOC) de l'eau en tant seconde de la teneur en NOM; calculer un facteur d'absorbance ultraviolette spécifique (SUVA) comme étant le rapport de l'absorbance ultraviolette et du carbone organique dissous; utiliser le SUAV pour ajuster les pondérations de la teneur en particules et de la teneur en NOM; et prédire une dose chimique de traitement de l'eau à partir de la somme de la teneur en particules et de la teneur en NOM.
PCT/NZ2007/000164 2007-06-22 2007-06-22 Procédé de calcul d'une dose chimique de traitement de l'eau WO2009002192A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2007355782A AU2007355782B2 (en) 2007-06-22 2007-06-22 A method of calculating a water treatment chemical dose
PCT/NZ2007/000164 WO2009002192A1 (fr) 2007-06-22 2007-06-22 Procédé de calcul d'une dose chimique de traitement de l'eau

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/NZ2007/000164 WO2009002192A1 (fr) 2007-06-22 2007-06-22 Procédé de calcul d'une dose chimique de traitement de l'eau

Publications (2)

Publication Number Publication Date
WO2009002192A1 true WO2009002192A1 (fr) 2008-12-31
WO2009002192A9 WO2009002192A9 (fr) 2009-09-24

Family

ID=40185845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NZ2007/000164 WO2009002192A1 (fr) 2007-06-22 2007-06-22 Procédé de calcul d'une dose chimique de traitement de l'eau

Country Status (2)

Country Link
AU (1) AU2007355782B2 (fr)
WO (1) WO2009002192A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152977A1 (fr) * 2012-04-12 2013-10-17 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Procédé pour détecter et/ou contrôler la teneur en matière solide lors du pompage d'eau brute de puits
WO2016205944A1 (fr) * 2015-06-23 2016-12-29 Trojan Technologies Procédé et dispositif pour le traitement d'un fluide contenant un contaminant
CN107922213A (zh) * 2015-08-05 2018-04-17 三菱重工业株式会社 水处理系统、发电成套设备及水处理系统的控制方法
WO2020012017A1 (fr) 2018-07-13 2020-01-16 Suez Groupe Procede de determination d'une dose de coagulant pour le traitement d'une eau brute
WO2020012022A1 (fr) 2018-07-13 2020-01-16 Suez Groupe Procede de determination d'une dose de coagulant pour le traitement d'une eau brute
WO2020099723A1 (fr) * 2018-11-14 2020-05-22 Kemira Oyj Mesure et régulation de matière organique dans un flux d'eaux usées
CN111693522A (zh) * 2020-05-29 2020-09-22 苏州科技大学 一种城市水体污染程度线上表征方法
JP2020168618A (ja) * 2019-04-04 2020-10-15 株式会社東芝 運転支援装置、運転支援方法及びコンピュータプログラム
WO2021140150A1 (fr) 2020-01-10 2021-07-15 Suez Groupe Methode de definition et de regulation d'une dose de coagulant pour un traitement par coagulation d'une eau brute
CN116242793A (zh) * 2023-01-08 2023-06-09 北京工业大学 一种比较不同天然有机物对抗生素光催化去除抑制程度大小的方法
CN116242793B (zh) * 2023-01-08 2024-06-04 北京工业大学 一种比较不同天然有机物对抗生素光催化去除抑制程度大小的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114624152B (zh) * 2022-05-16 2022-08-12 生态环境部长江流域生态环境监督管理局生态环境监测与科学研究中心 一种水体颗粒有机碳来源的测试方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400137A (en) * 1993-08-11 1995-03-21 Texaco Inc. Photometric means for monitoring solids and fluorescent material in waste water using a stabilized pool water sampler
US5489977A (en) * 1993-08-11 1996-02-06 Texaco Inc. Photomeric means for monitoring solids and fluorescent material in waste water using a falling stream water sampler
WO2000064821A1 (fr) * 1999-04-23 2000-11-02 Clear Value, Inc. Systeme de traitement d'eau potable et son procede de fonctionnement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400137A (en) * 1993-08-11 1995-03-21 Texaco Inc. Photometric means for monitoring solids and fluorescent material in waste water using a stabilized pool water sampler
US5489977A (en) * 1993-08-11 1996-02-06 Texaco Inc. Photomeric means for monitoring solids and fluorescent material in waste water using a falling stream water sampler
WO2000064821A1 (fr) * 1999-04-23 2000-11-02 Clear Value, Inc. Systeme de traitement d'eau potable et son procede de fonctionnement

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152977A1 (fr) * 2012-04-12 2013-10-17 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Procédé pour détecter et/ou contrôler la teneur en matière solide lors du pompage d'eau brute de puits
US10807882B2 (en) 2015-06-23 2020-10-20 Trojan Technologies Process and device for the treatment of a fluid containing a contaminant
WO2016205944A1 (fr) * 2015-06-23 2016-12-29 Trojan Technologies Procédé et dispositif pour le traitement d'un fluide contenant un contaminant
CN107922213A (zh) * 2015-08-05 2018-04-17 三菱重工业株式会社 水处理系统、发电成套设备及水处理系统的控制方法
WO2020012017A1 (fr) 2018-07-13 2020-01-16 Suez Groupe Procede de determination d'une dose de coagulant pour le traitement d'une eau brute
WO2020012022A1 (fr) 2018-07-13 2020-01-16 Suez Groupe Procede de determination d'une dose de coagulant pour le traitement d'une eau brute
FR3083869A1 (fr) 2018-07-13 2020-01-17 Suez Groupe Procede de determination d'une dose de coagulant pour le traitement d'une eau brute
FR3083868A1 (fr) 2018-07-13 2020-01-17 Suez Groupe Procede de determination d'une dose de coagulant pour le traitement d'une eau brute
US20210155510A1 (en) * 2018-07-13 2021-05-27 Suez Groupe Method for determining a dose of coagulant for treating raw water
CN113039160A (zh) * 2018-11-14 2021-06-25 凯米拉公司 测量和控制废水流中的有机物
WO2020099723A1 (fr) * 2018-11-14 2020-05-22 Kemira Oyj Mesure et régulation de matière organique dans un flux d'eaux usées
JP2020168618A (ja) * 2019-04-04 2020-10-15 株式会社東芝 運転支援装置、運転支援方法及びコンピュータプログラム
JP7234013B2 (ja) 2019-04-04 2023-03-07 株式会社東芝 運転支援装置、運転支援方法及びコンピュータプログラム
WO2021140150A1 (fr) 2020-01-10 2021-07-15 Suez Groupe Methode de definition et de regulation d'une dose de coagulant pour un traitement par coagulation d'une eau brute
FR3106131A1 (fr) 2020-01-10 2021-07-16 Suez Groupe Méthode de définition et de régulation d’une dose de coagulant pour un traitement par coagulation d’une eau brute
CN111693522A (zh) * 2020-05-29 2020-09-22 苏州科技大学 一种城市水体污染程度线上表征方法
CN116242793A (zh) * 2023-01-08 2023-06-09 北京工业大学 一种比较不同天然有机物对抗生素光催化去除抑制程度大小的方法
CN116242793B (zh) * 2023-01-08 2024-06-04 北京工业大学 一种比较不同天然有机物对抗生素光催化去除抑制程度大小的方法

Also Published As

Publication number Publication date
AU2007355782B2 (en) 2013-09-19
AU2007355782A1 (en) 2008-12-31
WO2009002192A9 (fr) 2009-09-24

Similar Documents

Publication Publication Date Title
AU2007355782B2 (en) A method of calculating a water treatment chemical dose
Stoller Effective fouling inhibition by critical flux based optimization methods on a NF membrane module for olive mill wastewater treatment
US9682872B2 (en) Wastewater treatment system
JP2008161809A (ja) 凝集剤注入制御システム
RU2567621C2 (ru) Способ и система для обработки водных потоков
Griffiths et al. The application of artificial neural networks for the optimization of coagulant dosage
US20200079661A1 (en) System, apparatus, and method for treating wastewater in real time
JP2007061800A (ja) 水処理プラントに適用する凝集剤注入制御装置
JP5072382B2 (ja) 凝集剤注入制御装置
US20230257283A1 (en) Process, system, and computer readable storage medium for determining optimal coagulant dosage
JP2015157239A (ja) 水処理プロセスの制御方法及び制御装置
US7005073B2 (en) Residual wastewater chlorine concentration control using a dynamic weir
EP3230215B1 (fr) Optimisation de déshydratation en temps réel
CN1673114A (zh) 一种混凝投药控制方法及其控制系统
CN108211798A (zh) 一种反渗透净水处理控制方法及系统
Baxter et al. Model-based advanced process control of coagulation
AU2019300360B2 (en) Method for determining a dose of coagulant for treating raw water
WO2022009481A1 (fr) Appareil et procédé pour commander l'injection d'un coagulant dans une installation de traitement d'eau
JP5259365B2 (ja) 浄水場におけるpH制御装置
CN106219708A (zh) 一种基于自动控制的强化污泥回流混凝处理系统及方法
Ratnaweera et al. Coagulant dosing control–a review
Liu Enhancement of coagulant dosing control in water and wastewater treatment processes
Mussared et al. Implementation of predictive alum dose control systems
Deveughele et al. Neural networks: an efficient approach to predict on-line the optimal coagulant dose
JP2005329358A (ja) 浄水場の塩素注入制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07808662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007355782

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007355782

Country of ref document: AU

Date of ref document: 20070622

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 07808662

Country of ref document: EP

Kind code of ref document: A1